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Abstract This paper deals with the assessment of the maintenance cost and the performance of a 
system under a finite planning horizon. The system is subject to two dependent causes of failure: 
internal degradation and sudden shocks. We assume that internal degradation follows a gamma 
process. When the deterioration level of the degradation process exceeds a threshold, a 
degradation failure occurs. Sudden shocks arrive at the system following a doubly stochastic 
Poisson process (DSPP). A sudden shock provokes the system failure. A condition-based main-
tenance (CBM) with periodic inspection times is implemented. Recursive methods combining 
numerical integration and Monte Carlo simulation are developed to evaluate the expected cost 
rate and its standard deviation. Also, recursive methods to calculate the reliability, the avail-
ability and the interval reliability of the system are given. Numerical examples are provided to 
illustrate the analytical results.

Keywords Availability · condition based maintenance · degradation threshold shock model · 
interval reliability · gamma process · doubly stochastic Poisson process

1 Introduction

A fundamental aim in the industry field is to ensure the reliability of the systems. It is well-
known that some systems suffer a physical degradation process which precedes the failure. This 
degradation process may involve chemical and physical changes in the system complicating its 
maintenance. The theory of stochastic processes provides an analytical framework for modelling 
the impact of the uncertain and time-dependent degradation processes.

There are several approaches to model the system degradation. For example, the random 
coefficient model is a relatively flexible and convenient model for describing the degradation 
derived from physics of failures ([1], [2]). For monotonic stochastic deterioration and due to 
its nice mathematical properties, the gamma process is a popular degradation model in the
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literature. It is characterised by independent and non-negative gamma increments with identical
scale parameters. The gamma process was first applied by Moran [3] to model water flow into a
dam. From then on gamma process has been widely used in the reliability field. The survey by
Van Noortwijk [4] provides many examples of the use of the gamma process in engineering.

However, some systems are not only subject to internal degradation but are also exposed to
sudden shocks which can cause its failure. The class of reliability models which consider failures
due to the competing causes of degradation and shocks is called Degradation-Threshold-Shock
models (DTS models). In these models, the system fails when the degradation exceeds a threshold
or when a fatal shock arrives whichever comes first. For example, an ammeter degrades over time
and also receive shocks (such as ligthtning) that could provoke the failure of the ammeter [5].
If the fatal shock process is independent of the degradation process, the system reliability can
be obtained multiplying the reliability of the two processes [6], [7]. However, there are examples
where both processes are dependent [8] [9],[10]. Although the majority of existing DTS models
focuses on modeling the influence of random shocks on the degradation process, however, there
are systems in which the shock process is influenced by the degradation process. The intuitive
idea is that the system is more sensitive to shocks when it becomes wear-out. An engineering
example is found in [11]. A sliding pool is a component applied in hydraulic control systems. A
sliding pool is subject to two failure processes: wear, which is modeled as a degradation process
and clamping stagnation, which is modeled by random shocks. When the wear increases, more
wear debris is generated. The debris will contaminate the hydraulic oil and increase the likelihood
of clamping stagnation. A dependent degradation-threshold-shock model is also used to describe
the reliability of tire treads [12], [13]. A tire fails when its wear exceeds a threshold. Besides the
wear, tires also experience many types of shocks, e.g. road debris may puncture the tire. The
probability that a spike punctures a tire depends on the current wear of the tire. The probability
of a shock failure begins to increase when degradation attains a certain level and drastically
increases from a threshold level.

Normally, the arrival of the shocks to the system is modelled using a point process. One of
the widely used point process is the non-homogeneous Poisson process (NHPP) which assumes
an intensity dependent on the time. The NHPP does not require the condition of stationary
increments and the shocks are more likely to occur during specific time intervals. Assuming a
NHPP model for the arrival of the shocks, the mean and the variance of the number of shocks at
any given time interval are equal. However, this is not always the case since some point processes
present over-dispersion, that is, the variance to mean ratio at any time interval is greater than one.
Furthermore, enviromental conditions may lead to changes in the failure rate [14]. To overcome
this problem, the doubly stochastic Poisson process is defined. A doubly stochastic process (or
Cox process) is a process where the time-variable intensity of the process is in itself a stochastic
process. An explanation of the use of a Cox process to model pump failures is found in [15].

Maintenance strategies regulate the different maintenance tasks which must be performed
on the system. Establishing a good maintenance task, the correct functioning of the system is
ensured and the maintenance cost can be optimised. Condition-based maintenance (CBM) is
one of the most popular techniques used for degrading systems. CBM is a maintenance program
that recommends to perform maintenance actions based on the information collected through
a monitoring process using certain types of sensors or other appropriate indicators [16]. The
implementation of CBM programs for DTS models is not new (see [17] and [18] among others)

Many maintenance designs are planned based on an infinite operating horizon. It means that,
after any replacement, the system is renewed by a new one with the same characteristics and
the same process is assumed to be repeated indefinitely. Characteristics of these systems, such
as the degradation level or the age, are often selected as criteria to optimise the long-run cost
rate. Due to renewal properties, this long-run cost rate is equal to the expected cost in a renewal
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cycle divided by the length of the renewal cycle (see e.g. [19,20,21,22]). However, most systems
actually have a finite operating life cycle since the system cannot always be replaced by a new one
with similar properties as the previous one an infinite number of times. For instance, in military
applications, a missile launching system is only required to be functioning within the designated
mission time [23]. Hence, the use of steady state formulas is questionable and the maintenance
cost should be analysed under a transient approach.

Although the transient approach is more realistic than its steady-state approximation, it is
less used due to the analytical and computational difficulty of treatment that it involves. However,
some works can be found in the literature where authors analyse maintenance strategies under
a transient approach for systems subject to competing risks. For example, Taghipour et al. [24]
proposed a model to find the optimal interval periodic inspection interval on a finite life cycle
for a system subject to different types of failure.

This paper expands the works by Cheng et al. [25] and Pandey et al. [26] considering the
time as a continuous variable and by adding a new component of risk (sudden shocks), whose
arrival depends on the degradation process of the system. Following the framework exposed
in [27], in this paper we assume that the system is degraded following a gamma process and
sudden shocks arrive at the system following a doubly stochastic Poisson process (DSPP) whose
intensity depends on the degradation process. It means that the “weaker” the system, the more
susceptible it is to fail due to shocks [14]. According to [12] and [13], in this paper, the probability
of a shock increases from a degradation threshold. A CBM with periodical inspection times is
developed using the expected cost rate in the life cycle as objective cost function. The evaluation
of the maintenance cost in the life cycle of the system is performed using recursive methods.
Furthermore, the results obtained using recursive methods are compared to the results obtained
based on Monte Carlo simulation. Further comparisons of the maintenance cost are performed
considering an infinite life cycle. The robustness of the gamma process parameters and the shock
process is also analysed.

In many application fields, there is an increasing interest in evaluating the performance of
maintained systems. Reliability and availability are two important performance measures in
the traditional reliability field. But some situations are not covered by these indexes and new
performance measures, such as the interval reliability, has been developed [28,29]. Along with
the maintenance assessment, in this paper, different performance measures are also evaluated in
the life cycle of the system. The evaluation of these performance measures in the life cycle of the
system is performed using recursive methods. Furthermore, the results obtained using recursive
methods are compared to the results obtained based on Monte Carlo simulation.

In short, the main contributions of this paper are:

1. Development of a recursive method to obtain the transient expected cost and its standard
deviation in the life cycle of the system.

2. Comparing the results obtained using this recursive method to the results obtained by using
Monte Carlo simulation.

3. Comparing the steady state expected cost rate and the expected cost in the life cycle of the
system.

4. Analysis of the robustness of the parameters that describe the functioning of the system.
5. Assessment of the the availability, reliability, and interval reliability in the life cycle of the

system using a recursive method and comparison of the results obtained by using Monte
Carlo simulation.
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2 Framework of the problem

A system subject to two dependent competing causes of failure, degradation and sudden shocks,
is considered in this paper. The general assumptions of this model are:

1. The system starts working at time t = 0. This system is subject to an internal degradation
process which evolves according to a homogeneous gamma process with parameters α and β,
where α, β > 0. Let X(t) be the deterioration level of the system at time t with X(0) = 0.
Thus, for two time instants s and t, with s < t, the density function of the increment
deterioration level X(t) − X(s) is given by

fα(t−s),β(x) =
βα(t−s)

Γ (α(t − s))
xα(t−s)−1e−βx, x > 0, (1)

where Γ (·) denotes the gamma function defined as

Γ (α) =

∫ ∞

0

uα−1e−u du. (2)

The system fails due to degradation when the deterioration level exceeds a fixed threshold L,
called the breakdown threshold.

2. The system not only fails due to internal degradation, but also it is subject to sudden shocks.
Sudden shocks arrive at the system according to a process {Ns(t), t ≥ 0} where Ns(t) denotes
the number of sudden shocks up to time t. This process shows the dependence between
degradation and shocks. Following the model shown in [27], we assume that {Ns(t), t ≥ 0} is
a DSPP with intensity λ(t, X(t)) given by

λ (t, X(t)) = λ1(t)1{X(t)≤Ms} + λ2(t)1{X(t)>Ms}, (3)

where λ1 and λ2 denote two failure rate functions which satisfy λ1(t) ≤ λ2(t), for all t ≥ 0
and where 1{·} denote the indicator function which equals 1 if the argument is true and 0
otherwise. The arrival of a sudden shock provokes the system failure.

3. The system degradation is hidden and the system failure is non-self-announcing. It means
that the system degradation and the system failure are only revealed through an inspection.
We assume that the system is inspected each T (T > 0) time units (t.u.) to check its status.
If the system is down during an inspection time, a corrective maintenance (CM) is performed
and the system is replaced by a new one. If the system is working during an inspection time
but the degradation level exceeds M , a preventive maintenance is performed and the system
is replaced by a new one. Otherwise, no maintenance action is performed during an inspection
time. We assume that the time required to perform a maintenance action is negligible.

4. All maintenance actions imply a cost. A CM and a PM have associated a cost of Cc and
Cp monetary units (m.u.), respectively, and each inspection implies a cost of CI m.u. In
addition, if the system fails, the system is down until the next inspection. Each time unit
that the system is down, a cost of Cd m.u./t.u. is incurred. We assume Cc > Cp > CI .

5. Let (0, tf ] be the finite operating life cycle of the system. It means that, if the calendar time
exceeds tf , the system can no longer be replaced by a new one with the same characteristics.

Let σz be the random variable describing the time to reach a certain degradation level z. The
distribution function of σz , denoted as Fσz

, is given by

Fσz
(t) =P [X(t) ≥ z] =

∫ ∞

z

fαt,β(x) dx =
Γ (αt, zβ)

Γ (αt)
, (4)
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for t ≥ 0 where fαt,β(x) and Γ (αt) are given by (1) and (2), respectively, and

Γ (α, x) =

∫ ∞

x

uα−1e−u du,

denotes the incomplete gamma function for x ≥ 0 and α > 0.

For z1 ≤ z2, the survival function of σz2 − σz1 is given by

F̄σz2 −σz1
(t) =P [σz2 − σz1 ≥ t] =

∫ ∞

x=0

∫ ∞

y=z1

fσz1 ,X(σz1 )(x, y)Fαt,β(z2 − y) dy dx, (5)

where Fαt,β denotes the distribution function of fαt,β and fσz1 ,X(σz1 ) denotes the joint density
function of (σz1 , X(σz1)) provided by Bertoin [30] as

fσz1 ,X(σz1 )(x, y) =

∫ ∞

0

1{z1≤y<z1+s}fαx,β(y − s)µ(ds),

where µ(ds) denotes the Lévy measure associated with a gamma process with parameters α and
β given by

µ(ds) = α
e−βs

s
, s > 0.

From Assumption 2, the shock process follows a DSPP where the intensity of the shocks depends
on time t and on the degradation level X(t). It means that, given a path x of X(t), the process
{Ns(t), t ≥ 0} is a NHPP with intensity λ(t, x). In absence of maintenance, the time to a system
failure is defined as the minimum W = min(σL, Y ) where

Y = inf (t ≥ 0, Ns(t) = 1) ,

with survival function

P (W > t) = E

[

1{σL>t}exp

(

−

∫ t

0

λ(s, X(s)ds)

)]

Let I(v, t) be the survival function of Y for t ≥ v, conditioned to σMs
= v. That is

I(v, t) =P
[

Y > t|σMs =v

]

= F̄1(v)
F̄2(t)

F̄2(v)
, (6)

where

F̄j(t) = exp

{

−

∫ t

0

λj(u)du

}

, j = 1, 2, (7)

with density function fj(t), for j = 1, 2.
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3 Maintenance cost analysis in the life cycle of the system

A goal in industry is to find the maintenance strategy that minimises an objective cost function.
One of the most used function in the literature as objective cost function is the steady-state cost
rate [26] that has a simple expression if the functioning of the system is modelled as a renewal
process.

Since, in this paper, the system is renewed after each preventive or corrective maintenance,
let D1, D2, . . . be the time between successive renewals of the system and let D1 = D be the time
to the system renewal. Denoting by C∞(T, M) the steady-state cost and applying the “Renewal
Theorem”, C∞(T, M) is equal to the expected cost in a renewal cycle divided by the length of
the renewal cycle. That is

C∞(T, M) = lim
t→∞

C(t)

t
=

E[C]

E[D]
,

where C(t) denotes the maintenance cost at time t, and C and D the cost and the length of a
renewal cycle, respectively. In this paper, C∞(T, M) is given by

C∞(T, M) =
∞
∑

k=1

[

CcPD,c(kT ) + CpPD,p(kT ) + CI(k − 1)PD(kT ) + CdE [W ((k − 1)T, kT )] PD,c(kT )
]

∞
∑

k=1

kT PD(kT )

(8)

where PD(kT ) denotes the probability of a renewal at time kT for k = 1, 2, . . . given by

PD(kT ) = PD,p(kT ) + PD,c(kT ), (9)

being PD,p(kT ) and PD,c(kT ) the probability of a preventive and corrective maintenance action
at time kT for k = 1, 2, . . ., respectively, and E [W ((k − 1)T, kT )] the expected downtime in
((k −1)T, kT ]. The analytical expressions for these quantities were provided by Huynh et al. [27].

Since in this paper the objective is to evaluate the maintenance cost in the life cycle of the
system, the expected cost rate in this life cycle is used as objective cost function. Let Rj be
the chronological time of the j-th renewal cycle, for j = 0, 1, 2, . . . , N(tf ) + 1, being N(tf ) the
number of renewals in the life cycle of the system. Thus, Rj is given by

Rj =

j
∑

n=1

Dn,

for R0 = 0, where Dn denotes the length of the n-th renewal cycle, with n = 1, 2, . . . , N(tf ) + 1.
Hence, the length of the n-th renewal cycle Dn is given by

Dn =

{

Rn − Rn−1, if n = 1, 2, . . . , N(tf )
tf − RN(tf ), if n = N(tf ) + 1

.

The maintenance cost in the finite life cycle is the sum of the incurred costs in the different N(tf )
renewal cycles and the incurred cost in (RN(tf ), tf ]. That is

C(tf ) =

N(tf )
∑

j=1

C(Rj−1, Rj) + C(RN(tf ), tf ),
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where C(t1, t2) denotes the cost in the interval (t1, t2], and C(0, tf ) is simplified as C(tf ).

Next result provides the Markov renewal equation that fulfils the expected cost at time t,
E [C(t)].

Theorem 1 For t < T , the expected transient cost, E [C(t)] is given by

E [C(t)] =Cd

∫ t

0

fσMs
(u)

∫ t

u

[

−
∂

∂v

(

I(u, v)F̄σL−σMs
(v − u)

)

]

(t − v) dv du

+Cd

∫ t

0

f1(u)F̄σMs
(u)(t − u)du,

where F̄σMs
(u) (fσMs

(u)) denotes the survival (density) function of σMs
given by (4), F̄σL−σMs

and I(x, y) the survival functions given by (5) and (6), and f1(x) is the density function of the
survival function given by (7).

For t ≥ T , the expected transient cost fulfils the following recursive equation

E [C(t)] =

⌊t/T ⌋
∑

k=1

E [C(t − kT )] PD(kT ) + G(t), (10)

where

G(t) =

⌊t/T ⌋
∑

k=1

(

Cp + CI(k − 1)
)

PD,p(kT )

+

⌊t/T ⌋
∑

k=1

(

Cc + CI(k − 1) + CdE [W ((k − 1)T, kT )]
)

PD,c(kT )

+ (⌊t/T ⌋CI + CdE [W (⌊t/T ⌋T, t)])

(

1 −

⌊t/T ⌋
∑

k=1

PD(kT )

)

,

with initial condition E [C(0)] = 0 and where ⌊t/T ⌋ denotes the integer part of t/T .

Proof. It is provided in Appendix A.

Corollary 1 Setting E
[

C(i)(t)
]

= E [C(t)], for all (i − 1)T < t ≤ iT with i = 1, 2, . . . , ⌊tf /T ⌋

the expected transient cost, E
[

C(i)(t)
]

, is given by

E
[

C(1)(t)
]

=Cd

(

∫ t

0

fσMs
(u)

∫ t

u

[

−
∂

∂v

(

I(u, v)F̄σL−σMs
(v − u)

)

]

(t − v) dv du

)

+Cd

∫ t

0

f1(u)F̄σMs
(u)(t − u)du,

and for i ≥ 1

E
[

C(i+1)(t)
]

= G(i)(t) +

i
∑

k=1

E
[

C(i+1−k)(t − kT )
]

PD(kT ),
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where

G(i)(t) =

i
∑

k=1

(

Cp + CI(k − 1)
)

PD,p(kT )

+
i
∑

k=1

(

Cc + CI(k − 1) + CdE [W ((k − 1)T, kT )]
)

PD,c(kT )

+ (iCI + CdE [W (iT, t)])
(

1 −

i
∑

k=1

PD(kT )
)

.

In order to analyse the uncertainty associated with the expected transient cost, the standard
deviation is calculated. Let S(t)2 be the variance of expected transient cost at time t defined as

S2(t) = E
[

C(t)2
]

− (E [C(t)])
2

. (11)

Based on Theorem 1, the following result is obtained.

Theorem 2 For t < T , the expected square cost at time t > 0, E
[

C(t)2
]

, is given by

E
[

C(t)2
]

=C2
d

∫ t

0

fσMs
(u)

∫ t

u

[

−
∂

∂v

(

I(u, v)F̄σL−σMs
(v − u)

)

]

(t − v)2 dv du

+C2
d

∫ t

0

f1(u)F̄σMs
(u)(t − u)2du.

For t ≥ T , the mean square fulfils the following recursive equation

E
[

C(t)2
]

=

⌊t/T ⌋
∑

k=1

E
[

C(t − kT )2
]

PD(kT ) + H(t), (12)

where

H(t) =

⌊t/T ⌋
∑

k=1

(Cp + CI(k − 1))
2

PD,p(kT )

+

⌊t/T ⌋
∑

k=1

(Cc + CI(k − 1) + CdE [W ((k − 1)T, kT )])
2

PD,c(kT )

+2

⌊t/T ⌋
∑

k=1

(Cc + CI(k − 1)) E [C(t − kT )] PD,c(kT )

+2

⌊t/T ⌋
∑

k=1

CdE [W ((k − 1)T, kT )] E [C(t − kT )] PD,c(kT )

+2

⌊t/T ⌋
∑

k=1

(Cp + CI(k − 1)) E [C(t − kT )] PD,p(kT )

+
(

⌊t/T ⌋CI + CdE [W (⌊t/T ⌋T, t)]
)2
(

1 −

⌊t/T ⌋
∑

k=1

PD(kT )

)

,

with initial condition E
[

C(0)2
]

= 0.

Proof. It is given in Appendix B.
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Corollary 2 Setting E
[

C(i)(t)2
]

= E
[

C(t)2
]

, for all (i−1)T < t ≤ iT with i = 1, 2, . . . , ⌊tf /T ⌋

the expected square cost, E
[

C(i)(t)2
]

, is given by

E
[

C(1)(t)2
]

=C2
d

∫ t

0

fσMs
(u)

∫ t

u

[

−
∂

∂v

(

I(u, v)F̄σL−σMs
(v − u)

)

]

(t − v)2 dv du

+C2
d

∫ t

0

f1(u)F̄σMs
(u)(t − u)2du,

and for i ≥ 1

E
[

C(i+1)(t)2
]

=
i
∑

k=1

E
[

C(i+1−k)(t − kT )2
]

PD(kT ) + H(i)(t),

where

H(i)(t) =

i
∑

k=1

(Cp + CI(k − 1))
2

PD,p(kT )

+

i
∑

k=1

(Cc + CI(k − 1) + CdE [W ((k − 1)T, kT )])
2

PD,c(kT )

+2

i
∑

k=1

(Cc + CI(k − 1)) E [C(t − kT )] PD,c(kT )

+2
i
∑

k=1

CdE [W ((k − 1)T, kT )] E [C(t − kT )] PD,c(kT )

+2

i
∑

k=1

(Cp + CI(k − 1)) E [C(t − kT )] PD,p(kT )

+
(

iCI + CdE [W (iT, t)]
)2
(

1 −

i
∑

k=1

PD(kT )

)

.

Hence, by (11) the standard deviation of the cost at time t, S(t), is given by

S(t) =

√

E [C(t)2] − (E [C(t)])2. (13)

4 Availability measures of the system

In addition to the expected cost and its standard deviation associated, recursive expressions for
the availability, the reliability and the interval reliability of the system are obtained.

Let A(t) be the availability of the system at time t > 0, that is, the probability that the
system is working at time t.

A(t) =
∞
∑

j=0

1{Rj≤t<Rj+1}P [X(t − Rj) < L, Y > (t − Rj)] .

Next result provides the Markov renewal equation that fulfils the availability A(t).
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Theorem 3 For t < T , A(t) is given by

A(t) =F̄σMs
(t)F̄1(t) +

∫ t

0

fσMs
(u)F̄σL−σMs

(t − u)I(u, t)du.

For t ≥ T , A(t) fulfils the following Markov renewal equation

A(t) =

⌊t/T ⌋
∑

k=1

A(t − kT )PD(kT ) + J1(t)1{M≤Ms} + J2(t)1{M>Ms}, (14)

where

J1(t) =F̄σM
(t)F̄1(t) +

∫ t

⌊t/T ⌋T

fσM
(u)

∫ t

u

fσMs −σM
(v − u)F̄σL−σMs

(t − v)I(v, t) dv du

+

∫ t

⌊t/T ⌋T

fσM
(u)F̄σMs −σM

(t − u)F̄1(t) du,

(15)

and

J2(t) =F̄σMs
(t)F̄1(t) +

∫ ⌊t/T ⌋T

0

fσMs
(u)

∫ t

⌊t/T ⌋T

fσM −σMs
(v − u)F̄σL−σM

(t − v)I(u, t) dv du

+

∫ ⌊t/T ⌋T

0

fσMs
(u)F̄σM −σMs

(t − u)I(u, t) du +

∫ t

⌊t/T ⌋T

fσMs
(u)F̄σL−σMs

(t − u)I(u, t) du,

(16)
with initial condition A(0) = 1 and where PD(kT ) is given by (9).

Proof. It is given in Appendix C.

Often, it is also of interest the probability that the system starts working at time 0 and it
continues operating for a time interval. Let R(t) be the reliability of the system at time t, that
is, the probability that the system is working in (0, t] given by

R(t) =P [O(u) < L, ∀u ∈ (0, t], Ns(0, t) = 0] ,

where O(t) denotes the deterioration level of the maintained system at time t, that is,

O(t) =

∞
∑

j=0

1{Rj≤t<Rj+1}X(t − Rj)

Based on Theorem 3, the following result is obtained.

Theorem 4 For t < T , R(t) is given by

R(t) =A(t).

For t ≥ T , R(t) fulfils the following Markov renewal equation

R(t) =

⌊t/T ⌋
∑

k=1

R(t − kT )PD,p(kT ) + J1(t)1{M≤Ms} + J2(t)1{M>Ms}, (17)

with initial condition R(0) = 1 where J1 and J2 are given by (15) and (16), respectively.

Proof. It is given in Appendix D.
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An availability measure that extends the reliability is the interval reliability, defined as the
probability that the system is working at time t, and will continue working over a finite time
interval of length s. The interval reliability is applied when there are periods in the lifetime cycle
where a failure should be avoided with high probability. Let IR(t, t+s) be the interval reliability
in (t, t + s]. That is

IR(t, t + s) = P [O(u) < L, ∀u ∈ (t, t + s], Ns(t, t + s) = 0] .

Availability and reliability are particular cases of the interval reliability since

A(t) = IR(t, t + 0), R(t) = IR(0, 0 + t).

Based on Theorems 3 and 4, the following result is obtained.

Theorem 5 For t + s < T , IR(t, t + s) is given by

IR(t, t + s) =R(t + s).

For t + s ≥ T , IR(t, t + s) fulfils the following Markov renewal equation

IR(t, t + s) =

⌊(t+s)/T ⌋
∑

k=⌊t/T ⌋+1

R(t + s − kT )PD,p(kT ) +

⌊t/T ⌋
∑

k=1

IR(t − kT, t + s − kT )PD(kT )

+J1(t + s)1{M≤Ms} + J2(t + s)1{M>Ms},

(18)

with initial conditions R(0) = 1 and IR(0, 0) = 1.

Proof. It is given in Appendix E.

5 Numerical examples

In this section, some numerical examples are provided to illustrate the analytical results. To
this end, we consider a system subject to an underlying degradation process modelled as a
homogeneous gamma process with parameters α = β = 0.1. We assume that the system fails
when the deterioration level of the system reaches the breakdown threshold L = 30. The system
can also fail due to a sudden shock and the sudden shock process is modelled under a DSPP
with intensity

λ (t, X(t)) = 0.01 · 1{X(t)≤Ms} + 0.1 · 1{X(t)>Ms}, t ≥ 0,

where Ms = 20. Under these conditions, the expected time to a degradation failure is E [σL] =
34.0335 t.u. and the expected time due to a shock failure is E [Y ] = 28.3556 t.u. In addition, the
cost sequence Cc = 300 m.u., Cp = 150 m.u., CI = 45 m.u., and Cd = 25 m.u./t.u. is imposed.
We assume that the life cycle of the system is (0, 50].
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(b) Contour plot.

Fig. 1: Mesh and contour plot for the steady-state expected cost rate.

5.1 Steady-state expected cost rate analysis

Considering the previous dataset, the steady-state expected cost rate is first computed to estab-
lish the values of T and M which will be used subsequently in the transient approach analysis. In
this way, the results obtained by using steady-state and transient formulations shall be compared.

The optimisation problem for the expected cost based on the steady-state formula given in
(8) is computed as follows:

1. A grid of size 10 is obtained discretising the set [5, 50] into 10 equally spaced points from 5
to 50 for T . For i = 1, 2, . . . , 10, let Ti be the i-th value of the grid obtained previously.

2. A grid of size 30 is obtained by discretising the set [1, 30] into 30 equally spaced points from
1 to 30 for M . For j = 1, 2, . . . , 30, let Mj be the j-th value of the grid obtained previously.

3. For each fixed combination (Ti, Mj), we obtain 50000 simulations of (D, I, Wd), where D corre-
sponds to the time to a maintenance action, I the nature of the maintenance action (corrective
or preventive) and Wd the downtime in a renewal cycle. With these simulations, and applying
Monte Carlo method, we obtain P̃D,p(kTi), P̃D,c(kTi), P̃D(kTi), and Ẽ [W ((k − 1)Ti, kTi))]
for each fixed combination (Ti, Mj) which correspond to the estimations of PD,p(kTi)),
PD,c(kTi)), PD(kTi)), and E [WTi

((k − 1)Ti, kTi))] for k = 1, 2, . . . , ⌊50/Ti⌋, respectively.
4. Quantity C∞(T, M), which represents the steady-state expected cost rate, is evaluated by

using Equation (8) replacing the corresponding probabilities by their estimations calculated
in Step 3.

5. The optimisation problem is reduced to find the values Topt and Mopt which minimise the
steady-state expected cost rate C∞(T, M). That is

C∞(Topt, Mopt) = min
T ≥0

0≤M≤L

{C∞(T, M)} .

Fig. 1 shows the expected cost rate versus T and M . The values of T and M which minimise
the expected cost rate are reached at Mopt = 14 d.u. and Topt = 10 t.u., with an expected cost
rate of 15.3819 m.u./t.u. and a 95% confidence interval of (13.6658, 17.0980). Below, the expected
cost in the finite life cycle will be compared to the steady-state expected cost using the values
Topt and Mopt.
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5.2 Expected transient cost rate analysis for a fixed T

We consider a time between inspections T = 10 t.u. The optimisation problem for the expected
transient cost based on the recursive formula given in (10) is computed as follows.

1. A grid of size 30 is obtained by discretising the set [1, 30] into 30 equally spaced points from
1 to 30 for M .

2. For fixed T = 10 t.u. and for each value of the grid, we obtain 50000 simulations of (D, I, Wd).
With these simulations, and applying Monte Carlo method, we obtain the estimations P̃D,p(10k),
P̃D,c(10k), P̃D(10k), and Ẽ [W ((k − 1)10, 10k)].

3. For fixed T = 10 t.u., the expected cost in the life cycle is calculated by using the recursive
formula given in (10), replacing the corresponding probabilities by their estimations and
initial condition E [C(0)] = 0.

4. The optimisation problem is reduced to find the value Mopt which minimises the expected
cost rate E [C(50)] /50.

The expected cost rate calculated using the recursive method and the expected cost rate calcu-
lated using Monte Carlo simulation are shown in Fig. 2. The expected transient cost rate based
on Monte Carlo simulation was calculated for 30 equally spaced points in the interval (0, 30] with
50000 simulations for each point. The expected transient cost rate calculated using the recursive
method reaches its minimum value at M = 14 d.u., with an expected transient cost rate of
14.7639 m.u./t.u. and a 95% confidence interval of (14.6927, 14.8351). On the other hand, the
expected transient cost rate calculated by using Monte Carlo simulation reaches its minimum
value at M = 14 d.u., with an expected transient cost rate of 15.2096 m.u./t.u. and a 95%
confidence interval of (15.1435, 15.2757).

Expected cost rate based on the recursive method
Expected cost rate based on Monte Carlo simulation

0 5 10 15 20 25 30
14

15

16

17

18

19

20

21

M

Fig. 2: Expected cost rate in the life cycle versus M .

For T = 10 t.u., Table 1 shows the average number of completed renewal cycles in the life
cycle of the system.
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M 1 2 3 4 5 6 7 8 9 10

E
[

NM

10
(50)

]

4.6678 4.3307 4.0400 3.7683 3.5316 3.3157 3.1261 2.9485 2.7957 2.6585

M 11 12 13 14 15 16 17 18 19 20

E
[

NM

10
(50)

]

2.5253 2.4146 2.3046 2.2052 2.1092 2.0310 1.9403 1.8688 1.7999 1.7386

M 21 22 23 24 25 26 27 28 29 30

E
[

NM

10
(50)

]

1.6874 1.6520 1.6247 1.5947 1.5676 1.5415 1.5234 1.4948 1.4825 1.4612

Table 1: Average number of complete renewal cycles up to tf = 50 t.u. versus M .

For T = 10 t.u., Fig. 3 shows the expected transient cost rate calculated by using the recursive
method and the steady-state expected cost rate calculated throughout the procedure detailed
in Section 5.1 versus M . As we said previously, the value of M which minimises the expected
transient cost rate is reached at M = 14 d.u., with an expected cost rate of 14.7639 m.u./t.u. and
a 95% confidence interval of (14.6927, 14.8351). On the other hand, the steady-state expected
cost rate reaches its minimum value at M = 14 d.u., with an expected cost rate of 15.3819
m.u./t.u. and a 95% confidence interval of (13.6658, 17.0980) m.u./t.u.

Expected cost rate in the finite life cycle
Steady-state expected cost rate

0 5 10 15 20 25 30
14

16

18

20

M

Fig. 3: Expected cost rate in the life cycle and steady-state expected cost rate versus M .

Deviation of the expected maintenance cost was calculated for 30 equally spaced points in
(0, 30] and shown in Fig 4a. The expected maintenance cost with its standard deviation calculated
by using the recursive method and by using Monte Carlo simulation are shown in Figures 4b and
4c.

Also, we focus on the influence of the main model parameters on the expected cost in the life
cycle. Firstly, a sensitivity analysis of the gamma process parameters is performed.

The values of the gamma process parameters are modified according to the following specifi-
cations:

α(vi%) = α
[

1 +
vi

100

]

and β(vj%) = β
[

1 +
vj

100

]

, (19)
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Standard deviation based on the recursive method
Standard deviation based on Monte Carlo simulation
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(a) Standard deviation versus M .
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(b) Recursive method.
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(c) Monte Carlo simulation.

Fig. 4: Expected cost rate and standard deviation in the life cycle versus M .

where vi and vj are, respectively, the i-th and j-th position of the vector v = (−10, −5, −1, 0, 1,
5, 10). Then, the parameter values for α and β can be simultaneous and independently modified
both for increasing and decreasing changes.

Let E
[

Cα(vi%),β(vj %)
(tf )

]

be the minimal expected transient cost at time tf obtained when

the gamma process parameters (α and β) are varied according to the specifications given in (19).
The expected transient cost for each combination of α(vi%) and β(vj %) are calculated based on
the recursive method following the steps detailed in 5.2. The relative measure Vα(vi %),β(vj %)

(50)

is defined as
∣

∣

∣
E [C(50)] − E

[

Cα(vi%),β(vj%)
(50)

]∣

∣

∣

E [C(50)]
, (20)

where E [C(50)] is the minimal expected transient cost calculated in 5.2.
For fixed M and T = 10 t.u., quantity Vα(vi%),β(vj%)

(50) measures the relative difference

between the minimal expected transient cost with the original parameter values and the minimal
expected transient cost calculated using the modified parameter values. Values closer to zero
have a lower influence on the expected transient cost rate.

Table 2 shows the relative variation percentages with a shaded grey scale. Each cell represents
the quantity Vα(vi %),β(vj %)

(50) expressed in percentage. Darker colours of cells denote a higher
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β
(−10%)

β
(−5%)

β
(−1%)

β β
(1%)

β
(5%)

β
(10%)

α(−10%) 1.1862 2.2865 5.8303 5.7383 6.4372 8.6707 11.0707

α(−5%) 4.1067 0.9778 1.9635 2.7403 3.2077 6.0850 9.0580

α(−1%) 7.0083 2.7336 0.6373 0.3666 1.0904 3.6113 6.1380

α 8.0187 3.8252 1.0523 0.0000 0.2624 2.8032 6.0328

α(1%) 8.7105 4.5726 1.4507 1.0696 0.0267 2.6336 5.1357

α(5%) 11.3000 7.0853 4.0552 3.6551 2.7247 0.2344 2.7598

α(10%) 15.2929 10.5769 7.2532 6.6684 5.7666 3.0604 0.0958

Table 2: Relative variation percentages for the expected transient cost for the gamma process
parameters for a fixed T = 10 t.u.

relative variation percentage. The results obtained show that Vα(vi%),β(vj%)
(50) grows when α

increases and β decreases and Vα(vi%),β(vj %)
(50) decreases when α decreases and β increases. In

this way, Vα(vi %),β(vj %)
(50) reaches its minimum value when α is minimum and β is maximum

and its maximum value when α is maximum and β is minimum.
By modifying ±1% around α = β = 0.1, the relative variation percentages are small. The

results also show that the relative variation percentages are lower in the diagonal of the table. In
general, when α has a positive variation, β(−5%) and β(−10%) are higher than β(5%) and β(10%),
respectively. Analogously, when α has a negative variation, β(−5%) and β(−10%) are lower than
β(5%) and β(10%), respectively.

Similarly, the values of the parameters λ1 and λ2 are modified according to the following
specifications:

λ1,(vi%) = λ1

[

1 +
vi

100

]

and λ2,(vj %) = λ2

[

1 +
vj

100

]

, (21)

Let E∗
[

Cλ1,(vi %),λ2,(vj %)
(tf )

]

be the minimal expected transient cost obtained by varying the

parameters λ1 and λ2 simultaneously as in the scheme given in (21). Now, the relative variation
Vλ1,(vi %),λ2,(vj %)

(50) is given by

∣

∣

∣
E∗ [C(50)] − E∗

[

Cλ1,(vi %),λ2,(vj %)
(50)

]∣

∣

∣

E∗ [C(50)]
. (22)

The relative variation percentages are presented in Table 3. The results show that the pa-
rameter λ1 has greater effects on Vλ1,(vi %),λ2,(vj %)

(50) than the parameter λ2, reaching the lowest

values when the variation for λ1 = 0.01 is minimal, that is ±1%, and the highest values when
the variation for λ1 is maximised, that is ±10%.

5.3 Analysis of the maintenance cost in the life cycle for a fixed M

For fixed M = 14, the influence of parameter T is analysed. As in Section 5.2, the optimisation
problem for the expected transient cost based on the recursive formula given in (10) is computed
throughout the following steps.

1. A grid of size 10 for T is obtained by discretising the set [5, 50] into 10 equally spaced points
from 5 to 50.
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λ2,(−10%) λ2,(−5%) λ2,(−1%) λ2 λ2,(1%) λ2,(5%) λ2,(10%)

λ1,(−10%) 3.0794 2.4761 2.3266 1.9374 1.8849 2.0284 1.3703

λ1,(−5%) 1.6095 1.2419 1.3581 0.8946 0.9002 0.3058 0.3755

λ1,(−1%) 0.6159 0.5227 0.2235 0.0000 0.5353 0.0241 0.9365

λ1 0.4598 0.2900 0.2235 0.0000 0.5353 0.0241 0.9365

λ1,(1%) 0.4598 0.2451 0.4946 0.0118 0.3289 1.0549 0.9833

λ1,(5%) 0.2698 0.3685 0.5846 0.7321 0.4718 0.8365 1.1554

λ1,(10%) 1.3381 2.3405 2.7045 2.2538 2.7964 2.5593 3.2779

Table 3: Relative variation percentages for the expected transient cost for parameters λ1 and λ2

for a fixed T = 10 t.u.

2. For fixed M = 14 d.u. and for each fixed Ti, we obtain 50000 simulations of (D, I, Wd). With
these simulations and applying Monte Carlo method, we obtain the estimations P̃D,p(kTi),
P̃D,c(kTi), P̃D(kTi), and Ẽ [W ((k − 1)Ti, kTi)] for k = 1, 2, . . . , ⌊50/Ti⌋.

3. For each Ti and M = 14, the expected cost at time t = 50 is calculated by using the recursive
formula given in (10), replacing the corresponding probabilities by their estimations and
initial condition E [C(0)] = 0.

4. For fixed M = 14 d.u., the optimisation problem is reduced to find the value of T which
minimises the expected cost rate in the life cycle of the system E [C(50)] /50.

The expected cost rate evaluated using the recursive formula and using Monte Carlo simulation
are shown in Fig. 5. The expected cost rate based on Monte Carlo simulation was calculated for
10 equally spaced points in (5, 50] with 50000 realizations for each point. Based on Fig. 5, for

0 10 20 30 40 50
10

15

20

25

30

35  Expected cost rate based on the recursive method
 Expected cost rate based on Monte Carlo simulation

T

Fig. 5: Expected cost rate in the life cycle versus T .

the recursive method, the expected cost rate at time tf = 50 t.u. reaches its minimum value for
T = 10 t.u., with an expected cost rate of 14.7637 m.u./t.u. and a 95% confidence interval of
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(14.6927, 14.8351). On the other hand, using Monte Carlo simulation, the expected cost rate in
the life cycle reaches its minimum value at T = 30 t.u., with an expected cost rate of 12.3259
m.u./t.u. and a 95% confidence interval of (12.2275, 12.4243). This difference can be explained
due to the high variance in deterioration increments of the degradation process.

For M = 14 d.u. Table 4 shows the average number of renewals of the system in its life cycle
for each value of T .

T 5 10 15 20 25

E
[

N14

T
(50)

]

2.4650 2.2007 1.7772 1.4327 1.6419

T 30 35 40 45 50

E
[

N14

T
(50)

]

0.8884 0.93964 0.9682 0.9833 0.9926

Table 4: Average number of complete renewal cycles up to tf = 50 versus T .

For fixed M = 14 d.u., Fig. 6 shows the expected cost rate in the life cycle of the system
calculated by using the recursive method and the steady-state expected cost rate versus T . As

0 10 20 30 40 50

15

20

25

30
 Expected cost rate in the finite life cycle
 Steady-state expected cost rate

T

Fig. 6: Expected cost rate in the life cycle and steady-state expected cost rate versus T .

we said previously, the expected transient cost rate calculated using the recursive method at
time tf = 50 t.u. reaches its minimum value at T = 10 t.u., with an expected transient cost
rate of 14.7637 m.u./t.u. and a 95% confidence interval of (14.6927, 14.8351). On the other hand,
the steady-state expected cost rate reaches its minimum value at T = 10 t.u., with a steady-
state expected cost rate of 15.3819 m.u./t.u. and a 95% confidence interval of (13.6658, 17.0980).
Steady-state expected cost rate shows a smoother behaviour compared to the expected transient
cost rate.

Next, the standard deviation of the expected maintenance cost is obtained. Deviation was
calculated for 10 equally spaced points in [5, 50] and shown in Fig 7a. Fig. 7b and Fig 7c show the
expected transient cost rate calculated using the recursive method and Monte Carlo simulation
with its standard deviation associated versus T .
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(a) Standard deviation versus T .
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(b) Recursive method.
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(c) Monte Carlo method.

Fig. 7: Expected cost rate and standard deviation versus T .

Focusing now on the main model parameters influence on the solution, we analyse the gamma
process parameters sensitivity.

For fixed T and M = 14, let E
[

Cα(vi%),β(vj %)
(50)

]

be the minimal expected transient cost at

time tf = 50 t.u. obtained when the gamma process parameters (α and β) are varied according
to the specifications given in (19). Based on (20), Vα(vi%),β(vj %)

(50) denotes the relative variation

between the minimal expected transient cost with the original parameter values and the minimal
expected transient cost calculated by using the parameter values modified according to (19).

Table 5 shows the values obtained for Vα(vi%),β(vj %)
(50) expressed in percentage. By modifying

±1% around α = β = 0.1, the relative variation percentages are small. The results obtained also
show that Vα(vi%),β(vj %)

(50) is lower in the diagonal of the table. That means when the parameters

α and β are modified in the same direction and magnitude. Thus, as previously, when α has a
positive variation, β(−5%) and β(−10%) are higher than β(5%) and β(10%), respectively. Analogously,
when α has a negative variation, β(−5%) and β(−10%) are lower than β(5%) and β(10%), respectively.

On the other hand, let E∗
[

Cλ1,(vi %),λ2,(vj %)
(tf )

]

be the minimal expected transient cost ob-

tained by varying the parameters λ1 and λ2 simultaneously as in the scheme given in (21). Based
on (22), Vλ1,(vi %),λ2,(vj %)

(50) denotes the relative variation between the minimal expected tran-

sient cost with the original parameter values and the minimal expected transient cost calculated
by using the parameter values modified according to (21) for variable T and M = 14 d.u.
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β
(−10%)

β
(−5%)

β
(−1%)

β β
(1%)

β
(5%)

β
(10%)

α(−10%) 1.5684 1.8862 4.7069 5.7107 6.1450 8.0609 11.2240

α(−5%) 4.5915 0.9400 1.7235 2.5432 3.3861 5.1360 8.1300

α(−1%) 8.5189 3.4618 0.9003 0.0450 0.6994 3.0001 6.2257

α 8.2817 4.4937 1.3744 0.0000 0.1749 2.7793 5.2119

α(1%) 8.9568 4.7309 1.9896 1.8475 0.4936 1.4929 5.0625

α(5%) 11.5044 7.2387 5.0048 3.5146 3.3441 0.8091 2.7099

α(10%) 15.1620 10.7048 7.5764 6.5529 6.7841 3.6827 0.6109

Table 5: Relative variation percentages for the expected transient cost for the gamma process
parameters, M = 14 d.u.

λ2,(−10%) λ2,(−5%) λ2,(−1%) λ2 λ2,(1%) λ2,(5%) λ2,(10%)

λ1,(−10%) 2.1506 1.9893 1.9244 1.2564 1.7375 1.4737 1.7043

λ1,(−5%) 0.8525 0.3948 0.7135 0.2861 0.0258 0.2199 0.2733

λ1,(−1%) 0.8510 0.5039 0.4442 0.6259 0.4789 0.7896 1.3432

λ1 0.4986 0.5000 0.4663 0.0000 0.7516 1.0475 1.1239

λ1,(1%) 0.0194 0.6036 0.9957 0.9308 0.7760 1.1128 1.9800

λ1,(5%) 1.9045 1.5869 2.8829 1.4909 2.1346 2.5697 3.0034

λ1,(10%) 2.4267 2.1395 2.8044 2.9864 2.8605 3.3628 3.0087

Table 6: Relative variation percentages for the expected transient cost rate for parameters λ1

and λ2, M = 14 d.u.

The relative variation percentages are presented in Table 6. The results show that when
λ1 = 0.01 is modified between −5% and 1%, the relative variation percentages are small. In
addition, the parameter λ1 has greater effects on Vλ1,(vi %),λ2,(vj %)

(50) than the parameter λ2.

5.4 Transient two-dimensional expected cost rate analysis

The expected transient cost based on the recursive formula given in (10) versus M and T is
analysed. The optimisation problem is computed as follows.

1. A grid of size 10 is obtained by discretising [5, 50] into 10 equally spaced points from 5 to 50
for T . Let Ti be the i-th value of the grid obtained previously, for i = 1, 2, . . . , 10.

2. A grid of size 30 is obtained by discretising [1, 30] into 30 equally spaced points from 1 to
30 for M . Let Mj be the j-th value of M which corresponds to the i-th value of the grid
obtained previously, for j = 1, 2, . . . , 30.

3. For each fixed combination (Ti, Mj), we obtain the estimations of the probabilities involved
in the model.

4. For each fixed combination Ti and Mj , the expected cost at time t = 50 is calculated by
using the recursive formula given in (10), replacing the corresponding probabilities by their
estimations and initial condition E [C(0)] = 0.

5. The optimisation problem is reduced to find the values Topt and Mopt which minimise the
expected cost rate E [C(50)] /50.
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Fig. 8: Mesh and contour plots for the expected cost rate in the life cycle versus T and M .

The expected cost rate versus T and M is shown in Fig. 8. The values of T and M which
minimise the expected cost rate in the life cycle of the system are reached for M = 14 d.u. and
T = 10 t.u. with an expected cost rate of 14.7637 m.u./t.u. and a 95% confidence interval of
(14.6927, 14.8351).

5.5 Availability measures for optimal values of T and M

For fixed T = 10 and M = 14, the availability, the reliability and the interval reliability of the
system is computed.

The availability of the system based on the recursive formula given in (14) is computed
throughout the following steps.

1. A grid of size 50 is obtained by discretising [1, 50] into 50 equally spaced points from 1
to 50 for the instant time t. Let tn be the n-th value of the grid obtained previously, for
n = 1, 2, . . . , 50.

2. The availability of the system is calculated by using the recursive formula given in (14),
replacing PD(10k) by its estimation P̃D(10k) and initial condition A(0) = 1.

Figure 9 shows the availability of the system versus t. We can conclude that, for fixed T = 10
and M = 14, the probability that the system is working at any instant time of its life cycle is,
at least, of the 82.36% with a 95% confidence interval of (0.8203, 0.8269).

Next, the reliability of the system is evaluated. The reliability of the system based on the
recursive formula given in (17) is computed throughout the following steps.

1. A grid of size 50 is obtained by discretising (1, 50] into 50 equally spaced points from 1 to 50
for t.

2. The system reliability is calculated by using the recursive formula given in (17), replacing
PD,p(10k) by its estimation P̃D,p(10k) and initial condition R(0) = 1.

Figure 10 shows the reliability of the system versus t. We can conclude that, for fixed T = 10
and M = 14, the probability that the system does not fail in its life cycle is of the 32.44% with
a 95% confidence interval of (0.3203, 0.3285).

Finally, the interval reliability of the system based on (18) is computed throughout the fol-
lowing steps.
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Availability of the system at time t based on the recursive method
Availability of the system at time t based on Monte Carlo simulation
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Fig. 9: Availability of the system versus t.

Reliability of the system at time t based on the recursive method
Reliability of the system at time t based on Monte Carlo simulation
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Fig. 10: Reliability of the system versus t.

1. A grid of size 10 is obtained by discretising the set [10, 30] into 10 equally spaced points from
10 to 30 for t.

2. For s = 5, the interval reliability of the system is calculated by using the recursive formula
given in (18), replacing PD,p(10k) and PD(10k) by their estimations P̃D,p(10k) and P̃D(10k),
respectively, and initial conditions IR(0, 0) = 1 and R(0) = 1.

Figure 11 shows the interval reliability of the system versus t. As we can observe, the results
provide for both methods are very similar. Furthermore we can conclude that, for fixed T = 10
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and M = 14, the probability that the system does not fail in [t, t + 5] is, at least, of the 70.47%
for 15 ≤ t ≤ 35 with a 95% confidence interval of (0.7008, 0.7086).

Interval reliability of the system at time t based on the recursive method
Interval reliability of the system at time t based on Monte Carlo simulation
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0,9

1,0

t

Fig. 11: Interval reliability of the system versus t.

6 Conclusions and further works

In this paper, a CBM strategy is analysed by considering a finite life cycle of the system. The
system is subject to two different causes of failure, a degradation process modelled under a
gamma process and a sudden shock process which follows a DSPP. We consider that both causes
of failure are dependent. This dependence is reflected in that the system is more susceptible to
external shocks when the deterioration level of the system reaches a certain threshold.

Under these assumptions, the expected cost rate in the life cycle is used as objective function
to obtain the optimal maintenance strategy. To this end, a numerical method based on a recursive
formula is provided to evaluate the expected cost rate and the standard deviation associated.

The expected transient cost rate calculated using the recursive formula is compared to both
the steady-state expected cost rate and the expected transient cost rate calculated using Monte
Carlo simulation. In addition, the robustness of the gamma process parameters and DSPP is
analysed. Furthermore, for the comparison between transient and steady-state cost rate the
results are also provided under a bivariate case, where the time between inspections and the
preventive threshold vary simultaneously. In the comparison between the method based on Monte
Carlo simulation and the method based on the recursive formula, for a fixed time between
inspections T , similar results are observed. For the preventive threshold M , the results presented
some differences, which could be explain due to the high variance in the deterioration increments
of the degradation process. If the life cycle increases, the recursive method shall tend to be more
costly in terms of computation than the method based on Monte Carlo simulation.
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Finally, three important performance measures in the maintenance field, the availability,
the reliability and the interval reliability of the system, are analysed under the bivariate opti-
mal maintenance strategy. Recursive formulas are given to obtain these performance measures.
Furthermore, the results obtained using the recursive formulation are compared to the results
obtained using Monte Carlo simulation. Although the recursive equations of the paper have been
derived assuming that the degradation follows a gamma process, they are adaptable for systems
with different models of degradation. In this case, the structure of the recursive formulation
is similar to the formulation developed in the paper although the probability expressions are
different.

In this paper, we consider a system subject to a unique degradation process. However, some-
times the system is subject to multiple degradation processes. A possible further extension of this
work is to consider a system subject to multiple degradation processes. With respect to the two
types of failure, the analysis of this model is based on the dependence of the degradation level of
the system on the intensity of shocks. An interesting extension could be to assume a bidirectional
relation of dependence where the shock process also affects to the degradation process.

Appendix A

For t < T , E [C(t)], is given by

E [C(t)] =CdE
[

(t − Y )1{σMs <Y <t, Y <σL}

]

+ CdE
[

(t − σL)1{σMs <σL<t, σL<Y }

]

+CdE
[

(t − Y )1{Y <t, Y <σMs }

]

.

That is

E [C(t)] =Cd

∫ t

0

fσMs
(u)

∫ t

u

[

−
∂

∂v
I(u, v)

]

F̄σL−σMs
(v − u)(t − v) dv du

+Cd

∫ t

0

fσMs
(u)

∫ t

u

I(u, v)fσL−σMs
(v − u)(t − v) dv du

+Cd

∫ t

0

f1(u)F̄σMs
(u)(t − u)du.

For t ≥ T , E [C(t)] is conditioned to D

E [C(t)] =E [C(t), D ≤ t] + E [C(t), D > t] .

Thus, if D > t

E [C(t), D > t] = ⌊t/T ⌋CI

(

1 −

⌊t/T ⌋
∑

k=1

PD(kT )

)

+ CdE [W (⌊t/T ⌋T, t)]

(

1 −

⌊t/T ⌋
∑

k=1

PD(kT )

)

.

If D ≤ t, E [C(t)] can be split into two terms: the cost in the first renewal cycle (C(D)) and the
cost in the remaining time horizon (C(D, t)). Since C(D) and C(D, t) are independent, we get

E [C(t), D ≤ t] =E [C(D), D ≤ t] + E [C(D, t), D ≤ t] .
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Hence

E [C(D), D ≤ t] =

⌊t/T ⌋
∑

k=1

E [C(D), D = kT ]

=

⌊t/T ⌋
∑

k=1

(Cc + CI(k − 1) + CdE [W ((k − 1)T, kT )]) PD,c(kT )

+

⌊t/T ⌋
∑

k=1

(Cp + CI(k − 1)) PD,p(kT ).

Since C(D, t) is stochastically the same as C(t − D),

E [C(D, t), D = kT ] = E [C(t − kT )] PD(kT ).

Hence, E [C(t)] verifies the following recursive equation

E [C(t)] =

⌊t/T ⌋
∑

k=1

E [C(t − kT )] PD(kT ) + G(t),

being

G(t) =

⌊t/T ⌋
∑

k=1

(

Cp + CI(k − 1)
)

PD,p(kT )

+

⌊t/T ⌋
∑

k=1

(

Cc + CI(k − 1) + CdE [W ((k − 1)T, kT )]
)

PD,c(kT )

+ (⌊t/T ⌋CI + CdE [W (⌊t/T ⌋T, t)])
(

1 −

⌊t/T ⌋
∑

k=1

PD(kT )
)

,

and the result holds.

Appendix B

For t < T , the expected square cost, E
[

C(t)2
]

, is given by

E
[

C(t)2
]

=C2
dE
[

(t − Y )21{σMs <Y <t, Y <σL}

]

+ C2
dE
[

(t − σL)21{σMs <σL<t, σL<Y }

]

+C2
dE
[

(t − Y )21{Y <t, Y <σMs }

]

.

That is

E [C(t)] =C2
d

∫ t

0

fσMs
(u)

∫ t

u

[

−
∂

∂v
I(u, v)

]

F̄σL−σMs
(v − u)(t − v)2 dv du

+C2
d

∫ t

0

fσMs
(u)

∫ t

u

I(u, v)fσL−σMs
(v − u)(t − v)2 dv du

+C2
d

∫ t

0

f1(u)F̄σMs
(u)(t − u)2du.
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For t ≥ T , E
[

C(t)2
]

is conditioned to D

E
[

C(t)2
]

=E
[

C(t)2, D ≤ t
]

+ E
[

C(t)2, D > t
]

.

Hence,

E
[

C(t)2, D > t
]

=
(

⌊t/T ⌋CI + CdE
[

W M
T (⌊t/T ⌋T, t)

]

)2
(

1 −

⌊t/T ⌋
∑

k=1

PD(kT )

)

,

where PD is given by (9). On the other hand

E
[

C(t)2, D ≤ t
]

= E
[

(C(D) + C(D, t))2 , D ≤ t
]

.

Developing the expression

E
[

(C(D) + C(D, t))
2

, D ≤ t
]

= E
[

C(D)2, D ≤ t
]

+ E
[

C(D, t)2, D ≤ t
]

+E [2 C(D)C(D, t), D ≤ t] .

Thus,

E
[

C(D)2, D ≤ t
]

=

⌊t/T ⌋
∑

k=1

E
[

C(D)2, D = kT
]

=

⌊t/T ⌋
∑

k=1

(Cc + CI(k − 1) + CdE [W ((k − 1)T, kT )])
2

PD,c(kT )

+

⌊t/T ⌋
∑

k=1

(Cc + CI(k − 1))
2

PD,p(kT ).

Following the same reasoning as in Appendix A,

E [C(D)C(D, t), D ≤ t] =

⌊t/T ⌋
∑

k=1

(Cc + CI(k − 1)) E [C(t − kT )] PD,c(kT )

+

⌊t/T ⌋
∑

k=1

CdE [W ((k − 1)T, kT )] E [C(t − kT )] PD,c(kT )

+

⌊t/T ⌋
∑

k=1

(Cp + CI(k − 1)) E [C(t − kT )] PD,p(kT ).

Hence, E
[

C(t)2
]

verifies the following recursive equation

E
[

C(t)2
]

=

⌊t/T ⌋
∑

k=1

E
[

C(t − kT )2
]

PD(kT ) + H(t),
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being

H(t) =

⌊t/T ⌋
∑

k=1

(Cp + CI(k − 1))2 PD,p(kT )

+

⌊t/T ⌋
∑

k=1

(Cc + CI(k − 1) + CdE [W ((k − 1)T, kT )])
2

PD,c(kT )

+2

⌊t/T ⌋
∑

k=1

(Cc + CI(k − 1)) E [C(t − kT )] PD,c(kT )

+2

⌊t/T ⌋
∑

k=1

CdE [W ((k − 1)T, kT )] E [C(t − kT )] PD,c(kT )

+2

⌊t/T ⌋
∑

k=1

(Cp + CI(k − 1)) E [C(t − kT )] PD,p(kT )

+
(

⌊t/T ⌋CI + CdE [W (⌊t/T ⌋T, t)]
)2
(

1 −

⌊t/T ⌋
∑

k=1

PD(kT )

)

,

and the result holds.

Appendix C

For t < T , A(t) is given by

A(t) =P [t < σMs
, Y > t] + P [σMs

< t < σL, Y > t]

=F̄σMs
(t)F̄1(t) +

∫ t

0

fσMs
(u)F̄σL−σMs

(t − u)I(u, t)du.

For t ≥ T , A(t) is conditioned to the time to the first renewal

A(t) =

∞
∑

j=0

1{Rj≤t<Rj+1}

[

P [O(t) < L, Y > (t − Rj), D ≤ t] + P [O(t) < L, Y > (t − Rj), D > t]
]

.

If D > t

A(t) =
[

P [t < σM , Y > t]

+ P [⌊t/T ⌋T < σM < σMs
< t < σL, Y > t]

+ P [⌊t/T ⌋T < σM < t < σMs
, Y > t]

]

1{M≤Ms}

+
[

P [t < σMs
, Y > t]

+ P [σMs
< ⌊t/T ⌋T < σM < t < σL, Y > t]

+ P [σMs
< ⌊t/T ⌋T < t < σM , Y > t]

+ P [⌊t/T ⌋T < σMs
< t < σL, Y > t]

]

1{M>Ms}.
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That is

A(t) =
[

F̄σM
(t)F̄1(t)

+

∫ t

⌊t/T ⌋T

fσM
(u)

∫ t

u

fσMs −σM
(v − u)F̄σL−σMs

(t − v)I(v, t) dv du

+

∫ t

⌊t/T ⌋T

fσM
(u)F̄σMs −σM

(t − u)F̄1(t) du
]

1{M≤Ms} +
[

F̄σMs
(t)F̄1(t)

+

∫ ⌊t/T ⌋T

0

fσMs
(u)

∫ t

⌊t/T ⌋T

fσM −σMs
(v − u)F̄σL−σM

(t − v)I(u, t) dv du

+

∫ ⌊t/T ⌋T

0

fσMs
(u)F̄σM −σMs

(t − u)I(u, t) du

+

∫ t

⌊t/T ⌋T

fσMs
(u)F̄σL−σMs

(t − u)I(u, t) du
]

1{M>Ms}

= JM
T,1(t)1{M≤Ms} + JM

T,2(t)1{M>Ms}.

If D ≤ t,

∞
∑

j=0

1{Rj≤t<Rj+1}P [O(t) < L, Y > (t − Rj), D ≤ t]

=

⌊t/T ⌋
∑

k=1

PD(kT )

[

∞
∑

j=0

1{Rj≤t<Rj+1}P [O(t − kT ) < L, Y > (t − kT − Rj)]

]

=

⌊t/T ⌋
∑

k=1

A(t − kT )PD(kT ).

Then, for t ≥ T , A(t) verifies the following recursive equation

A(t) =

⌊t/T ⌋
∑

k=1

A(t − kT )PD(kT ) + J1(t)1{M≤Ms} + J2(t)1{M>Ms},

and the result holds.

Appendix D

For t < T , there is no maintenance action on [0, t], hence R(t) is equal to A(t).

For t ≥ T , R(t) is conditioned to the time of the first replacement

R(t) =P [O(u) < L, ∀u ∈ (0, t], Ns(0, t) = 0, D ≤ t]

+P [O(u) < L, ∀u ∈ (0, t], Ns(0, t) = 0, D > t] .

If D > t

R(t) = J1(t)1{M≤Ms} + J2(t)1{M>Ms}.
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If D ≤ t,

R(t) =P [O(u) < L, ∀u ∈ (0, t], Ns(0, t) = 0, D ≤ t]

=

⌊t/T ⌋
∑

k=1

PD,p(kT )P [O(u) < L, ∀u ∈ (0, t − kT ], Ns(0, t − kT ) = 0]

=

⌊t/T ⌋
∑

k=1

R(t − kT )PD,p(kT ).

Then, for t ≥ T , R(t) verifies the following recursive equation

R(t) =

⌊t/T ⌋
∑

k=1

R(t − kT )PD,p(kT ) + J1(t)1{M≤Ms} + J2(t)1{M>Ms},

and the result holds.

Appendix E

For (t+s) < T , there is no maintenance action on [0, t+s], hence IR(t, t+s) is equal to R(t+s).
For t + s ≥ T , IR(t, t + s) is conditioned to the time of the first replacement

IR(t, t + s) =P [O(u) < L, ∀u ∈ (t, t + s], Ns(t, t + s) = 0, D ≤ t]

+P [O(u) < L, ∀u ∈ (t, t + s], Ns(t, t + s) = 0, t < D < t + s]

+P [O(u) < L, ∀u ∈ (t, t + s], Ns(t, t + s) = 0, D ≥ t + s] .

If D ≥ t + s

IR(t, t + s) =A(t + s)

=J1(t + s)1{M≤Ms} + J2(t + s)1{M>Ms}.

If t < D < t + s

IR(t, t + s) =P [O(u) < L, ∀u ∈ (t, t + s], Ns(t, t + s) = 0, t < D < t + s]

=

⌊(t+s)/T ⌋
∑

k=⌊t/T ⌋+1

PD,p(kT )P [O(u − kT ) < L, ∀u ∈ (0, t + s − kT ], Ns(0, t + s − kT ) = 0]

=

⌊(t+s)/T ⌋
∑

k=⌊t/T ⌋+1

R(t + s − kT )PD,p(kT ).

If D ≤ t

IR(t, t + s) =P [O(u) < L, ∀u ∈ (t, t + s], Ns(t, t + s) = 0, D ≤ t]

=

⌊t/T ⌋
∑

k=1

PD(kT )P [O(u − kT ) < L, ∀u ∈ (t − kT, t + s − kT ], Ns(t − kT, t + s − kT ) = 0]

=

⌊t/T ⌋
∑

k=1

IR(t − kT, t + s − kT )PD(kT ).
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Then, for t + s ≥ T , IR(t, t + s) verifies the following recursive equation

IR(t, t + s) =

⌊(t+s)/T ⌋
∑

k=⌊t/T ⌋+1

R(t + s − kT )PD,p(kT )

+

⌊t/T ⌋
∑

k=1

IR(t − kT, t + s − kT )PD(kT )

+J1(t + s)1{M≤Ms} + J2(t + s)1{M>Ms},

and the result holds.
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