Supplementary Material

for

Influence of transition metal-based activating agent on the properties and catalytic activity of sewage sludge-derived catalysts. Insights on mechanism, DFT calculation and degradation pathways.

Pablo Gutiérrez-Sánchez^{1*}, Silvia Álvarez-Torrellas¹, Marcos Larriba¹, M. Victoria Gil², Juan M. Garrido-Zoido², Juan García^{1*}

¹Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Faculty of Chemistry, Complutense University, Avda. Complutense s/n, 28040, Madrid, Spain. ²Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias and IACYS Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.

Corresponding author E-mail address: pgutie03@ucm.es; jgarciar@ucm.es; +34 91394.5207

Tables: 23

Figures: 6

Compound	t _R (min)	[M+H] ⁺ (m/z)	Molecular Formula	Name	Structure	E _{HOMO} (eV)	E _{LUMO} (eV)	Optimization
1		336	C ₁₆ H ₁₈ FN ₃ O ₄	2-[2-(N- cyclopropylformamido)-5-fluoro-4- (piperazin-1- yl)phenyl]-2-oxoacetic acid	F O OH OH HN M $M/Z = 336$	-7,44232	-1,75078	
2	_	362	C17H16FN3O5	1-cyclopropyl-6- fluoro-7-(2-hydroxy-3- oxopiperazin-1-yl)-4- oxo-1,4- dihydroquinoline-3- carboxylic acid	F O OH OH OH OH OH OH OH	-7,88858	-1,10505	
3	- 1.4	362	C ₁₇ H ₁₆ FN ₃ O ₅	1-cyclopropyl-6- fluoro-7-[N-(2- formamidoethyl)forma mido]-4-oxo-1,4- dihydroquinoline-3- carboxylic acid	F HN O M/z = 362	-7,97321	-1,28030	
4 (T2-1, T3-4, T4-4)	_	364	C ₁₇ H ₁₈ FN ₃ O ₅	7-[(2-aminoethyl)(1- hydroxy-2- oxoethyl)amino]-1- cyclopropyl-6-fluoro- 4-oxo-1,4- dihydroquinoline-3- carboxylic acid	F O OH OH OH OH OH OH OH	-7,56640	-1,02016	

Table S1. Retention Time, Relative Intensity at 4.5 kV Interface Voltage, Mass Spectra, Molecular Formula, Name and Proposed Structure of CPF Products inDegradation Pathway (T1), Homo and Lumo Energies, Optimised structure. Urban-Fe Catalyst.

5 (T2-2, T3-6)	6.6	330	C17H19N3O4	1-cyclopropyl-6- hydroxy-4-oxo-7- (piperazin-1-yl)-1,4- dihydroquinoline-3- carboxylic acid	HO HO HN m/z = 330	-7,46109	-0,97145	
6 (T3-7)	7.3	290	C ₁₅ H ₁₆ FN ₃ O ₂	1-cyclopropyl-5- fluoro-6-(piperazin-1- yl)indoline-2,3-dione		-7,30490	-1,95323	00000000000000000000000000000000000000
7 (T2-3, T3-8)	8.0	306	C ₁₅ H ₁₆ FN ₃ O ₃	7-[(2- aminoethyl)amino]-1- cyclopropyl-6-fluoro- 4-oxo-1,4- dihydroquinoline-3- carboxylic acid	F H_2	-7,28885	-0,89526	
8	8.3	346	C17H19N3O5	1-cyclopropyl-2,6- dihydroxy-4-oxo-7- (piperazin-1-yl)-1,4- dihydroquinoline-3- carboxylic acid	HO HN HN m/z = 346	-7,38735	-0,91675	
Ciprofloxacin	8.9	332	C ₁₇ H ₁₈ FN ₃ O ₃	ciprofloxacin	F = 6 $F = 6$ $F = 7$ $F =$	-7,21619	-0,98070	

9	9.7	346	C ₁₇ H ₁₆ FN ₃ O ₄	1-cyclopropyl-6- fluoro-4-oxo-7-(3- oxopiperazin-1-yl)- 1,4-dihydroquinoline- 3-carboxylic acid	F HN M $M/z = 346$	-7,33102	-0,96192	
10	9.9	261	$C_{13}H_{12}N_2O_4$	7-amino-1- cyclopropyl-6- hydroxy-4-oxo-1,4- dihydroquinoline-3- carboxylic acid	HO H_2N M/z = 261	-7,28068	-0,83267	
11 (T2-4)	10.5	263	C ₁₃ H ₁₁ FN ₂ O ₃	7-amino-1- cyclopropyl-6-fluoro- 4-oxo-1,4- dihydroquinoline-3- carboxylic acid	F H_2N m/z = 263	-7,55633	-0,93662	

Compound	t _R (min)	[M+H] ⁺ (m/z)	Molecular Formula	Name	Structure	E _{HOMO} (eV)	E _{LUMO} (eV)	Optimization
1	1.4	364	C17H18FN3O5	7-[(2- aminoethyl)(1- hydroxy-2- oxoethyl)amino] -1-cyclopropyl- 6-fluoro-4-oxo- 1,4- dihydroquinolin e-3-carboxylic acid	F NH_2 OH MH_2 OH MH_2 OH MH_2 MH_2 OH MH_2	-7,56640	1,02016	
2	6.7	330	C ₁₇ H ₁₉ N ₃ O ₄	1-cyclopropyl-6- hydroxy-4-oxo-7- (piperazin-1-yl)- 1,4- dihydroquinoline- 3-carboxylic acid	HO HO N M/z = 330	-7,46109	0,97145	
3	8.0	306	C ₁₅ H ₁₆ FN ₃ O ₃	7-[(2- aminoethyl)ami no]-1- cyclopropyl-6- fluoro-4-oxo- 1,4- dihydroquinolin e-3-carboxylic acid	F NH_2 M/z = 306	-7,28885	0,89526	

Table S2. Retention Time, Relative Intensity at 4.5 kV Interface Voltage, Mass Spectra, Molecular Formula, Name and Proposed Structure of CPF Products inDegradation Pathway (T2), Homo and Lumo Energies, Optimised structure. Industrial-Fe Catalyst.

Ciprofloxacin	8.9	332	C ₁₇ H ₁₈ FN ₃ O ₃	Ciprofloxacin	$F_{HN} = 332$	-7,21619	0,98070	ن میگوی میگوی میگوی میگوی
4	10.5	263	C ₁₃ H ₁₁ FN ₂ O ₃	7-amino-1- cyclopropyl-6- fluoro-4-oxo-1,4- dihydroquinoline 3-carboxylic acid	F H_2N m/z = 263	-7,55633	0,93662	

Compound	t _R (min)	[M+H] ⁺ (m/z)	Molecular Formula	Name	Structure	E _{HOMO} (eV)	E _{LUMO} (eV)	Optimization
2 (T4-2)) 0.9	334	C ₁₆ H ₁₆ FN ₃ O ₄	1-cyclopropyl-6- fluoro-7-[(2- formamidoethyl)a mino]-4-oxo-1,4- dihydroquinoline- 3-carboxylic acid	F HN HN HN HN HN HN HN HN	-7,26327	-0,85389	
3 (T4-3)		310	C ₁₄ H ₁₆ FN ₃ O ₄	2-{4-[(2- aminoethyl)amino]-2-(N- cyclopropylforma mido)-5- fluorophenyl}-2- oxoacetic acid	F O O OH OH OH OH OH OH	-7,23687	-1,66452	
4 (T4-4, T2-1, T1-4)	1.4	364	C ₁₇ H ₁₈ FN ₃ O ₅	7-[(2- aminoethyl)(1- hydroxy-2- oxoethyl)amino] -1-cyclopropyl- 6-fluoro-4-oxo- 1,4- dihydroquinolin e-3-carboxylic acid	F NH_2 OH MH_2 OH MH_2 H_2	-7,56640	-1,02016	

Table S3. Retention Time, Relative Intensity at 4.5 kV Interface Voltage, Mass Spectra, Molecular Formula, Name and Proposed Structure of CPF Products inDegradation Pathway (T3), Homo and Lumo Energies, Optimised structure. Industrial-Ni Catalyst.

5	1.5	308	C ₁₄ H ₁₇ N ₃ O ₅	2-{4-[(2- aminoethyl)ami no]-2-(N- cyclopropylform amido)-5- hydroxyphenyl} -2-oxoacetic acid	$HO \qquad O \qquad$	-7,01592	-1,24002	
6 (T2-2, T1-5)	6.7	330	C ₁₇ H ₁₉ N ₃ O ₄	1-cyclopropyl- 6-hydroxy-4- oxo-7- (piperazin-1-yl)- 1,4- dihydroquinolin e-3-carboxylic acid	HO HN HN m/z = 330	-7,46109	-0,97145	
7 (T1-6)	7.3	290	C15H16FN3O2	1-cyclopropyl- 5-fluoro-6- (piperazin-1- yl)indoline-2,3- dione	F HN M/z = 290	-7,30490	-1,95323	
8 (T2-3, T1-7)	7.9	306	C ₁₅ H ₁₆ FN ₃ O ₃	7-[(2- aminoethyl)ami no]-1- cyclopropyl-6- fluoro-4-oxo- 1,4- dihydroquinolin e-3-carboxylic acid	F H H_2 m/z = 306	-7,28885	-0,89526	

Ciprofloxacin	8.7	332	C ₁₇ H ₁₈ FN ₃ O ₃	Ciprofloxacin	F = 6 = 5 = 4 = 32 $H = 10^{-1}$ $F = 10$	-7,21619	-0,98070	
9	10.4	334	C ₁₆ H ₁₆ FN ₃ O ₄	7-[N-(2- aminoethyl)for mamido]-1- cyclopropyl-6- fluoro-4-oxo- 1,4- dihydroquinolin e-3-carboxylic acid	F H_2N M	-7,98301	-1,29118	
10	10.5	291	C14H11FN2O4	1-cyclopropyl- 6-fluoro-7- formamido-4- oxo-1,4- dihydroquinolin e-3-carboxylic acid	F O OH OH OH OH OH OH OH	-7,95226	-1,23757	
11 (T2-4 y T1- 11)	10.5	263	C13H11FN2O3	7-amino-1- cyclopropyl-6- fluoro-4-oxo- 1,4- dihydroquinolin e-3-carboxylic acid	F H_2N M/z = 263	-7,55633	-0,93662	

1210.7360C17H14FN3O51-cyclopropyl- 7-(2,5- dioxopiperazin- 1-yl)-6-fluoro-4- oxo-1,4- dihydroquinolin e-3-carboxylic acid	P N	-7,96940	-1,29907	
--	---	----------	----------	--

Compound	t _R (min)	[M+H] ⁺ (m/z)	Molecular Formula	Name	Structure	E _{HOMO} (eV)	E _{LUMO} (eV)	Optimization
2		334	C ₁₆ H ₁₆ FN ₃ O ₄	1-cyclopropyl-6- fluoro-7-[(2- formamidoethyl)a mino]-4-oxo-1,4- dihydroquinoline- 3-carboxylic acid	F N	-7,26327	0,85389	
3	0.9	310	C ₁₄ H ₁₆ FN ₃ O ₄	2-{4-[(2- aminoethyl)amino]-2-(N- cyclopropylforma mido)-5- fluorophenyl}-2- oxoacetic acid	H_2	-7,23687	1,66452	
4	1.3	364	C17H18FN3O5	7-[(2- aminoethyl)(1- hydroxy-2- oxoethyl)amino] -1-cyclopropyl- 6-fluoro-4-oxo- 1,4- dihydroquinolin e-3-carboxylic acid	P NH_2 OH MH_2 OH MH_2 OH MH_2 MH	-7,56640	1,02016	

Table S4. Retention Time, Relative Intensity at 4.5 kV Interface Voltage, Mass Spectra, Molecular Formula, Name and Proposed Structure of CPF Products inDegradation Pathway (T4), Homo and Lumo Energies, Optimised structure. Industrial-FeNi Catalyst.

Compound	Electronic energy (kcal/mol)	Free energy (kcal/mol)	Entropy (cal/(mol·K))	Enthalpy (kcal/mol)	Еномо (eV)	Elumo (eV)
Ciprofloxacin	-720626,1580	-720458,3633	168,549	-720388,7273	-7,21619	-0,98070
MZ-261	-572933,3070	-572823,3736	144,238	-572763,7822	-7,28068	-0,83267
MZ-263	-587998,3775	-587896,0157	142,956	-587836,9532	-7,55633	-0,93662
MZ-290	-624815,3143	-624669,9436	155,211	-624605,8184	-7,30490	-1,95323
MZ-291	-659117,5457	-659010,9940	153,614	-658947,5283	-7,95226	-1,23757
MZ-306	-672060,7186	-671916,6587	167,219	-671847,5724	-7,28885	-0,89526
MZ-308	-680265,8094	-680120,6671	182,498	-680045,2680	-7,01592	-1,24002
MZ-310	-695331,8425	-695193,4917	179,015	-695119,5315	-7,23687	-1,66452
MZ-330	-705561,2815	-705385,9904	169,911	-705315,7916	-7,46109	-0,97145
MZ-334A	-743189,7223	-743042,8701	179,860	-742968,5610	-7,26327	-0,85389
MZ-334B	-743178,6913	-743030,1209	176,186	-742957,3298	-7,98301	-1,29118
MZ-336	-743898,6029	-743736,2091	179,840	-743661,9082	-7,44232	-1,75078
MZ-346A	-752778,2388	-752601,0477	173,136	-752529,5166	-7,38735	-0,91675
MZ-346B	-767095,0557	-766941,6340	175,516	-766869,1196	-7,33102	-0,96192
MZ-360	-813559,8444	-813420,1463	180,819	-813345,4407	-7,96940	-1,29907
MZ-362A	-814305,3771	-814149,9361	181,615	-814074,9017	-7,88858	-1,10505
MZ-362B	-814307,5439	-814155,4293	187,446	-814077,9859	-7,97321	-1,28030
MZ-364	-815035,2077	-814868,3893	187,753	-814790,8185	-7,56640	-1,02016

Table S5. Energetic data of organic compounds involved in the reactions.

Table S6. Cartesian coordinates for optimized structure of ciprofloxacin.

ATOM TYP	<u>E x</u>	y	<u>Z</u>
C	1 16025600	2 02921100	0 26206700
C	1.10923000	-2.03831100	-0.26296700
C	0.87008700	-0.76574200	-0.4/890100
C	0.8/998/00	0.51577500	-0.31604600
C	-0.49212900	0.15086700	-0.31653400
C	-1.03204200	-1.12043400	-0.07685900
U N	-0.16029100	-2.22003900	-0.0606/400
N C	-1.343/5100	1.25///000	-0.33905500
C	-2.65/29100	1.0945/900	-0.18/13000
C	-3.25161800	-0.12269300	0.031//100
С	-2.45308500	-1.30839200	0.11247600
F	1.95403100	-3.12/26200	-0.33012100
С	-0.79725400	2.58229400	-0.57850700
С	0.03892900	3.21753500	0.48298700
С	-1.33521100	3.74142800	0.18790700
0	-2.95126500	-2.44343900	0.32749200
С	-4.71699500	-0.17185700	0.19026300
0	-5.22297900	-1.37802100	0.41269800
0	-5.43846600	0.80595300	0.12587300
N	3.11448300	-0.65341600	-0.72171600
С	4.04515700	-1.28070100	0.23641900
С	4.32906400	-0.34967600	1.40247400
Ν	4.90591400	0.90404800	0.91601500
С	3.95024300	1.56535400	0.02455700
С	3.64441200	0.64523800	-1.14729400
Н	1.26456800	1.30477900	-0.69267400
Н	-0.54831100	-3.21933300	0.07844000
Н	-3.25844300	1.99067100	-0.24377100
Н	-0.50883200	2.73477400	-1.60879300
Н	0.90045200	3.78059200	0.15683600
Н	0.16300100	2.66027500	1.40063000
Н	-2.10061500	3.54878400	0.92511900
Н	-1.43473600	4.67144200	-0.34983500
Н	-4.45300900	-2.03276400	0.42691900
Н	3.64037700	-2.21481200	0.60500500
Н	4.97108600	-1.49576300	-0.29842100
Н	3.39091100	-0.17993800	1.94947200
Н	5.03065200	-0.83263600	2.08067700
Н	5.07192900	1.50957800	1.71114500
Н	4.38359600	2.48992900	-0.35314200
Н	3.02215000	1.81907400	0.55234400
Н	4.57353300	0.44161100	-1.68183000
Н	2.95883800	1.11110400	-1.85028500

ATOM TYP	<u>E x</u>	y	Z
С	-3.44391500	-0.85362000	-0.06290700
С	-2.01958200	-0.47336300	-0.07707500
С	-1.69615700	0.85228000	-0.22488700
N	-0.44367200	1.30359300	-0.24163000
С	-0.18186500	2.72115300	-0.41626600
С	0.35656300	3.49965900	0.73775000
С	-1.05400200	3.71276900	0.27319000
С	0.62796100	0.41314800	-0.14468900
С	0.36813500	-0.95776900	0.01625800
С	1.45472000	-1.84681300	0.11512500
С	2.73841200	-1.39177000	0.05277600
0	3.83940000	-2.19259200	0.14096700
С	3.00592000	-0.00690400	-0.12051100
N	4.30294600	0.41624900	-0.13926300
С	1.94285700	0.87581000	-0.21901000
С	-0.98549600	-1.45409100	0.06522500
0	-1.24339900	-2.68048700	0.21662900
0	-4.35981100	-0.06048900	-0.18622200
0	-3.68237600	-2.14850500	0.09794400
Н	-2.47183100	1.59567600	-0.33627400
Н	0.18795300	2.95876200	-1.40356500
Н	0.48876400	2.96163600	1.66544700
Н	1.10272400	4.24851400	0.51978500
Н	-1.84075000	3.33658100	0.91025800
Н	-1.29306500	4.61059500	-0.27532200
Н	1.26479900	-2.90490300	0.23882100
Н	3.57332900	-3.11435200	0.24556300
Н	5.00994800	-0.27127700	-0.34677700
Н	4.47835100	1.34192500	-0.49781800
Н	2.15704900	1.92457700	-0.35674800
Н	-2.78401300	-2.61298300	0.17845000

Table S8. Cartesian coordinates for optimized structure of MZ-263.

ATOM TYP	<u>PE x</u>	y	<u>Z</u>
С	2.70226700	-1.41067100	0.05050300
С	3.01535100	-0.04551300	-0.12659700
С	1.95833900	0.84982200	-0.21872000
С	0.64048300	0.39816700	-0.14474500
С	0.35810900	-0.96994700	0.01865800
С	1.43062900	-1.87306200	0.12130500
Ν	-0.42092100	1.30052400	-0.24036200
С	-1.67948600	0.86245000	-0.22341400
С	-2.02279300	-0.45694500	-0.07526700
С	-1.00232100	-1.45221900	0.06895700
F	3.74046000	-2.26015700	0.14405200
С	-0.14487600	2.71523500	-0.41861500
С	-1.00494100	3.71666400	0.27197000
С	0.40483000	3.49080700	0.73222400
0	-1.27192100	-2.67274500	0.22084000
С	-3.45323300	-0.81561400	-0.06232400
0	-3.71257800	-2.10680800	0.09832500
0	-4.35590000	-0.00866300	-0.18662800
Ν	4.31523100	0.33812100	-0.24624000
Н	2.18237600	1.89674200	-0.35331800
Н	1.24267500	-2.92926700	0.25236200
Н	-2.44549000	1.61586000	-0.33547700
Н	0.22378000	2.94694300	-1.40774700
Н	-1.23778600	4.61543200	-0.27765500
Н	-1.79268300	3.34931200	0.91299500
Н	0.53463000	2.95366900	1.66075000
Н	1.15759500	4.23161400	0.50971300
Н	-2.82660200	-2.58706300	0.17996700
Н	4.51894500	1.32012900	-0.14381700
Н	5.02728900	-0.29180100	0.08805700

Table S9. Cartesian coordinates for optimized structure of MZ-290.

ATOM T	YPE x	y	<u>Z</u>
Ν	2.46331500	0.65793300	0.20877100
С	2.52671600	2.08226100	0.34786100
С	1.91661900	2.91992100	-0.73341800
С	3.40512300	2.84055000	-0.59461000
С	1.26367200	-0.08849000	0.15607400
С	1.52790700	-1.45407500	0.02889600
С	0.47712200	-2.36310100	-0.03485400
С	-0.79655800	-1.86947000	0.02050500
F	-1.81477900	-2.75073500	0.04328200
С	-1.09749800	-0.49045000	0.12977100
Ν	-2.41019300	-0.06905000	0.20378600
С	-2.64075100	1.33304500	0.55661300
С	-4.10052500	1.55453900	0.89678500
Ν	-4.94682000	1.18095000	-0.23399000
С	-4.75168700	-0.23776700	-0.52471700
С	-3.30623300	-0.49394900	-0.88962000
С	-0.01612400	0.40933600	0.21315000
С	2.96207300	-1.61944200	0.02461700
0	3.66851900	-2.59645300	-0.06138900
С	3.53335500	-0.17892600	0.17309300
0	4.70830500	0.10234200	0.24949600
Н	2.44568000	2.43490200	1.36669500
Н	1.41192100	3.82262300	-0.42518500
Н	1.46659000	2.39139800	-1.56130700
Н	3.94201700	2.26401500	-1.33278300
Н	3.93408700	3.68960700	-0.19033100
Н	0.64422300	-3.43003900	-0.09600200
Н	-2.03375800	1.58389300	1.42405500
Н	-2.35048300	1.99011300	-0.27270500
Н	-4.34402900	0.97266200	1.79476900
Н	-4.24636700	2.60763600	1.12909800
Н	-5.91478800	1.32648500	0.02746400
Н	-5.37947000	-0.52746600	-1.36525200
Н	-5.01766600	-0.86938700	0.33244700
Н	-3.04960300	0.07671500	-1.79007000
Н	-3.16442100	-1.54639200	-1.10293700
Н	-0.18889400	1.47001500	0.29679600

Table S10. Cartesian coordinates for optimized structure of MZ-291.

ATOM TY	PE x	y	Z
С	-4.01444200	-0.20537200	-0.08771500
С	-2.53964000	-0.14806300	-0.08427000
С	-1.93386600	1.07642500	-0.22028300
Ν	-0.61395000	1.25113400	-0.22304500
С	-0.05401400	2.58217000	-0.38801900
С	0.64640900	3.21384800	0.76901400
С	-0.68843300	3.72956800	0.31901300
С	0.23793800	0.15118800	-0.12117900
С	-0.30916500	-1.13009300	0.02439100
С	0.55244100	-2.23187800	0.12640500
С	1.89359200	-2.02997000	0.08069600
F	2.73636100	-3.06906000	0.17535600
С	2.46607800	-0.75257200	-0.06945700
Ν	3.85495600	-0.68671100	-0.10582300
С	1.62501600	0.33705300	-0.17558100
С	-1.74818300	-1.33052600	0.05739200
0	-2.25041300	-2.47174200	0.19396200
0	-4.72766000	0.77167200	-0.21159200
0	-4.53747300	-1.41630800	0.05564800
С	4.64018900	0.42050700	-0.13994500
0	4.24288900	1.57033700	-0.15553900
Н	-2.53190000	1.96912600	-0.33277900
Н	0.35026500	2.74408600	-1.37698000
Н	0.66607400	2.64897600	1.69001100
Н	1.53591600	3.78503200	0.55013000
Н	-0.73277000	4.66300700	-0.22013200
Н	-1.53373700	3.52367000	0.95889200
Н	0.15447300	-3.23016700	0.23876200
Н	4.34853200	-1.56904000	-0.07107000
Н	2.04040100	1.31831500	-0.30522200
Н	-3.77804600	-2.07171000	0.13956300
Н	5.70422300	0.16390400	-0.14991900

Table S11. Cartesian coordinates for optimized structure of MZ-306.

ATOM TYL	<u>PE x</u>	y	<u>Z</u>
С	1.49934500	-2.10716800	-0.20355500
С	2.10192100	-0.85685200	-0.48903100
С	1.26489800	0.25234700	-0.54897900
С	-0.10767900	0.11636700	-0.33330900
С	-0.67740900	-1.14074700	-0.06936700
С	0.17044000	-2.26327500	-0.00521100
Ν	-0.93722800	1.23867300	-0.37818900
С	-2.25493600	1.10773600	-0.22422000
С	-2.87377600	-0.09090400	0.02045900
С	-2.09839700	-1.29167800	0.12412700
F	2.32401700	-3.16816400	-0.14225300
С	-0.36060300	2.54560000	-0.64028500
С	-0.87338700	3.73134000	0.10219900
С	0.48621000	3.17902800	0.41350700
Ο	-2.62547300	-2.41125200	0.36256300
С	-4.33948200	-0.10743400	0.18109900
Ο	-4.86860400	-1.29870100	0.42690600
Ο	-5.04142700	0.88360200	0.09886100
Ν	3.43810000	-0.80926200	-0.72665700
Н	1.68458600	1.22024900	-0.76398600
Н	-0.23781800	-3.24267900	0.20057700
Н	-2.83570000	2.01560800	-0.30146400
Н	-0.06395700	2.67252500	-1.67174300
Н	-0.94747800	4.65344600	-0.45301200
Н	-1.64671500	3.57117500	0.83887400
Н	0.59131200	2.63518900	1.34149200
Н	1.36334900	3.71460800	0.08270200
Н	-4.10856600	-1.96782400	0.45308200
Н	3.95826700	-1.62894600	-0.45164500
С	4.18115900	0.44164000	-0.75006500
С	4.27494500	1.12620000	0.61010300
Н	3.72979300	1.11522600	-1.47965100
Н	5.18339200	0.20615600	-1.10512000
Н	4.82636500	2.05654100	0.47635200
Н	3.27853800	1.39602300	0.96097100
Ν	4.92665300	0.33262300	1.64904700
Н	4.39897900	-0.52215700	1.79415900
Η	5.84136100	0.04169900	1.31781700

Table S12. Cartesian coordinates for optimized structure of MZ-308.

ATOM TYI	<u>PE x</u>	y	Z
С	3.29939700	0.86123200	-0.60705900
С	1.61375700	-1.75428100	-1.32215600
Ν	1.43437100	-1.14652100	-0.12961800
С	2.09288400	-1.62402700	1.06956100
С	2.17229100	-3.09537200	1.32280500
С	1.25413600	-2.24002400	2.14342800
С	0.46711900	-0.09839800	0.01262000
С	0.86976800	1.22207200	0.22927800
С	-0.11967300	2.18813600	0.50026100
С	-1.44310900	1.85729600	0.50052200
О	-2.45045900	2.75197400	0.72406000
С	-1.86069700	0.52279600	0.24891700
Ν	-3.17559400	0.23623500	0.24222400
С	-3.70448800	-1.09650500	0.02395400
С	-5.22214300	-1.07814600	-0.00347300
Ν	-5.82353600	-0.33924800	-1.11117100
С	-0.87073100	-0.44451300	0.02768600
С	2.25339600	1.66801000	0.17332400
О	2.66023500	2.70821900	0.65894200
О	1.02683100	-1.45405300	-2.35196100
О	4.30293700	0.42700800	-0.10507000
Ο	3.00416100	0.80751100	-1.89606800
Н	2.36320300	-2.55194900	-1.28901100
Н	2.93026600	-1.01862800	1.38731300
Н	3.08154600	-3.46551400	1.77095100
Н	1.71329500	-3.75116400	0.59794600
Н	0.19573900	-2.32831500	1.94493800
Н	1.52206200	-2.01716100	3.16462400
Н	0.17353600	3.21521500	0.67716600
Н	-2.08222400	3.63161200	0.87193700
Н	-3.81925400	0.98121500	0.46433800
Н	-3.32842700	-1.48751300	-0.92577000
Н	-3.36224000	-1.77014100	0.81508500
Н	-5.59361800	-0.66046000	0.93298000
Н	-5.56149800	-2.11145500	-0.04798600
Н	-5.57188400	0.64106900	-1.04754600
Н	-5.42912600	-0.67417600	-1.98439100
Н	-1.14463900	-1.47892400	-0.12101700
Н	3.70548700	0.33809200	-2.37884500

Table S13. Cartesian coordinates for optimized structure of MZ-310.

ATOM TY	PE x	у	<u>Z</u>
С	3.05018000	-0.88432100	-1.12164000
С	1.14784900	2.25272700	-0.98599000
Ν	1.27364200	1.29321200	-0.04075500
С	2.46389000	1.31545100	0.77924500
С	2.48752200	2.18524800	1.99870700
С	2.43043500	0.69292500	2.13495800
С	0.33212800	0.22925600	0.01418500
С	0.74462000	-1.10880000	0.05583500
С	-0.22765300	-2.10444000	0.24133600
С	-1.54305000	-1.76558800	0.29549500
F	-2.48217200	-2.72164600	0.42869100
С	-1.99617800	-0.43599000	0.21423400
Ν	-3.31640900	-0.16501100	0.30089700
С	-3.86467200	1.14531700	-0.00039600
С	-5.37395600	1.11148800	0.10576200
Ν	-5.93412700	0.12740800	-0.82193100
С	-1.01098100	0.55638200	0.10214000
С	2.12827700	-1.55954400	-0.07940800
Ο	2.58749800	-2.52632300	0.49255800
0	1.93874400	3.17485200	-1.12034100
Ο	2.63814800	-0.23619300	-2.04469400
Ο	4.33576300	-1.14845300	-0.95911700
Η	0.27869700	2.12619200	-1.63933100
Н	3.38359100	1.26173700	0.21178600
Н	3.41263600	2.69448200	2.22177300
Н	1.58273900	2.73284100	2.21846200
Н	1.49404200	0.26190200	2.45927800
Н	3.31702900	0.16343900	2.44979300
Н	0.06058500	-3.14553600	0.29486900
Н	-3.95269700	-0.93943300	0.17225300
Н	-3.47209900	1.88054500	0.70256700
Н	-3.56806800	1.45891500	-1.00760500
Н	-5.74269000	2.12577300	-0.06388700
Н	-5.65601200	0.82590100	1.11911700
Н	-6.93535100	0.06500400	-0.68156000
Н	-5.79867700	0.45571600	-1.77255700
Н	-1.29720300	1.59777800	0.12224200
Н	4.45959500	-1.75143600	-0.20691300

ATOM TY	PE x	y	<u>Z</u>
С	-1.16598000	-1.87473400	0.08235400
С	-1.64541200	-0.54043700	0.17378900
С	-0.73518300	0.49640600	0.22752400
С	0.64037600	0.24199800	0.15419700
С	1.10260200	-1.07460000	0.03310900
С	0.17594500	-2.12645600	0.00292400
Ν	1.55919500	1.29330800	0.19887500
С	2.86438300	1.04202300	0.16927700
С	3.39037400	-0.22352000	0.06387400
С	2.52528300	-1.35804300	-0.02041500
С	1.08016000	2.65858300	0.32839000
С	0.40768400	3.29786500	-0.84107800
С	1.77388000	3.74740600	-0.41455100
Ο	2.96108200	-2.53311100	-0.12732800
С	4.85715200	-0.37377900	0.03653600
Ο	5.29863900	-1.62044400	-0.07147100
Ο	5.63563000	0.55928800	0.10635700
Ν	-3.03613800	-0.35746100	0.25210400
С	-3.48954000	0.92484500	0.79269100
С	-4.98859900	0.88291300	1.01053200
Ν	-5.66921700	0.62169700	-0.25740600
С	-5.22751600	-0.66350700	-0.79691700
С	-3.73144700	-0.63599500	-1.02225100
Н	-1.08760300	1.51078100	0.31579400
Н	0.52874400	-3.14670500	-0.04852800
Н	3.51860300	1.89921800	0.23384700
Н	0.69351200	2.87221700	1.31461800
Н	-0.44412200	3.92751800	-0.63335800
Н	0.34765400	2.71005300	-1.74578400
Н	2.60061200	3.47579900	-1.05398000
Н	1.87626400	4.69163300	0.09725900
Н	4.49099100	-2.22593300	-0.11539000
Н	-2.98057900	1.10844800	1.73783200
Н	-3.24967400	1.74554400	0.10453600
Н	-5.21470300	0.11421300	1.76006800
Н	-5.31579400	1.84334900	1.40417300
Н	-6.66611000	0.57312200	-0.08356000
Н	-5.72715700	-0.84933600	-1.74585300
Н	-5.46317500	-1.49498200	-0.11971800
Н	-3.47648800	0.14645500	-1.74810200
Н	-3.39703600	-1.58849600	-1.42733100
0	-2.03413000	-2.92298600	0.10918700
Н	-2.90554200	-2.60347100	0.38459400

Table S15. Cartesian coordinates for optimized structure of MZ-334A.

ATOM TY	PE x	у	Z
С	4.90241200	-0.63256300	0.31694100
С	3.45671600	-0.37057300	0.19013400
С	3.01155300	0.92101000	0.29762700
Ν	1.72862900	1.26968700	0.19136200
С	1.33976400	2.66130200	0.33621600
С	0.84688200	3.39921900	-0.86427100
С	2.18834100	3.72192900	-0.27578900
С	0.74668900	0.29614600	-0.00207900
С	1.13906800	-1.04779900	-0.12873300
С	0.14330100	-2.02610800	-0.32838900
С	-1.15402700	-1.65394700	-0.38679900
F	-2.12150200	-2.57005000	-0.57183400
С	-1.58218100	-0.30823800	-0.25241900
Ν	-2.89807800	-0.03036100	-0.32397300
С	-3.43349800	1.30072700	-0.12062100
С	-4.94786600	1.27745600	-0.17815600
Ν	-5.56060600	0.51550600	0.90101900
С	-0.60070100	0.66039600	-0.05701600
С	2.52384100	-1.43377100	-0.04206800
Ο	2.89267200	-2.63467600	-0.15500100
Ο	5.73424300	0.23379400	0.51619600
Ο	5.25849300	-1.90467400	0.19897900
С	-5.79688500	-0.79393100	0.83746900
Ο	-5.48004500	-1.51764500	-0.10855800
Η	3.70945300	1.72516500	0.47946300
Η	0.86504600	2.86537200	1.28550300
Η	0.02666000	4.08521400	-0.71622500
Η	0.84153100	2.85572500	-1.79813600
Η	3.05647200	3.41271600	-0.83889500
Η	2.30465200	4.63362000	0.28930900
Η	0.41646800	-3.06697200	-0.42890100
Η	-3.55350700	-0.79490800	-0.42016300
Η	-3.06811700	1.97796900	-0.89667500
Η	-3.10406700	1.69650800	0.84416600
Η	-5.27906100	0.85539700	-1.12623900
Н	-5.31512100	2.29765600	-0.11522700
Н	-5.84942300	1.00140900	1.73659100
Н	-0.89117700	1.69210000	0.05041600
Н	4.41286200	-2.44131500	0.03949000
Н	-6.31211400	-1.19095900	1.71795800

Table S16. Cartesian coordinates for optimized structure of MZ-334B.

ATOM TY	PE x	уу	<u>Z</u>
С	-4.68858000	-0.20462100	0.04016900
С	-3.21601200	-0.14389600	-0.04606800
С	-2.62644100	1.07956800	-0.25246300
Ν	-1.31111300	1.25823000	-0.34670500
С	-0.76381200	2.58647900	-0.56847200
С	0.02685500	3.22463700	0.52586200
С	-1.33781100	3.74070200	0.17835700
С	-0.45199700	0.16343100	-0.27301900
С	-0.97444800	-1.11518800	-0.03933300
С	-0.10659500	-2.20939100	0.05687500
С	1.23453500	-2.01524500	-0.08811600
F	2.06513700	-3.06078100	-0.02401700
С	1.77768600	-0.74537200	-0.33386000
Ν	3.17698000	-0.58571700	-0.47203400
С	4.01810600	-0.85529900	0.70173900
С	3.75012500	0.14395800	1.82154800
Ν	3.94545300	1.54558700	1.46402900
С	0.92937500	0.33616600	-0.42036000
С	-2.41303700	-1.31853000	0.08862600
0	-2.89631200	-2.45478800	0.29477500
Ο	-5.41078900	0.76672300	-0.07106100
Ο	-5.19859100	-1.41166000	0.24963600
С	3.66173000	0.11229400	-1.52713700
Ο	4.82532500	0.46089300	-1.65408000
Н	-3.23547800	1.96728800	-0.34666800
Н	-0.43866800	2.73859900	-1.58764900
Н	0.11832900	2.66653100	1.44693500
Н	0.89751400	3.79214700	0.23372100
Н	-1.42200100	4.67039000	-0.36246800
Н	-2.13080400	3.54153500	0.88405800
Н	-0.49814500	-3.20205200	0.22739300
Н	3.82710500	-1.86936600	1.04838800
Н	5.05208500	-0.79427300	0.37192100
Н	2.72919800	0.02041100	2.18446600
Н	4.41199400	-0.11157600	2.64827900
Н	4.85729000	1.65543300	1.03142300
Н	3.26838900	1.81227100	0.75537800
Н	1.35061000	1.31531200	-0.59094200
Н	-4.43607300	-2.06323200	0.31143400
Н	2.90804000	0.31341800	-2.29677600

ATOM TY	PE x	y	Z
0	-2.85473800	-2.74016100	0.99543600
С	-3.36561600	-2.13515000	0.09280100
С	-1.22667100	2.82557500	-0.96976600
Ν	-1.53141100	1.72363200	-0.24334200
С	-0.70908200	0.56913900	-0.32165600
С	-1.26145700	-0.71406800	-0.40239300
С	-0.40027900	-1.81543000	-0.38253800
С	0.95299600	-1.62884400	-0.34231800
F	1.74221300	-2.71318800	-0.43382500
С	1.54551200	-0.35934600	-0.25592300
Ν	2.92531400	-0.21720500	-0.21933800
С	3.61680900	-0.93566200	0.86828500
С	5.11236000	-0.93241500	0.63895500
Ν	5.60000300	0.44261200	0.55082400
С	4.94419200	1.11043300	-0.57152100
С	3.44522800	1.14420800	-0.35486300
С	0.66566200	0.72884100	-0.22736500
С	-2.69373400	-0.93960800	-0.62474500
0	-3.40694700	-0.25643700	-1.32317000
0	-1.86788700	3.86478800	-0.92496100
С	-2.70732600	1.77028600	0.59683000
С	-2.63062100	2.50319100	1.89779900
С	-2.71534700	1.00308100	1.87540500
0	-4.58452900	-2.39790300	-0.34285500
Н	-0.36064600	2.70305300	-1.62786100
Н	-0.78078400	-2.82350600	-0.46823100
Н	3.39031300	-0.43856800	1.81951900
Н	3.25952100	-1.95749000	0.92549600
Н	5.59502500	-1.43700200	1.47382500
Н	5.33096400	-1.50070100	-0.27411500
Н	6.59713300	0.42018100	0.37260700
Н	5.15117400	0.60326000	-1.52241200
Н	5.30840400	2.13294000	-0.64974800
Н	2.97056000	1.62052100	-1.21082000
Н	3.21859700	1.73609100	0.54102300
Н	1.05695300	1.72390200	-0.08046900
Н	-3.63323600	1.83851300	0.04447700
Н	-3.49953700	3.06996000	2.19588400
Н	-1.67559200	2.93544200	2.15868500
Н	-3.64405400	0.52781600	2.15469800
Н	-1.82048100	0.45704100	2.13801800
Н	-4.82452200	-1.76372800	-1.04067500

Table S18. Cartesian coordinates for optimized structure of MZ-346A.

ATOM TYP	<u>e</u> ,	ĸ	y	<u>Z</u>	
С	-4.6347550	0	-0.70341500	-0.285232	200
С	-3.2089950	0	-0.44504700	-0.137114	100
С	-2.7411800	0	0.86487800	-0.312228	00
Ν	-1.4463160	00	1.18309000	-0.165248	300
С	-1.0331900	0	2.57305400	-0.243096	00
С	-0.2763170	0	3.15209300	0.909901	00
С	-1.6883020	0	3.56887500	0.656381	00
С	-0.4923130	0	0.16794000	0.024402	00
С	-0.8995650	0	-1.15364600	0.223889	00
С	0.0613250	0	-2.14648200	0.454646	00
С	1.3947250	0	-1.83809400	0.455474	00
0	2.3015040	0	-2.81381700	0.746443	00
С	1.8220070	0	-0.51725800	0.172726	00
Ν	3.2055390	0	-0.27256900	0.146293	00
С	3.8835290	0	-0.87255800	-1.022007	00
С	5.3841540	0	-0.78583000	-0.847725	00
Ν	5.7844860	0	0.61279200	-0.700987	00
С	5.1227700	0	1.19328800	0.467304	00
С	3.6186080	0	1.12367300	0.295955	00
С	0.8722110	0	0.46920600	-0.021049	00
С	-2.3094010	0	-1.49955800	0.174018	00
0	-2.7057790	00	-2.68015500	0.363898	300
0	-5.4496860	00	0.17861400	-0.574945	500
0	-5.0347370	00	-1.94096100	-0.094574	400
0	-3.5587840	00	1.83788700	-0.631237	00'
Н	-0.7584420	00	2.88592000	-1.240251	00
Н	0.5294370	0	3.82946500	0.669801	00
Н	-0.0994440	00	2.49962500	1.752807	00
Н	-1.8840100	00	4.54391200	0.237132	.00
Н	-2.4397240	00	3.19524600	1.335476	00
Н	-0.2568060	00	-3.15975300	0.655526	600
Н	3.1603720	0	-2.40076900	0.916168	00
Н	3.5802980	0	-1.91113200	-1.134058	300
Н	3.5806130	0	-0.33379900	-1.928736	600
Н	5.6694250	0	-1.38703100	0.025569	00
Н	5.8694300	0	-1.21190900	-1.723851	00
Н	6.7861830	0	0.64785000	-0.553461	00
Н	5.4193420	0	2.23552500	0.568877	00
Н	5.3972870	0	0.67061900	1.392144	00
Н	3.3308120	0	1.71287700	-0.584191	00
Н	3.1236810	0	1.54642800	1.169436	00
Н	1.1914080	0	1.47495900	-0.234984	-00
Н	-4.2029800	00	-2.48664800	0.129968	300
Н	-4.4748550	00	1.42616000	-0.687923	600

Table S19. Cartesian coordinates for optimized structure of MZ-346B.

ATOM TYI	<u>PE x</u>	y	Z
С	-5.04572500	-0.23026800	-0.16975500
С	-3.57416500	-0.14521100	-0.12096800
С	-2.98406200	1.07909000	-0.30624100
Ν	-1.66674300	1.27649200	-0.27118300
С	-1.12534500	2.60731500	-0.48465700
С	-0.47758300	3.31011000	0.66208900
С	-1.80489700	3.77615800	0.14138000
С	-0.80032600	0.19884800	-0.07762400
С	-1.33796200	-1.08102200	0.12146200
С	-0.45247500	-2.14927400	0.33721700
С	0.88675800	-1.93550900	0.33230900
F	1.70312800	-2.96100100	0.62915300
С	1.46610900	-0.66347800	0.08404200
Ν	2.82758400	-0.49712700	0.08490800
С	3.70002600	-1.55852700	-0.45193900
С	4.86153300	-0.94760200	-1.20714700
Ν	5.53304600	0.02825300	-0.36349300
С	4.82302900	0.96750700	0.26090600
С	3.32863900	0.87352400	0.04757600
С	0.58200500	0.39564600	-0.10655100
С	-2.76621600	-1.30413400	0.11660400
Ο	-3.26278200	-2.44523800	0.30142000
Ο	-5.77282000	0.72330400	-0.37682800
Ο	-5.55155500	-1.44047800	0.03076900
Ο	5.31674900	1.87833800	0.92753000
Н	-3.59092200	1.95335300	-0.49226500
Н	-0.68938500	2.72902600	-1.46601900
Н	-0.47931000	2.79264600	1.61068900
Н	0.40744500	3.88909400	0.44558000
Н	-1.84702600	4.68107700	-0.44459600
Н	-2.66841100	3.58510900	0.76130300
Н	-0.83488600	-3.14072300	0.53529200
Н	4.08425400	-2.18026600	0.35567700
Н	3.13548800	-2.18599200	-1.13785500
Н	5.56840500	-1.72812300	-1.46894200
Н	4.51445000	-0.47549400	-2.12762300
Н	6.54113800	0.06406500	-0.30980100
Н	2.85130800	1.45893200	0.82958600
Н	3.12016300	1.35966200	-0.91526800
Н	0.96814600	1.38046900	-0.30281000
Н	-4.77899700	-2.07361600	0.17770400

Table S20. Cartesian coordinates for optimized structure of MZ-360.

ATOM TYP	<u>PE x</u>	y	<u>Z</u>
С	-5.14140700	-0.39640200	0.01266200
С	-3.67457900	-0.23148700	-0.02152900
С	-3.16485200	1.00400600	-0.33815300
Ν	-1.86280200	1.27420800	-0.39140600
С	-1.40689300	2.61062900	-0.73613400
С	-0.72833800	3.42606700	0.31421400
С	-2.10874600	3.78603900	-0.14849300
С	-0.93006400	0.26445700	-0.15944600
С	-1.37180300	-1.02032500	0.18240100
С	-0.43373700	-2.02633100	0.43947700
С	0.89617100	-1.74631800	0.33974400
F	1.79206700	-2.68583500	0.64891500
С	1.35512600	-0.47813600	-0.04737000
Ν	2.74350700	-0.22862600	-0.14379400
С	3.50988700	-1.00890100	-0.95546900
С	4.97658000	-0.66936200	-1.00827500
Ν	5.43854300	0.07846500	0.14294900
С	4.69453900	0.99387300	0.76659300
С	3.24717000	1.05813000	0.34424000
С	0.43995400	0.52198600	-0.28602800
С	-2.79573100	-1.31863100	0.27608300
0	-3.20505700	-2.45988700	0.58934000
0	-5.92682000	0.49636900	-0.24012600
0	-5.57089500	-1.60764900	0.34303000
0	5.12643400	1.75587800	1.62789900
0	3.05764800	-1.91854000	-1.63047900
Η	-3.83015700	1.82632500	-0.55928600
Н	-1.04144300	2.67902600	-1.75067900
Н	-0.64260300	2.97998900	1.29480800
Н	0.10859900	4.03079700	-0.00044600
Н	-2.23693000	4.64247600	-0.79188600
Н	-2.92013300	3.59688100	0.53878700
Н	-0.76072600	-3.01358200	0.73290000
Н	5.14439900	-0.11992400	-1.93844600
Η	5.52128200	-1.60638100	-1.07173000
Η	6.42261500	0.04142100	0.37341500
Η	2.66179500	1.35555800	1.20915200
Н	3.15635200	1.83451300	-0.42057000
Н	0.78954500	1.49828900	-0.58383200
Н	-4.76607400	-2.18633200	0.50892700

Table S21. Cartesian coordinates for optimized structure of MZ-362A.

ATOM TYI	<u>PE x</u>	y	<u>Z</u>
С	5.15476100	-0.57160500	0.26999300
С	3.70281100	-0.33765600	0.14661700
С	3.22674500	0.93428500	0.34786700
Ν	1.93985500	1.26359500	0.25565000
С	1.51769400	2.63362100	0.49350100
С	0.99747500	3.43250600	-0.65540200
С	2.33533800	3.75080300	-0.05655300
С	0.98523400	0.28495400	-0.02166100
С	1.39822300	-1.03442700	-0.24419100
С	0.43151800	-2.00679000	-0.53558700
С	-0.88092700	-1.65682600	-0.58851400
F	-1.78732500	-2.58843300	-0.91985600
С	-1.33066000	-0.34251800	-0.33933300
Ν	-2.70202900	-0.04920400	-0.41841800
С	-3.06521800	1.36786000	-0.46450700
С	-4.47065400	1.48548500	-1.00022000
Ν	-5.36869400	0.59722500	-0.27427600
С	-4.99839800	-0.47015100	0.42609300
С	-3.50719300	-0.77271000	0.55748500
С	-0.37517300	0.61445500	-0.05330100
С	2.80200000	-1.40061300	-0.17620400
0	3.18650500	-2.57770600	-0.38010300
0	5.95846700	0.29828000	0.54657700
0	5.54926400	-1.82008700	0.05588100
0	-3.17187400	-0.44771200	1.89265400
0	-5.79512900	-1.21615000	0.99780700
Н	3.90699300	1.73602200	0.59637900
Н	1.04695000	2.76392200	1.45742800
Н	0.99749700	2.94895900	-1.62177500
Н	0.16168000	4.08662100	-0.45823100
Н	2.43369900	4.62760900	0.56433000
Н	3.20667300	3.49762800	-0.64227700
Н	0.72755300	-3.02637800	-0.73742900
Н	-2.39475100	1.88721400	-1.14403700
Н	-2.98665700	1.83262900	0.52312500
Н	-4.48984200	1.23705900	-2.06145700
Н	-4.82271700	2.50711600	-0.88051800
Н	-6.36557000	0.74315000	-0.36789300
Н	-3.39563200	-1.84110300	0.39576000
Н	-0.68383600	1.62315600	0.16331500
Н	4.73060800	-2.36804000	-0.15627400
Н	-2.42997200	-0.99802500	2.16853400

Table S22. Cartesian coordinates for optimized structure of MZ-362B.

ATOM TY	<u>PE x</u>	у	<u>Z</u>
С	4.79292400	-0.32861500	0.37342100
С	3.33989700	-0.23768200	0.12745500
С	2.76762300	1.00910000	0.06077200
Ν	1.47136800	1.21537100	-0.16023400
С	0.93873800	2.56760100	-0.19651400
С	0.43364100	3.10085900	-1.49623000
С	1.70723000	3.62862000	-0.90536200
С	0.60653900	0.13155800	-0.29933700
С	1.11476500	-1.17275100	-0.24623600
С	0.24198200	-2.25848500	-0.38570100
С	-1.08983200	-2.03045100	-0.55692200
F	-1.91992900	-3.06423900	-0.73529100
С	-1.62610800	-0.73246400	-0.57328500
Ν	-3.01707700	-0.53993300	-0.72454200
С	-3.95898400	-1.17012900	0.20840400
С	-4.34983400	-0.22005300	1.33353100
Ν	-3.20898900	0.17192100	2.13917000
С	-2.55241400	1.32022100	1.96533800
С	-3.47867600	0.39131900	-1.59596300
С	-0.76908300	0.33969300	-0.45119700
С	2.53772400	-1.40947000	-0.03840500
0	3.00896800	-2.56901500	0.00050100
0	5.51267900	0.63868700	0.52789400
0	5.28739100	-1.55927700	0.41945000
0	-4.65521800	0.69939600	-1.69251500
0	-1.50139600	1.61796900	2.52962500
Н	3.37458400	1.89373400	0.19015000
Н	0.40253500	2.82785300	0.70521000
Н	0.52569700	2.45210300	-2.35566700
Н	-0.45654800	3.71044700	-1.46228800
Н	2.62763500	3.34433000	-1.39378900
Н	1.70625900	4.60831300	-0.45367000
Н	0.62343600	-3.26942400	-0.37181600
Н	-3.49287700	-2.05920900	0.62274100
Н	-4.84724300	-1.47042600	-0.34322200
Н	-5.08680400	-0.71314500	1.96428100
Н	-4.80287300	0.68196100	0.92729100
Н	-2.77134000	-0.52715500	2.72739800
Н	-3.04621600	2.00875300	1.26665100
Н	-2.70217900	0.82770400	-2.23355800
Н	-1.17828200	1.33832200	-0.44384400
Н	4.53029200	-2.20282800	0.26874200

Table S23. Cartesian coordinates for optimized structure of MZ-364.

ATOM TY	PE x	y	Z
С	-5.17847700	-0.47774700	-0.11758400
С	-3.71632700	-0.28441700	-0.07616800
С	-3.21928600	0.98356800	-0.24453800
Ν	-1.91999700	1.27643900	-0.21662300
С	-1.47640200	2.64452200	-0.42263800
С	-0.86748200	3.38098900	0.72412400
С	-2.22963600	3.75688500	0.22121700
С	-0.97610800	0.26311300	-0.04303500
С	-1.41386500	-1.05586700	0.13660200
С	-0.45508300	-2.06219300	0.33070200
С	0.86499900	-1.74784700	0.32583600
F	1.76269700	-2.71120700	0.58988200
С	1.34212400	-0.43354300	0.09940000
Ν	2.70093300	-0.16260400	0.12379100
С	3.10569400	1.23751400	0.30137200
С	4.57956800	1.40880100	0.62146600
Ν	4.99775700	0.57470600	1.75241200
С	4.18462000	-0.34776600	-1.83393600
С	3.60141800	-1.04175300	-0.60356000
С	0.39009800	0.56065900	-0.07207600
С	-2.82435300	-1.38451800	0.13141300
Ο	-3.23052300	-2.56301700	0.29179000
Ο	-5.97589000	0.42434000	-0.29197800
Ο	-5.59084900	-1.72754500	0.05095400
Ο	4.61483400	-1.59229000	0.19302500
Ο	3.51414500	0.33266500	-2.56715700
Н	-3.89129000	1.81291200	-0.41164300
Н	-1.06033600	2.80426600	-1.40713900
Н	-0.02764000	4.02247900	0.50379800
Н	-0.82247800	2.85644400	1.66778800
Н	-3.07083300	3.49906300	0.84751700
Н	-2.34179300	4.66166600	-0.35561600
Н	-0.76540700	-3.08156900	0.51174100
Н	2.51911700	1.63448200	1.13083700
Н	2.87961800	1.83966000	-0.58309000
Н	5.20509300	1.14640200	-0.23555600
Н	4.73426000	2.47470200	0.79820800
Н	5.94229500	0.82117100	2.02517800
Н	4.39960100	0.75648300	2.55199200
Н	5.24804100	-0.55292000	-2.03706900
Н	3.02558900	-1.86427500	-1.02983000
Н	0.70997700	1.57278100	-0.25040500
Н	-4.77277400	-2.30469200	0.17596900
Н	4.85110300	-0.91358900	0.88666100

Figure S1. HR-TEM images of the metal dispersion of the active phase on the catalyst surface. (a,b) Urban-Fe catalyst, (c,d) Industrial-Fe Catalyst, (e,f) Industrial-Ni catalyst, (g,h) Industrial FeNi catalyst. Metallic particles are seen as dark spots.

Figure S2. The histograms of iron and nickel particle size distributions.

Figure S3. LC-MS chromatogram for the liquid sample of Urban-Fe catalyst.

Figure S4. LC-MS chromatogram for the liquid sample of Industrial-Fe catalyst.

Figure S5. LC-MS chromatogram for the liquid sample of Industrial-Ni catalyst.

Figure S6. LC-MS chromatogram for the liquid sample of Industrial-FeNi catalyst.

References:

[1] Z.-j. Liu, J-q. Wan, Z-C. Yan, Y. Wang, Y.W. Ma, Efficient removal of ciprofloxacin by heterogeneous electro-Fenton using natural air–cathode, Chem, Eng. J. 433 (2022) 133767.

[2] S. Li, T. Huang, P. Du, W. Liu, J. Hu, Photocatalytic transformation fate and toxicity of ciprofloxacin related to dissociation species: Experimental and theoretical evidences, Water Res. 185 (2020) 116286.