
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Comparative Analysis of Intra-Algorithm Parallel
Multiobjective Evolutionary Algorithms:

Taxonomy Implications on Bioinformatics
Scenarios

Sergio Santander-Jiménez and Miguel A. Vega-Rodrı́guez

Abstract—Parallelism has become a recurrent tool to support computational intelligence and, particularly, evolutionary algorithms in

the solution of very complex optimization problems, especially in the multiobjective case. However, the selection of parallel evolutionary

designs often represents a difficult question due to the multiple variables that must be considered to attain an accurate exploitation of

hardware resources, along with their influence in solution quality. This work looks into this issue by conducting a comparative

performance analysis of intra-algorithm parallel multiobjective evolutionary algorithms running on shared-memory configurations. We

consider different design trends including A) generational approaches based on measurements of solution quality plus diversity, B)

generational approaches based on measurements of solution quality exclusively, and C) non-generational approaches. Following these

trends, a total of six representative algorithms are applied to tackle a challenging bioinformatics problem as a case study, phylogenetic

reconstruction. Experimentation on real-world scenarios point out the main advantages and weaknesses of each design, outlining

guidelines for the selection of methods according to the characteristics of the employed hardware, evolutionary properties, and the

parallelism exploitation capabilities of the evaluated approaches.

Index Terms—Comparative analysis, taxonomy, parallelism, multiobjective optimization, evolutionary computation, NP-hard problems.

✦

1 INTRODUCTION

IN the last years, the need to solve NP-hard optimization
problems has played a prevailing role in research direc-

tions for a wide variety of scientific domains. Such problems
involve the processing of a decision space S to find an
optimal solution s ∈ S according to an objective function
f : S → ℜ. In this sense, many real-world problems are
characterized by the presence of not a single but multiple
objective functions f1, f2, ..., fn which belong to an objec-
tive space Z . Tackling these multiobjective optimization
problems (MOPs) implies finding those solutions which
represent the best possible trade-offs among the considered
objectives, the Pareto-optimal set. Their NP-hard nature jus-
tifies the efforts in developing stochastic methods to address
them, being specially significant the results obtained by us-
ing evolutionary algorithms (EAs) and, in the multiobjective
case, multiobjective evolutionary algorithms (MOEAs) [1].

In spite of the use of evolutionary approaches, real-world
problems are becoming increasingly difficult to solve in
reasonable times due to the presence of different factors
that increase their temporal complexity, including large
search spaces, high dimensionality, and time-consuming
objective functions. This issue is even more noticeable in

• Sergio Santander-Jiménez is with the INESC-ID, Instituto Superior
Técnico, Universidade de Lisboa, Lisboa 1000-029, Portugal (e-mail:
sergio.jimenez@tecnico.ulisboa.pt).

• Miguel A. Vega-Rodrı́guez is with the Department of Computer
and Communications Technologies, University of Extremadura, Escuela
Politécnica, Campus Universitario s/n, Caceres 10003, Spain (e-mail:
mavega@unex.es)

MOPs, which are affected not only by the presence of com-
putationally demanding operations (e.g. in the evaluation
procedures) but also by the fact that these problems require
finding a set of Pareto solutions instead of a single one as
in traditional single-objective optimization. As a result, the
use of serial approaches no longer satisfies the temporal
requirements needed to address real-world optimization
problems. Fortunately, the advances in hardware develop-
ment have opened the door to the solution of such problems
by taking advantage of the parallelism opportunities found
in evolutionary algorithmic designs. The combination of
parallelism and evolutionary computation indeed provides
a number of benefits in both single and multiobjective
scenarios, including reduced processing times, improved
robustness, and boosted solution quality [2], [3].

Focusing on the multiobjective case, the computationally
demanding features shown by MOPs motivate the inter-
est in analyzing intra-algorithm parallelization approaches,
which apply parallelism to minimize execution time and
speed up the optimization process [4]. A key aspect is given
by the fact that all the current hardware platforms are paral-
lel. Therefore, when adopting MOEAs, the researcher must
consider not only problem-related requirements but also
other questions, such as the characteristics of the hardware
and, especially, the intrinsic available parallelism shown by
the evolutionary algorithm. In fact, a fundamental issue lies
on examining the impact of MOEA algorithmic designs on
the temporal gains observed in their parallel versions, in
order to determine the parallel MOEA that best fits the
preferences of the expert in terms of solution quality and

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2854788

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

execution time. Therefore, the development of effective,
efficient parallel approaches involves multiple variables that
are often complex to evaluate.

This work aims to study intra-algorithm parallel evolu-
tionary designs for multiobjective optimization, undertak-
ing a comparative analysis of parallel MOEAs on compu-
tationally demanding optimization scenarios. Rather than
stating if one particular MOEA design is better or worse
than others, the key idea lies on emphasizing the advantages
and disadvantages of different parallel MOEA approaches
attending to solution quality and parallelism potential, in
order to support researchers in the choice of accurate op-
timization procedures according to the characteristics of
the underlying hardware. To this end, we examine the
multiobjective and parallel performance attained by differ-
ent algorithms on a challenging bioinformatics problem,
phylogenetic reconstruction [5]. We consider generational
designs that integrate multiobjective mechanisms to pro-
mote 1) solution quality and diversity (represented by the
Non-Dominated Sorting Genetic Algorithm II, NSGA-II [6],
Strength Pareto Evolutionary Algorithm 2, SPEA2 [7], and
Indicator-Based Evolutionary Algorithm, IBEA [8]) and 2)
only solution quality (Multiobjective Firefly Algorithm, MO-
FA [9], and Multiobjective Evolutionary Algorithm Based
on Decomposition, MOEA/D [10]). Along with them, non-
generational designs (Multiobjective Artificial Bee Colony,
MOABC [11]) are also considered. As a case study, this work
will be focused on shared-memory multicore systems, since
they represent one of the most widespread hardware trends
in both commodity and high performance platforms.

This paper is organized as follows. The next section
examines different attempts and proposals in the literature
to characterize parallel EAs, outlining the scope of this
study. Section 3 describes the different parallel MOEA de-
signs considered in this study while Section 4 details the
real-world problem selected for experimentation purposes.
The evaluation and discussion of the described parallel
MOEAs is carried out in Section 5. Finally, Section 6 includes
concluding remarks and future work lines.

2 RELATED WORK

Throughout the years, different authors have pointed out
the close relationship between parallelism and evolutionary
computation, reporting the use of parallel EAs and other
bioinspired designs in telecommunications, engineering, in-
dustry, etc. We refer the reader to [2] and [3] for comprehen-
sive surveys on this subject. This section summarizes the
different attempts published in the literature to characterize
parallel EAs and their multiobjective counterparts.

Among the initial works which tried to provide insight
into parallel metaheuristics, we can highlight the classifica-
tion of parallel genetic algorithms (GAs) by Cantú-Paz [12].
There, four categories were distinguished: global single-
population master-slave GAs, multi-population coarse-
grained GAs, single-population fine-grained GAs, and hier-
archical GAs. The first class takes advantage of parallelism
opportunities in the processing of individuals to parallelize
the computation of time-consuming operations. The multi-
population GA defines several subpopulations managed by
different processors, each one running a complete GA with

migration operators to exchange individuals periodically. In
fine-grained GAs, the population is spatially partitioned in
small subpopulations composed of one or few individuals,
each one handled by a processor, using neighbourhoods
for selection and mating. Finally, the hierarchical or hybrid
approach combines the previous classes, typically defining a
multi-population GA at the upper level and a master-slave,
fine-grained, or another coarse-grained GA at the bottom.

Regarding the general EA case, Alba and Tomassini re-
ported a taxonomy focused on the classification of EA mod-
els and parallel implementations [13]. Two main EA models
were defined in this work. The first one is the panmictic
EA, which handles a single panmictic population where
evolutionary operators take place globally considering any
individual. The second model, named as structured EA, uses
structured populations in the shape of islands (distributed
EAs) or diffusion grids (cellular EAs). Considering this dis-
tinction, four basic parallelization schemes were discussed:
global parallelization under master-slave principles, coarse-
grained, fine-grained, and hybrid approaches.

Another well-known classification of parallel meta-
heuristics was due to Talbi [4], who defined inter and
intra-algorithm parallelization strategies under three hier-
archical levels: algorithmic, iteration, and solution levels. At
the algorithmic level, problem-independent inter-algorithm
parallelization is applied to boost search capabilities. This
level included the island model and the diffusion model.
On the other hand, at the iteration and solution levels,
intra-algorithm schemes are used to reduce execution time
by exploiting parallelism opportunities related to the al-
gorithmic design (iteration level, problem-independent ap-
proach) and task/data parallelism at the objective function
calculations (solution level, problem-dependent approach).
Combinations of the above mentioned approaches were also
included in this classification.

Van Veldhuizen et al. addressed the adaptation of paral-
lel EA paradigms to the MOEA case [14], identifying differ-
ent parallelization strategies that were further discussed by
Jaimes and Coello in [15]. Focusing on master-slave designs,
three basic approaches were outlined: 1) distribution of the
population members in such a way that each slave computes
all the n objective functions for the assigned individuals; 2)
distribution of sets of population members where partitions
of slaves are responsible for the computation of k<n dif-
ferent objective functions; and 3) decomposition of each ob-
jective function in a problem-dependent fashion. Regarding
the island model, four main variants were defined: 1) ho-
mogeneous (identical MOEAs/parameters in each island);
2) heterogeneous (different MOEAs/parameters); 3) com-
putation of different objective function subsets per island;
and 4) computation of different regions of the genotype
or phenotype domains per island. For the diffusion model,
they pointed out several neighbourhood shapes, including
square, rectangle, cube, and multi-dimensional approaches.

Talbi et al. also adapted their classification to the
multiobjective context [16], providing hints to undertake
problem-dependent parallelization when considering sev-
eral independent solvers, fitness evaluation under decom-
position, and fitness evaluation under multiple runs. More
recently, Luna and Alba pointed out in [3] centralized and
distributed approaches to manage non-dominated solutions

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2854788

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

Fig. 1. General classification of parallel MOEA approaches and strategies, highlighting the scope of this work

in structured MOEAs. Coello suggested in [17] the idea of
incorporating surrogate models (functional approximations)
into parallel MOEAs as a way to deal with computationally
expensive real-world problems. Finally, Talbi analyzed the
opportunities provided by the emergence of novel hard-
ware platforms and programming models, identifying the
challenges to be addressed in the parallel MOEA research
field on the way to achieve Exascale performance [18].

Figure 1 summarizes the different paradigms and strate-
gies in these taxonomies for the multiobjective case. Our
work is focused on examining the problem-independent
intra-algorithm branch by considering different MOEA ap-
proaches, discussing the influence of their algorithmic de-
signs on parallel performance. Other attempts in the lit-
erature to study intra-algorithm approaches were mostly
aimed at evaluating multiobjective quality, like [19] which
considered the specific case of distributed computing on
grid architectures. We aim to go a step further by analyzing
and discussing parallel MOEAs taking into account not only
multiobjective quality, but also parallel performance and
their relationship with MOEA features. Moreover, our study
is undertaken considering the more general case of shared-
memory machines, which are among the most commonly
used hardware setups in metaheuristics research. Finally, we
consider implementations whose worker tasks include, be-
sides other time-consuming operations, the evaluation of n
objective functions per assigned individual, as it represents
the most usual approach and avoids the load imbalance
issues associated to the k < n alternative [14]. A summary
of the main contributions of this work is given below:

• A comparative analysis of parallel MOEAs based on
the problem-independent intra-algorithm paradigm,
considering different design trends and six rep-
resentative examples of parallel MOEAs for
shared-memory systems (NSGA-II, SPEA2, IBEA,
MOEA/D, MO-FA, and MOABC).

• An in-depth evaluation of these approaches under
both parallel metrics (speedup and efficiency) and
multiobjective indicators (hypervolume and spac-
ing), conducting experimental assessment on a chal-
lenging real problem, phylogenetic reconstruction.

• The identification of key opportunities and flaws in
each design trend, suggesting guidelines for the se-
lection of parallel MOEA approaches by considering
solution quality requirements and parallel comput-
ing capabilities in the underlying hardware setup.

Fig. 2. Intra-algorithm parallel MOEAs considered in this study

3 INTRA-ALGORITHM PARALLEL MOEAS

This section describes the intra-algorithm parallel MOEAs
studied in this work. We consider a shared-memory sce-
nario involving NC processing cores with the same memory
address space, being this globally-shared memory the ele-
ment where all the coordination and synchronization among
execution threads take place. Our parallel implementations
follow the OpenMP standard [20], which defines a fork/join
model for performing parallel computations via workshar-
ing and other compiler directives. Figure 2 shows the gen-
eral overview of the considered parallel MOEA categories,
distinguishing the different trends herein evaluated.

3.1 Generational Designs

In a generational design, the parallelization is undertaken
by distributing independent time-consuming operations in
the main sections that compose each generation of the
MOEA. Only when all the parallel tasks belonging to a
section have been processed, the algorithm can proceed with
the next one. The term ’generational’ refers to the fact that
a new generation can only be started after completing all
the tasks in the current one. Hence, a synchronous style of
parallel programming is commonly adopted to implement
these approaches. The evaluation procedures have tradition-
ally been identified as the main source of parallelism to
be exploited. However, real-world problems often involve
additional computationally demanding operations whose

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2854788

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

Algorithm 1 Generational Parallel NSGA-II/SPEA2/IBEA

1: Initialize Data Structures (PopulationStructs, ParetoFront)
2: #pragma omp parallel num threads (num threads)
3: Initialize Population (PopulationStructs, popSize, num threads)
4: while ! stop criterion reached do
5: #pragma omp single
6: Fitness Assignment (PopulationStructs)
7: Environmental Selection (PopulationStructs)
8: #pragma omp for schedule (scheduleType)
9: for i = 1 to popSize do

10: Selection, Crossover, and Mutation (P ′

i , PopulationStructs, crossover-
Prob, mutationProb)

11: Evaluate Generated Solution (P ′

i)
12: end for
13: #pragma omp single
14: Update Pareto Front (ParetoFront, PopulationStructs∪P ′)
15: end while

parallelization can lead to noticeable reductions of execution
time e.g., the computation of evolutionary operators when
complex data structures are used in the solution encoding.
We follow this guideline in our implementations with the
aim of reducing serial components.

Different generational MOEAs are distinguished accord-
ing to the multiobjective mechanisms used to assess solu-
tions. We examine here two strategies: approaches based
on solution quality and diversity and approaches based on
solution quality only.

3.1.1 Approaches Based on Measurements of Solution

Quality and Diversity

These designs are characterized by the inclusion of mecha-
nisms for assessing solutions in terms of convergence and
diversity. In our analysis, these approaches are represented
by three widely-used representative MOEAs: NSGA-II [6],
SPEA2 [7], and IBEA [8]. The consideration of these algo-
rithms within the generational trend follows the guidelines
of their standard definitions, which exhibit intrinsically gen-
erational properties. In these algorithms, the optimization
process is handled by using the traditional EA scheme,
generating new solutions by using selection, crossover, and
mutation operators. The main differences among them are
related to the data structures used to manage the population
and the implemented fitness assignment strategies.

While NSGA-II introduces fast non-dominated sorting
and crowding distance ordering over a combined parent +
offspring population to determine the next parent popula-
tion, SPEA2 uses an archive of promising individuals for
parent selection purposes that is updated through environ-
mental selections considering strength values and nearest-
neighbour density information. IBEA integrates the infor-
mation retrieved by multiobjective indicators to assess the
quality of the individuals in the population. Indicator-based
fitness values are defined to identify the most promising
solutions that must remain in the population and be used
in the generation of offspring. Although a wide range of
quality indicators can be considered in this framework,
IBEA is commonly used under indicators that combine
measurements of convergence and diversity, such as those
based on hypervolume [21].

The parallel implementations of NSGA-II, SPEA2, and
IBEA are based on the scheme shown in Algorithm 1. In
these MOEAs, parallelizable and non-parallelizable sections
can be distinguished at each generation. For example, the

fitness assignment and environmental selection steps repre-
sent operations difficult to parallelize, due to the fact that
they could potentially be affected by data dependencies
issues and read/write hazards. These operations will be
handled by a single thread, using for this purpose the
#pragma omp single directive (lines 5-7 in Algorithm 1). The
update of the Pareto front structure in the final steps of a
generation is also included among these serial operations
(lines 13-14). Regarding parallelizable sections, workshar-
ing efforts in these algorithms take place at the offspring
processing loop, since the generation and evaluation of new
candidate solutions can be handled in parallel by different
execution threads. Therefore, #pragma omp for can be used to
distribute the iterations of this loop (lines 9-12). This parallel
loop can be executed under static or dynamic scheduling
policies (schedule clause), depending the choice on the
characteristics of the tackled problem and their effect over
the times required to compute evolutionary operators and
objective functions for different candidate solutions.

3.1.2 Approaches Based on Measurements of Solution

Quality Exclusively

The main feature in these designs lies on the use of
lightweight fitness mechanisms that allow the algorithm to
determine quickly the quality of the individuals, discarding
other information for the sake of reducing fitness assign-
ment times. We also include in this category approaches that
reduce computational complexity by decomposing a MOP
into scalar subproblems, which are optimized using solution
quality information from their neighbouring subproblems.
To illustrate them, we use a multiobjective adaptation of the
Firefly Algorithm, MO-FA [9], [22], and the most representa-
tive decomposition-based MOEA, MOEA/D [10]. These so-
lution quality-only methods, MO-FA and MOEA/D, show
intrinsic generational properties in their original definitions,
being suitable for inclusion in the generational trend.

MO-FA models the interactions of a firefly population,
based on movements towards the position of partners
showing brighter flashing light patterns. The multiobjective
search engine in MO-FA proceeds by making pairwise com-
parisons of solution quality under the Pareto dominance
relation [1]. By using Pareto dominance, the algorithm can
compare solutions on the basis of their objective function
scores. Let Pi and Pj be two individuals with solutions Pi.s

and Pj .s. If Pi is dominated by Pj (Pj ≻ Pi), the algorithm
carries out the generation of a new candidate solution by
computing firstly a measurement δij of the distance which

separates Pi.s from Pj .s: δij =
√

∑d
k=1 (Pi.sk − Pj .sk)2,

where Pi.sk and Pj .sk refer to the k-th component (decision
variable) of each solution. Once this value has been calcu-
lated, each component of Pi.s is updated as follows:

Pi.sk = Pi.sk+β0e
−γδ2ij (Pj .sk−Pi.sk)+α(rand[0, 1]−

1

2
),

(1)
where β0 is an attractiveness factor, γ an environmental
absorption coefficient, α a randomization factor, and rand[0,
1] a random number from a uniform distribution in the
interval [0, 1]. The second term in Eq. 1 denotes the degree
Pi.s will move towards Pj .s while the third term introduces

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2854788

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

Algorithm 2 Generational Parallel MO-FA

1: Initialize Data Structures (P, ParetoFront)
2: #pragma omp parallel num threads (num threads)
3: Initialize Population (P, popSize, num threads)
4: while ! stop criterion reached do
5: #pragma omp single
6: idDominatedFfs, numDominatedFfs, idDominatingFfs← 0
7: for i = 1 to popSize do
8: if ∃ Pj : Pj ≻ Pi then
9: idDominatedFfs[numDominatedFfs]← i

10: numDominatedFfs← numDominatedFfs + 1
11: idDominatingFfs[i]← idDominatingFfs[i] ∪ j /*∀Pj : Pj≻Pi*/
12: end if
13: end for
14: auxPop← P
15: #pragma omp for schedule (scheduleType)
16: for i = 1 to numDominatedFfs do
17: idDom← idDominatedFfs[i]
18: Move Firefly (PidDom, auxPop, idDominatingFfs[idDom], β0, γ, α)
19: Evaluate Generated Solution (PidDom)
20: end for
21: #pragma omp single
22: Update Pareto Front (ParetoFront, P)
23: end while

variability into Pi.s to promote the exploration of the search
space. These movements are repeated for each Pj in the
population that dominates Pi, proceeding next with the
computation of objective functions for the resulting solution.

The idea behind the parallel implementation of MO-
FA (Algorithm 2) consists of distributing firefly movements
among execution threads. To this end, several issues must
be addressed. Particularly, we have to minimize load imbal-
ance in the processing of individuals, as movements are only
applied over dominated individuals in the population and,
for each one, a variant number of dominating individuals
must be considered in the calculations. To attain balanced
workload per thread, we pre-process the population to de-
termine the number of dominated individuals (lines 5-13 in
Algorithm 2), storing their identifiers as well as those from
their dominating counterparts. In this way, we can remove
the Pareto dominance if-condition from the movement loop,
which is parallelized by using #pragma omp for (lines 15-20).
This parallel loop benefits from the use of dynamic schedul-
ing, so that we can counterbalance the effect of having a
variant number of dominating individuals involved in each
iteration. In addition, we introduce a backup population
(line 14) to keep a stable copy of the population, thus
avoiding read/write hazards when updating individuals.

On the other hand, MOEA/D tackles a MOP by decom-
posing it into multiple scalar optimization subproblems,
in such a way that the i-th individual in the population
represents the best solution found for the i-th subproblem.
This decomposition is commonly undertaken by adopting
the Tchebycheff approach [10], which defines the objective
function of the i-th subproblem gi as:

minimize gi(x|λ
i, z∗) = max1≤j≤n

{

λi
j |fj(x)− z∗j |

}

, (2)

where x is the solution under evaluation, fj(x) the score
at the j-th objective for x, λi the weight vector for the i-
th subproblem, and z∗ a reference point whose coordinates
represent the best found objective scores.

Each subproblem in MOEA/D is optimized by consid-
ering information from their T closest neighbouring sub-
problems, generating new candidate solutions by applying
evolutionary operators within the neighbourhood. Once a

Algorithm 3 Generational Parallel MOEA/D

1: Initialize Data Structures (P, ParetoFront)
2: #pragma omp parallel num threads (num threads)
3: Initialize Population (P, λ, popSize, num threads)
4: while ! stop criterion reached do
5: #pragma omp for schedule (scheduleType, T)
6: for i = 1 to popSize do
7: Selection, Crossover, and Mutation (y, P, T, crossoverProb, mutation-

Prob)
8: Evaluate Generated Solution (y)
9: #pragma omp critical

10: Update Reference Point (y, z∗)
11: for each Pj in the neighbourhood of Pi do
12: if gj(y|λ

j , z∗) improves gj(Pj |λ
j , z∗) then

13: Update Neighbouring Subproblem (Pj , y)
14: end if
15: end for
16: end for
17: #pragma omp single
18: Update Overlapped Neighbourhoods (P, T)
19: Update Pareto Front (ParetoFront, P)
20: end while

new solution y has been obtained, it is used to update z∗

(in case it contains a better score at the j-th objective) and
also the solutions in the neighbourhood (in case gi(y) is
better than gi(x), being x the current best solution at the
neighbouring subproblem i). These steps are repeated over
each subproblem, updating accordingly the Pareto front
structure throughout this evolutionary process.

The parallel implementation of MOEA/D is presented in
Algorithm 3. In order to accomplish the parallel treatment of
subproblems (lines 5-16 in Algorithm 3), it must be ensured
that the processing of solutions inside each partition of
neighbours is carried out by the same execution thread to
respect data dependencies. For this purpose, a chunk size
of T iterations is set in the scheduling clause of #pragma
omp for (line 5), so that the iterations of the loop are dis-
tributed in accordance with the partitions defined by T . The
reference point z∗ represents a variable globally shared by
all the threads and therefore its update must be performed
under #pragma omp critical (lines 9-10) to avoid read/write
hazards. Once the parallel processing of subproblems has
finished for the current generation, a #pragma omp single
section is introduced to carry out the update of overlapping
neighbours between partitions and the management of the
Pareto front (lines 17-19).

These parallel designs (Algorithm 2 and 3) distinguish
themselves from the solution quality plus diversity ap-
proach (Algorithm 1) in the fact that the identified serial /
parallel sections comprise different tasks with different time
complexity. It is worth remarking that the serial / critical
sections in MO-FA and MOEA/D do not involve manda-
tory environmental selections based on measurements of
convergence and diversity over the whole population like in
Algorithm 1, but only operations for supporting the parallel
loop that imply less computational effort.

3.2 Non-generational Designs

Non-generational parallel MOEAs are based on the idea of
allowing evolutionary mechanisms to proceed as soon as a
new candidate solution has been generated. That is, the ex-
ecution of the algorithm can go on without requiring all the
parallel tasks which compose a generation to be completed.
Therefore, the ’generation’ idea is no longer considered,
since the execution threads can carry out new parallel tasks

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2854788

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

Algorithm 4 Non-generational MOABC: Master Thread

1: while ! stop criterion reached do
2: for i = 0 to num threads-2 do
3: while BeeFIFO[i] has elements do
4: Lock (FIFOSem[i])
5: InconsPop.PbeeId ← Pop (BeeFIFO[i])
6: Unlock (FIFOSem[i])
7: end while
8: end for
9: if solutions have been retrieved then

10: Fast Non Dominated Sort / Crowding (InconsPop.P , popSize)
11: Compute Selection Array (InconsPop.probVector, InconsPop.P , pop-

Size/2)
12: Lock (PopSem[i]) /* ∀i : i = 0 to num threads-2 */
13: Interchange Population Structures Pointers (ConsPop, InconsPop)
14: Unlock (PopSem[i]) /* ∀i : i = 0 to num threads-2 */
15: ParetoFront← Update Pareto Front (ParetoFront, ConsPop.P)
16: end if
17: end while
18: Send Termination Notification (i) /* ∀i : i = 0 to num threads-2 */

without waiting for others. As a result, these MOEAs are
often implemented by adopting an asynchronous style of
parallel programming [23].

These designs are represented in this work by MOABC
[11], [24]. This algorithm addresses MOPs by modelling the
way honey bees locate and exploit food sources. For this
purpose, three main search mechanisms are defined. The
first one is the employed bees exploitation, which is applied
over the first half of the population. Given an individual Pi

associated to a solution Pi.s, a new candidate solution is
generated under the employed bee formulation as follows:

P ′i .sk = Pi.sk + φ(Pi.sk − Pj .sk), (3)

where k refers to the k-th component of the solution, Pj a
randomly chosen individual, and φ a random number from
a uniform distribution generated in the interval [-1, 1]. By
using a greedy approach, the new candidate solution will
replace the one originally contained in Pi iff P ′i ≻ Pi.

The second mechanism models the behaviour of on-
looker bees, operating over the second half of the population
to exploit the best employed solutions. To this end, Pareto
ranking and crowding distances are calculated along with
an array of selection probabilities. The onlooker exploitation
is conducted by mutating the selected solution to generate
a new one, which will be retained in the memory of the
processed individual if it is non-dominated with regard to
the selected solution. The last mechanism, the scout bees
search, addresses local optima issues by operating over
individuals that have not been successfully improved in
a ’limit’ number of trials. Those solutions that verify this
condition are replaced by randomly generated ones, which
can be optimized by using other procedures to make them
able to compete with the remaining solutions.

As the execution of scout searches is variable and de-
pends on the state of the optimization process, this step
would introduce load imbalance and waiting times under a
generational perspective. In fact, the general model of the
algorithm is strongly built upon non-generational princi-
ples (e.g., employed bees operate independently from other
types of bees and their tasks should be performed without
waits, scout bees must take action immediately upon local
optima detection to avoid additional unsuccessful attempts,
etc.). This issue explains why MOABC represents a suitable
example of non-generational approaches, in comparison to

Algorithm 5 Non-generational MOABC: Worker Threads

1: while ! Termination Notification received do
2: Lock (PopSem[threadID])
3: if threadID < num threads/2 then
4: Get Employed (employedData, ConsPop.P , indices)
5: else
6: Get Onlooker (onlookerData, ConsPop.P , ConsPop.probVector, in-

dices)
7: end if
8: Unlock (PopSem[threadID])
9: if threadID < num threads/2 then

10: Perform Employed Tasks (beeSolution, employedData, mutationRate)
11: else
12: Perform Onlooker Tasks (beeSolution, onlookerData, mutationRate)
13: end if
14: if beeSolution.trial counter > limit then
15: Perform Scout Bee Tasks (beeSolution, mutationRate)
16: end if
17: Lock (FIFOSem[threadID])
18: Push (BeeFIFO[threadID], beeSolution)
19: Unlock (FIFOSem[threadID])
20: end while

other algorithms that show a more generational-oriented
design in their standard definitions.

The parallel implementation of MOABC organizes ex-
ecution threads under master-worker roles after being ini-
tialized (using #pragma omp parallel). While the master keeps
updated the structures that give support to the optimization
process, the workers generate and evaluate new candidate
solutions in such a way that a worker can start a new task
immediately after finishing the previous one. Two popula-
tion structures are used: 1) a consistent structure to maintain
the current state of the population available to the workers
and 2) an inconsistent structure, exclusively handled by
the master, to manage solutions pending integration into
the population. Interactions between the master and the
workers require the use of queues to allow results com-
munications and semaphores to manage conflicting master-
worker concurrent accesses to shared structures.

Master operations (Algorithm 4) proceed by checking
the queues for the arrival of new solutions, storing them
in the inconsistent population upon detection (lines 2-8
in Algorithm 4). The inconsistent structure is then pro-
cessed by applying a fast non-dominated sort and crowding
distance ordering, along with determining new selection
probabilities (lines 10-11). In this way, the new solutions
are integrated into the population and the status of the
search is updated in the inconsistent structure. To make
it available to the workers, the master interchanges the
consistent and inconsistent structures pointers (lines 12-14),
updating afterwards the Pareto front (line 15).

Since the population in MOABC is structured in two
halves, the worker thread identifier determines the indices
of the individuals to be processed and also which kind of
approach (employed or onlooker formulation) is applied to
generate new candidate solutions. Worker tasks (Algorithm
5) begin by reading the corresponding individuals from the
consistent structure (lines 2-8 in Algorithm 5), defining a
critical section to guarantee that worker readings are not
performed while the master is modifying the consistent
structure pointer. Afterwards, the worker generates a new
solution under employed or onlooker principles and eval-
uates it (lines 9-13), conducting also a scout bee search
if needed (lines 14-16). The result is then introduced into
the queue (lines 17-19) under mutual exclusion with the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2854788

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

readings performed at the master side. After finishing this
task, the worker proceeds with a new one, repeating these
steps until receiving a termination notification.

4 PROBLEM FORMULATION

Since the parallel MOEAs research field lacks a well-
established framework of benchmark functions for evalu-
ation purposes [2] and the computational complexity of
classical -serial- MOEA benchmarks often does not meet
the computing requirements needed to accurately assess
parallel performance [16], the consideration of real-world
MOPs represents a fitting scenario for the comparative
analysis of parallel MOEAs. For testing purposes, we have
selected a real-world problem from the bioinformatics field:
phylogenetic reconstruction [5]. This problem is aimed at
processing a biological sequence alignment of size NxM

(where N is the number of sequences and M the sequence
length) to infer the evolutionary relationships of the organ-
isms characterized in the input data. Evolutionary events are
modelled by using a phylogenetic tree T = (V,E), where V

is the node set and E defines ancestor-descendant relation-
ships. Phylogenetic reconstruction can be tackled as a MOP
which involves the optimization of different phylogenetic
functions, such as parsimony P (T) (to be minimized) and
likelihood L(T) (to be maximized):

P (T) =
M
∑

i=1

∑

(u,v)∈E

C(ui, vi). (4)

L(T) =
M
∏

i=1

∑

x,y∈Λ

πx [Pxy(tru)Lp (ui = y)]

×[Pxy (trv)Lp (vi = y)].

(5)

In Equation 4, (u, v) ∈ E refers to the branch between
two nodes u, v ∈ V , ui and vi represent the state values
(according to an alphabet Λ, e.g. the nucleotide / amino acid
state alphabet) at the i-th site in the sequences of u and v,
and C measures the presence (1) or lack (0) of a state change.
As for Equation 5, πx represents the stationary probability
of a state x ∈ Λ, Pxy(t) the mutation probability from x

to another state y within a time t (branch length value),
r ∈ V the root node with descendants u, v, and Lp(ui = y),
Lp(vi = y) the partial likelihoods of observing y at the i-th
site for u and v. Likelihood calculations are supported by the
use of probabilistic models of sequence evolution known as
evolutionary models [25].

Phylogenetic reconstruction shows a number of chal-
lenging features [26] that justify its suitability for testing
purposes. Firstly, this NP-hard problem is characterized by
huge search spaces, which grow exponentially with the
number of input sequences N according to the expression
(2N−5)!!. A second complexity factor lies on the evaluation
procedures, since their temporal costs generally increase
linearly with the length of the input sequences M . In this
sense, the likelihood function is remarkably time-consuming
due to the high number of floating-point operations in-
volved in its computation. Another issue is given by the fact
that different solutions can give rise to different processing
and evaluation times, in accordance with their topological

TABLE 1
Phylogenetic datasets

Num. of Sequence Data
Dataset sequences length Description
rbcL 55 55 1314 rbcL gene nucleotide data [31]

Fungi 88 88 3329 Thermophilic fungi protein data [32]
mtDNA 186 186 16608 Human mitochondrial DNA data [33]
RDPII 218 218 4182 Prokaryotic RNA data [34]
ZILLA 500 500 759 rbcL gene nucleotide data [35]

TABLE 2
Input parameter settings - parametric study

Parameter Values
Population size 24 48 72 96 128

Crossover probability 50% 60% 70% 80% 90%
Mutation probability 5% 10% 15% 20% 25%
Archive size (SPEA2) 10 25 50 75 100

Fitness scaling factor κ (IBEA) 0.05 0.07 0.10 0.25 0.50
IHD reference point (IBEA) (1.10, (1.25, (1.50, (1.75, (2,

1.10) 1.25) 1.50) 1.75) 2)
Attractiveness factor β0 (MO-FA) 0.10 0.25 0.50 0.75 1
Absorption coefficient γ (MO-FA) 0.10 0.25 0.50 0.75 1
Randomization factor α (MO-FA) 0.05 0.10 0.15 0.20 0.25

Neighbourhood size T (MOEA/D) Population size / NC

Limit trial number (MOABC) 5 15 25 35 45

TABLE 3
Input parameter settings - final values

Stop criterion 10,000 evaluations
Nucleotide sequence model General Time Reversible (GTR+Γ) [5]
Amino acid sequence model Le and Gascuel model (LG08+Γ) [36]

SPEA2 MO-FA
Population size 96 Population size 128

Crossover probability 70% Attractiveness factor β0 1
Mutation probability 5% Absorption coefficient γ 0.50

Archive size 75 Randomization factor α 0.05
NSGA-II MOABC

Population size 96 Population size 96
Crossover probability 70% Mutation probability 5%
Mutation probability 5% Limit trial number 25

IBEA MOEA/D
Population size 96 Population size 96

Crossover probability 70% Crossover probability 70%
Mutation probability 5% Mutation probability 5%

Fitness scaling factor κ 0.05 Neighbourhood size T 96 / NC

IHD reference point (2, 2)

TABLE 4
Data for metrics calculations: serial execution time (in seconds)

Dataset NSGA-II SPEA2 IBEA
rbcL 55 5294.76 5355.62 5372.39

Fungi 88 54202.84 54602.34 54982.11
mtDNA 186 47135.49 47313.75 48083.64
RDPII 218 50452.11 51045.57 51334.49
ZILLA 500 69702.12 70377.89 71307.04

Dataset MO-FA MOEA/D MOABC
rbcL 55 5486.04 5247.58 5610.64

Fungi 88 56424.79 53930.55 52370.39
mtDNA 186 47700.12 47116.05 45379.13
RDPII 218 54507.41 49104.02 48218.18
ZILLA 500 77365.74 68802.96 65459.84

TABLE 5
Data for metrics calculations: hypervolume reference points

Ideal point Nadir point
Dataset Parsimony Likelihood Parsimony Likelihood
rbcL 55 4774 -21569.69 5279 -23551.42

Fungi 88 33155 -147630.78 35974 -160398.35
mtDNA 186 2376 -39272.20 2656 -43923.99
RDPII 218 40658 -132739.90 45841 -147224.59
ZILLA 500 15893 -79798.03 17588 -87876.39

features. As a result, this problem involves high execution
times and load imbalance issues that put to test the effec-
tiveness and efficiency of parallel MOEAs.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2854788

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

TABLE 6
Parallel performance results: speedups and efficiencies on the 48-core AMD Opteron system

Speedup Efficiency(%)
Algorithm 8 cores 16 cores 24 cores 32 cores 48 cores 8 cores 16 cores 24 cores 32 cores 48 cores

rbcL 55
NSGA-II 6.831±0.087 12.279±0.172 16.772±0.178 20.178±0.284 26.435±0.444 85.393 76.745 69.884 63.057 55.073
SPEA2 6.873±0.067 12.157±0.168 16.553±0.159 19.865±0.286 26.075±0.405 85.912 75.978 68.970 62.077 54.323
IBEA 6.950±0.104 12.321±0.137 16.834±0.232 20.208±0.233 26.556±0.497 86.869 77.005 70.142 63.149 55.326

MO-FA 7.206±0.079 13.217±0.099 17.574±0.238 21.332±0.254 28.471±0.416 90.079 82.607 73.226 66.661 59.315
MOEA/D 7.073±0.054 12.949±0.140 18.055±0.275 21.824±0.313 29.074±0.436 88.408 80.936 75.229 68.200 60.571
MOABC 7.235±0.072 14.464±0.167 21.639±0.171 28.823±0.250 40.694±0.322 90.432 90.398 90.161 90.072 84.779

Fungi 88
NSGA-II 7.406±0.040 13.849±0.127 19.533±0.206 23.338±0.372 29.333±0.515 92.576 86.553 81.386 72.931 61.110
SPEA2 7.403±0.015 13.712±0.130 19.327±0.245 22.796±0.380 28.634±0.510 92.540 85.703 80.529 71.237 59.654
IBEA 7.405±0.036 13.869±0.075 19.555±0.181 23.458±0.458 29.665±0.483 92.559 86.679 81.477 73.307 61.802

MO-FA 7.490±0.024 13.934±0.138 19.764±0.244 24.029±0.310 30.765±0.533 93.620 87.086 82.348 75.092 64.093
MOEA/D 7.484±0.054 13.956±0.140 19.788±0.276 24.406±0.313 31.159±0.436 93.552 87.228 82.448 76.268 64.914
MOABC 7.424±0.041 14.810±0.122 22.037±0.233 29.219±0.312 42.808±0.470 92.794 92.562 91.820 91.309 89.184

mtDNA 186
NSGA-II 7.208±0.148 12.405±0.264 17.084±0.359 20.858±0.405 27.018±0.518 90.096 77.533 71.184 65.181 56.288
SPEA2 7.170±0.143 12.346±0.260 16.542±0.347 19.950±0.426 26.188±0.508 89.621 77.164 68.924 62.344 54.558
IBEA 7.210±0.144 12.897±0.271 17.562±0.278 21.173±0.392 27.695±0.386 90.122 80.604 73.173 66.165 57.698

MO-FA 7.453±0.144 13.402±0.251 17.880±0.409 22.077±0.421 29.620±0.527 93.161 83.763 74.500 68.990 61.709
MOEA/D 7.305±0.062 13.114±0.132 18.059±0.205 21.953±0.389 29.248±0.345 91.311 81.963 75.247 68.602 60.934
MOABC 7.243±0.058 14.455±0.167 21.636±0.153 28.835±0.202 40.850±0.316 90.537 90.341 90.151 90.109 85.104

RDPII 218
NSGA-II 7.277±0.158 13.177±0.252 17.425±0.373 20.943±0.429 27.358±0.591 90.960 82.355 72.604 65.447 56.996
SPEA2 7.153±0.123 13.093±0.241 17.490±0.374 20.348±0.424 26.495±0.571 89.418 81.832 72.875 63.586 55.197
IBEA 7.297±0.135 13.369±0.261 18.007±0.393 21.211±0.574 27.617±0.759 91.207 83.558 75.031 66.283 57.535

MO-FA 7.509±0.121 13.576±0.212 18.062±0.416 22.376±0.462 30.134±0.626 93.866 84.849 75.260 69.925 62.779
MOEA/D 7.309±0.171 13.465±0.226 18.247±0.417 22.673±0.587 30.217±0.860 91.366 84.153 76.027 70.854 62.951
MOABC 7.260±0.084 14.501±0.178 21.627±0.209 28.812±0.255 42.864±0.362 90.745 90.632 90.111 90.037 89.301

ZILLA 500
NSGA-II 7.650±0.089 14.260±0.177 20.254±0.226 25.459±0.383 35.325±0.421 95.622 89.127 84.391 79.561 73.593
SPEA2 7.642±0.155 14.289±0.192 20.222±0.271 24.597±0.373 34.400±0.479 95.526 89.306 84.257 76.864 71.668
IBEA 7.684±0.181 14.572±0.103 20.726±0.199 25.637±0.311 35.854±0.505 96.054 91.075 86.358 80.115 74.696

MO-FA 7.764±0.087 15.113±0.253 21.589±0.359 27.121±0.362 38.536±0.548 97.050 94.455 89.952 84.754 80.284
MOEA/D 7.702±0.095 15.066±0.210 21.738±0.125 26.845±0.379 38.240±0.727 96.277 94.164 90.574 83.890 79.668
MOABC 7.532±0.096 15.052±0.162 22.568±0.243 30.060±0.356 44.761±0.424 94.156 94.072 94.034 93.937 93.252

Mean Results
NSGA-II 7.274 13.194 18.214 22.155 29.094 90.930 82.463 75.890 69.235 60.612
SPEA2 7.248 13.119 18.027 21.511 28.358 90.603 81.996 75.112 67.223 59.080
IBEA 7.309 13.406 18.537 22.337 29.478 91.364 83.784 77.236 69.804 61.412

MO-FA 7.484 13.848 18.974 23.387 31.505 93.555 86.553 79.058 73.084 65.636
MOEA/D 7.375 13.710 19.177 23.540 31.588 92.183 85.689 79.905 73.563 65.808
MOABC 7.339 14.656 21.901 29.150 42.395 91.735 91.603 91.256 91.093 88.324

To tackle this problem, solutions are encoded by means
of NxN -sized floating-point matrices containing evolution-
ary distances between organisms [27]. The reconstruction of
the phylogenies associated to the matrices processed by the
MOEAs is carried out by using the BIONJ method [5]. In
addition, topological and branch length optimizations [28]
are applied to complement the tree-building method. These
implementation decisions have been adopted in accordance
with results from previous research [29], [30], in such a
way that we are herein considering the best found solution
encoding and reconstruction methods for addressing the
multiobjective formulation of the problem.

Regarding evolutionary operators, NSGA-II, SPEA2,
and IBEA include binary tournament selection, uniform
crossover based on row interchanges [27], and a muta-
tion operator that modifies matrix entries according to
a gamma-distributed factor [31]. MOEA/D also uses the
mentioned crossover and mutation operators, being the
selection handled by choosing two random subproblems in
the neighbourhood of the currently processed one [10]. MO-
FA adapts the movement operator (Equation 1) to the matrix
case, applying it over the entries m[u, v] for each pair of
species u, v. This idea is also used in the employed formula
in MOABC (Equation 3), including gamma-based mutation
in the onlooker calculations and the initialization and op-
timization of new solutions in the scout bee searches. Due
to the characteristics of the problem, our implementations
apply dynamic policies in the scheduling of parallel loops.

5 EXPERIMENTATION AND EVALUATION

This section undertakes the experimental assessment of the
parallel MOEAs under analysis. In a first step, we will report
the parallel results obtained by the MOEAs over different
system / problem sizes, along with evaluating the gen-
erated Pareto fronts under different multiobjective quality
metrics. Afterwards, each design trend will be discussed
by identifying advantages and disadvantages. Finally, the
implications of the attained results will be pointed out. In
previous works, we gave account of successful comparisons
with other bioinformatics tools and methods from the liter-
ature when using multiobjective algorithms in the tackled
problem [22], [24]. Therefore, such comparisons are out of
the scope of this paper, which is focused on the comparative
evaluation and discussion of parallel MOEA trends.

Experiments have been conducted on a shared-memory
multiprocessor system composed of four twelve-core AMD
Opteron ’Magny-Cours’ 6174 processors (a total of 48 cores)
at 2.2 GHz with 12MB L3 cache and 64GB DDR3 RAM,
running Ubuntu 14.04 LTS as operating system and using
GCC 5.2.1 (-O3 optimization flag) to compile the tested
software. Five real phylogenetic datasets (given by Table 1)
were considered to test the methods under evaluation.

For statistical validation purposes, results samples were
examined according to the following statistical methodol-
ogy [37] (with a confidence level of 95%). The Kolmogorov-
Smirnov test was firstly used to find out if the samples

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2854788

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

TABLE 7
Multiobjective performance results - hypervolume and spacing

Hypervolume (%)
Dataset NSGA-II SPEA2 IBEA MO-FA MOEA/D MOABC
rbcL 55 71.237±0.155 71.227±0.153 71.432±0.052 71.473±0.079 71.418±0.048 71.732±0.018

Fungi 88 77.797±0.021 77.790±0.047 77.809±0.015 77.814±0.044 77.806±0.028 77.872±0.019
mtDNA 186 69.718±0.112 69.631±0.158 69.830±0.084 70.004±0.008 69.981±0.006 70.021±0.014
RDPII 218 73.625±0.054 73.727±0.066 74.302±0.062 74.725±0.076 74.631±0.118 74.641±0.050
ZILLA 500 71.800±0.034 71.799±0.019 72.337±0.042 72.959±0.023 72.671±0.026 73.016±0.012

Mean 72.835 72.834 73.142 73.395 73.301 73.456
Spacing (%)

rbcL 55 0.080 0.060 0.094 0.128 0.102 0.087
Fungi 88 0.078 0.059 0.077 0.123 0.083 0.067

mtDNA 186 0.101 0.099 0.078 0.103 0.107 0.079
RDPII 218 0.025 0.043 0.021 0.033 0.029 0.017
ZILLA 500 0.111 0.127 0.108 0.051 0.091 0.031

Mean 0.079 0.077 0.076 0.087 0.082 0.056

TABLE 8
Statistical testing results - hypervolume IH (X=significant differences,

×=non-significant)

rbcL 55 Fungi 88
Method SPEA2 IBEA MO-FA MOEA/D MOABC SPEA2 IBEA MO-FA MOEA/D MOABC
NSGA-II × X X X X × X X X X

SPEA2 X X X X X X X X

IBEA × × X × × X

MO-FA X X × X

MOEA/D X X

mtDNA 186 RDPII 218
Method SPEA2 IBEA MO-FA MOEA/D MOABC SPEA2 IBEA MO-FA MOEA/D MOABC
NSGA-II X X X X X X X X X X

SPEA2 X X X X X X X X

IBEA X X X X X X

MO-FA X X X X

MOEA/D X ×

ZILLA 500
Method SPEA2 IBEA MO-FA MOEA/D MOABC
NSGA-II × X X X X

SPEA2 X X X X

IBEA X X X

MO-FA X X

MOEA/D X

under comparison followed a Gaussian distribution. If so,
the Levene test was conducted to study homoscedastic-
ity, applying accordingly the ANOVA test if homogeneity
in variances was detected. In the remaining cases (non-
Gaussian distributions / no homogeneity in variances), we
applied the Wilcoxon-Mann-Whitney test.

Regarding MOEAs configuration, we conducted para-
metric studies in which a range of uniformly distributed
values for each input parameter were examined in order
to find the best input parameter settings for each MOEA.
Those parameters that showed a more noticeable influ-
ence in the multiobjective quality (hypervolume) of the
generated Pareto fronts were configured firstly, proceeding
subsequently with the remaining ones. Table 2 details the
parameter values tested in these parametric studies, while
Table 3 provides the best settings found in the comparisons.
The neighbourhood size parameter in MOEA/D was set to
a value dependent of the number of cores used NC in order
to have useful workload for all the execution threads. The
evolutionary models GTR+Γ and LG08+Γ for phylogenetic
analysis were adopted in our experiments according to the
outputs of the software jModelTest and ProtTest [5], [38].

5.1 Performance Metrics and Results

We have applied different metrics to examine the parallel
and multiobjective results achieved by each parallel MOEA.
Parallel performance has been assessed under speedup and
efficiency [20], two metrics which measure the improvement
in execution time observed with regard to the serial version
of the application and the average utilization of processing

TABLE 9
Statistical testing results - speedup for 48 cores SU (X=significant

differences, ×=non-significant)

rbcL 55 Fungi 88
Method SPEA2 IBEA MO-FA MOEA/D MOABC SPEA2 IBEA MO-FA MOEA/D MOABC
NSGA-II X × X X X X X X X X

SPEA2 X X X X X X X X

IBEA X X X X X X

MO-FA X X X X

MOEA/D X X

mtDNA 186 RDPII 218
Method SPEA2 IBEA MO-FA MOEA/D MOABC SPEA2 IBEA MO-FA MOEA/D MOABC
NSGA-II X X X X X X × X X X

SPEA2 X X X X X X X X

IBEA X X X X X X

MO-FA X X × X

MOEA/D X X

ZILLA 500
Method SPEA2 IBEA MO-FA MOEA/D MOABC
NSGA-II X X X X X

SPEA2 X X X X

IBEA X X X

MO-FA × X

MOEA/D X

units. As for multiobjective metrics, we have employed
1) hypervolume [21] to calculate the area of the objective
space which is weakly-dominated by at least one point in
the outcome of a MOEA; and 2) spacing [39] to measure
the uniformity of the Pareto front distribution in terms of
distances between neighbouring points. For each analyzed
dataset, Table 4 provides the execution times reported by
each MOEA serial counterpart, while Table 5 defines the
ideal and nadir points used in hypervolume calculations.
Considering these points, hypervolume computations were
performed over normalized objective scores in the scale [0,1]
to avoid the influence of different ranges in objective values.

To test parallel performance, we have performed 11 in-
dependent runs per parallel MOEA and dataset over system
configurations involving 8, 16, 24, 32, and 48 cores. Table 6
provides the observed median speedups and interquartile
ranges (columns 2-6) along with the corresponding efficien-
cies (columns 7-11) for each algorithm. In general terms, the
non-generational MOABC reports the best overall scalabil-
ity, being able to speed up the computations up to 44.76x
when using all the 48 processing cores. In fact, the efficiency
values for this design denote a more stable behaviour on
the solution of different problem sizes, ranging from 84.78%
(rbcL 55) to 93.25% (ZILLA 500) in comparison to the effi-
ciencies attained by the remaining algorithms: 60.57-79.67%
(MOEA/D), 59.32-80.28% (MO-FA), 55.33-74.70% (IBEA),
55.07-73.59% (NSGA-II), and 54.32-71.67% (SPEA2). Among
the generational approaches, MO-FA and MOEA/D achieve
the most satisfying results, even surpassing MOABC when
lower numbers of cores are involved in the computations.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2854788

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

(a) rbcL 55 (b) Fungi 88 (c) mtDNA 186

(d) RDPII 218 (e) ZILLA 500

Fig. 3. Multiobjective performance results - Pareto fronts taken from the median hypervolume executions

Regarding multiobjective performance, we have ana-
lyzed the outcomes from 31 independent runs per dataset
and parallel MOEA (31 samples that were randomly taken
from the same experimentation carried out for the parallel
performance study). Table 7 provides the observed median
hypervolume results (upper side), along with the spacing
values (bottom side) for the median-hypervolume fronts
represented in Figure 3. In the case of MOEA/D, the results
in these tables measure the median behaviour observed for
the different configurations of neighbourhood sizes consid-
ered in the parallel performance experiments.

The hypervolume scores point out the non-generational
MOABC as the algorithm that reports the most satisfying
results under this metric (a mean value of 73.5%, obtaining
the highest score in rbcL 55, Fungi 88, mtDNA 186, and
ZILLA 500), followed by the generational MO-FA (73.4%,
achieving the best score in RDPII 218) and MOEA/D
(73.3%). Competitive hypervolume results are also obtained
by NSGA-II, SPEA2, and IBEA, reporting the latter sig-
nificant performance in datasets with a reduced number
of input sequences (rbcL 55 and Fungi 88). Nevertheless,
NSGA-II, SPEA2, and IBEA take a more noticeable role in
the spacing comparison, since they give account of satis-
fying distributions of solutions in four datasets that result
into mean spacing values below 0.08. MOABC also verifies
significant performance from the diversity perspective, in
accordance with the spacing values reported for RDPII 218,
and ZILLA 500 (mean value of 0.06).

The results of the statistical testing of multiobjective and
parallel results are shown in Tables 8 and 9. Table 8 gives ac-
count of statistically significant differences in hypervolume
in most of the comparison scenarios. Non-significant differ-
ences were found between NSGA-II and SPEA2 in rbcL 55
(P-value = 0.4), Fungi 88 (0.8), and ZILLA 500 (0.3), IBEA

and MO-FA / MOEA/D in rbcL 55 (0.1 / 0.3) and Fungi 88
(0.1 / 0.1), MOEA/D and MO-FA in Fungi 88 (0.1), and
finally MOEA/D and MOABC in RDPII 218 (0.3). Regard-
ing speedups, the statistical testing in Table 9 confirms that
statistically significant differences were found in almost all
the cases where the entire hardware infrastructure was used
for acceleration purposes, being non-significant differences
only verified between members of the same parallel MOEA
category (NSGA-II - IBEA in rbcL 55 and RDPII 218, and
MOEA/D - MO-FA in RDPII 218 and ZILLA 500).

5.2 Other Hardware Platforms

In order to further evaluate the parallel MOEA trends under
study, we now examine the parallel results obtained in
two alternative hardware infrastructures: 1) a medium-sized
multiprocessor system composed of two eight-core Intel
Xeon E5-2630v3 processors (a total of 16 processing cores) at
2.4 GHz with 20MB L3 cache and 80GB DDR3 RAM; and 2)
a low-sized commodity system comprising an Intel i7-2600
CPU (4 processing cores) at 3.4 GHz with 8MB L3 cache and
8GB DDR3 RAM. Table 10 includes the serial times used as
reference for the calculation of speedups and efficiencies in
these two hardware setups.

The achieved median speedups and efficiencies (from
11 independent runs per experiment) are reported in Ta-
ble 11 (Xeon setup, using system configurations of 8 and
16 cores) and Table 12 (i7 setup, using 4 cores). The
multiprocessor scenario (16 cores) in Table 11 shows that
the non-generational MOABC is able to achieve a mean
speedup value of 14.22x, thus representing the best trend
in overall terms with a mean efficiency of 88.84%. How-
ever, this scenario also gives account of the fact that the
generational approaches based on solution quality (MO-FA

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2854788

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

TABLE 10
Serial execution time (in seconds) for the Xeon and i7 platforms

NSGA-II SPEA2 IBEA
Dataset Xeon i7 Xeon i7 Xeon i7
rbcL 55 2728.15 2501.44 2784.75 2520.71 2793.45 2528.84

Fungi 88 29854.38 29387.12 30225.22 29782.92 30417.72 30037.95
mtDNA 186 24344.49 23455.70 24468.90 23796.92 24569.57 23791.62
RDPII 218 25850.61 24254.79 25916.94 24477.56 26360.49 24614.88
ZILLA 500 35537.28 33214.71 35625.95 33305.39 35775.17 33379.55

MO-FA MOEA/D MOABC
Dataset Xeon i7 Xeon i7 Xeon i7
rbcL 55 2798.48 2538.53 2697.85 2470.54 2810.04 2586.45

Fungi 88 31442.41 30652.01 29732.70 28652.08 29737.44 28244.67
mtDNA 186 24624.69 24236.39 24089.69 23124.18 23349.16 22203.46
RDPII 218 26522.65 24580.83 25497.85 24100.44 25045.55 23689.02
ZILLA 500 36078.48 33780.20 35209.83 33035.28 35127.26 32793.54

TABLE 11
Speedups and efficiencies on the 16-core Intel Xeon system

Speedup Efficiency(%)
Algorithm 8 cores 16 cores 8 cores 16 cores

rbcL 55
NSGA-II 7.293±0.068 12.219±0.233 91.164 76.370
SPEA2 7.201±0.095 12.182±0.235 90.009 76.140
IBEA 7.352±0.087 12.250±0.092 91.897 76.560

MO-FA 7.424±0.057 12.907±0.072 92.803 80.669
MOEA/D 7.364±0.093 12.628±0.164 92.056 78.926
MOABC 7.305±0.062 13.753±0.067 91.316 85.955

Fungi 88
NSGA-II 7.337±0.073 13.762±0.077 91.711 86.015
SPEA2 7.216±0.012 13.541±0.148 90.196 84.633
IBEA 7.470±0.050 13.974±0.183 93.370 87.337

MO-FA 7.523±0.059 14.131±0.073 94.039 88.319
MOEA/D 7.626±0.010 14.310±0.024 95.322 89.441
MOABC 7.481±0.057 14.237±0.061 93.513 88.980

mtDNA 186
NSGA-II 7.331±0.119 12.471±0.201 91.633 77.942
SPEA2 7.235±0.131 12.461±0.272 90.436 77.880
IBEA 7.434±0.132 12.514±0.202 92.927 78.214

MO-FA 7.579±0.146 12.950±0.225 94.733 80.939
MOEA/D 7.541±0.130 12.875±0.166 94.269 80.466
MOABC 7.529±0.019 14.273±0.050 94.110 89.203

RDPII 218
NSGA-II 7.323±0.154 13.114±0.158 91.535 81.961
SPEA2 7.279±0.101 13.021±0.338 90.990 81.381
IBEA 7.397±0.135 13.242±0.365 92.456 82.763

MO-FA 7.538±0.197 13.844±0.384 94.219 86.523
MOEA/D 7.478±0.090 13.758±0.457 93.478 85.985
MOABC 7.395±0.106 14.382±0.200 92.442 89.890

ZILLA 500
NSGA-II 7.403±0.074 13.955±0.281 92.532 87.220
SPEA2 7.410±0.020 13.850±0.191 92.621 86.564
IBEA 7.399±0.121 14.184±0.282 92.491 88.649

MO-FA 7.637±0.106 14.527±0.319 95.460 90.794
MOEA/D 7.646±0.038 14.494±0.183 95.580 90.585
MOABC 7.353±0.124 14.429±0.309 91.910 90.181

Mean Results
NSGA-II 7.337 13.104 91.715 81.902
SPEA2 7.268 13.011 90.850 81.320
IBEA 7.410 13.233 92.628 82.705

MO-FA 7.540 13.672 94.251 85.449
MOEA/D 7.531 13.613 94.141 85.081
MOABC 7.413 14.215 92.658 88.842

and MOEA/D) attain the best parallel results in the two
most time-consuming datasets, Fungi 88 (MOEA/D) and
ZILLA 500 (MO-FA). In fact, these algorithms represent the
best trend in the single-processor scenario (8 cores), report-
ing mean efficiencies of 94.25% and 94.14% in comparison
to the 92.66% from MOABC. The generational NSGA-II,
SPEA2, and IBEA also achieve satisfying performance in the
8-core configuration, especially for the case of ZILLA 500
where these algorithms improve the results from MOABC.

Regarding Table 12, the 4-core scenario from the i7
platform highlights MO-FA and MOEA/D as the parallel
MOEAs that accomplish the best exploitation of commod-
ity resources (showing efficiencies in the range 93.46% -
98.72% and 93.10% - 98.66%, respectively). The generational
methods based on solution quality and diversity are also

TABLE 12
Speedups and efficiencies on the 4-core Intel i7 system

Speedup Efficiency(%) Speedup Efficiency(%)
Algorithm 4 cores 4 cores 4 cores 4 cores

rbcL 55 Fungi 88
NSGA-II 3.677±0.052 91.920 3.860±0.041 96.495
SPEA2 3.556±0.044 88.907 3.853±0.021 96.317
IBEA 3.698±0.018 92.458 3.877±0.020 96.913

MO-FA 3.739±0.020 93.464 3.882±0.017 97.055
MOEA/D 3.724±0.043 93.099 3.893±0.042 97.323
MOABC 3.402±0.045 85.051 3.558±0.030 88.958

mtDNA 186 RDPII 218
NSGA-II 3.729±0.019 93.225 3.825±0.083 95.632
SPEA2 3.712±0.017 92.811 3.821±0.066 95.535
IBEA 3.771±0.055 94.279 3.831±0.060 95.774

MO-FA 3.797±0.039 94.930 3.879±0.017 96.971
MOEA/D 3.796±0.012 94.909 3.855±0.026 96.386
MOABC 3.556±0.013 88.911 3.551±0.016 88.773

ZILLA 500 Mean Results
NSGA-II 3.863±0.026 96.568 3.791 94.768
SPEA2 3.862±0.032 96.562 3.761 94.026
IBEA 3.895±0.015 97.380 3.814 95.361

MO-FA 3.949±0.038 98.724 3.849 96.229
MOEA/D 3.946±0.032 98.657 3.843 96.075
MOABC 3.560±0.033 89.012 3.526 88.141

able to achieve mean efficiencies over 94%, representing the
second best approach for the considered low-sized setup.
On the other hand, the non-generational MOABC reports
efficiencies in the range 85.05% - 89.01%, thus not reaching
the parallel results of the generational categories.

5.3 Discussion

By plotting the speedups obtained by each parallel MOEA,
we can distinguish three main trends in accordance with
the different categories considered in this study. Figure 4
provides a representation of the parallel scalability attained
by each parallel MOEA on the 48-core AMD system. On the
basis of this representation, we now discuss the relationship
between the characteristics of each parallel design and the
observed parallel and multiobjective results, identifying key
advantages and weaknesses for each category.

5.3.1 Non-generational Designs

Attending to parallel scalability, the leading trend in our
comparative analysis is given by the non-generational ap-
proach represented by MOABC. The observed parallel re-
sults give account of how the idea of allowing execution
threads to carry out parallel tasks in a continuous way
(without the synchronizations introduced by the genera-
tional scheme) leads to a significant exploitation of shared-
memory resources (with efficiencies over 84% in all the
evaluation scenarios for the AMD system). Particularly, the
solution of the two most time-consuming datasets (Fungi 88
and ZILLA 500) can be undertaken with 48 cores in only
20 and 24 minutes, respectively, representing significant
time reductions in comparison to the 14.5 and 18.2 hours
required by the serial implementation. On measuring the
impact of overhead sources in ZILLA 500, we observed that
these sources contribute only a 2% of the overall execution
time for 48 cores. On the other hand, the overhead for the
generational designs has an impact, in average terms, of 17%
over the observed execution time. Hence, the performance
penalty introduced by overhead times is almost 9 times
lower in the case of the non-generational approach. This
explains the improved parallel results reported when the
whole shared-memory system was employed.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2854788

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

(a) rbcL 55 (b) Fungi 88 (c) mtDNA 186

(d) RDPII 218 (e) ZILLA 500

Fig. 4. Evolution of median speedups for each parallel MOEA, in comparison with the theoretical linear speedup (AMD Opteron system)

From a multiobjective perspective, MOABC is able to
report significant performance in the solution of the tack-
led problem. Particularly, the attained hypervolume scores
point out the accuracy of this approach to obtain high-
quality Pareto solutions. The different multiobjective search
mechanisms integrated in this parallel metaheuristic allow
it to undertake the optimization process by following dif-
ferent strategies. These include the intra (employed bees)
and inter-level (employed-onlooker interactions) collabora-
tive exploitation of promising solutions identified through
Pareto rankings, along with the scout bee exploration tasks
to address local optima issues. In addition, the spacing
indicator suggests that MOABC leads to a good distribution
of solutions in almost all the datasets, thanks to the use of
diversity mechanisms which complement the convergence
ones in the fitness assignment procedure.

The main weakness of this design is shown in scenar-
ios involving low numbers of processing cores. For the 8-
core case of the AMD setup, the efficiencies from MOABC
are lower than the ones reported by MO-FA - MOEA/D
(in Fungi 88, mtDNA 186, RDPII 218, and ZILLA 500),
NSGA-II - IBEA (RDPII 218 and ZILLA 500), and SPEA2
(ZILLA 500). Such behaviour is also observed in the 8-core
scenario from the Xeon system, becoming the issue even
more noticeable in the 4-core i7 system (where MOABC
reports the lowest efficiencies in the comparison). This is
due to the fact that the non-generational approach requires
the use of one core to manage master tasks exclusively, thus
not participating in the generation and evaluation of new
candidate solutions. The fact of using NC -1 cores to handle
parallel tasks leads to a worsening in performance with
regard to the generational approaches, which can effectively

use NC cores in the parallel loops. This issue affects the
ability of the non-generational approach to exploit multicore
resources on lower-sized systems, despite the improved
scalability shown for higher system configurations.

5.3.2 Generational Designs Based on Measurements of

Solution Quality Exclusively

The second most significant trend in scalability identified in
Figure 4 is given by the generational approaches MO-FA
and MOEA/D, whose differences with NSGA-II, SPEA2,
and IBEA become more noticeable as we increase the
number of cores. The improvement observed in parallel
scalability with regard to the other generational methods is
motivated by the lower single sections fraction required and
also by the significant efficiency observed at the processing
of workshared loops. For 48 cores, the average workshared
efficiency in MO-FA and MOEA/D shows values of 66.3%
and 66.9%, respectively, outperforming the ones obtained by
NSGA-II, SPEA2, and IBEA (61.3%, 59.9%, and 62.1%).

These factors along with the ability to use the total
number of available cores in parallel computations explain
the improved speedups and efficiencies reported for the
8-core configurations not only over NSGA-II, SPEA2, and
IBEA, but also over MOABC. In fact, MO-FA and MOEA/D
are still able to improve MOABC in the case of 16 cores for
ZILLA 500 (AMD and Xeon setups) and Fungi 88 (Xeon).
Moreover, these parallel MOEAs report the best parallel
performance for the 4-core i7 setup, confirming their sig-
nificance in scenarios involving low/medium-sized systems
and computationally demanding problem instances.

Attending to multiobjective results, the search strategies
implemented in MO-FA lead to the attainment of significant

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2854788

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

hypervolume scores, reporting Pareto sets of good mul-
tiobjective quality according to the convergence property.
However, since this design prioritizes lighter fitness calcu-
lations over the introduction of diversity information, the
fronts tend to show poor uniformity in their distributions,
as suggested by the spacing indicator. Figure 3 reveals
that, in general terms, the algorithm is biased towards the
processing of solutions surrounding the extreme points and
the middle of the Pareto front (as it can be observed more
clearly in Fungi 88 and ZILLA 500).

Although relevant hypervolume results are also attained,
the multiobjective performance of the parallel MOEA/D
shows a strong dependence on the neighbourhood size im-
posed by the availability of hardware resources. When the
neighbourhoods are reduced to define effective workloads
for all the processing cores, a general degradation of the
generated results can be observed. For the case of RDPII 218
and ZILLA 500, the hypervolumes obtained in the 48-core
scenario show a statistically significant worsening (from
74.63 and 72.67 to 74.02 and 72.14, respectively). An impact
is also observed in the spacing scores, which become similar
to the ones reported by MO-FA. In this sense, it is worth
mentioning that the decomposition mechanism in the serial
version of MOEA/D is claimed to attain good spreads of
solutions [10]. However, the serial MOEA/D is governed
by strict data dependencies (i.e. the solution of a particular
subproblem depends on the solution of the previous ones
for the whole population) that have to be re-organized for
parallelization purposes.

Consequently, the improved parallel performance shown
by these generational approaches comes at the expense of an
impact in some multiobjective properties. These potential
issues in the generated outcomes represent the main disad-
vantage of the algorithms considered in this design trend.

5.3.3 Generational Designs Based on Measurements of

Solution Quality and Diversity

From a parallel scalability perspective, the generational
NSGA-II, SPEA2, and IBEA represent the last trend in
this comparative analysis. In these designs, the non-
parallelizable fraction of the application is governed not
only by the introduction of synchronization points due to
the generational approach, but also by the more prominent
role played by serial sections in the calculations when
both quality and diversity mechanisms are considered and
employed to process the whole population. According to
Amdalh’s law [20], increased non-parallelizable fractions
have a higher impact as a limiting factor in the achievable
parallel scalability, leading this category to the less signif-
icant parallel results in the 48-core setup. Consequently,
these parallel MOEAs attain more satisfying performance in
medium and low-sized infrastructures, in accordance with
the results achieved in the Xeon and i7 setups.

Regarding multiobjective performance, the observed hy-
pervolumes show that these evolutionary designs do not
reach, in overall terms, the mean quality attained by the
other approaches under analysis. In spite of that, the spacing
values suggest a satisfying distribution of solutions in the
Pareto fronts obtained by NSGA-II, SPEA2, and IBEA. In
fact, if we discard the most parsimonious solutions obtained

in ZILLA 500, the spacing scores become 0.029 (NSGA-
II), 0.032 (SPEA2), and 0.030 (IBEA), thus outperforming
MO-FA and MOEA/D in this dataset along with matching
MOABC. As a result, this class of generational MOEAs (in-
volving solution plus diversity mechanisms) becomes more
relevant in optimization scenarios where a more uniformly-
distributed range of solutions is desirable, despite the loss
of parallelism potential with regard to other designs.

5.4 Implications

The previous experimental assessment gave account of the
main opportunities and flaws of each design in this compar-
ative analysis. When choosing among these intra-algorithm
parallel MOEA approaches, we must take into account not
only the preferences of the expert in terms of multiobjective
performance but also the characteristics of the underlying
hardware setup where the MOEAs are run.

The first scenario we consider here is the one where
the parallel MOEA runs on a commodity platform. These
widely-used systems are characterized by the presence of a
single or a low number of multicore processors (comprising
a total number of around 4-8 cores). According to our
results, the generational approaches represent a good choice
to attain an accurate exploitation of parallel resources in
these systems. If priority is put on the achievement of high
parallel efficiencies, we can rely on the use of designs like
MO-FA and MOEA/D, which showed the additional advan-
tage of obtaining a significant exploitation of resources also
in medium-sized infrastructures and good multiobjective
results from a hypervolume perspective. On the other hand,
NSGA-II, SPEA2, and IBEA may be selected instead in
order to accomplish the fulfillment of the diversity prop-
erty. Finally, the non-generational approach MOABC can
lead to performance degradation especially in low-sized
infrastructures, as shown in the case of the 4-core i7 setup.
More specifically, the solution of time-demanding MOPs
on commodity hardware setups is affected by the master-
core issue, since we are dedicating one entire processing
core to supporting operations instead of collaborating on
the parallelization of highly complex calculations.

The second scenario is given by the execution of parallel
MOEAs on high performance computing systems. These
hardware configurations comprise a high number of pro-
cessing units whose accurate exploitation depends on the
scalability capabilities of the parallel design. In this sce-
nario, the non-generational approach arises as the most
suitable choice to take full advantage of the huge parallel
processing potential in these systems (although generational
approaches like MO-FA and MOEA/D can also lead to
significant parallel results over complex problem instances,
as shown in ZILLA 500). One important feature to be con-
sidered is given by the fact that, in this kind of designs, the
theoretical scalability is limited by the population size. In
the multiobjective case, we are often dealing with complex
optimization processes involving a number of individuals
which tends to be higher than the number of cores in
current shared-memory multicore multiprocessor systems.
As a result, the theoretical limit does not show any relevant
influence in that context. On the other hand, this limit can
play a key role in the exploitation of large-scale systems

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2854788

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

with hundreds or thousands cores. In order to deal with the
limitation imposed by the population size, we can apply ei-
ther simple strategies (such as using job-level parallelism to
carry out multiple independent runs of the parallel MOEA)
or more complex techniques which introduce changes in the
algorithmic design. For example, several threads could be
processing a copy of the same individual in the population
but applying different operators, in such a way that different
candidate solutions are generated from common starting
points. However, the use of such techniques requires further
research, as they modify the behaviour of the search engine
and, consequently, the boundary between parallelism and a
potential impact in solution quality must be established.

Summing up, non-generational intra-algorithm parallel
designs represent a robust choice when the complexity of
the problem requires the use of advanced hardware setups.
On their behalf, the generational approaches still find their
room of application when the access to high performance
systems is not possible. In this case, the selection of a par-
ticular generational MOEA must be carried out according
to the expected effects of the algorithmic design over the
desired parallel and multiobjective performance.

6 CONCLUSIONS

The present work has focused on the analysis of parallel
metaheuristic designs for multiobjective optimization. As
the time complexity of real-world MOPs keeps growing
with the adoption of more realistic assumptions, thorough
studies are required to determine the most accurate strate-
gies to speed up the computations and achieve high-quality
outcomes. For this purpose, we have undertaken a compar-
ative analysis of intra-algorithm parallel MOEAs with the
aim of identifying the influence of their algorithmic features
and parallelism properties on the attained performance. The
parallel MOEA designs herein considered include genera-
tional approaches integrating solution quality plus diver-
sity mechanisms (NSGA-II, SPEA2, IBEA), solution qual-
ity mechanisms exclusively (MO-FA, MOEA/D), and non-
generational approaches (MOABC).

We have adapted these parallel designs to tackle the
challenging phylogenetic reconstruction problem, perform-
ing our experimentation on three parallel systems compris-
ing 4, 16, and 48 processing cores, respectively. Different
metrics to measure parallel performance (speedup, effi-
ciency) and multiobjective quality (hypervolume, spacing)
have given account of the main advantages and weaknesses
of each parallel MOEA under evaluation. In terms of parallel
scalability, we have identified the non-generational parallel
designs as the most suitable approach for exploiting setups
with high numbers of cores, followed by the generational
parallel designs focused on solution quality, whose results
become more relevant on low and medium-sized system
configurations. On the basis of these results and the quality
of the generated Pareto fronts, we have discussed key guide-
lines for the selection of parallel MOEAs on commodity and
high performance computing platforms.

Our future work lines are aimed at providing further in-
sight into the performance of parallel MOEAs on other hard-
ware platforms beyond the shared-memory scenario. We
will conduct the comparative evaluation of intra-algorithm

parallel designs on heterogeneous systems, distributed en-
vironments, and hybrid shared-distributed memory setups,
in order to verify if the conclusions of the current study can
be extended to platforms with different parallel processing
capabilities. For example, for the case of shared-nothing
architectures and distributed systems in general, it is needed
an accurate, in-depth assessment of the relationship be-
tween the algorithmic design and the multiple factors that
govern parallel performance in distributed contexts. Such
factors include communication patterns, message sizes and
network latencies, processes management and topological
organization, load balancing mechanisms, synchronization
patterns and coordination among processes, replication of
data structures, and fault tolerance requirements [40]. As
for heterogeneous systems, we will discuss the suitability of
adapting intra-algorithm parallel MOEAs to co-processors
architectures such as GPUs, taking into account the impact
of stochastic elements and population sizes in the achievable
exploitation of parallel resources [41], [42]. We will also
study hybrid approaches in which co-processors are applied
to support CPU-based intra-algorithm schemes by accelerat-
ing operations with large data parallelism (e.g., internal hy-
pervolume calculations [43]) and problem-dependant ones
(acceleration of the inner loops of the objective functions).
We will finally focus on examining in detail the application
of non-generational approaches on large-scale systems.

ACKNOWLEDGMENTS

This work was partially funded by the AEI (State Research
Agency, Spain) and the ERDF (European Regional Devel-
opment Fund, EU), under the contract TIN2016-76259-P
(PROTEIN project). Thanks to the Junta de Extremadura for
the GR15011 grant provided to the group TIC015. Sergio
Santander-Jiménez is supported by the Post-Doctoral Fel-
lowship from FCT (Fundação para a Ciência e a Tecnologia,
Portugal) under Grant SFRH/BPD/119220/2016.

REFERENCES

[1] K. Deb, “Multi-Objective Evolutionary Algorithms,” in Springer
Handbook of Computational Intelligence. Springer, 2015, pp. 995–
1015.

[2] E. Alba, G. Luque, and S. Nesmachnow, “Parallel metaheuristics:
recent advances and new trends,” International Transactions in
Operational Research, vol. 20, no. 1, pp. 1–48, 2013.

[3] F. Luna and E. Alba, “Parallel Multiobjective Evolutionary Al-
gorithms,” in Springer Handbook of Computational Intelligence.
Springer, 2015, pp. 1017–1031.

[4] E. G. Talbi, “Parallel Evolutionary Combinatorial Optimization,”
in Springer Handbook of Computational Intelligence. Springer, 2015,
pp. 1107–1125.

[5] P. Lemey, M. Salemi, and A.-M. Vandamme, The Phylogenetic Hand-
book: a Practical Approach to Phylogenetic Analysis and Hypothesis
Testing. Cambridge: Cambridge Univ. Press, 2009.

[6] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and
Elitist Multi–Objective Genetic Algorithm: NSGA-II,” IEEE Trans.
Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002.

[7] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving
the Strength Pareto Evolutionary Algorithm,” in Proc. of EURO-
GEN’02, 2002, pp. 95–100.

[8] E. Zitzler and S. Künzli, “Indicator-Based Selection in Multiob-
jective Search,” in Parallel Problem Solving From Nature VIII, ser.
LNCS, vol. 3242. Springer Verlag, 2004, pp. 832–842.

[9] X. S. Yang, “Firefly algorithm, stochastic test functions and de-
sign optimisation,” International Journal of Bio-Inspired Computation,
vol. 2, no. 2, pp. 78–84, 2010.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2854788

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 15

[10] Q. Zhang and H. Li, “MOEA/D: A Multi-objective Evolutionary
Algorithm Based on Decomposition,” IEEE Transactions on Evolu-
tionary Computation, vol. 11, no. 6, pp. 712–731, 2007.

[11] D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, “A
comprehensive survey: artificial bee colony (ABC) algorithm and
applications,” Artif. Intell. Rev., vol. 42, no. 1, pp. 21–57, 2014.

[12] E. Cantú-Paz, “A Survey of Parallel Genetic Algorithms,” Calcu-
lateurs Parallèles, Réseaux et Systèmes Répartis, vol. 10, no. 2, pp.
141–171, 1998.

[13] E. Alba and M. Tomassini, “Parallelism and Evolutionary Algo-
rithms,” IEEE Trans. Evol. Comput., vol. 6, no. 5, pp. 443–462, 2002.

[14] D. V. Veldhuizen, J. Zydallis, and G. Lamont, “Considerations
in Engineering Parallel Multiobjective Evolutionary Algorithms,”
IEEE Trans. Evol. Comput., vol. 7, no. 2, pp. 144–173, 2003.

[15] A. L. Jaimes and C. Coello, “Applications of Parallel Platforms
and Models in Evolutionary Multi-Objective Optimization,” in
Biologically-Inspired Optimisation Methods, Studies in Computational
Intelligence. Springer Verlag, 2009, vol. 210, pp. 23–49.

[16] E. G. Talbi, S. Mostaghim, T. Okabe, H. Ishibuchi, and C. Coello,
“Parallel Approaches for Multiobjective Optimization,” in Multi-
objective Optimization, LNCS. Springer, 2008, vol. 5252, pp. 349–372.

[17] C. Coello, “Multi-objective Evolutionary Algorithms in Real-
World Applications: Some Recent Results and Current Chal-
lenges,” in Advances in Evolutionary and Deterministic Methods
for Design, Optimization and Control in Engineering and Sciences.
Springer, 2015, pp. 3–18.

[18] E. G. Talbi, “Parallel Multi-objective Evolutionary Algorithms,” in
Proc. of the Seventh International Conference on Bioinspired Optimiza-
tion Methods and their Applications, BIOMA 2016, 2016, pp. 21–48.

[19] J. J. Durillo, A. J. Nebro, F. Luna, and E. Alba, “A Study of Master-
Slave Approaches to Parallelize NSGA-II,” in 11th International
Workshop on Nature Inspired Distributed Computing (NIDISC 2008).
IEEE Computer Society, 2008, pp. 1–8.

[20] B. Chapman, G. Jost, and R. van der Pas, Using OpenMP: Portable
Shared Memory Parallel Programming. Cambridge, MA, USA: The
MIT Press, 2007.

[21] N. Beume, C. M. Fonseca, M. López-Ibáñez, L. Paquete, and
J. Vahrenhold, “On the Complexity of Computing the Hypervol-
ume Indicator,” IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 1075–
1082, 2009.

[22] S. Santander-Jiménez and M. A. Vega-Rodrı́guez, “Parallel Mul-
tiobjective Metaheuristics for Inferring Phylogenies on Multicore
Clusters,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 6, pp. 1678–
1692, 2015.

[23] S. Santander-Jiménez and M. A. Vega-Rodrı́guez, “Asynchronous
Non-Generational Model to Parallelize Metaheuristics: A Bioin-
formatics Case Study,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 7, pp. 1825–1838, 2017.

[24] S. Santander-Jiménez and M. A. Vega-Rodrı́guez, “On the Design
of Shared Memory Approaches to Parallelize a Multiobjective Bee-
Inspired Proposal for Phylogenetic Reconstruction,” Information
Sciences, vol. 324, pp. 163–185, 2015.

[25] M. Steel, Phylogeny: Discrete and Random Processes in Evolution.
Philadelphia: Society for Industrial & Applied Mathematics, 2016.

[26] M. Ott, J. Zola, S. Aluru, A. D. Johnson, D. Janies, and A. Sta-
matakis, “Large-scale phylogenetic analysis on current HPC ar-
chitectures,” Sci. Programming, vol. 16, no. 2-3, pp. 255–270, 2008.

[27] L. Poladian, “A GA for maximum likelihood phylogenetic infer-
ence using neighbour-joining as a genotype to phenotype map-
ping,” in GECCO 2005, 2005, pp. 415–422.

[28] A. Goëffon, J. Richer, and J. Hao, “Progressive Tree Neighborhood
Applied to the Maximum Parsimony Problem,” IEEE/ACM Trans.
Comput. Biol. Bioinform., vol. 5, no. 1, pp. 136–145, 2008.

[29] S. Santander-Jiménez and M. A. Vega-Rodrı́guez, “Performance
Analysis of Multiobjective Artificial Bee Colony Implementations
for Phylogenetic Reconstruction,” in Proc. of NaBIC 2014. IEEE,
2014, pp. 35–40.

[30] S. Santander-Jiménez and M. A. Vega-Rodrı́guez, “A Comparative
Study on Distance Methods Applied to a Multiobjective Firefly
Algorithm for Phylogenetic Inference,” in GECCO 2013 Companion,
2013, pp. 1587–1594.

[31] P. O. Lewis, “A Genetic Algorithm for Maximum-Likelihood
Phylogeny Inference Using Nucleotide Sequence Data,” Molecular
Biology and Evolution, vol. 15, no. 3, pp. 277–283, 1998.

[32] I. Morgenstern et al., “A molecular phylogeny of thermophilic
fungi,” Fungal Biology, vol. 116, no. 4, pp. 489–502, 2012.

[33] M. Ingman and U. Gyllensten, “mtDB: Human Mitochondrial
Genome Database, a resource for population genetics and medical
sciences,” Nucleic Acids Research, vol. 34 (D749-D751), 2006.

[34] J. R. Cole et al., “The Ribosomal Database Project (RDP-II): se-
quences and tools for high-throughput rRNA analysis,” Nucleic
Acids Research, vol. 33 (Database issue D294-D296), 2005.

[35] M. W. Chase et al., “Phylogenetics of seed plants: An analysis of
nucleotide sequences from the plastid gene rbcl,” Annals of the
Missouri Botanical Garden, vol. 80, no. 3, pp. 528–580, 1993.

[36] S. Lee and O. Gascuel, “An improved general amino acid replace-
ment matrix,” Mol. Biol. Evol., vol. 25, no. 7, pp. 1307–1320, 2008.

[37] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures. 5th edition. NY, USA: Chapman & Hall/CRC, 2011.

[38] D. Darriba, G. L. Taboada, R. Doallo, and D. Posada, “jModelTest
2: more models, new heuristics and parallel computing,” Nature
Methods, vol. 9, no. 8, pp. 772–772, 2012.

[39] C. Coello, C. Dhaenens, and L. Jourdan, Advances in Multi-Objective
Nature Inspired Computing. Berlin / Heidelberg: Springer, 2010.

[40] A. D. Kshemkalyani and M. Singhal, Distributed Computing: Prin-
ciples, Algorithms, and Systems. New York, NY, USA: Cambridge
University Press, 2008.

[41] W. Zhu, A. Yaseen, and Y. Li, “DEMCMC-GPU: An Efficient Multi-
Objective Optimization Method with GPU Acceleration on the
Fermi Architecture,” New Generation Computing, vol. 29, no. 2, pp.
163–184, 2011.

[42] M. L. Wong and G. Cui, “Data Mining Using Parallel Multi-
objective Evolutionary Algorithms on Graphics Processing Units,”
in Massively Parallel Evolutionary Computation on GPGPUs.
Springer, 2013, pp. 287–307.

[43] E. M. López, L. M. Antonio, and C. Coello, “A GPU-Based Al-
gorithm for a Faster Hypervolume Contribution Computation,”
in EMO 2015: Evolutionary Multi-Criterion Optimization, ser. LNCS,
vol. 9019. Springer Verlag, 2015, pp. 80–94.

Sergio Santander-Jiménez received the Ph.D.
degree in Computer Engineering from the Uni-
versity of Extremadura, Spain, in 2016. He is cur-
rently a Post-doctoral Fellow and a Senior Re-
searcher at the R&D Instituto de Engenharia de
Sistemas e Computadores (INESC-ID), Instituto
Superior Técnico (IST), Universidade de Lis-
boa (UL), Portugal. He has co-organized several
international workshops on high-performance
computing, computational intelligence, computa-
tional biology and bioinformatics, reviewing arti-

cles on these topics for multiple international JCR-indexed journals. His
main research interests include evolutionary and bioinspired computing,
multi-objective optimization, parallel and distributed computing, and their
applications to real-world biological problems.

Miguel A. Vega-Rodrı́guez received the Ph.D.
degree in Computer Engineering from the Uni-
versity of Extremadura, Spain, in 2003. He is
currently an Associate Professor (accredited as
Full Professor) of computer architecture in the
Department of Computer and Communications
Technologies, University of Extremadura. He has
authored or co-authored more than 630 publica-
tions including journal papers (more than 120
JCR-indexed journal papers), book chapters,
and peer-reviewed conference proceedings, for

which he got several awards - such as Best Paper Awards in ISDA’11,
IBERGRID’11, ICEC’09, and IEA-AIE’08. He has contributed to the
organization of several international conferences and workshops as
general chair or co-chair. In addition, he has edited over 10 special is-
sues of international JCR-indexed journals. His main research interests
include parallel and distributed computing, evolutionary computation,
bioinformatics, and reconfigurable and embedded computing.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2854788

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

