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Abstract 24 

Second-order based calibration methods have been widely investigated capitalizing on the 25 

inherent benefits of the data structure and the decomposition models, demonstrating that second-26 

order advantage is a property that conspires to a high likelihood success in the resolution of 27 

systems of varying complexity. This work aims to demonstrate the applicability of a combined 28 

chemometric strategy to solve non-linear multivariate calibration systems in the presence of non-29 

multilinear multi-way data. The determination of histamine by differential pulse voltammetry at 30 

different pH is presented as case study. The experimental system has the outstanding difficulty 31 

arisen from the large displacement along the potential axis by the pH, which was successfully 32 

overcome by implementation of the presented combined strategy. For data modeling, MCR-ALS, 33 

U-PLS/RBL and U-PCA/RBL-RBF were used. MCR-ALS allowed unraveling the non-linear 34 

behavior between the signal and the concentration, and extracting the underlying profiles of the 35 

constituent. Quantitative analysis was performed through the three models, and a comparative 36 

evaluation of the predictive performance was done. The best results were achieved with U-37 

PCA/RBL-RBF (mean recovery= 101%) whereas, MCR-ALS yield the lowest mean recovery for 38 

all samples (70%) 39 

 40 

 41 

Keywords: non-trilinear type 3 data; pH-voltammetry; non-linear regression model; MCR-ALS; 42 

U-PLS/RBL; ANNs 43 
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1. Introduction 45 

Multivariate calibration techniques have been attracting the attention of researchers in 46 

several investigation fields. The interest in the use of multivariate analysis relies on the fact that 47 

the inclusion of multiple signals can significantly improve the applicability of quantitative 48 

analyses [1, 2].  49 

The central purpose of multivariate calibration is to establish empirical models relating 50 

unselective multiple instrumental signals to known analyte concentrations, which are then 51 

utilized to predict the analyte concentration of the test sample [3]. The multivariate calibration 52 

methodologies are categorized into first-, second- or higher-order calibration in association to the 53 

instrumental modes of the acquired signal [4, 5]. One particularity of first-order calibration 54 

methods is the requirement of a large number of calibration samples that must contain similar 55 

composition than the target sample, i.e., to contain the same potential interferents, for the success 56 

of the resolution and the prediction [3]. Nonetheless, second- and higher-order calibration 57 

models outweigh this attribute through a property that enables to selectively identify the 58 

components of a mixture even in the presence of non-modeled constituents, which is universally 59 

known as “second-order advantage” [5, 6]. 60 

The evolution of the modern analytical instrumentation has facilitated the acquisition of 61 

multidimensional signals allowing to enlarge the chemical information that can be obtained from 62 

the system under study. Some of the most common analytical instruments can yield first-order 63 

data for a single sample (e.g., infrared spectrum [7], UV spectrum [8], DSC signals [9]), which 64 

are acquired as a unidimensional vector data array. Second-order data could be obtained with a 65 

unique instrument, but it can be generated by instrumental hyphenation or experimental setups, 66 

allowing arranging the signals in bidimensional data arrays, i.e., data matrix. For instance, 67 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4 

 

excitation-emission fluorescence matrices [10], chromatography coupled to spectral detection 68 

[11] and kinetic with spectral monitoring [12] are cases of second-order data acquisition.  69 

In the literature, it is possible to find several techniques for multivariate quantitative 70 

analysis. Notwithstanding this great diversity of methods offers exceptional versatility in the 71 

development of quantitative models, it usually leaves the analyst uncertain as to which is the 72 

most appropriate for a given set of data. This situation is not a trivial matter since each data set 73 

comprises particular underlying factors, e.g., noise level, signal overlapping, among others, that 74 

cannot be generalized. One of the underlying factors of the data that must be considered before 75 

modeling is the data linearity. In this regard, it becomes necessary to make a distinction between 76 

the types of linearity that can be observed in the multivariate calibration field.  77 

First, it should be evaluated if the instrumental modes in which the data was collected are 78 

mutually independent. This condition guarantees the concept of multi-linearity of the multiway 79 

data. When lack of multi-linearity is observed, it is relevant to identify its origin to evaluate the 80 

different strategies that can be implemented for the resolution. The lack of multi-linearity has 81 

been well described elsewhere by Olivieri and Escandar, who introduced a classification for the 82 

different types of non-linearity in three- and four-way data structures [4]. On the other hand, in 83 

analytical chemistry, many quantitative procedures apply linear calibration models to describe 84 

the relationship between the instrumental measurement (dependent variable) and the property of 85 

interest (independent variable) [13]. However, there are systems in which the linear law is not 86 

obeyed, e.g., violation of the Beer-Lambert law, and non-linear functions ought to be applied to 87 

fit the data. Hence, the evaluation of the lack of linearity and multi-linearity is an unavoidable 88 

start in any multivariate quantitative procedure. 89 
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Among calibration models, partial least square (PLS), principal component analysis 90 

(PCA) or classical least square (CLS) are the most common algorithms [13] for first-order 91 

calibration methods, while unfolded-PLS and multi-way-PLS (U-PLS and N-PLS) are two of the 92 

used algorithms in second-order calibration procedures [14]. All these algorithms perform linear 93 

calibration models, i.e., linear regression modeling, and only data that conform to the principle of 94 

multi-linearity can be subjected to decomposition [13, 15]. Besides, parallel factor analysis 95 

(PARAFAC) [16] and multivariate curve resolution coupled to alternating least-squares (MCR-96 

ALS) [17] are algorithms based on alternating least-square optimization that allows decomposing 97 

higher-order data and gathering loadings, which comprise the individual profiles of the 98 

constituents, and scores, that are the contribution of the analytes in each sample [18]. The 99 

obtained scores can be then utilized to build the proper regression model in predictive studies, 100 

even in systems where the analytical signals do not vary linearly with the analyte concentration. 101 

However, when the non-linear relationship between the dependent and the independent variable 102 

is present, artificial neural networks (ANNs) are the most common methods used in building the 103 

empirical non-linear calibration model [19]. ANNs are non-parametric techniques, so they do not 104 

assume any specific model form providing them with especial flexibility and ability to model 105 

diverse kind of data [20].  106 

This work aims to demonstrate the applicability of a combined chemometric strategy to 107 

solve non-linear multivariate calibration systems in the presence of lack of multi-linearity in 108 

multi-way data. In this research, the quantitation of histamine in the presence of histidine by 109 

differential pulse voltammetry at different pH is presented as case study. These data represent an 110 

outstanding chemometrics challenge because of the large potential-displacements of the 111 

electroanalytical signal arisen from the pH variation. Moreover, for the best of our knowledge, 112 
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no reports regarding second-order DPV-pH data coupled to chemometrics with quantitative aims 113 

have been published yet.  114 

 115 

2. Experimental section 116 

2.1. Chemical, reagents and samples  117 

Histamine (HIM) and histidine (HIS) were purchased from Sigma-Aldrich (Stenheim, 118 

Germany) and Fluka (Buchs, Switzerland), respectively. Boric acid (p.a. H3BO3) was obtained 119 

from Merk (Darmstadt, Germany). Glacial acetic acid (HAc), o-phosphoric acid (H3PO4), 120 

sodium hydroxide (NaOH) and dimethylformamide (DMF), all of analytical grade, were 121 

acquired from Panreac (Barcelona, Spain). Ultra-pure water was obtained with a Milli-Q 122 

purification system from Millipore (Bedford, USA). 123 

Analytes stock solutions of 500 mg L
–1

 were prepared by dissolution of the appropriate 124 

amount of the powder presentation in ultrapure water and stored under refrigeration in the dark. 125 

Britton-Robinson Buffer (BRB) was prepared by mixing the proper amount of H3BO3, HAc and 126 

H3PO4, in order to obtain a final concentration of 40 mmol L
–1

 of each substance. To perform the 127 

pH-dependent experiments, the pH of the BRB was adjusted with NaOH, as appropriate, prior to 128 

the sample preparation.  129 

 130 

2.2. Calibration and validation samples  131 

A calibration set of HIM pure standard sample was daily prepared in triplicate by 132 

transferring the proper aliquot of the analyte stock solutions and 2.0 mL of BRB of the 133 

corresponding pH to a 10.00 mL volumetric flask and completing to the mark with ultra-pure 134 

water. The final HIM concentrations were ranging between 0.0 and 10.0 mg mL
–1

. 135 
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A sample validation set was built considering HIM concentrations different than those used 136 

for the calibration samples. In these samples, HIS was incorporated as non-modeled interferent 137 

in 3 different concentrations as detailed in Table 1. The validation samples were prepared as 138 

previously described for the calibration samples.  139 

 140 

2.3. Instrumentation and experimental procedure 141 

Differential pulse voltammetry (DPV) measurements were conducted using a Metrohm 142 

663 VA and an AUTOLAB PGSTAT 10 potentistat/galvanostat (ECOChemie. Utrecht, The 143 

Netherlands) with General-Purpose Electrochemical software (GPES) version 4.9.006 144 

(ECOChemie. Utrecht, The Netherlands) for the data acquisition and instrument control.  145 

The DPV experiments were carried out in a 10 mL cell using a conventional three-146 

electrode system configuration including a 3.0 mm diameter glassy carbon electrode (GCE) as 147 

working electrode, an Ag/AgCl (saturated KCl) reference electrode and a 0.3 mm platinum wire 148 

auxiliary electrode, all of them commercially acquired (ECOChemie. Utrecht, The Netherlands).  149 

At the beginning of the working day, the surface of the GCE was mechanically cleaned 150 

using a cotton pad soaked in DMF for 2 minutes and in ultrapure water for 30 seconds. Then, an 151 

electrochemical cleaning was made by applying three reduction cycles in the range of +1.5 –152 

 +0.9 V, at 15 mV s
-1

, with an amplitude of 0.05 V, to the supporting electrolyte solution. The 153 

supporting electrolyte solution consisted in a BRB solution adjusted at the appropriate 154 

experimental pH. After electrode conditioning, DPV measurements were conducted by scanning 155 

the potential range of +0.9 V to +1.5 V at a scanning rate of 15 mV s
–1

, with an amplitude of 156 

0.05 V. Between measurements, the surface of the electrode was regenerated through mechanical 157 

cleaning. All experiments were carried out at room temperature. 158 
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For the pH measurements, a Crison Micro pH 501m (Barcelona, Spain) equipped with a 159 

combined glass/saturated calomel electrode, was used. 160 

 161 

2.4. Software  162 

Data processing and analysis were performed in MATLAB 2015b [21]. MCR-ALS GUI 163 

2.0 [22] codes for MATLAB were freely downloaded from www.mcr-als.info. U-PLS/RBL and 164 

U-PCA-RBL-RBF were implemented in MVC2 [23] and MVC1 [24], respectively, for which the 165 

MATLAB codes are available at http://www.iquir-conicet.gov.ar/eng/div5.php?area=12. i-166 

coshift [25-27] tool for MATLAB was acquired from http://www.models.life.ku.dk/icoshift. 167 

For baseline correction, a moving average procedure (peak width of 0.01), which is 168 

available in the GEPS software, was implemented (Figure S1). 169 

 170 

3. Results and discussion 171 

3.1. General considerations 172 

3.1.1. Chemometrics in electroanalytical chemistry  173 

Curiously, the number of publications reporting the use of chemometrics in 174 

electrochemistry is small in comparison with the application of other analytical methodologies, 175 

such as spectroscopy or chromatography. This observation has been recently stated by Esteban et 176 

al. in Ref [28] whose proposed the hypothesis that the dearth of research in this topic might be 177 

caused by the close relationship between mathematics and electrochemistry and, also, the lack of 178 

linearity between the signal and the concentration of the electroactive species [29, 30]. 179 

Nevertheless, there is an ongoing interest in exploit the potentialities of electrochemical 180 
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instrumentation by applying chemometrics and promote its use to solve electroanalytical 181 

problems. 182 

First-order calibration methods have been extensively used in electroanalytical chemistry 183 

by the implementation of the classical calibration models as multi-linear regression (MLR), PLS 184 

or PCR, among others [30]. Moreover, higher-order calibration methods have been recently 185 

explored and presented in several publications reporting the application of MCR-ALS, PLS-186 

based methods and ANNs techniques for the predictive analysis of compounds in samples of 187 

variate nature [31, 32]. Among the electroanalytical techniques, differential pulse voltammetry 188 

(DPV) and stripping voltammetry (SP) are the most used for the acquisition of second-order data 189 

with quantitative aims [29, 31, 33, 34]. However, some features inherent to the electrochemical 190 

systems are cumbersome and made difficult the direct implementation of a chemometric model. 191 

One of the most common issues present in electrochemistry is the signal displacement by 192 

empirical phenomena that leads to a lack of linearity of the signal-analyte concentration 193 

relationship and a loss of multi-linearity in the multi-way data. Hence, recent works are focused 194 

on the development of new strategies that enable either the modeling of non-linear data [34] or 195 

the correction of shifted data [29, 35, 36]. Nevertheless, there is a noticeable dearth of research in 196 

this field when large signal-shifts occur, for example, as it is the case of the displacement along 197 

the potential axis of some irreversible signals as a function of the pH [29].  198 

 199 

3.2. Data properties  200 

3.2.1. Multi-linearity  201 

When second-order data are obtained for a set of samples, the data matrices can be 202 

organized into a three-way structure, which can whether conform to the low-rank trilinearity 203 
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principle (henceforth referred to as trilinearity) or not. In this case, it is appropriate to be referred 204 

to the classification tree for a three-way data of a set of samples proposed by Olivieri and 205 

Escandar elsewhere [4]. Briefly, four types of data are distinguished according to the trilinearity 206 

concept: 1) trilinear; 2) non-trilinear type 1; 3) non-trilinear type 2; and non-trilinear type 3 (for 207 

more details, the reader must be referred to Ref [4]). The latter corresponds to the case when 208 

individual second-order data do not conform to the bilinerity principle. It should be highlighted 209 

that the most of the experimental second-order calibration investigations reported in the literature 210 

have performed the acquisition and modeling of trilinear three-way data set or non-trilinear type 211 

1 three-way data. Furthermore, a small number of publications report calibration methods built 212 

with non-bilinear data modeling with quantitative purposes, i.e., non-trilinear type 3 data [37, 213 

38].  214 

The experimental data presented in this report consist of a set of second-order data 215 

comprising the DPV signals of HIM at six different pH (DPV-pH). Figure 1.A depicts the DPV-216 

pH second-order data of HIM at a given concentration, while Fig. 1.B shows the DPV signals 217 

acquired for different concentrations of HIM at the same pH (pH 6). In Fig. 1.A, it is clear to 218 

observe that the DPV-pH matrix presents severe deviations of bilinearity as result of the 219 

displacement of the oxidation peak potential with the pH: the HIM peak shifts negatively with 220 

rising the pH value, in agreement with previous reports [39]. Additionally, a significant shift 221 

between DPV signals arisen from the different concentrations at the same pH is observable 222 

(Fig. 1.B).  223 

 224 

**** Figure 1 **** 225 

 226 
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These observations lead to the conclusion that the multi-way data set, i.e., DPV-pH-227 

concentration, is a severe case of non-trilinear type 3 data, since neither bilinearity in the DPV-228 

pH nor bilinearity in the DPV-concentration arrays are fulfilled. It is worth to highlight that this 229 

is the first time that this type of non-trilinear data is used with quantitative purposes. 230 

Under this complex scenario, several alternatives were implemented to carry out the 231 

chemometric modeling. After an in-depth evaluation of the possible strategies, the following 232 

procedure was achieved. Aiming to recover de bilinearity in the DPV-concentration data array, a 233 

shift correction procedure based in correlation shifting method (i-coshift) [25-27] was 234 

implemented since no shape distortions were observable. Figure 2 shows the DPV signals 235 

acquired at three different pH level for several concentrations before and after shifting 236 

correction. 237 

 238 

**** Figure 2 **** 239 

 240 

In this way, a bilinear DPV-concentration array at each pH was obtained. Nonetheless, 241 

the DPV peak shifts arisen from the pH change were not corrected since the large displacements 242 

between signals would hinder the right implementation of a correction strategy and, more 243 

importantly, would suppress the selectivity of the second-mode. This phenomenon is a 244 

troublesome situation for which solutions were comprehensively analyzed and are described in 245 

this work. 246 

 247 

3.2.2. Regression model  248 
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To implement the most appropriate regression model, a first evaluation of the trend line 249 

describing the relationship between the dependent (DPV signal) and the independent variable 250 

(concentration of the analyte) at every pH was performed. Figure 3 shows the aligned DPV 251 

signals for the calibration set (1.0-10.0 mg L
–1

) acquired at pH 4, 6 and 9.  252 

**** Figure 3 **** 253 

 254 

A clear difference in the regression trend at the different pH levels is noticeable with the 255 

naked eye. However, to accurately establish a function that explains the regression model for the 256 

entire system, it is necessary to perform a thorough evaluation by decomposing the data through 257 

specific chemometric techniques. Hence, experimental data were subjected to MCR-ALS to 258 

explore the empirical behavior of the constituents. 259 

 260 

3.3. Data modeling 261 

3.3.1. MCR-ALS 262 

MCR-ALS is a wide-spread soft-modelling method that performs bilinear decomposition 263 

of a data matrix into two sets of profiles, which comprise relevant physicochemical information 264 

about the constituents of the system under study [17]. The application of this method has been 265 

successfully demonstrated in numerous situations proving its potential to reach significant 266 

results. It has been implemented for many purposes, either quantitative analysis [11, 40-42] or 267 

descriptive studies allowing unraveling the behavior of chemical or biological processes where 268 

species are totally or partly unknown [43-45]. In this matter, the fact that MCR-ALS can extract 269 

the individual contribution of the constituents when no prior information of the system is 270 

available is rather appealing, especially, for investigations of highly complex systems.  271 

https://dictionary.cambridge.org/es/diccionario/ingles-espanol/rather


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

13 

 

The bilinear decomposition of MCR-ALS is performed under the application of 272 

constraints that are implemented during the iterative ALS phase. It is well-documented that if no 273 

constraints are implemented, uncountable possible solutions that equivalently represent the 274 

system might be obtained. The most common constraints are non-negativity, unimodality and 275 

correspondence between species, which relies on chemical principles [46]. However, it has been 276 

proved that the application of a full set of constraints helps to diminish the range of feasible 277 

solutions, albeit not completely. This phenomenon is known as rotational ambiguity [47, 48].  278 

With the spread of multivariate data analysis escorted by the evolution of analytical 279 

instrumentation, diverse data structures have arisen, that coerced chemometricians to explore 280 

new alternatives for the data modeling. Along those lines, MCR-ALS has evolved into a very 281 

versatile strategy for the modeling of a wide range of data structures. Even though MCR-ALS is 282 

a pure bilinear decomposition model, it has been extended to higher-order multivariate analysis, 283 

e.g., third-order data [49-51]. Moreover, it is well-known that first-order calibration models can 284 

perform a reliable prediction only in the case that test samples contain the same composition that 285 

the calibration samples; however, it has been demonstrated that this drawback can be overcome 286 

with the aid of MCR-ALS. Ahmadi et al. have proved the ability of soft-modelling methods in 287 

analyzing first-order data sets containing unmodeled components, in which the rotational 288 

ambiguity associated to the resolution is minimized by applying specific constraints during 289 

iteration [52]. In addition, Esteban’s group has demonstrated that the implementation of 290 

constraints that model the signal feature shall enhance the performance of the MCR-ALS 291 

modeling [53-56].  292 

In the present case, pH dimension is the bilinear breaking mode, whereas the 293 

concentration mode fulfils the concept of low-rank bilinearity. Thus, to perform a bilinear 294 
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decomposition, the path of Ahmadi work was followed and a first-order MCR-ALS strategy was 295 

implemented by unfolding the DPV-pH data to arrays of lower dimension, i.e., an unfolded one-296 

way vector. To achieve the decomposition, a bilinear row-wise concatenated/column-wise 297 

augmented matrix was built. First, a DPV-pH vector was obtained by concatenating the aligned 298 

DPV signals of the different pH for each evaluated sample. Then, the concatenated vector 299 

corresponding to each calibration and validation samples were column-wise appended. Figure S2 300 

(supplementary material) graphically depicts the data arrangement used for MCR-ALS 301 

decomposition.  302 

To start the modeling, initial concentration estimates were obtained by a SIMPLISMA-303 

like procedure [57] and the number of components was evaluated through singular value 304 

decomposition (SVD). The imposed constraints during optimization were non-negativity of 305 

concentration and spectral modes, correspondence among the species and normalization in 306 

concentration. Voltammogram and concentration profiles achieved from the MCR-ALS 307 

decomposition for four validation samples containing 4.0 mg mL
–1

 of HIM and calibration data 308 

set are shown in Fig. 4. 309 

 310 

**** Figure 4 **** 311 

 312 

As can be seen in Fig. 4, two components were necessary to describe the behavior of HIM 313 

and one additional component was needed for the samples containing HIS as interferent. These 314 

results are in accordance with the afore-mentioned observations demonstrating that the 315 

regression model follows both linear and non-linear behavior against concentration in 316 

dependence to the pH. By evaluation of the unfolded voltammogram profiles, it can be noticed 317 
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that the non-linear regression trend prevails at lower pHs, whereas linearity arises with rising the 318 

pH values. For the predictive analysis, a pseudo-univariate calibration model was built by using 319 

the scores obtained for the factor with linear trend. These scores were plotted against the nominal 320 

concentration of the analyte and a least-square regression model was implemented to fit the data. 321 

Scores against nominal concentrations are depicted in Fig. 5 and predictive results are 322 

summarized in Table 1.  323 

 324 

**** Figure 5 **** 325 

 326 

As can be appreciated, at a higher concentration of the interferent, the contribution of the 327 

analyte significantly diminishes (# Sample 7, 8, 11 and 12 in Table 1). This effect is evidenced 328 

by performing a prediction analysis with the scores obtained for the factor with linear regression 329 

trend (the scores of the second factor were not considered in this study because of its unusual 330 

behavior against concentration). This effect can be the result of two different phenomena. One of 331 

them can be related to the possible interaction between the analyte and the interferent, in which 332 

the interferent precludes the analyte detection. Besides, it should be considered that in first-order 333 

MCR-ALS decomposition, rotational ambiguity is heavily present and gets relevant at higher 334 

concentration of the unmodeled component due to the strong signal overlapping [52].  335 

Based on these observations, it can be concluded that linear multi-way calibration models 336 

cannot be applied and other methodologies that enable the prediction of the analyte in the 337 

presence of non-linear regression trend need to be explored.  338 

 339 

3.3.2. U-PLS/RBL 340 
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The unfolded multi-way extension of the renowned PLS method is the U-PLS 341 

methodology that performs decomposition to higher dimension arrays. U-PLS it is a multi-way 342 

extension of PLS methodology and operates after unfolding the multi-way data arrays into 343 

vectors [58]. Those algorithms are applicable on systems showing small deviations of trilinearity, 344 

although the second-order advantage is not achieved. The U-PLS methodology consists of 345 

performing the classical PLS model calibration with the unfolded calibration data (not including 346 

the test samples) using a suitable number of latent variables. If no potential interferents are 347 

expected in the test samples, the amplitude of residuals in the prediction step is in the order of 348 

the instrumental noise level. Then, the concentration (   ) prediction of the sample is obtained 349 

through       
  , where tu is the score vector obtained for the sample data matrix and v are the 350 

regression coefficients acquired from the U-PLS model. However, when interferents are present, 351 

the residuals are extraordinarily large in comparison to the instrumental noise and, consequently, 352 

this formulation is not suitable for the prediction of the samples. Hence, to overcome this 353 

situation, the test sample is subjected to the residual bilinearization (RBL) procedure that enables 354 

to separate the signal that is explained by calibration from the contribution of the potential 355 

interferents, which means, achieve the second-order advantage [58-60]. To put it succinctly, the 356 

residual variance of a test sample is estimated considering the matrix E which comprise the 357 

residuals of the U-PLS model. In the RBL process, the E matrix is subsequently subjected to 358 

SVD decomposition for which results contain information about the interferents. This 359 

information that is then added to rebuild the original data matrix. Last, during the residual 360 

minimization step, the loadings obtained in the calibration stage remains constant while the 361 

scores are adjusted to minimize the residual variance. At the end for the RBL process, when the 362 

scores of the test sample are adjusted, the concentration of the analyte can be properly estimated 363 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

17 

 

[61, 62]. The combination of U-PLS and RBL has already been described and demonstrated in 364 

the relevant literature [58, 60].  365 

In the present case, as it is shown in Fig. 5, the regression model shows a noticeable 366 

global non-linear signal behavior. Hence, U-PLS/RBL was implemented because it is one of the 367 

most flexible linear second-order multivariate calibration techniques and can cope with mild 368 

non-linearities. The calibration step was carried out using the well-known leave-one-out 369 

methodology. It is worth noticing that for linear regression system, only one or two PLS factors 370 

are necessary to explain the model; however, in the present experimental system, four PLS 371 

factors were needed to model the complexity of the data. This fact supports the presence of non-372 

linearity that was observed with the MCR-ALS analysis.  373 

The best prediction results were obtained when two RBL components were included in 374 

the resolution, which explains the presence of the interferent in the test samples. Table 1 375 

comprises the prediction results obtained with the U-PLS/RBL model for the validation samples. 376 

These values are better - albeit rather low (    82 %) - than those obtained from MCR-ALS. It is 377 

noticeable that the lower recoveries were obtained for those samples containing the highest 378 

amount of the unmodeled component, in accordance with the MCR-ALS results. This conclusion 379 

strength the fact that a possible interaction between analyte and interferent is present during 380 

detection. 381 

    382 

3.3.3. Artificial neural networks 383 

Artificial neural network (ANN) constitutes a family of multivariate nonparametric 384 

regression techniques, which, after a convenient training procedure, are able of learning the 385 

correlation of a set of predictor variables with the desired response. The ANN family can be 386 
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subdivided into three groups of techniques: 1) multi-layer perceptron networks (MLP), 2) radial 387 

basis functions (RBF), and 3) support vector machines (SVM) [62]. The first two are the most 388 

frequently reported in the literature to solve multivariate calibration problems.  389 

Briefly, ANNs contain operating units called neurons, which are arrayed in three layers: 390 

1) input, 2) hidden, and 3) output layers. Input and output neurons correspond to the measured 391 

signals and the properties predicted by the model, respectively. The hidden nodes represent the 392 

computing core. During training or calibration process, each hidden and output node receives 393 

weighted contributions, that are then projected on a transfer function to generate a non-linear 394 

output. The procedure of learning consists of adjusting the relationship between signals and 395 

concentrations by modifying the weights related to the inter-neural connections. Thus, the final 396 

output is close to the nominal concentration value for the analyte [20].  397 

In second-order data, the number of original variables comprised in the instrumental 398 

signal is usually large and contain redundant information. Then, the information can be 399 

compacted into a small number of latent variables. For instance, the principal components (PCs) 400 

or scores obtained by computing the explained variance of the unfolded training data can be used 401 

as the input layer. When unexpected components are in the test samples, its scores shall not be 402 

adequate for the analyte prediction using the trained ANN [63]. Hence, it is necessary to 403 

implement a strategy capable to indicate the sample as an outlier, to separate the contribution of 404 

the unexpected component from the analyte signal and, then, to build the calibration model to 405 

perform the analyte prediction. It has been reported that unfolded PC analysis coupled to RBL 406 

(U-PCA/RBL) and subsequent ANN modeling is an excellent alternative to cope with this 407 

situation [62, 63]. In this approach, the adjusted score vector tu obtained at the end of the RBL 408 

process is introduced into the ANN network for the subsequent concentration prediction.   409 
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In this work, the number of PCs used as input neurons was four, and two RBL factors 410 

were necessary for the modeling with U-PCA-RBL and subsequent prediction. RBF was chosen 411 

to perform the calibration model and the implemented architecture was (4-10-1) for input-412 

hidden-output layers, respectively. The prediction results are shown in Table 1. As can be 413 

appreciated, the performance of U-PCA/RBL-RBF is superior in comparison to the linear 414 

regression methods, yielding excellent recoveries values with a     of 101 % (s=8).  415 

Figure 6.A depicts the relationship between the nominal and predicted concentration for 416 

the three chemometric models and the corresponding least-square fitting lines. Figure 6.B shows 417 

the elliptical joint confidence region for the slope and the intercept of the linear regression 418 

between the actual and predicted concentration, with a 95% confidence level, for each model. 419 

Moreover, Fig 6.A and 6.B indicate the theoretical point and line, respectively, for intercept=0 420 

and slope=1 [64]. Noticing that the ellipse built for U-PCA/RBL-RBF contains the theoretical 421 

expected value for the intercept and slope and, moreover, the fitting line of nominal vs predicted 422 

relationship overlaps the theoretical line. These results reinforce the fact that with an in-depth 423 

evaluation of the system behavior leading the use of the proper chemometric tool is possible to 424 

leverage the predictive properties of an analytical methodology 425 

 426 

**** Figure 6 **** 427 

 428 

**** Table 1 **** 429 

 430 

4. Conclusions 431 
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Second-order based calibration methods have been widely investigated capitalizing on the 432 

inherent benefits of the data structure and the decomposition models, demonstrating that second-433 

order advantage is a property that conspires to a high likelihood success in the resolution of 434 

systems of varying complexity.  435 

In this work, a qualitative and quantitative analysis was performed by implementing 436 

parametric and non-parametric methodologies for the determination of histamine in the presence 437 

of histidine by differential pulse voltammetry at several pHs as case study.  438 

First, MCR-ALS was performed to evaluate the empirical behavior of the constituents. It 439 

was proved that first-order data, built from unfolded second-order data, can be solved with the 440 

aid of MCR-ALS, allowing to separate the individual contribution of each sample constituent. 441 

Based on the acquired results, it was concluded that at least two regression models were 442 

necessary to perform the calibration of the analyte, one of which presents a pronounced non-443 

linear behavior. Moreover, it was possible to unravel the presence of a potential interaction 444 

between the analyte and the interferent, phenomenon that was reinforced with the results 445 

achieved from U-PLS/RBL.  446 

On the other hand, U-PCA/RBL combined with RBF modeling significantly outweigh the 447 

performance of the parametric models demonstrating the capability to handle non-multilinear 448 

data in non-linear regression systems.  449 

The results allowed to demonstrate the importance of performing a comprehensive 450 

analysis to accurately select the method to implement for the resolution and thus obtain reliable 451 

results. The most remarkable accomplishment achieved in this work was the successful 452 

implementation of chemometric techniques to bear the foresee difficulty arisen from the large 453 

displacement along the potential axis by the pH, which, to the best of our knowledge and belief, 454 
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has not been reported yet. The modeling of non-multilinear data has been a matter of paramount 455 

interest for chemometricians and represents an outstanding challenge in the field of quantitative 456 

electroanalytical chemistry. The inception of this research line encourages the development of 457 

new chemometric methodologies that lead to a coercive expansion of its range of application.  458 
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Figure 1. (A) Differential pulse voltammograms obtained at GEC in BRB solution 

containing of 5.0 mg L
–1

 HIM at the pH range of 4-9 (from cyan to red lines) and the (B) 

Differential pulse voltammograms obtained at GEC registered for concentrations of 1.0-

10.0 mg L
–1

 HIM at pH 6. 

 

 

Figure 2. (A) Original and (B) aligned DPV signals acquired for several concentrations 

of HIM at pH 4 (cyan) 6 (purple) and 9 (red). 
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Figure 3. Aligned DPV signals of 1.0 mg L
–1

 (solid cyan line) and 10.0 mg L
–1 

(solid red line) of 

HIM at pH 4, 6 and 9. DPV signals of 2.5 mg L
–1

 (dotted line), 5.0 mg L
–1

 (dash-dotted line) and 

7.5 mg L
–1

 (dashed line) mg L
–1

 of HIM are shown. Grey bars indicate the current of 0.1 µA. 

Inset: maximum current intensity against concentration at pH 4 (cyan) 6 (purple) and 9 (red). 

 

 

 

Figure 4. (A) Concentration and (B) unfolded voltammogram profiles acquired after 

MCR-ALS decomposition of DVP-pH signals. The first six samples correspond to validation 

samples containing 4.0 mg L
–1

 HIM (empty red and full cyan circles) and 25.0, 5.0 and 

15.0 mg L
–1

 HIS (grey triangles) in duplicate, respectively.  
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Figure 5. MCR-ALS concentration scores obtained from the calibration signals of HIM against 

nominal concentration. Scores of first (full cyan dots) and second (empty red dots) MCR-ALS 

factors show the linear and nonlinear regression trends, respectively. Dashed cyan line and dash-

dotted red line are the fitted lines through linear and quadratic function, respectively. 

 

 

Figure 6. (A) Nominal against predicted concentrations of HIM (in mg mL
–1

) and the 

corresponding least-square fitting lines. (B) Elliptical joint of confidence region (95% confidence 

level) for the slope and the intercept of the linear regression between the nominal and the 

predicted concentrations of HIM. MCR-ALS (dotted red line), U-PLS/RBL (dash-dotted blue 

line) and U-PCA/RBL-RBF (dashed green line). Results for MCR-ALS are in red, U-PLS/RBL 

in blue and U-PCA/RBL-RBF are in green. The theoretical regression line (A) and the ideal 

point(B) (slope=1, intercept=0) are shown in black. 
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Table 1. Recovery results obtained from validation samples using parametric and nonparametric 

methodologies. 

# Sample 

HIM (mg L
–1

) 
a
  

Nominal Predicted HIS 
b 

(mg L
–1

) 
MCR/ALS UPLS/RBL U-PCA/RBL -

RBF 

1 2.0 2.1 (105) 2.4 (120) 2.2 (110) 25.0 

2 2.0 2.2 (110) 2.1 (105) 1.8 (90) 25.0 

3 2.0 1.3 (65) 1.7 (85) 1.9 (95) 5.0 

4 2.0 1.5 (75) 1.8 (90) 2.1 (105) 5.0 

5 2.0 1.3 (65) 1.6 (75) 2.3 (115) 15.0 

6 2.0 1.3 (65) 1.5 (74) 1.7 (85) 15.0 

7 4.0 2.2 (55) 3.0 (75) 4.4 (110) 25.0 

8 4.0 2.4 (60) 3.1 (78) 4.6 (115) 25.0 

9 4.0 2.9 (73) 3.2 (80) 3.9 (98) 5.0 

10 4.0 2.8 (70) 3.1 (78) 3.9 (98) 5.0 

11 4.0 1.8 (45) 2.8 (70) 4.1 (103) 15.0 

12 4.0 1.9 (48) 2.8 (70) 4.1 (103) 15.0 

13 8.0 5.7 (71) 5.9 (70) 7.5 (94) 25.0 

14 8.0 5.8 (73) 6.0 (75) 8.1 (101) 25.0 

15 8.0 5.3 (66) 6.2 (78) 7.9 (99) 5.0 

16 8.0 5.4 (68) 6.8 (85) 8.3 (104) 5.0 

17 8.0 5.4 (68) 6.7 (84) 7.8 (98) 15.0 

18 8.0 5.7 (71) 6.6 (83) 8.2 (103) 15.0 

  %
c 70 (s=16) 82 (s=12) 101 (s=8)  

a
 Recoveries (%) are between parenthesis  

b 
HIS as an interferent 

c
 Mean recovery in % 
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Figure S-1. Example of the baseline correction employing GPES. Voltammogram 

without any treatment in blue, and after baseline correction in red. 

 

  



 

Figure S-2. Data arrangement for MCR-ALS resolution. Cal 1-n are de DPV-pH 

signals corresponding to the calibration samples and Val 1 is the corresponding signal of 

validation samples. (SUPLEMENTARIA?) 
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