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Abstract

The controlled branching process is a generalization of the classical Bienaymé-
Galton-Watson branching process. It is a useful model for describing the evolution
of populations in which the population size at each generation needs to be controlled.
The maximum likelihood estimation of the parameters of interest for this process is
addressed under various sample schemes. Firstly, assuming that the entire family
tree can be observed, the corresponding estimators are obtained and their asymptotic
properties investigated. Secondly, since in practice it is not usual to observe such a
sample, the maximum likelihood estimation is initially considered using the sample
given by the total number of individuals and progenitors of each generation, and
then using the sample given by only the generation sizes. Expectation-maximization
algorithms are developed to address these problems as incomplete data estimation
problems. The accuracy of the procedures is illustrated by means of a simulated
example.

Keywords: Maximum likelihood estimation, expectation-maximization algorithm,
branching process, controlled process.

1. Introduction

Controlled branching processes are a class of discrete-time stochastic growth
population models characterized by the existence of a random control mechanism to
determine in each generation (non-overlapping generations) how many progenitors
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González, M., Minuesa, C., del Puerto, I., 2016. Maximum likelihood estimation

and expectation-maximization algorithm for controlled branching processes. Compu-
tational Statistics & Data Analysis 93, 209–227. DOI: 10.1016/j.csda.2015.01.015

Preprint submitted to Computational Statistics and Data Analysis June 8, 2015

https://doi.org/10.1016/j.csda.2015.01.015


participate in the subsequent reproduction process. Once the number of progen-
itors is known, each one reproduces independently of the others according to the
same probability law, called the offspring distribution, as usual in the framework of
branching processes.

In general, the notion of branching has had relevance in the development of the-
oretical approaches to problems in such applied fields as the growth and extinction
of populations, biology (gene amplification, clonal resistance theory of cancer cells,
polymerase chain reactions, etc.), epidemiology (the evolution of infectious diseases),
cell proliferation kinetics (stem cells, etc.), genetics (sex-linked genes, mitochondrial
DNA, etc.) and algorithm and data structures (see, for example, the monographs
Kimmel and Axelrod (2002) and Haccou et al. (2005)). In particular, the novelty of
adding to the branching notion a mechanism that fixes the number of progenitors
in each generation can allow a great variety of random migratory movements to be
modeled. The control mechanism can be defined either by a degenerate distribution
giving rise to deterministic control or in a random way (through control probability
distributions), in both cases with dependence on the number of individuals in each
generation. For example, a practical situation that can be modeled by this kind of
process is the evolution of an animal population that is threatened by the existence
of predators. In each generation, the survival of each animal (and therefore the
possibility of giving new births) will be strongly affected by this factor, making the
introduction of a random mechanism (a binomial control process would be reason-
able) necessary to model the evolution of this kind of population. One can also
model phenomena concerning the introduction or re-introduction of animal species
to inhabit environments in which they are in potential danger of disappearance or
have previously become extinct. This re-population can be achieved by the con-
trolled introduction of new animals until the species has become firmly established
in that habitat.

The family of controlled branching processes includes as particular cases various
models previously introduced in the branching process literature, such as branching
processes with immigration (see Sriram (1994)), with immigration at state zero
(see Bruss and Slavtchova-Bojkova (1999)), with random migration (see Yanev and
Yanev (1996)), with bounded emigration (see del Puerto and Yanev (2008)), with
adaptive control (see Bercu (1999)), and with continuous state space (see Rahimov
and Al-Sabah (2007)).

The probability theory of this model has been extensively studied from the pi-
oneering work of Yanev (1976) until the recent paper of González and del Puerto
(2012) (see also the references therein). In the last few years, interest in these pro-
cesses has mainly focused on the development of their inference theory in order to
guarantee the applicability of these models. Results in this line from a frequentist
standpoint may be found in González et al. (2004, 2005a) for deterministic control
models, using maximum likelihood estimation, and in Dion and Essebbar (1995) and
Sriram et al. (2007) for models with random control distributions, using martingale
theory (for a multiplicative control function) and weighted conditional least squares
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estimation, respectively.
The objective of this paper is to consider the maximum likelihood estimation of

the parameters of interest for a controlled branching process with random control
distributions under various sample schemes. Firstly, we consider the entire family
tree until some fixed generation can be observed. The results obtained under the ob-
servation of this sample generalize those in González et al. (2004, 2005a). Secondly,
since, in practice, it is not usual to observe the entire family tree, we consider the
maximum likelihood estimation using initially the sample given by the total number
of individuals and progenitors of each generation, and then the sample given by only
the generation sizes. We deal with these problems as incomplete data estimation
problems, and develop expectation-maximization (EM) algorithms to this end (see
McLachlan and Krishnan (2008), for details of this methodological approach or for
recent applications of this methodology in Bernhardt et al. (2015) and Wang et al.
(2015)). EM algorithms have been successfully used to approximate maximum like-
lihood estimators when there are missing or incomplete data, although there are
only a few articles on their use in the context of branching processes (see Veen and
Schoenberg (2008), González et al. (2012), Daskalova (2014) and Hautphenne and
Fackrell (2014)), and in no case for models which consider random control mecha-
nisms.

After this Introduction, the paper is organized as follows. We begin by describ-
ing the probability model in Section 2, in which we introduce some notation and the
working assumptions for the subsequent study. Section 3 is devoted to the maximum
likelihood estimation based on the complete family tree and to studying the asymp-
totic properties of the estimators obtained. In Section 4, we address the problem of
obtaining maximum likelihood estimates under incomplete sampling schemes, devel-
oping the EM algorithms. The accuracy of these algorithms is illustrated by means
of a simulated example in Section 5 (see the supplementary material for data sets
and a further discussion of some aspects of the example). Some concluding remarks
are provided in Section 6. Finally, in order to allow a more readily comprehensible
reading, Appendices A, B, and C are devoted to giving the proofs of the theoretical
results set out in the paper.

2. The Probability Model

We shall focus our attention on the class of the controlled branching process
with random control function (CBP). Mathematically, this process is a discrete-
time stochastic growth population model {Zn}n≥0 defined recursively as follows:

Z0 = N, Zn+1 =

ϕn(Zn)∑
j=1

Xnj, n = 0, 1, . . . , (1)

where N is a non-negative integer, {Xnj : n = 0, 1, . . . ; j = 1, 2, . . .} and {ϕn(k) :
n, k = 0, 1, . . .} are two independent families of non-negative integer valued random
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variables. Also, Xnj, n = 0, 1, . . ., j = 1, 2, . . ., are independent and identically
distributed (i.i.d.) random variables, and, for each n = 0, 1, . . ., {ϕn(k)}k≥0, are in-
dependent stochastic processes with equal one-dimensional probability distributions.
The empty sum in (1) is considered to be 0. Let p = {pk}k≥0 denote the common
probability distribution of the random variables Xnj, i.e., pk = P [Xnj = k], k ≥ 0,
and m and σ2 its mean and variance (assumed finite), respectively. We also denote
by ε(k) = E[ϕ0(k)] and σ2(k) = V ar[ϕ0(k)] the mean and the variance of the control
variables (assumed finite too).

Intuitively, Zn denotes the number of individuals (particles) in the n-th genera-
tion and Xnj the number of offspring of the j-th individual in the n-th generation.
The probability law p is called the offspring distribution, and m and σ2 are the off-
spring mean and variance, respectively. The variable ϕn(Zn) represents a control on
the number of progenitors in each generation, in such a way that when ϕn(Zn) = k
then k will be the number of individuals who will take part in the reproduction
process that will determine Zn+1. Thus, if ϕ(Zn) < Zn then Zn − ϕn(Zn) individu-
als are removed from the population (emigration, presence of predators, etc.), and
therefore do not participate in the future evolution of the process. If ϕn(Zn) > Zn

then ϕn(Zn) − Zn new individuals of the same type are added to the population
(immigration, re-population, etc.). No control is applied to the population when
ϕn(Zn) = Zn. Obviously, if ϕn(k) = k for all k, one obtains the standard Bienaymé-
Galton-Watson process.

It is easy to verify that {Zn}n≥0 is a Markov chain with stationary transition
probabilities. Moreover, assuming

(a) p0 > 0 or P [ϕn(k) = 0] > 0, k > 0,

(b) ϕn(0) = 0 almost surely (a.s.),

then 0 is an absorbing state and the states k = 1, 2, . . . are transient. Whence it is
verified that P [Zn → 0] + P [Zn → ∞] = 1.

Let us fix the main parameters of interest and the working assumptions for the
development of their maximum likelihood estimation. Consider a CBP with an
offspring distribution p, whose mean and variance are m and σ2, respectively. Given
that one has different control laws for different population sizes, the problem of
estimating the control parameters would seem intractable based on samples with
a finite dimension unless the control process is assumed to have a structure that
is stable over time. In this sense, formally we consider CBPs given by (1) with
control distributions belonging to the power series family of distributions, i.e., for
each k ≥ 0,

P [ϕn(k) = j] = ak(j)θ
jAk(θ)

−1, j ≥ 0; θ ∈ Θk, (2)

with ak(j) taking known non-negative values, Ak(θ) =
∑∞

j=0 ak(j)θ
j, and Θk = {θ >

0 : 0 < Ak(θ) < ∞} being an open subset of R. We also assume that the sets Θk are
independent of k, so that we shall henceforth drop the index k from Θk, the control
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parameter space. Moreover, we assume the following regularity condition:∏
k∈C

Ak(θ) = A∑
k∈C k(θ), for every C ⊆ N; θ ∈ Θ. (3)

Remark 2.1. The distribution given in (2) is an exponential family which includes
many important discrete distributions (e.g., Poisson, binomial, negative binomial,
etc.). The condition (3) is a technical hypothesis, satisfied by a wide set of probability
distributions belonging to the exponential family. Hence, the control distributions in
the model depend on a single parameter θ, termed the control parameter, and on the
size of the population, say k.

It is well known that:

ε(k) = ε(k, θ) = E[ϕ0(k)] = θ
d

dθ
logAk(θ),

σ2(k) = σ2(k, θ) = V ar[ϕ0(k)] = θ
d

dθ
ε(k, θ).

Under condition (3), it can be deduced that ε(k, θ) = kµ(θ), k ≥ 0, θ ∈ Θ, where
µ(·) is a continuous and invertible function. From (3), Ak(θ) = A1(θ)

k, k ≥ 1, so
that

ε(k, θ) =
θ d
dθ
Ak(θ)

A1(θ)k
= k

θ d
dθ
A1(θ)

A1(θ)
= kθ

d

dθ
log(A1(θ)) = kε(1, θ).

Therefore, a family of distributions which verifies (3) can be re-parametrized
making use of the parameter µ = µ(θ) = ε(1, θ). This parameter can be termed the
migration parameter because of its intuitive interpretation: if µ < 1, the control law
allows one to model processes with expected emigration; if µ > 1, one can model
processes with expected immigration; and if µ = 1, no migration is expected. One
also notes that, under assumption (3), σ2(k, θ) = kθµ′(θ), with µ′(·) denoting the
first derivative of µ(·).

Remark 2.2. Three interesting particular cases of distributions which verify (2)
and (3) are the following:

(i) For each k ≥ 0, take ϕn(k) to follow a Poisson distribution of parameter kθ.
Consequently, µ(θ) = θ. Hence, depending on the value of θ, a CBP with this
control function can model different migratory processes. It is easy to verify
that conditions (2) and (3) hold by setting ak(j) = kj/j! and Ak(θ) = ekθ.

(ii) For each k ≥ 0, take ϕn(k) to follow a binomial distribution of parameters k

and q. Taking θ = q(1−q)−1, ak(j) =

(
k
j

)
, and Ak(θ) = (1+θ)k, conditions

(2) and (3) can be checked straightforwardly, and µ(θ) = θ(1+θ)−1 = q. From
a practical viewpoint, this could be a reasonable control mechanism with which
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to model situations in which, in each generation, each individual can give birth
to offspring in the next generation with probability q, and is removed from the
population with probability 1− q, not participating in its subsequent evolution.
As µ(θ) < 1, a CBP with this control distribution always models a case of
expected emigration, and, for example, could be useful to model the presence
of predators in an animal population.

(iii) For each k ≥ 0, take ϕn(k) to follow a negative binomial distribution of pa-
rameters k and q. In this case, conditions (2) and (3) can be checked by

setting θ = 1− q, ak(j) =

(
j + k − 1

j

)
, and Ak(θ) = (1 − θ)−k. Moreover,

µ(θ) = θ(1 − θ)−1. As also was the case for the model considered in (i), this
process can model either expected immigration or expected emigration.

Finally, another parameter of great interest for this family of processes is what
is termed the asymptotic mean growth rate. This is denoted by τm, and is defined
in general as limk→∞ k−1E[Zn+1|Zn = k] = limk→∞ k−1mε(k) (whenever it exists).
Under condition (3), τm = mµ(θ). This is the threshold parameter that determines
the behaviour of a CBP in relation to its extinction. Following the classification
of CBPs set out in González et al. (2005b), we shall term a CBP as subcritical,
critical, or supercritical depending on whether τm is less than, equal to, or greater
than unity (emulating the Bienaymé–Galton–Watson process classification).

In summary, we deal with the problem of estimating p, m, σ2, θ, µ(θ), and τm
by making use of the maximum likelihood estimation based on different samples.

3. Maximum Likelihood Estimators with Complete Data

In this section, we shall consider the maximum likelihood estimation of the
aforementioned parameters of interest by assuming that one can observe the en-
tire family tree up to generation n (complete data), i.e., the random variables
{Xli : 1 ≤ i ≤ ϕl(Zl); 0 ≤ l ≤ n−1}, or at least Z∗

n = {Zl(k) : 0 ≤ l ≤ n−1; k ≥ 0},
where Zl(k) =

∑ϕl(Zl)
i=1 I{Xli=k}, 0 ≤ l ≤ n − 1, k ≥ 0, with IA standing for the

indicator function of the set A. Intuitively, Zl(k) represents the number of in-
dividuals in generation l who have exactly k offspring. It is easily deduced that
ϕl(Zl) =

∑∞
k=0 Zl(k) and Zl+1 =

∑∞
k=0 kZl(k), l = 0, . . . , n− 1.

Let Yl =
∑l

j=0 Zj, ∆l =
∑l

j=0 ϕj(Zj), and Yl(k) =
∑l

j=0 Zj(k), l ≥ 0, k ≥ 0.
Intuitively, Yl and ∆l denote the total number of individuals and the total number of
parents until the l-th generation, respectively, and Yl(k) represents the accumulated
number up to generation l of individuals who have exactly k offspring. The results
presented in this section generalize those given in González et al. (2004, 2005a) for
CBPs with a deterministic control function.

6



Theorem 3.1. Let {Zn}n≥0 be a CBP verifying (2) and (3). The maximum likeli-
hood estimators (MLEs) of pk, k ≥ 0, and θ, based on Z∗

n, are, respectively:

p̂k,n =
Yn−1(k)

∆n−1

, k ≥ 0, and θ̂n = µ−1

(
∆n−1

Yn−1

)
,

where µ−1(·) denotes the inverse of the function µ(·).

The proof is given in Appendix A.
Using this theorem and the invariance of the MLEs under re-parametrization,

the following result is immediate:

Corollary 3.2. Let {Zn}n≥0 be a CBP verifying (2) and (3). The MLEs of m, σ2,
µ(θ), and τm based on Z∗

n, are, respectively:

m̂n =
Yn − Z0

∆n−1

, σ̂2
n =

∞∑
k=0

(k − m̂n)
2p̂k,n, µ̂n =

∆n−1

Yn−1

, and τ̂m,n =
Yn − Z0

Yn−1

.

For simplicity, when the meaning is clear, we shall drop the index n from p̂k,n
and τ̂m,n and write simply p̂k and τ̂m.

Remark 3.3. (i) It is worth noting that to obtain the MLE of the offspring dis-
tribution, p, and its associated parameters, m and σ2, it is not necessary to
impose the requirement of any knowledge about the control distribution. One
can thus address this problem in a nonparametric framework, obtaining the
same estimators for these three parameters.

(ii) The MLEs of pk and m are intuitively very reasonable because we estimate the
probability that an individual gives rise to k offspring by the relative propor-
tion of parents with k offspring, and the offspring mean is estimated by the
total number of offspring up to a certain generation divided by the number of
progenitors who have generated those offspring.

(iii) It can be proved that m̂n, θ̂n, µ̂n, and τ̂m are also the MLEs of m, θ, µ(θ), and
τm, respectively, based on the sample {Z0, ..., Zn, ϕ0(Z0), ..., ϕn−1(Zn−1)} (see
Jagers (1975), Lemma 2.13.2). Moreover, τ̂m is also the MLE of τm based on
{Z0, . . . , Zn}, following similar arguments.

3.1. Asymptotic behaviour

In order to investigate the asymptotic properties of the proposed estimators, it
will be necessary to make some working assumptions. To parameters associated with
the offspring distribution, one does not need to assume that the control variables
belong to a power series family of distributions. Instead, one only needs to assume
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that the CBP {Zn}n≥0 verifies the following conditions:

(a) There exists τ = lim
k→∞

ε(k)k−1 < ∞, and the sequence {σ2(k)k−1}k≥1

is bounded.

(b) τm = τm > 1, and Z0 large enough such that P [Zn → ∞] > 0.

(c) {Znτ
−n
m }n≥0 converges a.s. to a finite random variable W such that

P [W > 0] > 0.

(d) {W > 0} = {Zn → ∞} a.s.

(4)

Remark 3.4. (i) In González et al. (2002), conditions are provided that guaran-
tee (b) in (4). Also, in González et al. (2006), conditions are established under
which {W > 0} = {Zn → ∞} a.s. is verified.

(ii) It can be proved (see González et al. (2002), Theorem 4) that, under condition
(4), on the set {Zn → ∞} one has that

lim
n→∞

Z−1
n Zn+1 = τm a.s.

We shall now establish a preliminary result that will be used in the study of the
estimators’ asymptotic properties. The proof is omitted because it is a consequence
of Remark 3.4(ii) and the Stolz-Cesàro Lemma.

Proposition 3.5. Let {Zn}n≥0 be a CBP verifying the conditions given in (4).
Then, on the set {Zn → ∞}, it is verified that:

(i) limn→∞ Z−1
n ϕn(Zn) = τ a.s.

(ii)
∑∞

n=0 ϕn(Zn)
−1 < ∞ a.s.

(iii) limn→∞ Y −1
n Yn+1 = τm a.s.

(iv) limn→∞ Y −1
n ∆n = τ a.s.

(v) limn→∞∆−1
n ϕn(Zn) = τ−1

m (τm − 1) a.s.

(vi) limn→∞ ε(Zn)
−1ϕn(Zn) = 1 a.s.

In the following result, we study asymptotic properties of the estimators related
to the offspring distribution, i.e., p̂k, k ≥ 0, m̂n, and σ̂2

n. For simplicity, we shall use
the notation D = {Zn → ∞} and PD[·] = P [· | D]. The result holds whether or not
conditions (2) and (3) on the control are satisfied.

Theorem 3.6. Let {Zn}n≥0 be a CBP verifying (4). Then it holds that:

(i) p̂k, m̂n, and σ̂2
n are strongly consistent for pk, m, and σ2, respectively, on

{Zn → ∞}.
(ii) If P ′ is a probability measure dominated by PD, then for any x ∈ R:

(a) lim
n→∞

P ′[(pk(1− pk))
−1/2∆

1/2
n−1(p̂k − pk) ≤ x] = Φ(x),
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(b) lim
n→∞

P ′[σ−1∆
1/2
n−1(m̂n −m) ≤ x] = Φ(x),

(c) If E[X4
01] < ∞, then lim

n→∞
P ′[V ar[(X01 −m)2]−1/2∆

1/2
n−1(σ̂

2
n − σ2) ≤ x] =

Φ(x),
with Φ(·) denoting the standard normal distribution function.

The proof is given in Appendix B.

Remark 3.7. Using the previous theorem and Lemma 2.3 in Guttorp (1991), it is
immediate to prove that (ii) also holds for P [·|Zn > 0]. Then, taking into account
Theorem 3.6 and Slutsky’s Theorem, and assuming Zn > 0, one can obtain asymp-
totic confidence intervals for the parameters p, m, and σ2. Thus, for example, the
asymptotic confidence interval for m at the 1− α level, 0 < α < 1, is given by[

m̂n − zα
(
σ̂2
n∆

−1
n−1

)1/2
, m̂n + zα

(
σ̂2
n∆

−1
n−1

)1/2]
,

with zα being such that 1− Φ(zα) = α/2.

Considering now the parameters of the control law, let us recall that if the latter
belongs to the power series family of distributions then (4)(a) holds trivially, and

τ = µ(θ). Denoting equal in distribution by
d
=, one has the following result:

Theorem 3.8. Let {Zn}n≥0 be a CBP verifying (2), (3), and (4). Then it holds
that:

(i) θ̂n, µ̂n and τ̂m are strongly consistent for θ, µ(θ) and τm, respectively, on
{Zn → ∞}.

(ii) If, for each l ≥ 0 and z ≥ 0, ϕl(z)
d
=
∑z

s=1Xs(l, z), with {Xs(l, z) : 1 ≤ s ≤
z; z ≥ 0; l ≥ 0} being i.i.d. random variables with mean µ(θ) and variance
θµ′(θ) then, for any x ∈ R,
(a) lim

n→∞
PD

[
(θµ′(θ))−1/2Y

1/2
n−1 (µ̂n − µ(θ)) ≤ x

]
= Φ(x),

(b) lim
n→∞

PD

[
(σ2µ(θ) +m2θµ′(θ))−1/2Y

1/2
n−1 (τ̂m − τm) ≤ x

]
= Φ(x),

with Φ(·) denoting the standard normal distribution function.

The proof is given in Appendix C.

Remark 3.9. (i) It is worthy of note that the condition set out in Theorem 3.8(ii)
is satisfied by the control distributions introduced in Remark 2.2.

(ii) Theorem 3.8 (ii) also holds for P [·|Zn > 0]. Again, assuming Zn > 0, from this
theorem and Slutsky’s Theorem, and replacing the values m, σ2, θ, and µ′(θ)

by m̂n, σ̂
2
n, θ̂n, and µ′(θ̂n), respectively, one can obtain asymptotic confidence

intervals for the parameters µ(θ) and τm at the 1− α level, 0 < α < 1:[
µ̂n − zα

(
θ̂nµ

′(θ̂n)Y
−1
n−1

)1/2
, µ̂n + zα

(
θ̂nµ

′(θ̂n)Y
−1
n−1

)1/2]
,[

τ̂m − zα

(
(σ̂2

nµ(θ̂n) + m̂2
nθ̂nµ

′(θ̂n))Y
−1
n−1

)1/2
, τ̂m + zα

(
(σ̂2

nµ(θ̂n) + m̂2
nθ̂nµ

′(θ̂n))Y
−1
n−1

)1/2]
,

where zα is such that 1− Φ(zα) = α/2.
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(iii) Notice that τ̂m is also a strongly consistent estimator for τm on {Zn → ∞} for
CBPs only verifying (4).

4. Maximum Likelihood Estimators with Incomplete Data

In the previous section, we obtained the MLE of the parameters of interest (p,
m, σ2, θ, µ(θ), and τm) based on the sample Z∗

n. However, in practice, it might
be difficult to observe the entire family tree or the variables in Z∗

n. More realistic
would be to suppose that only the total number of individuals and of progenitors
of each generation are known, or even only the generation sizes. Notice that, with
these two samples, τ̂m is the MLE of τm (see Remark 3.3(iii)). Hence, we shall
focus attention on the rest of the parameters. We shall address the problem of the
maximum likelihood estimation under the aforecited samples as an incomplete data
estimation procedure, making use of the EM algorithm and considering Z∗

n as hidden
variables. Starting with an initial probability distribution, p(0), and an initial value
of the control parameter, θ(0), we will construct a sequence {(p(i), θ(i))}i≥0 that will
converge to the MLE of (p, θ). This iterative method consists of two alternating
steps which are iterated until convergence: the E and the M steps. In the E step,
the expectation of the complete log-likelihood is calculated using the distribution of
the unobserved data. The values of the parameters which maximize this expectation
are calculated in the following M step.

4.1. Maximum likelihood estimators based on the sample {Z0, . . . , Zn, ϕ0(Z0), . . . ,
ϕn−1(Zn−1)}

We shall determine the MLE of the main parameters of the model assuming that
only the set of random variables Zn = {Z0, . . . , Zn, ϕ0(Z0), . . . , ϕn−1(Zn−1)} can
be observed.

Notice that, in accordance with Remark 3.3(iii), the MLEs of m, θ, and µ(θ)

based on the sample Zn are m̂n, θ̂n, and µ̂n, respectively. Hence, we shall focus on
finding the MLEs of p and σ2 based on this sample, although we present the method
in a general way, considering all the parameters.

4.1.1. The E step

We shall present the E step of the EM algorithm in the (i+ 1)-st iteration. For

each i, let p(i) = {p(i)k }k≥0 and θ(i) be the probability distribution and the control
parameter, respectively, obtained in the i-th iteration, and Z∗

n|(Zn, {p(i), θ(i)}) the
probability distribution of the random vector Z∗

n given the sample Zn and the pa-
rameters p(i) and θ(i). For simplicity, in the following, we shall use the notation
E∗

i [·] = EZ∗
n|(Zn,{p(i),θ(i)})[·].

In the proof of Theorem 3.1 (see Appendix A), Equation (10) gives the log-
likelihood function ℓ(p, θ |Z∗

n, Zn) = ℓ(p, θ |Z∗
n), which depends on the unobserved

variables Zl(k), 0 ≤ l ≤ n − 1, k ≥ 0. The expectation of the log-likelihood with

10



respect to the distribution Z∗
n|(Zn, {p(i), θ(i)}) is:

E∗
i [ℓ(p, θ |Z∗

n, Zn)] = ∆n−1 log θ− log(AYn−1(θ)) +
n−1∑
l=0

∞∑
k=0

E∗
i [Zl(k)] log pk +E∗

i [K] . (5)

Thus, to obtain the value of the above expectation, one has to determine the
distribution of Z∗

n given Zn when the parameters of the models are p(i) and θ(i).
Since the individuals reproduce independently, and the control distributions are
independent of the offspring distribution, one has that, for z0, zl+1, ϕ∗

l , zl(k) ∈
N ∪ {0}, k ≥ 0, 0 ≤ l ≤ n − 1 satisfying the constraints zl+1 =

∑∞
k=0 kzl(k) and

ϕ∗
l =

∑∞
k=0 zl(k),

P
[
Zl(k) = zl(k), 0 ≤ l ≤ n− 1, k ≥ 0

∣∣Z0 = z0, Zl+1 = zl+1, ϕl(Zl) = ϕ∗
l , 0 ≤ l ≤ n− 1

]
=

=
P
[
{Z0 = z0} ∩

⋂n−1
l=0 {Zl+1 = zl+1, ϕl(Zl) = ϕ∗

l , Zl(k) = zl(k), k ≥ 0}
]

P
[
{Z0 = z0} ∩

⋂n
l=0{Zl+1 = zl+1, ϕl(Zl) = ϕ∗

l }
]

=

n−1∏
l=0

P
[
Zl+1 = zl+1, ϕl(Zl) = ϕ∗

l , Zl(k) = zl(k), k ≥ 0|Zl = zl
]

P
[
Zl+1 = zl+1, ϕl(Zl) = ϕ∗

l |Zl = zl
]

=
n−1∏
l=0

P
[∑∞

k=0 kZl(k) = zl+1, ϕl(Zl) = ϕ∗
l , Zl(k) = zl(k), k ≥ 0|Zl = zl

]
P
[
Zl+1 = zl+1, ϕl(Zl) = ϕ∗

l |Zl = zl
]

=

n−1∏
l=0

P
[
ϕl(Zl) = ϕ∗

l , Zl(k) = zl(k), k ≥ 0|Zl = zl
]

P
[
Zl+1 = zl+1, ϕl(Zl) = ϕ∗

l |Zl = zl
]

=

n−1∏
l=0

P
[
ϕl(zl) = ϕ∗

l ,
∑ϕl(zl)

i=1 I{Xli=k} = zl(k), k ≥ 0
]

P
[∑ϕ∗

l
i=1Xli = zl+1, ϕl(zl) = ϕ∗

l

]
=

n−1∏
l=0

P
[∑ϕ∗

l
i=1 I{Xli=k} = zl(k), k ≥ 0

]
P
[∑ϕ∗

l
i=1Xli = zl+1

]
=

n−1∏
l=0

1

P
[∑ϕ∗

l
i=1Xli = zl+1

] · ϕ∗
l !∏∞

k=0 zl(k)!

∞∏
k=0

p
(i)zl(k)
k . (6)

Notice that, although the cardinality of the support of the reproduction law
may be infinite, for each 0 ≤ l ≤ n − 1, once zl+1 and ϕ∗

l are known, since
zl+1 =

∑∞
k=0 kzl(k) and ϕ∗

l =
∑∞

k=0 zl(k), only a finite number of coordinates of
the sequence {zl(k) : k ≥ 0} are non-null. From (6), it is clear that to obtain
the distribution Z∗

n|(Zn, {p(i), θ(i)}), first it is enough to know the distributions
(Zl(k), k ≥ 0)|(Zl, ϕl(Zl), Zl+1, {p(i), θ(i)}), for each l = 0, . . . , n − 1. Now, given
a fixed generation, say l, assuming that Zl = zl, Zl+1 = zl+1 and ϕl(zl) = ϕ∗

l , it is
needed to determine the sample space of the vector (Zl(k), k ≥ 0) taking into account
that its possible values (zl(k), k ≥ 0) must verify the constrains zl+1 =

∑∞
k=0 kzl(k)

and ϕ∗
l =

∑∞
k=0 zl(k). After that, their corresponding probabilities must be obtained

11



following the equation

1

P
[∑ϕ∗

l
i=1Xli = zl+1

] · ϕ∗
l !∏∞

k=0 zl(k)!

∞∏
k=0

p
(i)zl(k)
k .

To this end, it is enough to calculate them from a multinomial distribution of pa-
rameters ϕ∗

l and p(i) and normalize the obtained probabilities. From this, it is
straightforward to obtain the expected values E∗

i [Zl(k)], k ≥ 0. Notice that this
distribution does not depend on θ(i) and hence it has no influence on obtaining
E∗

i [Zl(k)].

4.1.2. The M step

In the M step, one calculates the values of the parameters p and θ which maximize
the expectation of the complete log-likelihood, determined in the previous step. In
other words, one has to find the values p(i+1) = {p(i+1)

k }k≥0 and θ(i+1) which maximize

the expression (5), subject to the constraints
∑∞

k=0 p
(i+1)
k = 1, p

(i+1)
k ≥ 0, k ≥ 0.

With a procedure similar to that in the proof of Theorem 3.1 (see Appendix A)
to obtain the MLEs based on the entire family tree, one obtains that the values for
p and θ in the (i+ 1)-st iteration are given by

p
(i+1)
k =

∑n−1
l=0 E∗

i [Zl(k)]∑∞
k=0

∑n−1
l=0 E∗

i [Zl(k)]
=

∑n−1
l=0 E∗

i [Zl(k)]∑n−1
l=0 E∗

i [
∑∞

k=0 Zl(k)]
=

∑n−1
l=0 E∗

i [Zl(k)]

∆n−1
, k ≥ 0,

and

θ(i+1) = µ−1

(
∆n−1

Yn−1

)
.

Intuitively, p
(i+1)
k represents the ratio of the average number (with respect to the

probability distribution determined in the E step) of parents with k offspring to the
total number of progenitors. Notice that θ(i+1) does not depend on the iteration i
because it is only based on Zn, which is observed, so that the algorithm reaches the
value θ̂n at the first iteration and then never leaves it. Hence, as θ(i) plays no role
in calculating E∗

i [Zl(k)], at each iteration of the algorithm based on Zn only p
(i)
k is

updated. Nonetheless, we include θ(i) in the description of the procedure in order for
it to be essentially valid in both cases considered: when Zn is observed and when
the sample is only {Z0, . . . , Zn} (we shall deal with the latter case in Subsection
4.2).

Indeed, in general, the values p(i+1) = {p(i+1)
k }k≥0 and θ(i+1) obtained in the

M step are used to begin another E step and the process is repeated until the
convergence criterion is satisfied, in which case the process stops, and the final
values are obtained, which we shall denoted by p̂

(EM)
n = {p̂(EM)

k,n }k≥0 and θ̂
(EM)
n ,

respectively. When Zn is observed, θ(i+1) is not needed to begin another E step,
and obviously θ̂

(EM)
n = θ̂n.

It is straightforward to verify the convergence of the algorithm by checking the

12



conditions given in McLachlan and Krishnan (2008) on the continuity and differen-
tiability of the expectation of the complete log-likelihood function. Consequently,
the sequence {(p(i), θ(i))}i≥0 converges to the MLE of (p, θ) based on the sample Zn

provided that the likelihood function L(p, θ| Zn) is unimodal.

The EM algorithm also provides the MLE of m, σ2, and µ(θ) based on Zn from
the estimates obtained for the parameter p:

m̂(EM)
n =

∞∑
k=0

kp̂
(EM)
k,n , σ̂2(EM)

n =
∞∑
k=0

(
k − m̂(EM)

n

)2
p̂
(EM)
k,n , µ̂(EM)

n = µ(θ̂(EM)
n ).

Obviously, m̂
(EM)
n = m̂n and µ̂

(EM)
n = µ̂n. Indeed, for each i ≥ 0,

m(i+1)
n =

∞∑
k=0

kp
(i+1)
k =

∑∞
k=0 k

∑n−1
l=0 E∗

i [Zl(k)]∑∞
k=0

∑n−1
l=0 E∗

i [Zl(k)]
=

Yn − Z0

∆n−1

= m̂n.

In summary, and presented in a general way, the method to estimate the param-
eters p and θ, and consequently m, σ2, and µ(θ), consists of:

Step 0 i = 0. Choose values θ(0), 0 ≤ p
(0)
k ≤ 1, with

∑∞
k=0 p

(0)
k = 1.

Step 1 E step. Based on p(i) and θ(i)

(a) determine Z∗
n|(Zn, {p(i), θ(i)}),

(b) calculate Ei[ℓ(p, θ |Z∗
n, Zn)].

Step 2 M step. Calculate the values

(p(i+1), θ(i+1)) = argmaxp,θ Ei[ℓ(p, θ |Z∗
n, Zn)].

Step 3 If max{|p(i+1)
k −p

(i)
k |, k ≥ 0, |θ(i+1)−θ(i)|} is less than some convergence

criterion, the algorithm halts, and the final values are denoted by p̂
(EM)
n

and θ̂
(EM)
n . Otherwise, i is incremented by one unit, and Steps 1-3 are

repeated.

4.2. Maximum likelihood estimators based on the sample {Z0, . . . , Zn}
Now, we shall estimate the parameters with reduced sample information, assum-

ing that only the total number of individuals at each generation can be observed.
Let us write Zn = {Z0, . . . , Zn}. Although we do not know exactly what the control
function is like or the values ϕ0(Z0), . . . , ϕn−1(Zn−1), some information on the kind
of control we are dealing with is necessary, as will be seen below.

The procedure to obtain the MLE of the model parameters is almost identical
to that of the previous case: making use of the EM algorithm, one constructs a
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sequence {p(i), θ(i)}i≥0 which will converge to the MLE of (p, θ) based on the sample
Zn.

In this case, to determine the expectation of the log-likelihood in the E step,
which is

Ei[ℓ(p, θ |Z∗
n, Zn)] = Ei[∆n−1] log θ− log(AYn−1(θ))+

n−1∑
l=0

∞∑
k=0

Ei[Zl(k)] log pk+Ei[K], (7)

where now Ei[·] = EZ∗
n|(Zn,{p(i),θ(i)})[·], one has to know the distribution of Z∗

n given

Zn when the parameters are p(i) and θ(i). In this case, it can be proved that

P
[
Zl(k) = zl(k), k ≥ 0, l = 0, . . . , n− 1

∣∣Z0 = z0, . . . , Zn = zn
]
=

=
n−1∏
l=0

azl(ϕ
∗
l )θ

ϕ∗
l Azl(θ)

−1

P
[
Zl+1 = zl+1|Zl = zl

] · ϕ∗
l !∏∞

k=0 zl(k)!

∞∏
k=0

p
(i)zl(k)
k , (8)

where z0, zl+1, zl(k) ∈ N ∪ {0}, k ≥ 0, 0 ≤ l ≤ n− 1, satisfying
∑∞

k=0 kzl(k) = zl+1,
and with ϕ∗

l =
∑∞

k=0 zl(k), 0 ≤ l ≤ n − 1. Equation (8) means that to determine
the distribution Z∗

n|(Zn, {p(i), θ(i)}) is enough to know the distributions (Zl(k), k ≥
0)|(Zl, Zl+1, {p(i), θ(i)}), 0 ≤ l ≤ n − 1. Now, for each fixed l, to obtain (Zl(k), k ≥
0)|(Zl, Zl+1, {p(i), θ(i)}), and given Zl = zl and Zl+1 = zl+1, first one must consider
the possible values for ϕ∗

l , determined from the control distribution with parameters
θ(i) and zl (notice that, for this purpose, the kind of control distribution of the
process has to be known). Then, for each fixed value ϕ∗

l , it is needed to obtain the
sample space of the vector (Zl(k), k ≥ 0) taking into account that its possible values
(zl(k), k ≥ 0) must verify the constrains zl+1 =

∑∞
k=0 kzl(k) and ϕ∗

l =
∑∞

k=0 zl(k).
Finally their corresponding probabilities are obtained as the product of probabilities
from a multinomial distribution with parameters ϕ∗

l and p(i) by the probability that
the control distribution takes the value ϕ∗

l (suitably normalized).
The values of the parameters p and θ which maximize the expectation of the

complete log-likelihood (7), subject to the constraints
∑∞

k=0 p
(i+1)
k = 1, p

(i+1)
k ≥ 0,

k ≥ 0, are:

p
(i+1)
k =

∑n−1
l=0 Ei [Zl(k)]∑∞

k=0

∑n−1
l=0 Ei [Zl(k)]

=

∑n−1
l=0 Ei [Zl(k)]∑n−1

l=0 Ei [
∑∞

k=0 Zl(k)]
=

∑n−1
l=0 Ei [Zl(k)]

Ei [∆n−1]
, k ≥ 0,

and

θ(i+1) = µ−1

(
Ei [∆n−1]

Yn−1

)
.

We shall denote the final values after applying the algorithm to convergence by
p̃
(EM)
n = {p̃(EM)

k,n }k≥0 and θ̃
(EM)
n , respectively.

Again, it can be checked that the conditions given in McLachlan and Krishnan
(2008) on the continuity and differentiability of the expectation of the complete
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log-likelihood function are satisfied by (7). In this case, the method also provides
estimators for m, σ2, and µ(θ) based on Zn:

m̃(EM)
n =

∞∑
k=0

kp̃
(EM)
k,n , σ̃2(EM)

n =
∞∑
k=0

(
k − m̃(EM)

n

)2
p̃
(EM)
k,n , µ̃(EM)

n = µ(θ̃(EM)
n ).

5. Simulated Example

We shall illustrate the foregoing results with a simulated example. We consider a
CBP whose offspring distribution is given by p0 = 0.1084, p1 = 0.2709, p2 = 0.3386,
and p3 = 0.2822, and the control variables ϕn(k) follow binomial distributions with
parameters k and q = 0.6. Thus, the offspring mean and variance are m = 1.7946
and σ2 = 0.9443, respectively; θ = 1.5, µ(θ) = 0.6, and the mean growth rate is
τm = 1.0767.

In practice, a CBP with control functions of this kind may be useful to model the
evolution of a population with the presence of predators. Recall that this binomial
control mechanism models situations in which each individual can give birth to
offspring in the next generation with probability q, or can be removed from the
population, not participating in its subsequent evolution, with probability 1− q.

Notice that both θ and µ(θ) determine the control distribution when the pop-
ulation size is known. Consequently, we shall focus on the migration parameter
µ(θ), which in this case is easily interpretable. According to the classification of
these models (see Section 2), the process considered in this example is a supercrit-
ical CBP with an offspring mean that is also supercritical, i.e., greater than unity.
Notice that 40% of the individuals do not participate in the reproduction process
for the next generation (i.e., they are taken by predators).

We simulate the first 30 generations of such a process starting with Z0 = 1
individual. The different samples will be denoted by z∗30, z30, and z30 for that based
on the entire family tree, on the individuals and progenitors, and on the population
size only, respectively – see the supplementary material. Figure 1 shows the evolution
of the number of individuals and progenitors. One sees that the reproduction process
makes up for the control process, and, despite the emigration/predators, the process
grows. Thus, this path seems to belong to the set {Zn → ∞}. Under the conditions
of the example, in González et al. (2002) and González et al. (2006) it is proved
that, on the set {Zn → ∞}, the process grows exponentially with rate τm (hence,
the assumption set out in (4) holds).

First, we determined the MLEs and their approximate 95% confidence intervals
based on the entire family tree, z∗30, for p, m, σ2, µ(θ), and τm. The estimates are
given in Table 1. Figures 2–4 show their behaviours over the course of generations.
In these figures we plot the estimates obtained based on the samples restricted to
the first n generations, for n going from 0 to 30. One observes that they approach
the true values of the parameters, in accordance with Theorems 3.6 and 3.8 and
Remark 3.9(ii).
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Figure 1: Evolution of the number of individuals (solid line) and the number of progenitors (dashed
line).

PARAMETERS
SAMPLE p0 p1 p2 p3 m σ2 µ(θ) τm

z∗30 .1027 .2765 .3389 .2820 1.8002 .9293 .6087 1.0957
z30 .1211 .2528 .3308 .2953 1.8002 .9927 .6087 1.0957
z30 .1299 .3083 .3283 .2335 1.6653 .9496 .6579 1.0957

TRUE VALUE .1084 .2709 .3386 .2822 1.7946 .9443 .6000 1.0767

Table 1: Estimates of the parameters of interest based on the samples considered z∗30, z30, and z30.

We shall now illustrate the performance of the EM algorithm in the two situa-
tions studied above: using the sample given by the total number of individuals and
progenitors in each generation, and the sample given by only the generation sizes.
In both cases, assuming that there is no information available about the offspring
distribution, only the maximum number of offspring per progenitor, we start the
algorithm with a uniform distribution on {0, 1, 2, 3} and θ(0) = 1/2. The maximum
number of offspring per progenitor in an animal population is a datum that is likely
to be known once the reproductive cycle of the corresponding species is understood.
Even if this information is unavailable, one can try various (but reasonable) values
for this maximum number of offspring per progenitor, and compare the results using
the Akaike Information Criterion (AIC) in order to choose the optimal value (we
shall illustrate this procedure below).

Using the first sample, individuals plus progenitors, we ran the algorithm until
attaining a difference between two consecutive iterations smaller than 10−6, with
this convergence occurring from iteration 733 onwards. The resulting estimates are
given in Table 1. We repeated this procedure considering samples zj, j = 1, . . . , 30,
to assess the consistency of the estimates. Figures 5 and 6 (right) show the evolution
of these estimates obtained after convergence of the EM algorithm, and based on
the samples zj, j = 1, . . . , 30 (dashed lines), together with MLEs based on the entire
family tree, for the parameters pk, k = 0, 1, 2, 3, and σ2. As was mentioned above,
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Figure 2: Evolution of the estimates given by p̂0, p̂1, p̂2, and p̂3 (solid line), and their approximate
95% confidence intervals (dashed line), together with the true value of the parameters (horizontal
line).

the EM algorithm is not needed to approximate the MLEs of m, θ, and µ(θ) based
on the total number of individuals and progenitors in each generation.

We also applied the EM algorithm using the sample defined by only the popu-
lation sizes, z30. Recall that it is necessary in this case to know the kind of control
distribution with which one is working. In practice, this information can come from
knowledge of how the population has developed. For instance, if there are predators
in the environment, a binomial control distribution would be clearly justified. In
the simulation, we observed convergence from iteration 1164 onwards (again for a
precision of 10−6). The estimates of the parameters are listed in Table 1 and their
temporal evolution is plotted in Figures 5, 6, and 7 (left). One observes in the figures
that all the parameters approach their respective true values over the course of the
generations.

We studied the influence of the values of (p(0), θ(0)) on the convergence of the
algorithms using discrete sensitivity analysis. The methods were started with 300
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Figure 3: Evolution of the estimates given by m̂n (left) and σ̂2
n (right) over the course of the gen-

erations (solid line) and their approximate 95% confidence intervals (dashed line). The horizontal
line represents the true value of each parameter.
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Figure 4: Evolution of the estimates given by µ̂n (left) and τ̂m (right) over the course of the gen-
erations (solid line) and their approximate 95% confidence intervals (dashed line). The horizontal
line represents the true value of each parameter.

different random initial values. The distributions p(0) with support {0, 1, 2, 3} were
randomly chosen from a Dirichlet distribution with all the parameters equal to unity
(i.e., by sampling uniformly from the unit simplex), and the values of θ(0) through
the equation θ(0) = q(0)(1 − q(0))−1, with q(0) sampled from a uniform distribution
on the open interval (0, 1). Clearly, the EM algorithm based on the sample z30 is
insensitive to such choices. But the EM algorithm based on z30 was observed to not
be at all robust to the choice of initial values, with convergence to different estimates
that could have been local maxima or saddle points. In order to choose the best
approximation to the MLE based on z30 (which we will call the EM estimate), we
propose the following methodological approach.

The log-likelihood function based on the sample Zn, denoted by ℓ(p, θ | Zn), is
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Figure 5: Evolution of the estimates given by p̂ (solid line), p̂(EM) (dashed line), and p̃(EM) (dotted
line).

given by the expression

ℓ(p, θ | Zl = zl, l = 0, . . . , n) =
n−1∑
j=0

log

(
zj∑
l=0

P ∗l
zj+1

(
zj
l

)
θl

(1 + θ)zj

)
(9)

with P ∗l
· denoting the l-fold convolution of the offspring law p. While maximiza-

tion of ℓ(p, θ | Zn) would seem to be intractable using standard methods, (9) can
be evaluated for each particular (p, θ). Our proposal is, therefore, to take as EM
estimates of the parameters those associated with the greatest log-likelihood when
it is evaluated at the convergence points of the EM algorithm started with differ-
ent randomly chosen values of the parameters. In our example, the maximum is
obtained on the estimates given in Table 1 (see the supplementary material for a
further discussion). This methodological strategy can be also followed when the
sample is Zn (if necessary -not for our sample observed, z30), taking into account
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Figure 6: Evolution of the estimates of m (left) and σ2 (right) based on the entire family tree
(solid line), on the total number of individuals and progenitors (dashed line) –for estimates of m,
this coincides with the solid line– and on the total number of individuals (dotted line), together
with the true value of each parameter (horizontal line).

that

ℓ(p, θ | Zl = zl, ϕl(Zl) = ϕ∗
l , l = 0, . . . , n− 1;Zn = zn) =

n−1∑
j=0

log

(
P

∗ϕ∗
l

zj+1

(
zj
ϕ∗
l

)
θϕ

∗
l

(1 + θ)zj

)
.

Moreover, it can be extended to processes with whatever type of control function by
only assuming (as has been assumed in our example) knowledge of the kind of control
distribution and of the maximum number of offspring per progenitor (denoted by
smax). Besides, the possibility of calculating the log-likelihood functions under the
samples Zn and Zn allows us to evaluate the influence of the control distribution and
of the value of smax, applying the above method with different control distributions
and/or values of smax, and using the AIC to compare the resulting models. We have
made this study considering the sample z30. The results obtained are given in Table
2, in which one observes that for any value of smax, the minimum AIC corresponds
to the binomial control distributions. With respect to the influence of smax, the
cases smax = 3 and 4 led to values that differed little from each other. Considering
therefore parsimonious parametrization, it would be reasonable to choose smax = 3 as
optimal. In summary, for problems in which there is no precise knowledge of smax or
of the kind of control, a satisfactory procedure would be one like the foregoing, based
on comparing in terms of the AIC several fitted models (allowing both expected
emigration and expected immigration).

Finally, to approximate the sampling distributions of p̂
(EM)
30 , p̃

(EM)
30 , and θ̃

(EM)
30

and of their associated parameters, σ̂
2(EM)
30 , σ̃

2(EM)
30 , m̃

(EM)
30 , and µ̃

(EM)
30 , we applied

a bootstrap procedure. We use p̂
(EM)
30 and θ̂

(EM)
30 , based on z30, as parameters to

perform a Monte Carlo simulation of 1000 processes up to generation 30. We ap-
plied the EM algorithm for each of these bootstrapped samples, obtaining bootstrap
approximations to the sampling distributions of p̂

(EM)
30 , and consequently of σ̂

2(EM)
30 .
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Control distribution
smax Iterations Binomial N Binomial Poisson

Log AIC Log AIC Log AIC
3 733 -166.2663 341.2469 -176.1572 361.0288 -170.9058 350.5259
4 4143 -164.8032 340.6973 -174.6942 360.4792 -169.4427 349.9763
5 4244 -164.8032 343.1620 -174.6942 362.9439 -169.4427 352.4410
6 4690 -164.8032 345.7196 -174.6942 365.5015 -169.4427 354.9986

Table 2: Summary of the results for the influence of the control distributions and smax values.
Log denotes ℓ(p̂(EM), θ̂(EM) | z30). N Binomial denotes the negative binomial distribution. The
Iterations column corresponds to the number of iterations needed to attain a precision of 10−6 in
the EM procedure for the different smax values.
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Figure 7: Evolution of the estimates of µ(θ) (left) based on the entire family tree (solid line) and
on the total number of individuals per generation (dotted line), together with the true value of

the parameter (horizontal line). Bootstrap sampling densities of σ̂
2(EM)
30 (solid line) and σ̃

2(EM)
30

(dotted line).

Analogously, using the estimates based on the sample z30, we obtained the bootstrap
approximations of the sampling distributions of the corresponding estimators. To
illustrate these results without excessive repetition, we shall focus on the offspring
mean and variance and on the migration parameter. Figure 7 (right) shows the

bootstrap sampling distributions of σ̂
2(EM)
30 and σ̃

2(EM)
30 . One observes that the dis-

tribution of σ̃
2(EM)
30 is more variable than that of σ̂

2(EM)
30 . This is a consequence of

the lack of information represented by the control variables not being observed. Fig-
ure 8 shows the joint distribution of (m̃

(EM)
30 , µ̃

(EM)
30 ) and its marginal distributions.

One observes how strongly these estimators are related, with their being distributed
around the curve given by τm = mµ(θ) = 1.0767.

Based on the foregoing bootstrap distributions, one can calculate the bootstrap
estimates of the mean squared error (MSE) of the respective estimators based on the
samples z30 and z30, and compare the accuracy of the different estimators through
their relative efficiency (eff) (Table 3). One observes from the table that the es-
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Figure 8: Bootstrap sampling densities of m̃
(EM)
30 (left) and µ̃

(EM)
30 (center) and joint distribution

of (m̃
(EM)
30 , µ̃

(EM)
30 ) with the curve mµ(θ) = 1.0767 (right), together with the true values of the

parameters.

p0 p1 p2 p3 m σ2 µ(θ)
MSE based on z30 0.0081 0.0324 0.0332 0.0085 0.0022 0.0808 0.0004
MSE based on z30 0.0136 0.0613 0.0637 0.0260 0.1243 0.1438 0.0247

eff 1.6779 1.8906 1.9208 3.0594 56.5083 1.7790 62.6719

Table 3: Efficiency of the estimators based on z30 relative to the estimators based on z30 for the
parameters of interest.

timates provided by assuming observation of z̄30 are preferable to those assuming
observation of z30. This can be understood as a reflection of the greater information
content of the former of the two samples.

Computational complexity

With the aim of determining the order of the computational complexity of each
iteration of the two EM algorithms proposed, we evaluate the number of operations
needed to obtain Ei[Zl(k)] and E∗

i [Zl(k)], l = 0, 1, . . . , n − 1; k = 0, 1, . . . , smax,
respectively (recall smax is the maximum number of offspring per progenitor).

Let E(i) = (Ei[Zl(k)])0≤l≤n−1;0≤k≤smax and E∗(i) = (E∗
i [Zl(k)])0≤l≤n−1;0≤k≤smax .

Considering the sample Zn, let Bl be the matrix storing the tree associated to the
transition from ϕl(Zl) to Zl+1, that is, it stores by rows the possible values of the vec-
tor (Zl(0), . . . , Zl(smax)) such that

∑smax

k=0 Zl(k) = ϕl(Zl) and
∑smax

k=0 kZl(k) = Zl+1,
l = 0, 1, . . . , n− 1. Let us denote bl the number of rows of Bl, l = 0, 1, . . . , n− 1. Fi-
nally, for l = 0, 1, . . . , n−1, let Pl be a row vector whose elements are the probabilities
of each row of Bl, obtained by equation (6), that is, if ϕl(Zl) = ϕ∗

l and Zl+1 = zl+1,
the corresponding element of Pl for the row of Bl given by (zl(0), . . . , zl(smax)) is
equal to

1

P [
∑ϕ∗

l
i=1 xli = zl+1]

ϕ∗
l !∏smax

k=0 zl(k)!

smax∏
k=0

p
(i)zl(k)
k .
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Then, the l-th row of E(i) is equal to the product Pl ·Bl, l = 0, 1, . . . , n− 1.
Analogously, assuming the sample Zn, for l = 0, 1, . . . , n−1, let B∗

l be the matrix
storing the tree associated to the transition from Zl to Zl+1, that is, its rows store all
the possible values of the vector (Zl(0), . . . , Zl(smax)) that allow reaching Zl+1 from
Zl. To obtain such a matrix, if Zl = zl and Zl+1 = zl+1, we consider for each possible
value of ϕl(zl), say ϕ∗

l , every vector (zl(0), . . . , zl(smax)) such that
∑smax

k=0 zl(k) = ϕ∗
l

and
∑smax

k=0 kzl(k) = zl+1, l = 0, 1, . . . , n − 1. Now, for each one of these vectors we
obtain the probabilities (see equation (8))

azl(ϕ
∗
l )θ

ϕ∗
l Azl(θ)

−1

P [Zl+1 = zl+1|Zl = zl]

ϕ∗
l !∏smax

k=0 zl(k)!

smax∏
k=0

p
(i)zl(k)
k ,

which are ordered in the row vector P ∗
l . Then, the l-th row of E∗(i) is equal to the

product P ∗
l · B∗

l , l = 0, 1, . . . , n− 1. Let us denote by b∗l the number of the rows of
B∗

l , l = 0, 1, . . . , n− 1.
Hence, for each iteration of both methods we can determine the order of the

computational complexity as smax

∑n−1
l=0 bl and smax

∑n−1
l=0 b∗l , respectively. Now, for

each l = 0, 1, . . . , n− 1, bl depends on the values of smax, ϕl(Zl) and Zl+1, and b∗l on
smax, Zl and Zl+1, but it is not possible to obtain closed forms of them. To obtain an
upper bound of bl one can obtain the dimension of the biggest transition tree. In the
case of binomial control functions, this tree can be generated by considering ϕl(Zl) =
Zl (the maximum number of progenitors). Clearly, the dimension of this tree is
greater than or equal to that of the one that leads to Zl+1. By an empirical study (see
supplementary material for details) we have determined that bl = O(Zsmax−1

l ). In a
similar way, an upper bound of b∗l is given by the dimension of the biggest tree that
can be generated by Zl individuals under the lack of awareness of the exact number
of progenitors ϕl(Zl). Again, we have determined empirically (see supplementary
material for details) that, in the case of binomial control functions, b∗l = O(Zsmax

l ).
This fact allows us to compare, at least roughly, the computational complexity of
both methods, indicating that for a generation of size z, one needs to generate trees
of dimension z times greater when only the population size is observed than when
the number of progenitors, ϕl(z), is also available. Figure 9 reveals this fact in our
numerical example. This implies that the EM procedure requires much more time
in each iteration when storing only Zn, compared to when storing Zn. In particular,
in our example, the same number of iterations of the procedure required a factor
of 128 less time under the sample with observation of offspring and progenitors
than under the sample based only on generation sizes. Also, the second of these
two procedures needed more iterations to reach convergence. Hence, as was to be
expected due to the relative loss of information, the second method is far more costly
computationally than the first (by a factor of roughly 170 for a precision of 10−6,
in terms of computational time). Moreover, this second procedure involves post–
processing which involves running it several times for different seeds, and evaluating
the exact likelihood at the convergence points.
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Figure 9: Evolution of (bl, b
∗
l )-left- and (b∗l , zlbl)-right-, l = 0, . . . , 29, given the samples z30 and

z30, and by considering smax = 3 and binomial control distributions.

Remark 5.1. The example simulations were performed by parallel computing using
the R statistical software environment (see R Core Team (2014)). For the estima-
tor density and the exact log-likelihood function calculations, we used the sm and
polynom packages (see Bowman and Azzalini (2014) and Venables et al. (2014)),
respectively.

6. Concluding Remarks

We have studied the maximum likelihood estimation of the main parameters of
the CBP with random control function considering a nonparametric framework for
the offspring distribution and a parametric scheme for the control process. First,
assuming the entire family tree is observable, we determined the MLEs of the pa-
rameters associated with the offspring distribution and with the control law, and
established their consistency and limiting normality. These results generalized those
that had been obtained for the parameters associated with the offspring law for CBPs
with deterministic control function. We also provided new results on the estima-
tion of the control and migration parameters, with particular note made of their
asymptotic properties.

Since in practice it is difficult to observe the entire family tree, we considered two
more realistic situations, one assuming that the only observable data are the total
number of individuals and progenitors in each generation, Zn, and the other that
even only the generation sizes are observable, Zn. In both cases, we addressed the
problem of obtaining the MLEs of the main parameters of the model by an incom-
plete data estimation procedure. To this end, we made use of the EM algorithm. A
simulated example showed that this seems to work appropriately based on the sam-
ple Zn. Based on the sample Zn, we encountered the problem that the algorithm
may converge to local maxima or saddle points. In such a case, we proposed running
the algorithm with a large number of different starting values, and choosing the ones

24



associated with the highest value of the log-likelihood function (this function can
be evaluated although it can not be maximized by standard methods). The sim-
ulated example showed this methodological strategy to also work adequately. The
procedure based on knowledge of the total numbers of individuals and progenitors
converges rapidly, providing adequate accuracy with reasonably short computation
times. Storing only Zn however, we found the EM algorithm to require not only
much more time for each iteration but also more iterations to reach convergence
(with the same precision).

In the simulated example, we also illustrated the consistency of the estimates
based on the three samples. (The only case established theoretically in the pa-
per was that corresponding to observing the entire family tree.) We then used a
bootstrapping approach to get approximations to the sampling distributions of the
estimators obtained by the EM algorithm, finding that the more information that
the samples contained, the smaller was the variability of the estimator.
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Appendix A. Proof of Theorem 3.1

It is immediate to verify that the likelihood function based on Z∗
n is:

L(p, θ |Zl(k) = zl(k), 0 ≤ l ≤ n− 1; k ≥ 0) =

= θ
∑n−1

l=0 ϕ∗
l A∑n−1

l=0 zl
(θ)−1

n−1∏
l=0

ϕ∗
l ! azl(ϕ

∗
l )∏∞

k=0 zl(k)!

∞∏
k=0

p
zl(k)
k ,

where ϕ∗
l =

∑∞
k=0 zl(k). Consequently, the log-likelihood function based on Z∗

n is:

ℓ(p, θ |Z∗
n) = f(p) + g(θ) +K, (10)

with f(p) =
∑n−1

l=0

∑∞
k=0 Zl(k) log pk, g(θ) = ∆n−1 log θ− log(AYn−1(θ)) and K some

positive random variable whose expression does not depend on p or θ.
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From (10), one has to maximize f(p)+g(θ) subject to the constraints
∑∞

k=0 pk =
1, pk ≥ 0, k ≥ 0. Using the non-negativity of the Kullback-Leibler divergence, it can
be verified that the value of p which maximizes the function f(p)∆n−1, and hence,
f(p), is

p̂k,n =

∑n−1
l=0 Zl(k)∑n−1

l=0

∑∞
k=0 Zl(k)

=
Yn−1(k)

∆n−1

, k ≥ 0.

Moreover, it can easily be shown that

θ̂n = µ−1

(
∆n−1

Yn−1

)
is an extremum of the function g(θ). Taking into account that

d2g(θ)

dθ2

∣∣∣
θ=θ̂n

= −∆n−1 − ε(Yn−1, θ) + σ2(Yn−1, θ)

θ2

∣∣∣
θ=θ̂n

< 0,

one has that θ̂n is the maximum of g(θ) and then (p̂n, θ̂n) maximizes f(p) + g(θ).

Appendix B. Proof of Theorem 3.6

(i) We shall prove that p̂k is strongly consistent for pk, making use of a strong
law of large numbers for martingales. We shall fix k ≥ 0, and prove that, as n → ∞,

p̂k =
1∑n−1

j=0 ϕj(Zj)

n∑
i=1

ϕi−1(Zi−1)∑
j=1

I{Xi−1j=k} → pk a.s. on {Zn → ∞}. (11)

For simplicity, we will consider P [Zn → ∞] = 1. For each i = 1, 2, . . ., let

Vi(k) =

ϕi−1(Zi−1)∑
j=1

(I{Xi−1j=k} − pk),

Hi = σ(Xl−1j, ϕl−1(k) : 1 ≤ l ≤ i, j ≥ 1, k ≥ 0).

It is verified that {Vi(k),Hi}i≥0 is a martingale difference. In these terms, p̂k −
pk = ∆−1

n−1

∑n
i=1 Vi(k).

For each n ≥ 0, let Un = Yn−1. Then, taking into account Proposition 3.5(iv),
to prove (11) one only needs to obtain that, as n → ∞,

U−1
n

n∑
i=1

Vi(k) → 0 a.s. (12)

Since Un → ∞, to prove (12), using Theorem 2.18 in Hall and Heyde (1980),
it is enough to verify that

∑∞
i=1 U

−2
i E[|Vi(k)|2|Hi−1] < ∞ a.s. Now, let M =
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supn≥0∆nY
−1
n < ∞ a.s. and N = supn≥0 ε(Zn)ϕn(Zn)

−1 < ∞ a.s. (guaranteed by
Proposition 3.5(iv) and (vi), respectively). Then, one has

∞∑
i=1

U−2
i E[|Vi(k)|2|Hi−1] =

∞∑
i=1

E
[
V ar

[∑ϕi−1(Zi−1)
j=1 I{Xi−1j=k}

∣∣∣ϕi−1(Zi−1)
]]

Y 2
i−1

=
∞∑
i=1

ε(Zi−1)pk(1− pk)

Y 2
i−1

= pk(1− pk)
∞∑
i=1

ε(Zi−1)

ϕi−1(Zi−1)
· ϕi−1(Zi−1)

∆2
i−1

·
(
∆i−1

Yi−1

)2

≤ pk(1− pk)NM2

∞∑
i=1

1

ϕi−1(Zi−1)
< ∞ a.s.,

where the last inequality is true due to ϕi−1(Zi−1) ≤ ∆i−1, i ≥ 1, and Proposition
3.5(ii).

The strong consistency of m̂n is a direct consequence of Proposition 3.5(ii)-(v).

Taking into account that both m̂n and p̂k are strongly consistent for m and pk,
respectively, on {Zn → ∞}, it is deduced that σ̂2

n is strongly consistent for σ2.

(ii) The key to proving (ii) (a) and (b) is to rewrite

p̂k − pk
d
=

1

∆n−1

∆n−1∑
l=1

(
I{Xl=k} − pk

)
, m̂n −m

d
=

1

∆n−1

∆n−1∑
l=1

(Xl −m),

with
d
=, as one recalls, denoting equal in distribution, and {Xl}l≥1 being a sequence

of i.i.d. random variables with common distribution being the offspring distribution.
The results are derived by applying a central limit theorem for random sums as was
done, mutatis mutandis, in the proofs of Theorems 3.2 and 4.2 in González et al.
(2004) for CBPs with deterministic control function.

Finally, to prove (ii) (c), we adapt the proof established in Theorem 3.1 in
González et al. (2005a) for CBPs with deterministic control function. We here
provide just a brief scheme. The result is firstly proved for

∑∞
k=0(k − m)2p̂k, i.e.,

when m is considered known. Due to the fact that one can write

∞∑
k=0

(k −m)2p̂k
d
=

1

∆n−1

∆n−1∑
l=1

(Xl −m)2,

the result holds by using the central limit theorem cited above, following similar steps
to those in the proof of Theorem 3.1 in González et al. (2005a). Now, notice that
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∑∞
k=0(k −m)2p̂k − σ̂2

n = (m̂n −m)2, so that, by considering (ii) (b), σ2∆
−1/2
n−1

P ′
−→ 0,

and Slutsky’s Theorem, one has(
∞∑
k=0

(k −m)2p̂k − σ̂2
n

)
∆

1/2
n−1

P ′
−→ 0, as n → ∞.

Hence, together with the fact that the result holds when m is known and Slutsky’s
Theorem, (ii) (c) follows.

Appendix C. Proof of Theorem 3.8

(i) This is immediate from Proposition 3.5(iv).
(ii) (a) For simplicity, we shall suppose P [Zn → ∞] = 1. Let Di = ϕi−1(Zi−1)−

µ(θ)Zi−1 and Fi = σ(Z0, . . . , Zi, ϕ0(Z0), . . . , ϕi−1(Zi−1)), i = 1, . . . , n, n = 1, 2, . . .
We have

Y
1/2
n−1 (µ̂− µ(θ)) = Y

−1/2
n−1

[
n∑

i=1

(
(Zi−1 + 1)1/2 − (τ i−1

m W )1/2
) Di

(Zi−1 + 1)1/2

+W 1/2

n∑
i=1

τ (i−1)/2
m

Di

(Zi−1 + 1)1/2

]
withW being the limit variable introduced in (4)(c). Taking into account τ−n

m Yn−1 →
(τm − 1)−1W a.s. as n → ∞, it follows that it is enough to prove

(I) =
n∑

i=1

(
(Zi−1 + 1)1/2 − (τ i−1

m W )1/2
) Di

(Zi−1 + 1)1/2
= oP (τ

n/2
m ) (13)

and

(II) = (τm − 1)1/2
n∑

i=1

τ−(n−i+1)/2
m

Di

(Zi−1 + 1)1/2
d−→ N(0, θµ′(θ)), (14)

as n → ∞, with oP (·) denoting the stochastic order analogue of o(·) (i.e., write
Xn = oP (Yn) to mean P (|Xn| ≥ ϵ|Yn|) → 0, as n → ∞, for each ϵ > 0). The proof
follows similar steps to those given in Sriram et al. (2007), Theorem 2. For each
n ≥ 0, let

An =
n∑

i=1

τ (i−1)/2
m

((
Zi−1 + 1

τ i−1
m

)1/2

−W 1/2

)2

and Bn =
n∑

i=1

τ (i−1)/2
m

D2
i

Zi−1 + 1
.

Then, applying the Cauchy-Schwarz inequality, |(I)| ≤ A
1/2
n B

1/2
n . By (4)(c), one

obtains (τ
−(i−1)
m (Zi−1 + 1))1/2 − W 1/2 → 0 a.s., and consequently, using the Stolz-

Cèsaro Lemma, An = oP

(∑n
i=1 τ

(i−1)/2
m

)
= oP

(
τ
n/2
m

)
. Now, using

E[D2
i |Fi−1] = θµ′(θ)Zi−1, i ≥ 1, (15)
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one has that E[Bn] = O
(∑n

i=1 τ
(i−1)/2
m

)
= O

(
τ
n/2
m

)
, as n → ∞, which implies

that |Bn| = OP

(∑n
i=1 τ

(i−1)/2
m

)
= OP

(
τ
n/2
m

)
as n → ∞, with OP (·) denoting the

stochastic order analogue of O(·) (i.e., write Xn = OP (Yn) to mean: for each ϵ > 0
there exists a real number M such that P (|Xn| ≥ M |Yn|) < ϵ if n is large enough).
Hence (13) follows.

To establish (14), let γnj = Dn−j+1(Zn−j + 1)−1/2, j = 1, . . . , n. Then

(τm − 1)1/2
n∑

i=1

τ−(n−i+1)/2
m

Di

(Zi−1 + 1)1/2
= (τm − 1)1/2

n∑
j=1

τ−j/2
m

Dn−j+1

(Zn−j + 1)1/2

= (τm − 1)1/2

(
J∑

j=1

τ−j/2
m γnj +

n∑
j=J+1

τ−j/2
m γnj

)

= UJn + (τm − 1)1/2
n∑

j=J+1

τ−j/2
m γnj = Unn, (16)

with UJn = (τm−1)1/2
∑J

j=1 τ
−j/2
m γnj, J = 1, . . . , n. For J ≥ 1 and given (t1, . . . , tJ) ∈

RJ , it can be proved, using analogous arguments to those given in the proof of The-
orem 1 in Heyde and Brown (1971), jointly with the condition assumed in (ii),
that

E
[
ei

∑J
j=1 tjτ

−j/2
m γnj

]
→ e−

1
2
θµ′(θ)

∑J
j=1 t

2
jτ

−j
m , as n → ∞.

Consequently, for each J = 1, . . . , n, the vector (τ
−1/2
m γn1, . . . , τ

−J/2
m γnJ) is asymp-

totically multivariate normal as n → ∞, and therefore UJn
d−→ UJ , with UJ fol-

lowing a N(0, θµ′(θ)(τm − 1)
∑J

j=1 τ
−j
m ). Now, from Chebyschev’s inequality, (15),

and (16), for every n ≥ 0 and ϵ > 0, one has P [|UJn − Unn| > ϵ] ≤ ϵ−2(τm −
1)θµ′(θ)

∑∞
j=J+1 τ

−j
m . In consequence, for some constant k0,

lim sup
n→∞

P [|UJn − Unn| > ϵ] ≤ k0

∞∑
j=J+1

τ−j
m → 0, as J → ∞.

Therefore, from the fact that UJ
d−→ N(0, θµ′(θ)) as J → ∞, and Theorem 25.5

in Billingsley (1979), one obtains

Unn
d−→ N(0, θµ′(θ)),

as n → ∞, and hence (14) is proved.
(ii) (b) This is proved with identical arguments to those of (ii) (a), setting in

this case Di = Zi − τmZi−1 and Fi = σ(Z0, . . . , Zi), i = 1, . . . , n, n = 1, 2, . . ..
Consequently, E[D2

i |Fi−1] = (σ2µ(θ) +m2θµ′(θ))Zi−1, i ≥ 1, and now it is verified
that

E
[
ei

∑J
j=1 tjτ

−j/2
m γnj

]
→ e−

1
2
(σ2µ(θ)+m2θµ′(θ))

∑J
j=1 t

2
jτ

−j
m , as n → ∞.
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Bruss, F., Slavtchova-Bojkova, M., 1999. On waiting times to populate an environ-
ment and a question of statistical inference. Journal of Applied Probability 36,
261–267.

Daskalova, N., 2014. Nonlinear Dynamics of Electronic Systems. Vol. 438 of Commu-
nications in Computer and Information Science. Springer, Ch. EM Algorithm for
Estimation of the Offspring Probabilities in Some Branching Models, pp. 181–188.

del Puerto, I., Yanev, N., 2008. Leading-Edge Applied Mathematical Modeling Re-
search. Nova Science Publishers, Inc, Ch. 11: Branching Processes with Multitype
Random Control Functions: subcritical case, pp. 363–374.

Dion, J. P., Essebbar, B., 1995. On the statistics of controlled branching processes.
Lecture Notes in Statistics 99, 14–21.
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