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Vocal fold nodules are recognized as an occupational disease for all collective of workers performing ac-
tivities for which maintained and continued use of voice is required. Computer-aided systems based on
features extracted from voice recordings have been considered as potential non-invasive and low cost tools
to diagnose some voice-related diseases. A Bayesian decision analysis approach has been proposed to clas-
sify university lectures in three levels of risk: low, medium and high, based on the information provided
by acoustic features extracted from healthy controls and people suffering from vocal fold nodules. The
proposed risk groups are associated with different treatments. The approach is based on the calculation of
posterior probabilities of developing vocal fold nodules and considers utility functions that include the fi-
nancial cost and the probability of recovery for the corresponding treatment. Maximization of the expected
utilities is considered. By using this approach, the risk of having vocal fold nodules is identified for each
university lecturer, so he/she can be properly assigned to the right treatment. The approach has been ap-
plied to university lecturers according to the Disease Prevention Program of the University of Extremadura.
However, it can also be applied to other voice professionals (singers, speakers, coaches, actors...).

Key words: Acoustic features; Bayesian decision analysis; Disease prevention program; Utility
function; Voice disorder

1 Introduction

Voice disorders affect communication and have important implications for public health (see, Roy et al.
(2005), Cohen and Garret (2007) and Bhattacharyya (2014), among others). Some of the most common
vocal pathologies are laryngitis, vocal fold nodules and polyps. They can severely affect the vocal function.
A current study about voice therapy in vocal fold lesions is provided by Tang and Thibeault (2017).

Voice disorders are recognized as an occupational disease for all collective of workers performing ac-
tivities for which maintained and continued use of voice is required (singers, speakers, teachers...). Voice
disorders in adults are common among these professionals, see, for instance, De Medeiros et al. (2012),
Cantor Cutiva et al. (2013), Ubillos et al. (2015) and Pestana et al. (2017). The professional use of voice is
mainly characterized by an excessive vocal load, leading, in many cases, to dysphonia. Dysphonia is one of
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the most prevalent disorders among teachers (see Niebudek-Bogusz et al. (2007)). The recognition of this
health problem as an occupational disease requires to identify hazards and establish preventive measures.

Voice recordings have been considered as a potential non-invasive and low cost biomarker to diagnose
some voice-related diseases. Baghai-Ravary and Beet (2013) provided a view of automatic speech signal
analysis for clinical diagnosis and assessment of speech disorders. Most researches consider protocols
with phonations of sustained vowel, mainly /a/, but also words and phrases are considered. The recorded
sounds are transformed into electrical signals by using a microphone. Later, they are numerically quantified
by using feature extraction algorithms and used in pattern recognition algorithms to classify individuals
by similitude, allowing to discriminate healthy voices from diseased ones (see, e.g, Ali et al. (2016) or
Jalalinajafabad (2016)).

Computer-Aided Diagnosis (CAD) is a broad concept that integrates signal processing, artificial intelli-
gence and statistics into computerized techniques that assist health professionals in their decision-making
processes. These techniques seek to maximize the information that may be automatically extracted from
medical tests via objective and quantitative computations (see, e.g, Calle-Alonso et al. (2013)). In this con-
text, a CAD system can be designed considering voice recordings as the ingredient to extract information
based on signal processing from healthy and diseased people.

Medical institutions, insurance companies, policy makers and clinicians are faced with the decision
of replacing an existing procedure with a new one or using complementary information, and how to up-
date protocols. These decisions are primarily based on a trade-off between accurate diagnostic and cost-
effectiveness (see Kornak and Lu (2011)). The economic costs derived from sick leaves caused by vocal
diseases in voice professionals could be reduced by applying prevention programs based on automatic non-
invasive and low cost tools as the one proposed here. Hence, the determination of appropriate treatment
may bring benefits not only to the individual, but also to the society.

The statistical decision theory deals with scenarios where decisions have to be made under a state of
uncertainty. The goal is to provide a rational framework for dealing with such situations. These scenarios
are typical in medical decision-making (see, for instance Barbini et al. (2013) and Stallard et al. (2017)).
In addition, Ashby and Smith (2000) argued that the natural statistical framework in this context is a
Bayesian approach, since it allows to incorporate an integrated summary of the available evidence and
associated uncertainty with assessment of utilities.

This paper proposes a Bayesian decision analysis approach that allows an automatic classification of
university lecturers into three different voice risk groups (low, medium and high risks) by using acoustic
features extracted from their voice recordings. These groups involve both the disease status and the corre-
sponding treatment based on the cost and the recovery rate. The approach considers the maximization of
the expected utilities. Firstly, the posterior probabilities of developing a vocal disorder is provided based on
healthy subjects and people suffering from vocal fold nodules (modelling uncertainty). These probabilities
are obtained by using a probit regression model. Next, the utility functions are taken into account. They
involve the costs for the different treatments and the recovery utility (modelling preferences). A Monte
Carlo approach is proposed to estimate the expected utilities. Thus, the identification of medium-risk sub-
jects will lead them to a speech therapy program, whereas those allocated to the high-risk group will be
candidates for a more advanced treatment that could include surgery. Finally, the results show that this
methodology may be useful for Prevention and Health Promotion Services of institutions and companies
whose workers use the voice as a work tool. Although the approach has been used with university lecturers,
it is applicable to other voice professionals by following the same framework.

The outline of the paper is as follows. Information on participants, speech recordings and feature extrac-
tion is presented in Section 2. Section 3 presents the approach by describing the modelling of uncertainty
and preferences. The experimental results are shown in Section 4. Section 5 presents a simulation-based
analysis to address a theoretical scenario where the real status of the subjects are known. Finally, the
conclusion is presented in Section 6.
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2 Acoustic feature database

In this section, information on participants, speech recordings and feature extraction necessary to build the
acoustic feature database is presented.

2.1 Participants

A total of 90 university lecturers (59 men and 31 women) from the University of Extremadura (Cáceres,
Spain) were involved in the study. The mean (± standard deviation) age was 46.38 ± 8.73. A protocol
consisting of a physical examination, a survey and voice recordings was applied to the subjects within
the Program for Health Promotion of the University of Extremadura. The protocol was approved by the
Bioethical Committee. All subjects signed an informed consent.

2.2 Speech recordings

The vocal task was the sustained phonation of the /a/ vowel at comfortable pitch and loudness, as constant
as possible. This phonation had to be kept for at least 5 seconds and on one breath. Three valid phonations
were obtained per individual.

The speech data were recorded using a portable computer with an external sound card (TASCAM
US322) and a headband microphone (AKG 520) featuring a cardiod pattern. The digital recording was
performed at a sampling rate of 44.1 KHz and a resolution of 16 bits/sample by using Audacity software
(release 2.0.5).

In addition, the voice recordings of 53 healthy controls and 19 subjects suffering vocal fold nodules were
obtained from the commercial database MEEI (Massachusetts Eye and Ear Infirmary) of KayPENTAX Inc.
(see Daoudi and Bertrac (2014)).

2.3 Feature extraction

The study is based on three acoustic features and the gender. Local Shimmer as an amplitude perturbation
measure was considered (see, e.g., Baken and Orlikoff (2000)). Harmonic-to-noise ratio (HNR) is a mea-
sure of the relative level of noise present in speech that also have been considered (see, e.g., Shue et al.
(2010)). Finally, the existence of nonlinear phenomena in the production process of the speech signal has
been theoretically and experimentally established. Specifically, the Recurrence Period Density Entropy
(RPDE) is used here (see, e.g., Little et al. (2007)).

After feature extraction, the three replications of each feature were averaged. Then, a matrix with 162
rows (one for each of the 53 healthy controls, 19 patients and 90 university lecturers) and 4 columns (sex,
Shimmer, HNR, and RPDE) was obtained.

3 Model description

Suppose that the voice quality status of a set of university lecturers have to be analyzed. The main aim is
to classify university lecturers according to three different treatments related to the three voice risk groups
(low, medium and high). A cost-utility model will be used for this purpose. The proposed model includes
modelling uncertainty, that is associated with the probability that a university lecturer develops vocal prob-
lems. This uncertainty will be modelled by using the information available from previous subjects which
are known to be healthy or diseased.

The proposed Bayesian approach could be adequately represented by using the influence diagram shown
in Figure 1. Influence diagrams are powerful graphical tools for dealing with Bayesian decision problems
under uncertainty (see, e.g., Rı́os and Rı́os Insua (2009), and Bielza et al. (2011)). They are acyclic
directed graphs with three types of nodes and two types of arcs. Decision nodes, which are represented by
a square or rectangle, chance or uncertainty nodes that are symbolized by a circle or an ellipse and value
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nodes that are represented as diamonds or hexagons. In relation to the arcs, they can be conditional arcs 
which are directed towards a chance node or a value node and informational arcs that are directed toward a 
decision node. Arcs towards a value or uncertainty node indicate functional and probabilistic dependence, 
respectively. Finally, arcs into a decision node indicate that when the decision is made, the values of the 
preceding nodes are known. Deeper studies about influence diagrams and analysis of medical decision 
problems can be found in Owens et al. (1997) and Pauker and Wong (2005).

For the influence diagram in Figure 1, depending on each university lecturer’s state, their acoustic 
predictors are obtained. This last node includes the covariates that consist of acoustic features and gender 
from the subjects previously evaluated. These predictors are observed, for each university lecturer, before 
making decisions and they consist of assigning a medical treatment to each one of them. Such node is 
discrete. Once the decision is made and, by taking into account that it has influence on the recovery of each 
university lecturer, the utility for each one of them can be evaluated. These utilities encloses both the 
corresponding cost of the treatment and the utility of the university lecturer’ state after the treatment.

Acoustic

predictors
Decisions UtilitiesRecoveryStates

Figure 1 Influence diagram for the process.

In order to solve the influence diagram in Figure 1 (see, for instance, Shachter (1986)), firstly, the arc 
between the nodes states and acoustic predictors is inverted. Thus, the posterior probability that a 
university lecturer suffers from vocal nodule is obtained for each one of them. As a consequence, the node 
corresponding to acoustic predictors can be removed. Once the decision for each university lecturer and 
the posterior probability of having the disease are known, then the probabilities of recovering are 
calculated. Finally, by taking into account both the previous decision and the probability of recovering, the 
expected utility is also obtained for each university lecturer.

In the next two subsections the model is described in detail.

3.1 Modelling uncertainty

Following the influence diagram in Figure 1, firstly, the posterior distributions of suffering from vocal fold
nodules is calculated for each university lecturer based on the probit regression model. The process will
consists of two steps which will be described next.

Suppose that m independent binary random variables Y1, Y2, . . . , Ym are observed, where Yj is Bernoulli
distributed with success probability P (Yj = 1) = pj , j = 1, 2, . . . ,m. The probabilities pj are related to
a set of known covariates xt

j = (xj1, xj2, . . . , xjK) through the following model:

Yj ∼ Bernouilli (pj) , (1)

pj = Ψ
(
xt
jβ

)
,

where β is a K × 1 vector of unknown parameters and Ψ(·) is the standard Gaussian cumulative density
function.
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The first step deals with the obtention of a random sample from the regression vector β. Therefore,
the task is to infer β given the vector of binary data y = (y1, y2, . . . , ym)

t, yj ∈ {0, 1} and the matrix of
explanatory variables x = (x1,x2, . . . ,xm)

t.
The likelihood is given as:

L (β|y,x) =
m∏
j=1

[
Ψ
(
xt
jβ

)]yj
[
1−Ψ

(
xt
jβ

)]1−yj
.

Latent variables are introduced based on the proposal of Albert and Chib (1993), i.e. z1, z2, . . . , zm are
considered, where zj is distributed as Normal

(
xt
jβ, 1

)
and it is defined:

Yj =

{
1 if zj > 0
0 if zj ≤ 0

In addition, by considering a multivariate normal distribution, β ∼NormalK (b,B), as the prior distribu-
tion for the regression vector, π (β), then the posterior distribution has the following expression:

π (β|y,x, z) ∝ π (β)
m∏
j=1

∫ ∞

−∞
(2π)

−1/2
exp

{
−1

2

(
zj − xt

jβ
)2}

dzj .

This posterior density is not analytically tractable, so it must numerically be estimated. MCMC methods
are computing tools that can be used in this context (see Naranjo et al. (2016) and references therein).
Specifically a Gibbs sampling algorithm is considered. Thus, the full conditional distributions are given
by:

zj |y,x,β ∼


Normal

(
xt
jβ, 1

)
I{zj>0} if yj = 1

Normal
(
xt
jβ, 1

)
I{zj≤0} if yj = 0

,

β|z,y,x ∼ NormalK (b∗,B∗) ,

where B∗ =
[
xtx+B−1

]−1
and b∗ = B∗ [xtz +B−1b

]
.

The final Gibbs sampling-based algorithm consists of choosing an initial value β(0), and iteratively sam-
pling z(l) and β(l), l = 1, 2, . . . , N, from the full conditional distributions.

In the second step, a sample corresponding to the posterior probabilities of suffering from vocal nodules
for each university lecturer (i = 1, 2, . . . , n) is obtained. In order to do it, the parameter values, β(l), are
considered together with the acoustic features of the university lecturers that have to be classified. Hence,
by taking into account the probit model (1), the probabilities are given by:

p
(l)
i = Ψ

(
xt
iβ

(l)
)
, i = 1, 2, . . . , n, l = 1, 2, . . . , N. (2)

3.2 Modelling preferences

Once the posterior probabilities have been obtained, the next step is to select a suitable utility function.
Observe that the set of alternatives contains three possible decisions: no treatment (NT) and the type of
treatment, which will depend on the university lecturer’s needs and are called medium (MT) or high (HT)
treatments. In addition, by taking into account the previously calculated probabilities, the states of nature
are healthy (H) or suffering from nodules (SN). In this context, a multicriteria additive utility function is
considered for all university lecturers. Those criteria are the cost of the corresponding treatment and the
utility of recovery. This information is obtained from doctors and health financial managers.
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Specifically, the following utility functions are considered:

Ui (·, SN) = q·i 0 + (1− q·i)A+ C·i ,

Ui (·,H) = 0,

where · represents the different decisions (treatments), and q·i is the probability of recovery with MT or
HT for the patient i. Note that the probability of recovery with NT is 0. A is a parameter which denotes
the cost of not improving after the treatment (he/she still sick). The constants C·i include the mean costs
and the inconvenience of the treatment. In addition, they depend on the considered treatment: MT or HT.
As a consequence, the values for the parameter A and the constants Ci are negatives.

Therefore, a classification approach based on the maximization of the expected utility is proposed and
applied to each university lecturer. The expressions for the corresponding expected utilities are obtained.
If πi denotes the posterior distribution corresponding to the probability of suffering from vocal nodules
and Θ the states of nature, then:

Ui (NT) = Eπi [Ui (NT,Θ)] = (1− pi) Ui (NT,H) + pi Ui (NT,SN) =

= (1− pi) 0 + pi A = pi A, (3)

where pi is the mean for the posterior probabilities of suffering from nodules.
In the same way, the expressions for the utilities with the MT and HT are, respectively,

Ui (MT) = Eπi [Ui (MT,Θ)] = pi (1− qMTi)A+ CMTi , (4)
Ui (HT) = Eπi [Ui (HT,Θ)] = pi (1− q HTi)A+ CHTi , (5)

where qMTi and qHTi are provided by doctors based on previous information. This framework can be
also used when information about possible relationships between the probabilities pi and qMTi and the
probabilities pi and qHTi are available.

3.3 A Monte Carlo approach

The expectations given in (3), (4) and (5) can be easily estimated by considering the posterior probabilities
obtained in (2). Hence, the corresponding estimates for each individual, i = 1, 2, . . . , n are given by the
following expressions:

Ûi (NT) = A p
(l)
i ,

Ûi (MT) = A p
(l)
i (1− qMTi) + CMTi ,

Ûi (HT) = A p
(l)
i (1− qHTi) + CHTi ,

where p
(l)
i =

1

N

N∑
l=1

p
(l)
i .

On the other hand, when information that allows to relate the probabilities qMTi and qHTi to the proba-
bility pi is available, then functions qMTi

(pi) and qHTi
(pi) could be considered. Thus, the previous approx-

imations are given by:

Ûi (NT) = A p
(l)
i , (6)

Ûi (MT) = A p
(l)
i

(
1− qMTi(p

(l)
i )

)
+ CMTi , (7)

Ûi (HT) = A p
(l)
i

(
1− qHTi(p

(l)
i )

)
+ CHTi , (8)
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where p
(l)
i

(
1− qMTi(p

(l)
i )

)
=

1

N

N∑
l=1

p
(l)
i

(
1− qMTi(p

(l)
i )

)
and a similar expression is obtained for

p
(l)
i

(
1− qHTi(p

(l)
i )

)
.

Next section shows how the proposed approach is applied in a real scenario and the experimental results
obtained.

4 Experimental results

The response variable Y takes the value y = 1 for people suffering from vocal fold nodules and y = 0
for healthy subjects. The prior distribution of β, π (β), is a noninformative normal distribution with mean
b = (0, 0, 0, 0, 0)t and covariance matrix B = diag5 (100) .

The proposed approach is applied to obtain a random sample corresponding to the 5 × 1 vector β of
unknown regression parameters. The Gibbs sampling-based algorithm is run for 10,000 iterations with a
burn-in of 500 samples. The sample values are taken by considering intervals of ten units length. By using
these specifications, the chain seems to have converged. Therefore, a sample of size N = 950 is obtained,

i.e., β(l) =
(
β
(l)
0 , β

(l)
1 , β

(l)
2 , β

(l)
3 , β

(l)
4

)t

, l = 1, 2, . . . , 950.

Once the random sample for the regression vector β has been obtained by using previous information
available from subjects which are known to be healthy or diseased, then, in the following step, the posterior
probabilities of suffering nodules for university lecturers are calculated considering the collected database
of their acoustic features xt

i = (1, xi1, xi2, xi3, xi4), i = 1, 2, . . . , 90, where xi1, xi2, xi3, xi4 denote the
values for the variables sex, shimmer, HNR and RPDE. The expression for the posterior probabilities in
(2) becomes:

p
(l)
i = Ψ

(
xt
iβ

(l)
)
, i = 1, 2, . . . , 90, l = 1, 2, . . . , 950. (9)

Now, the expected utilities given in the equations (6), (7) and (8) are estimated. Following the recommen-
dations provided by the Prevention and Health Promotion Service of the University of Extremadura, the
following values are considered: A = −2500, CMTi = −200 and CHTi = −500. These considered costs
are averaged costs based on the information on previous university lecturers.

The probabilities of recovery with the MT (qMTi ) and HT (qHTi) depend on the estimated posterior
probabilities of suffering nodules p

(l)
i given in expression (9). In addition, it is also considered that both

qMTi and qHTi are varying according to a threshold. This value has been taken as 0.8 for the two recovery
probabilities in this application. Hence, the functions qMTi(pi) and qHTi(pi) in the Monte Carlo approach
given in (7) and (8) have the following expressions:

qMTi(p
(l)
i ) =

{
0 if p(l)i > 0.8

0.8 if p(l)i ≤ 0.8
and qHTi(p

(l)
i ) =

{
0.5 if p(l)i > 0.8

1 if p(l)i ≤ 0.8

Note that the smaller the values of p(l)i are, the larger the values of qMTi and qHTi are. These specifications
have also been provided by the members of the Prevention and Health Promotion Service of the University
of Extremadura, and the estimated expected utilities for each university lecturer, i = 1, 2, . . . , 90, are:

Ûi (NT) = −2500 p
(l)
i ,

Ûi (MT) = 2500 p
(l)
i

(
qMTi(p

(l)
i )− 1

)
− 200,

Ûi (HT) = 2500 p
(l)
i

(
qHTi(p

(l)
i )− 1

)
− 500.
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where p
(l)
i

(
qMTi(p

(l)
i )− 1

)
=

∑950
l=1 p

(l)
i

(
qMTi(p

(l)
i )− 1

)/
950. The same expression is obtained for

p
(l)
i

(
qHTi(p

(l)
i )− 1

)
.

Figure 2 shows the estimated expected utilities for each university lecturer and its maximum value.
It can be observed that the maximum expected utility corresponds to NT for 46 lecturers, to MT for 23
lecturers, and to HT for 21 lecturers. Therefore, these university lectures are classified in those groups.
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Figure 2 Expected utilities and maximum value.

The posterior predictive distributions for the university lecturers are shown in Figure 3. Note that all
distributions are asymmetric. Besides, the probabilities of suffering from vocal fold nodules are increasing
according to the considered group in the following order: NT, MT, and HT. In particular, for patients into
NT group, these probability values are small. Table 1 presents the quartiles of the estimated posterior
probabilities in (9) for each group. Observe that the interquartile ranges are very different from one group
to another.

NT MT HT
Q1 0.00005 0.12448 0.62481
Q2 0.00181 0.24719 0.78559
Q3 0.01532 0.40898 0.94099

Table 1 Quartiles for the posterior probabilities corresponding to NT, MT and HT.

Finally, a university lecturer from each group is considered. The generated posterior probabilities in
(1) are presented in Figure 4. In can be observed that lecturer 7 has lower probability values of suffering
from nodules than lecturer 90. At the same time, lecturer 2 has higher probability values of suffering the
disease than lecturer 90. As it is expected, they have been classified into non treatment, medium and high
treatments, respectively.

The source code to reproduce the results is available as Supporting Information on the journal’s web
page (http : //onlinelibrary.wiley.com/doi/xxx/suppinfo).
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Figure 3 Posterior predictive distributions for the university lecturers classified into NT, MT and HT
groups.

This approach has been implemented and used in the Prevention and Health Promotion Service of the
University of Extremadura in the context of the Disease Prevention Program. The medium treatment
has been mainly focussed on logopaedics interventions and the high treatment considers phoniatrics and
otorhinolaryngology interventions.

Next, a simulation-based analysis is considered to address a theoretical scenario where the real status of
the subjects are known.

5 Simulation-based analysis

A simulation-based experiment is conducted to analyze the model performance. A total of N = 100
simulations have been carried out in a random stratified cross-validation. For each simulation, a sample
corresponding to 92 subjects has been generated partially based on the experimental data considered in
the previous section. Specifically, the gender variable is generated by using a Bernoulli distribution with
parameter p = 0.5. With respect to the acoustic variables, Table 2 shows the way they have been gen-
erated so that the distributions corresponding to the commercial database MEEI in Subsection 2.2 can be
approximated.

Variables Healthy distributions Diseased distributions
Shimmer Gamma(2, scale = 120) Gamma(5, scale = 100)
HNR Normal(25, 3.5) Normal(19, 4.5)
RPDE Normal(0.25, 0.17) Normal(0.33, 0.1)

Table 2 Distributions to generate acoustic covariates for healthy and diseased subjects.
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Figure 4 Posterior probabilities of suffering the disease.

Each generated dataset is randomly split into a training subsample composed by 53 individuals drawn
from healthy distributions and 19 people drawn from diseased distributions in Table 2. The remaining
20 subjects (15 and 5 individuals distributed according to healthy and diseased distributions, respectively)
constitute the testing subsample. The proposed approach learns from the training subsample and the accu-
racy is computed from the testing subsample.

Once the different samples have been obtained, a probit model is applied for each simulation. Thus, it
is obtained a random sample for the regression vector β by using the training subsample. Then, the main
goal is to classify the 20 subjects from the testing subsample into three different treatments: NT, HT, and
MT. By using the sample corresponding to the regression vector, the posterior probabilities of suffering
from nodules given in (2) are calculated. Then, the expected utilities given in equations (6), (7) and (8)
are estimated in the same way as in the previous application. In addition, given that the subjects have been
artificially generated, the expected utility corresponding to the different treatments can be analytically
calculated. That is, for each subject i, i = 1, 2, . . . , 20, the probability of suffering from vocal nodules
is exactly known. Hence, these values can be used in order to calculate the expected utilities Ui (NT),
Ui (MT) and Ui (HT) given in expressions (3), (4) and (5), respectively.

Next, three measures are proposed to evaluate the approach. Two of them are based on the estimation of
the expected utilities and the other one is related to the estimation corresponding to the allocated treatment.

For each subject i, i = 1, 2, . . . , 20, the errors between the exact and the estimated values obtained for
the expected utilities are denoted by:

Ui|| (NT) =
∣∣∣Ui (NT)− Ûi (NT)

∣∣∣ ,
Ui|| (MT) =

∣∣∣Ui (MT)− Ûi (MT)
∣∣∣ ,

Ui|| (HT) =
∣∣∣Ui (HT)− Ûi (HT)

∣∣∣ ,
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where Ui (NT), Ui (MT) and Ui (HT) are calculated by considering the probability of suffering from nod-
ules whereas Ûi (NT), Ûi (MT) and Ûi (NT) are computed by using the mean of the generated posterior
predictive probabilities.

Thus, once the exact values have been calculated for each subject i and, as a consequence thereof, the
treatment with the highest value for the expected utility is known. Then, the corresponding error Ui|| (NT),
Ui|| (MT) or Ui|| (HT) is computed. Finally, it is considered:

Ûmax = max
i=1,2,...20

{
Ûimax

}
,

where Ûimax =
∣∣∣U∗

i (·)− Ûi (·)
∣∣∣, with U∗

i (·) = max {Ui (NT) ,Ui (MT) ,Ui (HT)} and · denotes the
corresponding treatment for the maximum in U∗

i (·). That is, for each subject i, it is computed the difference
between the real expected utility and the estimated one for the optimal treatment. Hence, the maximum of
the previous values is taken as a measure of these errors.

On the other hand, it is also taken:

Ûmax =
20∑
i=1

1

20
Ûimax.

Therefore, it is shown the mean distance corresponding to the errors obtained as the differences between
the maximum analytical value and the corresponding estimated one for the expected utilities.

Observe that, the two measures above-mentioned are related to errors associated to the expected utility
of the optimal decision. The first one, Ûmax, only focuses on the subject i with the highest error value,
Ûimax, whereas the second measure, Ûmax, is an average of the highest error value for each subject i,
i = 1, 2, . . . , 20.

Finally, a third measure is based on the optimal decision. Thereby, MP refers to the rate of misclassified
subjects. Table 3 shows the mean of these three measures together with the standard deviation, for N = 100
replications of the procedure:

Measures Ûmax Ûmax MP
Mean of the values 623.35 89.91 0.109
Standard deviation 344.43 50.24 0.085

Table 3 Evaluation measures.

Observe that, the first measure in Table 3 presents a high value, since it is based on the misclassified
subject for whom Ûmax takes the highest value in each replication. When the mean for the previous
differences, Ûimax, are considered, then it obtained that the average value for all replications is 89.91.
Note that, the values for these reference measures are varying from around 2000 to around 2500 when
absolute value is considered (see, Figure 2). Thus, the obtained values for Ûmax and Ûmax are not large
as compared with the previous ones. In addition, the average percentage of subjects correctly classified is
about 90%.

6 Conclusion

This paper presents an approach for the classification of university lecturers according to a treatment as-
sociated with the risk of suffering vocal problems. This procedure takes into account the probabilities of
recovery, the posterior probability of developing vocal problems and the utility function that includes the
different criteria, i.e. the cost of the corresponding treatment and the utility of recovery. Although, the
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approach have been applied to university lecturers for which an experiment has been conducted in the Pre-
vention and Health Promotion Service of the University of Extremadura, the approach can be applied to
other professionals that use the voice as a work tool.

To the best of the authors’ knowledge, this is the first approach based on acoustic features considering
costs to classify professionals of voice in three risk groups with different actions. The way the assignment
to groups is performed is based on automatic feature extraction, which is a non-invasive and low-cost
technique that can be implemented in Prevention and Health Promotion services of companies and public
administrations.

Acknowledgments

We thank Antonio Moreno and Gloria Gragales, as members of the Prevention and Health Promotion
Service of the University of Extremadura, for their help in the experimental part of this study. We also
thank the volunteers participating in the Disease Prevention Program of the University of Extremadura.

This research has been supported by projects MTM2014-56949-C3-3-R and MTM2017-86875-C3-2-R
(MINECO), and projects IB16054 and GR15106 (Junta de Extremadura/European Regional Development
Funds, EU).



13

References

Albert, J.H. and Chib, S. (1993) Bayesian analysis of binary and polychotomous response data. Journal of the American
Statistical Association, 88, 669–679.

Ali, Z., Alsulaiman, M., Elamvazuthi, I., Muhammad, G., Mesallam, T.A., Farahat, M., and Malki, K.H. (2016) Voice
pathology detection based on the modified voice contour and svm. Biologically Inspired Cognitive Architectures,
15 (Supplement C), 10–18.

Ashby, D. and Smith, A.F.M. (2000) Evidence-based medicine as Bayesian decision-making. Statistics in Medicine,
19 (23), 3291–3305.

Baghai-Ravary, L. and Beet, S.W. (2013) Automatic speech signal analysis for clinical diagnosis and assessment of
speech disorders, Springer Briefs in Electrical and Computer Engineering, Springer.

Baken, R.J. and Orlikoff, R.F. (2000) Clinical Measurement of Speech and Voice, Singular Thomson Learning, San
Diego, 2nd edn..

Barbini, E., Manzi, P., and Barbini, P. (2013) Current Topics in Public Health, Dr. Alfonso Rodriguez-
Morales (Ed.), InTech, DOI: 10.5772/52402, https://www.intechopen.com/books/current-topics-in-public- 
health/bayesian-approach-in-medicine-and-health-management, chap. Bayesian Approach in Medicine and 
Health Management, pp. 17–35.
Bhattacharyya, N. (2014) The prevalence of voice problems among adults in the United States. Laryngoscope, 124,

2359–2362.
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