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Skewed link-based regression models for misclassified
binary data

Lizbeth Naranjo · Carlos J. Pérez ·
Jacinto Mart́ın

Abstract In this paper, we propose flexible Bayesian approaches for binary re-
gression models in the presence of misclassified data. These approaches consider 
asymmetric links based on the skew-normal and the asymmetric exponential po-
wer distributions. The computational difficulties have been avoided by using blue 
data augmentation schemes. The idea of using data augmentation schemes with 
two types of latent variables is exploited to derive efficient MCMC algorithms. A 
simulation study and an application illustrate the model performance in compa-
rison with the standard methods that do not consider skewness and/or which do 
not consider misclassification.

Keywords Asymmetric link function · Bayesian inference · Binary regression · 
Data augmentation · Markov chain Monte Carlo method · Misclassification.

1 Introduction

Data-generating processes are sometimes not error-free when data are collected in 
the real world. In this context, noise parameters are necessary to correct the bias 
yielded by the use of data that has been measured with error. If the noise in a 
data generating process is not properly modelled, then the information may be
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perceived as being more accurate than it actually is. In many cases, this can lead
to a non optimal decision making. Therefore, statistical models should address the
problem of measurement error (see Gustafson (2003), Carroll et al. (2006) and
Buonaccorsi (2010)). For categorical data, this is named misclassification.

Generalised linear models have been used to describe the dependence of data
on explanatory variables when the binary outcome is subject to misclassification.
For example, Paulino et al. (2003) used Bayesian methods and misclassification
probabilities to characterise measurement error. McInturff et al. (2004) presented
methods for binomial regression when the outcome is determined using the results
of a single diagnostic test with imperfect sensitivity and specificity. Later, Achcar
et al. (2004) proposed a Bayesian logistic regression model, concentrating on the
sensitivity and specificity of medical tests in the presence of misclassification. Pau-
lino et al. (2005) presented a Bayesian analysis of misclassified binary data under
the framework of a logistic regression model with random effects. Finally, Naranjo
et al. (2014b) described the dependence of data on explanatory variables when the
binary outcome is subject to misclassification, considering both probit and t-link
regressions under Bayesian methodology. These authors used a data augmentation
framework to derive efficient Gibbs sampling and expectation-maximization, i.e.,
EM algorithm.

Several link functions have been considered when modelling binary response
data. The most popular models are the logistic and probit models. However, in
some applications, the overall fit can be improved by using asymmetric links. To
describe a link, Chen et al. (1999) considered the rates at which the probabilities of
a given binary response approaches 1 or 0. Under this notion, a link is symmetric
if the rates are the same, otherwise the link is skew or asymmetric. A skew link
can be characterised as positively skew if the rate approaching 1 is faster than the
rate approaching 0, otherwise it is negatively skew.

The analysis of asymmetric links for binary response models has been extensive.
For example, Aranda-Ordaz (1981) introduced two families of power transforma-
tions to model symmetric and asymmetric departures from the logistic model.
Stukel (1988) proposed a class of generalised logistic models. Later, Czado (1994)
extended the binary regression models, such as logistic or probit regression, to in-
clude links to parametric transformation families. These binary regression models
with parametric links are designed to avoid possible link miss-specification and
to improve the fit of some data sets. By using the latent variable approach that
was developed by Albert and Chib (1993), Chen et al. (1999) proposed a class of
skew link-based models, where the underlying latent variable has a model struc-
ture with mixed effects. Liu (2004) proposed a robust symmetric t-link, which is
called a robit link, in which the normal distribution of the probit model is replaced
by a t distribution with unknown degrees of freedom. Kim et al. (2008) introduced
a link that is based on a generalised t distribution. Later, Bazán et al. (2010)
reviewed several asymmetrical links for binary regression models and presented
a unified approach for two skew-probit links proposed in the literature. Finally,
Naranjo et al. (2015) analyzed a binary regression model by using the inverse of
the asymmetric exponential power cumulative distribution function (cdf) as the
link function.

In this paper, asymmetric link-based regression models for misclassified binary
data are developed under the Bayesian methodology. The skew-normal (SN) and
the asymmetric exponential power (AEP) distributions are considered. The pro-
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posed approaches are extensions, which address misclassifications, of the error-free
regression models proposed by Chen et al. (1999) and Naranjo et al. (2015). We
integrate the method that is used in Naranjo et al. (2014b) to address misclassifi-
cations (for both SN and AEP) and the idea of using a scale mixture of uniform
representation of the AEP distribution in Naranjo et al. (2015) into a new frame-
work. Computational difficulties have been avoided by using data augmentation
schemes, which have allowed us to derive efficient Markov chain Monte Carlo
(MCMC) algorithms (see Gamerman and Lopes (2006)). Although the augmented
models increase the dimensionality, the generation processes are easier and the
convergence is improved. A simulation shows the potential of the proposed appro-
aches. To the best of the authors’ knowledge, the approaches that we propose here
are the first to address misclassification at the same time that flexible asymmetric
link functions are considered for the involved binary regression models.

The potential applicability of the proposed approaches to many fields of kno-
wledge makes this proposal interesting. For example, Paulino et al. (2005) were
motivated by data gathered in a study of human papillomavirus (HPV) infection.
Their purpose was to analyze the association of several potential risk factors with
HPV cervical infection. However, the available test for HPV infection was limited
to one subtype or a group of subtypes, which meant that a certain number of
infections were missed. Therefore, the response variable is prone to be affected
by misclassification, producing some false negative results and less probable, false
positive results due to sample contamination and other reasons associated with la-
boratory work. Another motivating problem was studied by Rekaya et al. (2001),
who analyzed a threshold model for misclassified binary responses with applicati-
ons to animal production. In this case, the genetic evaluation for fertility is based
on a test that is also subject to misclassification. It was found that skewness in
the link function could help in misclassified binary data analysis when the success
probability is approaching 1 or 0 at a different rate.

The rest of this paper is structured as follows. Section 2 describes how misclas-
sification is addressed in the proposed binary regression models. Section 3 explores
the posterior distributions. Section 4 shows the performance of the proposed ap-
proaches through a simulation example. Section 5 considers a caries experience
data set to illustrate the proposed approaches. Finally, Section 6 presents the
conclusion. Some technical details are given in the Appendix.

2 Addressing misclassification in binary regression models

Suppose that we observe n independent binary random variables Y1, . . . , Yn, where
Yi is distributed as a Bernoulli with probability of success p(Yi = 1) = τi. These
probabilities are defined as τi = pi(1 − λ10) + (1 − pi)λ01, where pi is the true
positive probability for the ith observation, λ10 is the false negative probability,
and λ01 is the false positive probability. The parameters pi are related to a set of
covariates xi = (xi1, . . . , xik)T through a binary regression model.

We assume a binary response model with pi = Ψ(xTi β), where Ψ is a cdf. First,
we have considered a skew-normal cdf with location parameter µ = 0, scale para-
meter σ = 1 and skew parameter δ, as denoted by SN(µ, σ, δ), whose probability
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density function (pdf) is given by

ψSN (w|µ, σ, δ) =
2

σ
φ

(
w − µ
σ

)
Φ

(
δ(w − µ)

σ

)
.

Second, we have considered the asymmetric exponential power distribution deno-
ted by AEP(µ, σ, α, θ1, θ2), which was studied in Zhu and Zinde-Walsh (2009) and
applied to binary regression models in Naranjo et al. (2015). The pdf is given by

ψAEP (w|µ, σ, α, θ1, θ2) =


1
σ exp

(
−
∣∣∣ w−µ
ασ/Γ (1+1/θ1)

∣∣∣θ1) if w ≤ µ

1
σ exp

(
−
∣∣∣ w−µ
(1−α)σ/Γ (1+1/θ2)

∣∣∣θ2) if w > µ
,

where µ = 0 is the location parameter, σ = 1 is the scale parameter, α ∈ (0, 1) is
the skew parameter, and θ1 > 0 and θ2 > 0 are the left and right tail parameters
(i.e., shape parameters or power parameters controlling kurtosis).

Although the posterior distributions of the parameters are intractable for direct
generation, it is possible to generate samples from them by augmenting the models
with latent variables. The first type of latent variable to be introduced is related
with the misclassification (see Naranjo et al. (2014b)). Binary latent variables
cihk, h, k = 0, 1, are defined, where h represents the index for the true value and
k represents the index for the observed value. When the latent variable takes a
value of one, it denotes the group where the observation i has been assigned: true
positive (ci11 = 1), false negative (ci10 = 1), false positive (ci01 = 1), or true negative
(ci00 = 1). Note that ci11+ci01 = 1 (when yi = 1) or ci10+ci00 = 1 (when yi = 0). The
latent vectors ci = (ci11, c

i
10, c

i
01, c

i
00)T and the latent matrix c = (c1, c2, . . . , cn)T

are then defined.
The second type of latent variable is defined in a similar way as in Chen et al.

(1999) and Naranjo et al. (2015) for the SN and AEP links, respectively. This is
based on the idea of data augmentation that was developed by Albert and Chib
(1993); that is, n independent latent variables w1, . . . , wn are considered such that
ci11 + ci10 = 1 if wi > 0 and ci01 + ci00 = 1 if wi ≤ 0, where, for the SN link,

wi = xTi β + δzi + εi, zi ∼ G, εi ∼ F , (1)

and, for the AEP link (see Naranjo et al. (2015)),

wi = xTi β + εi, εi ∼ H, (2)

where zi and εi are independent, δ ∈ (−∞,∞) is a skew parameter, G is the
half standard normal distribution defined on (0,∞), F is the standard normal
distribution, and H is an AEP distribution.

In Equation (1), when the intercept is known, the model is positively skew if
δ > 0 and it is negatively skew if δ < 0. When δ = 0, the skew link-based model be-
comes the probit model. Equation (2) provides a flexible link function, which allows
us to model symmetric/asymmetric and lighter/heavier tails. General symmetric
link cases can be obtained with an AEP(0, 1, 0.5, θ, θ) distribution. As symmetric
particular cases, the probit model is obtained by using AEP(0,

√
2π, 0.5, 2, 2)) and

the exponential power link by using AEP(0, 2θ/2+1Γ (θ/2 + 1), 0.5, 2/θ, 2/θ) (see
Naranjo et al. (2014a)).

Further details of the SN and AEP models are presented in the following sub-
sections.
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2.1 Skew-normal link

To define the SN link-based model from (1), the conditional distribution of wi given

zi is N
(
xTi β + δzi, 1

)
, and the marginal distribution of wi is SN

(
xTi β,

√
1 + δ2, δ

)
.

The skew-normal model defined by Chen et al. (1999) has the limitation that
the intercept and the skew parameter δ are confounded with each other. To avoid
this problem, it is possible to exclude the intercept from the model or to fix the
intercept. Another option is to use a proper informative distribution for δ.

2.2 Asymmetric exponential power link

When the AEP link-based model is assumed, then pi = Ψ(xTi β), where Ψ is the cdf
of the distribution AEP(0, 1, α, θ1, θ2). Independent latent variables w1, . . . , wn are
introduced, where wi given β, α, θ1 and θ2 is distributed as AEP(xTi β, 1, α, θ1, θ2).
The mixture representation of the AEP defined by Naranjo et al. (2015) is used
by including latent variables u1i and u2i, leading to the following expressions

wi|x,u1,u2,β, α, θ1, θ2

∼

U
(
xTi β − α

Γ (1+1/θ1)
u
1/θ1
1i , xTi β

)
with probability α

U
(
xTi β , xTi β + (1−α)

Γ (1+1/θ2)
u
1/θ2
2i

)
with probability 1− α

,

and

u1i|θ1 ∼ Ga (1 + 1/θ1, 1) , u2i|θ2 ∼ Ga (1 + 1/θ2, 1) .

Note that, if wi ∼ AEP(xTi β, 1, α, θ1, θ2), then the following equality holds:
if 0 < xTi β, then p(wi < 0) = p(w∗i < 0), where w∗i ∼ AEP(xTi β

∗, 1, 1/2, θ1, θ2)
and β∗ = β/(α/2), and if xTi β < 0, then p(wi > 0) = p(w∗i > 0), where w∗i ∼
AEP(xTi β

∗, 1, 1/2, θ1, θ2) and β∗ = β/((1−α)/2). This means that parameters α
and β are not identifiable. Without loss of generality, the intercept parameter can
be set as β1 = 1. Therefore, the shape of the tail related with the observations equal
to zero is modeled with the parameter θ1, and the shape of the tail related with
the observations equal to one is modeled with the parameter θ2. If the observed
data are grouped, then the model can be used by ungrouping the data, and the
parameters θ1 and θ2 are related with proportions lower than α and greater than
α, respectively.

3 Exploring the posterior distributions

The posterior distribution is explored in this section. Given the data D = {x,y},
the joint posterior distribution of the unobservables c, β, λ, and Θ is

π(β, Θ, c,λ|D) (3)

∝ π(β)π(Θ)π(λ)

×
n∏
i=1

[
{pi(1− λ10)}c

i
11{piλ10}c

i
10{(1− pi)λ01}c

i
01{(1− pi)(1− λ01)}c

i
00

×
(
I[yi = 1]I[ci11 + ci01 = 1] + I[yi = 0]I[ci10 + ci00 = 1]

) ]
,
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where Θ is the set of parameters for each link, specifically, Θ = {δ} for the SN
link and Θ = {α, θ1, θ2} for the AEP link.

The prior distribution for the regression parameters vector is a multivariate

normal one Nk(b,B); that is, π(β) ∝ exp
{
−1

2 (β − b)TB−1(β − b)
}

. Beta dis-

tributions are assumed for the misclassification parameters. This is the natural
choice for modelling the uncertainty about probabilities; that is, Be(a10, b10) and
Be(a01, b01). Although, non-informative prior distributions can be used in any
Bayesian context, in this context, the model performance will improve when infor-
mative prior distribution for the misclassification parameters is considered. The
prior distribution for the misclassification parameter can be elicited based on his-
torical information, expert opinion and/or validation datasets. This information
is useful to correct the bias produced by the misclassified data. Without this in-
formation, models that address misclassification may not have an advantage over
error-free models. The other prior distributions are: δ ∼ Normal(µδ, σ

2
δ ), α ∼ π(α),

θ1 ∼ π(θ1), and θ2 ∼ π(θ2). Care must be taken when using improper prior dis-
tributions for the shape parameters of the AEP distribution (see Rubio (2015)).

To apply a Gibbs sampling algorithm for the joint posterior distribution (3),
the full conditional distributions must be derived. The full conditional distributions
for c and λ are easy to obtain

ci|β, Θ,λ,D ∼ Multinomial
(

1, πci
(
ci11, c

i
10, c

i
01, c

i
00

))
, (4)

λ10|β, Θ, c,D ∼ Be

(
a10 +

n∑
i=1

ci10, b10 +
n∑
i=1

ci11

)
,

λ01|β, Θ, c,D ∼ Be

(
a01 +

n∑
i=1

ci01, b01 +
n∑
i=1

ci00

)
, (5)

where τi = pi(1− λ10) + (1− pi)λ01 and

πci(1, 0, 0, 0) = pi(1− λ10)I[yi = 1]/τi,

πci(0, 1, 0, 0) = piλ10I[yi = 0]/(1− τi),
πci(0, 0, 1, 0) = (1− pi)λ01I[yi = 1]/τi,

πci(0, 0, 0, 1) = (1− pi)(1− λ01)I[yi = 0]/(1− τi).

However, the full conditional distributions π(β|Θ, c,λ,D) and π(Θ|β, c,λ,D)
do not have closed expressions that would allow us to easily generate samples.
Although generating samples from these distributions could be addressed by using
a Metropolis-Hastings algorithm, a Gibbs-within-Gibbs or Metropolis-Hastings
steps-within-Gibbs algorithm is more efficient and easier to implement by con-
sidering the introduction of latent variables in π(β, Θ|c,λ,D).

The proposed framework is general for both SN and AEP link-based binary
regression models that address misclassification. We are able to derive the Gibbs
sampling algorithms because of the way that the latent variables have been in-
cluded in the models allows. Further details of the full conditional distributions
of the parameters for SN link are provided in Subappendix A.1 and for AEP in
Subappendix A.2.
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4 Simulation-based example

To compare several competing models, the total absolute error (TAE) is proposed
to measure the discrepancy between the real probabilities and the estimated pro-
babilities. This is defined as TAE =

∑n
i=1 |ϑi−ϑ̂i|. However, this is only applicable

when the data are simulated or when a gold standard is available and, therefore,
the true classification is known. Here ϑ and ϑ̂ are the generated probability and
the fitted probability, respectively, based on the model under consideration. For
the error free models ϑ = p and thus ϑ̂ = p̂. For the models considering misclassifi-
cation, we consider both fitted probabilities; this means that the true probabilities
ϑ = p and then ϑ̂ = p̂ (TAE), and the probabilities addressing misclassification

ϑ = τ and so ϑ̂ = τ̂ (TAE mis).
In this section we use simulation to show that when data are generated from

skew link models without misclassification and errors are introduced in the re-
sponses, the skew models considering misclassification perform better than both
the symmetric link model (considering misclassification) and the standard skew
models (error free). This suggests that the proposed models can be used as an
alternative for data when the data generation process is unknown and it can pos-
sibly be related to misclassified binary regression and skew links. Next, we will
present an illustrative example.

Datasets are generated under the SN and AEP models by using two covariate
sets, which are generated from xi1 ∼ U(0, 2), and xi2 ∼ U(0, 2), for i = 1, . . . , n,
where n = 200, δ = 5, α = 0.3, θ1 = 1, θ2 = 2, and the probabilities are
obtained for the error free model by pi = Ψ(xTi β), where β = (1,−5, 2)T and
β = (1, 1,−7)T , and Ψ is the cdf of SN(0,

√
1 + δ2, δ) and AEP(0, 1, α, θ1, θ2).

The true binary dependent variable ytrue is randomly generated by using the
following process: (i) generate ui ∼ U(0, 1); (ii) if pi ≥ ui, then ytruei = 1,
else ytruei = 0. Then, different misclassification parameters are used, specifi-
cally, (λ10, λ01) = {(0.1, 0.1), (0.01, 0.2), (0.2, 0.01), (0.05, 0.15)}; that is, the out-
comes are randomly misclassified according to the following process: (iii) generate
vi ∼ U(0, 1); (iv) if ytruei = 1 and vi ≤ λ10 then yi = 0, but if ytruei = 0 and
vi ≤ λ01 then yi = 1, else yi = ytruei . Thus, the new response variable y remains
equal to ytrue for the non-misclassified outcomes. Figure 1 shows two misclassi-
fied covariate datasets that have been randomly chosen from a model with SN
link having δ = 5 and from a model with AEP link having α = 0.3, θ1 = 1 and
θ2 = 2. In the left-hand plots, the straight lines represent the cut points at 0.5 of
the binary regression models. In the right-hand plots, the graphics show the effect
of asymmetric link functions, the points are the response variables and the curves
represent the corresponding probability of success pi = Ψ(xTi β). Note that the
rates approaching 1 and 0 are not the same.

The main objective is to compare the performance of the proposed models with
the standard models, both without considering misclassification assumption and
without using skew links. This simulation-based scenario allows us to compare the
predictive outcomes with the real outcomes instead of the observed outcomes and,
therefore, to know which model performs better.

We have considered four error free models, two of them with symmetric link
functions –the probit model (Normal) defined by Albert and Chib (1993) and the
exponential power link model (EP) defined by Naranjo et al. (2014a)– and another
two with asymmetric link functions –the skew probit link model (SN) defined by
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Fig. 1 Datasets with misclassification for SN link with δ = 5 (Top) and for AEP link with
α = 0.3, θ1 = 1 and θ2 = 2 (Bottom). Left plots: the straight lines represents the cut points at
0.5. Right plots: the points are the response variable and the curves represent the corresponding
probability of success.

Chen et al. (1999) and the asymmetric exponential power link model (AEP) defi-
ned by Naranjo et al. (2015). Moreover, we have applied four models considering
misclassification, two of them have symmetric link functions –the probit model
(Normal Mis) defined by Naranjo et al. (2014b) and the exponential power link
model of Naranjo et al. (2014a) addressing misclassification (EP Mis)– and, finally,
the two models with misclassification errors and skew links proposed in this paper
–SN Mis and AEP Mis.

Prior distributions for β and λ are given by β ∼ Nk(b,B), where bT = (0, 0, 0)
and B = diag(100, 100, 100), λ10 ∼ Be(a10, b10) and λ01 ∼ Be(a01, b01), where a10,
b10, a01 and b01 are defined such that λ10 = a10

a10+b10
, λ01 = a01

a01+b01
, a10 + b10 = 50

and a01 + b01 = 50. Besides, for the SN models δ ∼ Normal(0, 100), and for the
AEP models α ∼ U(0, 1), θ1 ∼ U(1, 2) and θ2 ∼ U(1, 2).

The algorithm has been implemented in R software, using a 2.5GHz Intel Core
i7 Processor with 16GB 1600 MHz DDR3 RAM. The BOA package has been used
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to analyze the convergence (see Smith (2007)). Specifically, Raftery and Lewis,
and Heidelberger and Welch convergence diagnostic techniques have been used.
For the AEP link, a total of one million iterations of MCMC were generated
by using Gibbs sampling algorithms; then, it is considered a burn-in of 500, 000.
For the SN link, a total of 20, 000 iterations of MCMC were generated by using
Gibbs sampling algorithms; then, it is considered a burn-in of 10, 000. In these
specifications, the chains seem to have converged. Although the introduction of
latent variables increases the autocorrelation and longer chains are needed, the
convergence is satisfactory.

The estimated TAEs for each model are given in Tables 1 and 2. The models
addressing misclassification produce the best performance and they have the lowest
TAE estimates.

Table 1 Estimated mean (SD) TAEs for SN data with different misclassification probabilities.

Model TAE TAE mis
Data: SN with misclassification (λ10 = 0.1, λ01 = 0.1)
Normal 18.299 (4.623) —
Normal Mis 16.740 (7.461) 11.035 (4.381)
SN 16.342 (5.118) —
SN Mis 13.215 (5.117) 9.528 (3.127)
Data: SN with misclassification (λ10 = 0.01, λ01 = 0.2)
Normal 30.086 (5.573) —
Normal Mis 17.799 (7.947) 11.021 (4.285)
SN 27.058 (6.137) —
SN Mis 13.913(4.950) 10.014 (2.670)
Data: SN with misclassification (λ10 = 0.2, λ01 = 0.01)
Normal 16.736 (4.790) —
Normal Mis 13.712 (7.078) 9.795 (4.588)
SN 16.923 (4.987) —
SN Mis 11.264 (3.301) 8.241 (2.672)
Data: SN with misclassification (λ10 = 0.05, λ01 = 0.15)
Normal 23.760 (5.005) —
Normal Mis 17.566 (7.192) 11.204 (4.167)
SN 21.298 (5.561) —
SN Mis 13.254 (4.339) 9.621 (2.657)

5 Application to caries data

The Signal-Tandmobiel R© (ST) study is a longitudinal oral health intervention
project conducted in Flanders (North of Belgium) between 1996 and 2001 (see,
Vanobbergen et al. (2000)). A total of 4468 children (2315 boys and 2153 girls)
were examined on a yearly basis during their primary school time (between 7 and
12 years of age) by one of sixteen trained dentists. The clinical examinations were
based on visual and tactile observations and took place in a mobile dental clinic,
with a standard chair and artificial dental light, and without radiographs. Data on
oral hygiene and dietary habits were obtained through questionnaires completed
by the parents.

Diagnosing CE is difficult due to several reasons. For instance, the view of
the dental examiner can be hampered, because composite materials can imitate
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Table 2 Estimated mean (SD)TAEs for AEP data with different misclassification probabili-
ties.

Model TAE TAE mis
Data: AEP with misclassification (λ10 = 0.1, λ01 = 0.1)
EP 29.607 (5.236) —
EP Mis 5.284 (2.201) 6.533 (2.262)
AEP 22.873 (4.177) —
AEP Mis 4.088 (1.985) 5.625 (2.229)
Data: AEP with misclassification (λ10 = 0.01, λ01 = 0.2)
EP 42.549 (5.815) —
EP Mis 5.155 (2.530) 6.620 (2.624)
AEP 34.475 (9.625) —
AEP Mis 3.868 (1.733) 5.675 (2.375)
Data: AEP with misclassification (λ10 = 0.2, λ01 = 0.01)
EP 18.378 (3.981) —
EP Mis 5.020 (2.162) 5.184 (1.701)
AEP 13.094 (3.858) —
AEP Mis 3.844 (1.824) 4.375 (1.420)
Data: AEP with misclassification (λ10 = 0.05, λ01 = 0.15)
EP 35.494 (5.545) —
EP Mis 4.908 (2.149) 6.351 (2.397)
AEP 31.379 (9.055) —
AEP Mis 4.243 (2.163) 5.777 (2.312)

the natural enamel so well that it is difficult to spot a restored lesion or the
location of the cavity, far back in the mouth. Besides, the dental examiner could
also classify discolorations as CE. So, diagnosing CE involves misclassifications.
Therefore, there exists no infallible scorer for CE. The best one can do is to take a
very experienced dental examiner, called benchmark (see Wacholder et al. (1993)),
who is assumed to be error-free or is nearly so.

Calibration exercises were performed by the 16 examiners according to the
guidelines of training and calibration published by the British Association for the
Study of Community Dentistry (BASCD, Pitts et al. (1997)). The calibration
of the dental examiners was performed by comparing their scores on the tooth
surfaces of a group of children to those of a benchmark examiner. In order to
maintain a high level of intra- and inter-examiner reliability, calibration exercises
were carried out twice a year for all examiners involved. A contingency table of
dental examiners and the benchmark examiner was determined, yielding Table
3 with misclassified scores presented in Lesaffre and Lawson (2012). Data of the
three calibration exercises were combined into one validation dataset, and also
examiners’ data were combined into one.

Table 3 Misclassification in the ST study.

Benchmark
0 1

Examiners 0 4684 146
1 87 428

Lesaffre and Lawson (2012) considered data collected in 2001 from 100 children
randomly selected. The purpose was to search for predictors of caries experience
(CE), being the covariates used: age at examination, gender, and dentition type
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(deciduous or permanent tooth). A subset of this dataset for 50 children is freely
available and will be used in this section.

One of the main problems of these data is the imbalance in the response,
having 75 teeth with CE (1’s) and 1125 teeth free of CE (0’s). Moreover, the
misclassification problem using data coming from ST study has been extensively
studied by using different models considering misclassification, see e.g. Mwalili
et al. (2007), Garćıa-Zattera et al. (2012) and Mutsvari et al. (2013). This suggests
that using an asymmetric link function in a misclassification-based framework
could provide good results.

The proposed model is defined as follows. Let Yi be the binary CE outcome
which is prone to misclassification, distributed as a Bernoulli(τi), where τi =
pi(1 − λ10) + (1 − pi)λ01, pi is the true probability, and λ01 and λ10 are the
misclassification probabilities. The relation between the true probabilities and the
covariates is given by

Ψ−1(pi) = β1 + βgender × genderi + βage × agei + βtype × typei.

Since misclassification has been proved to exist in these data, symmetric (probit
and EP) and asymmetric (SN and AEP) link functions are considered for models
based on misclassifications. Validation data, historical data and/or experts’ infor-
mation can be considered to elicit the prior distribution for the misclassification
parameters. In this case, from the misclassification scores in Table 3, the following
informative prior distributions for the misclassification parameters are used here:
λ01 ∼ Beta(87, 4684) and λ10 ∼ Beta(146, 428).

In order to avoid parameter identifiability problems, for the skew probit link
model considering misclassification (SN Mis) and for the asymmetric exponential
power link model considering misclassification (AEP Mis), intercept parameters
have been set to β1 = 0, and in the case of the AEP Mis model α = 0.5. MCMC
specifications were chosen to achieve convergence with the four models. Conver-
gence checking was performed as described in the previous section.

Table 4 presents the estimated parameters for the four considered models. Note
that, for all the models, the misclassification probabilities are very well estimated,
basically they are around λ̂01 = 0.018 and λ̂10 = 0.255, very close to the estimated
values from the validation data, that are 0.0182351 and 0.2543554, respectively.
These accurate results are obtained because informative prior distributions have
been used for them.

Table 4 Estimated mean (SD) for model parameters.

Parameters Probit Mis EP Mis SN Mis AEP Mis
Intercept -0.8230 (0.1540) -1.0691 (0.3193) — —
Gender (girls) 0.4858 (0.2339) 0.6749 (0.4478) 0.6354 (0.3196) 0.7617 (0.4224)
Age -0.0292 (0.1082) -0.0412 (0.1092) -0.0512 (0.1319) -0.0789 (0.1374)
Dentition type -1.4405 (0.2530) -1.8729 (1.2068) -1.6853 (0.3024) -1.8374 (0.6690)
λ01 0.0187 (0.0020) 0.0185 (0.0019) 0.0187 (0.0020) 0.0185 (0.0020)
λ10 0.2551 (0.0182) 0.2539 (0.0186) 0.2546 (0.0183) 0.2536 (0.0180)
θ — 1.1418 (0.4419) — —
δ — — -1.4687 (0.4144) —
θ1 — — — 0.2574 (0.0233)
θ2 — — — 1.0476 (0.4128)
DIC 411.6 406.6 410.3 397.4
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The deviance information criterion (DIC) proposed by Spiegelhalter et al.
(2002) has been also presented in Table 4. DIC represents a goodness-of-fit crite-
rion. The lower its value is, the better the fitting is. SN Miss provides a better
data-fitting than Probit Miss. The same happens to AEP Miss with EP Miss.
This means that models with asymmetric links should be preferred for these data.
Therefore, this shows how misclassification-based models with asymmetric links
can be competitive with the symmetric-based ones in applications based on real
data.

6 Conclusion

Misclassified data are found in many studies and they have many different causes.
The impact that misclassified data may produce on inferences can be considera-
ble. Consequently, it is recommended to build statistical models that allow us to
address misclassification. Therefore, it is important consider the inclusion of noise
parameters to correct the bias arising from the misclassified data.

This paper proposes a Bayesian analysis of skew link-based regression models
when the binary outcome is subject to misclassification. We have considered links
based on skew-normal and the asymmetric exponential power. The use of two types
of latent variables enables us to avoid computational difficulties, even by increasing
the problem dimension. A simulation study shows the advantages of addressing
misclassification and using skew links. To the best of the authors’ knowledge, the
approaches that are proposed here are the first to address misclassification at the
same time that flexible asymmetric link functions are considered for the involved
binary regression models.

We have shown that when data are generated from skew link-based models and
errors are introduced into the responses, the skew link-based models considering
misclassification perform better than those with symmetric links, and they also
perform better than the error-free skew link-based models. This suggests that
skew link-based regressions can be used as an alternative for processes generating
misclassified data and when the rates at which the probabilities of a given binary
response approaches 1 and 0 are different.

A Full conditional posterior distributions

A.1 Skew-normal link

To sample from the distribution π(β, δ|c,λ,D), the model is augmented, including the latent
variables w1, . . . , wn related to the model by equation (1) and defined in Section 2. The new
distribution of interest is

π(z,w,β, δ|c,λ,D) ∝ π(β)π(δ)
n∏
i=1

{
φ(wi;x

T
i β + δzi, 1)φ(zi)I[zi > 0]

×
(
I[wi > 0]I[ci11 + ci10 = 1] + I[wi ≤ 0]I[ci01 + ci00 = 1]

)}
.
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Now, the four full conditional distributions are easily derived:

zi| · · · ∼ N

(
(wi − xTi β)

δ

1 + δ2
,

1

1 + δ2

)
I[zi > 0], (6)

wi| · · · ∼
{

N(xTi β + δzi, 1)I[wi > 0] if ci11 + ci10 = 1

N(xTi β + δzi, 1)I[wi ≤ 0] if ci01 + ci00 = 1
, (7)

β| · · · ∼ Nk (b∗,B∗) , (8)

δ| · · · ∼ N

(
wT z− βTxT z + µδ/σ

2
δ

zT z + 1/σ2
δ

,
1

zT z + 1/σ2
δ

)
, (9)

where

b∗ = B∗(xT (w − δz) + B−1b), B∗ = (xTx + B−1)−1.

The final algorithm consists of choosing initial values w(0), β(0), δ(0), c(0) and λ(0), and
generating iteratively from the full conditional distributions. Note that generating from the full
conditional distributions is easy. The distributions are standard, and generating from them is
trivial and efficient. The following order is proposed: z(j), w(j), β(j), δ(j), c(j) and λ(j) using
(6), (7), (8), (9), (4) and (5), respectively.

A.2 Asymmetric exponential power link

To sample from the distribution π(β, α, θ1, θ2|c,λ,D), the model is augmented, including the
latent variables w1, . . . , wn related to the model by equation (2) and defined in Section 2. The
joint posterior density of interest is

p(w,u1,u2,β, α, θ1, θ2|c,λ,D) ∝ π(β)π(θ1)π(θ2)π(α)

×
n∏
i=1

{(
exp(−u1i)I

[
xTi β − α

Γ (1+1/θ1)
u
1/θ1
1i < wi ≤ xTi β

]
+ exp(−u2i)I

[
xTi β < wi < xTi β +

(1−α)
Γ (1+1/θ2)

u
1/θ2
2i

])
×
(
I[wi > 0]I[ci11 + ci10 = 1] + I[wi ≤ 0]I[ci01 + ci00 = 1]

)}
.

The full conditional distributions are as follows

u1i| · · · ∼ Exp(1)I

[
u1i >

(
max{0 , xTi β−wi}

αΓ (1+1/θ1)

)θ1]
, (10)

u2i| · · · ∼ Exp(1)I

[
u2i >

(
max{0 , wi−xTi β}
(1−α)Γ (1+1/θ2)

)θ2]
, (11)

wi| · · · ∼



U

(
max

{
0,xTi β −

α
Γ (1+1/θ1)

u
1/θ1
1i

}
,

max
{

0,xTi β +
(1−α)

Γ (1+1/θ2)
u
1/θ2
2i

})
if ci11 + ci10 = 1,

U

(
min

{
0,xTi β −

α
Γ (1+1/θ1)

u
1/θ1
1i

}
,

min
{

0,xTi β +
(1−α)

Γ (1+1/θ2)
u
1/θ2
2i

})
if ci01 + ci00 = 1,

(12)
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βj | · · · ∼ N(b∗j , B∗j )I
[
βj ∈

(
β
j
, βj

)]
, (13)

π(α| · · · ) ∝ π(α)I [α < α < α] , (14)

π(θ1| · · · ) ∝ π(θ1)I

[
θ1 ∈

⋂
{i:u1i>0}

Θ1i

]
, (15)

π(θ2| · · · ) ∝ π(θ2)I

[
θ2 ∈

⋂
{i:u2i>0}

Θ2i

]
, (16)

where Exp(1) denotes the exponential distribution with parameter equal to 1, and

b∗j = bj −Bj(−j)B
−1
(−j)(−j)

(
β(−j) − b(−j)

)
,

B∗j = Bjj − Bj(−j)B
−1
(−j)(−j)B(−j)j ,

β
j

= max

{
max

{i:u1i>0,xij<0}

{
wi−xTi(−j)β(−j)

xij
+

(
α

Γ (1+1/θ1)
u
1/θ1
1i

xij

)}
,

max
{i:u2i>0,xij>0}

{
wi−xTi(−j)β(−j)

xij
−
(

(1−α)
Γ (1+1/θ2)

u
1/θ2
2i

xij

)}}
,

βj = min

{
min

{i:u1i>0,xij>0}

{
wi−xTi(−j)β(−j)

xij
+

(
α

Γ (1+1/θ1)
u
1/θ1
1i

xij

)}
,

min
{i:u2i>0,xij<0}

{
wi−xTi(−j)β(−j)

xij
−
(

(1−α)
Γ (1+1/θ2)

u
1/θ2
2i

xij

)}}
,

α = max

{
0, max
{i:u1i>0}

{
(xTi β−wi)Γ (1+1/θ1)

u
1/θ1
1i

}}
,

α = min

{
0, min
{i:u2i>0}

{
1− (wi−xTi β)Γ (1+1/θ2)

u
1/θ2
2i

}}
,

Θ1i =

{
θ1 :

xTi β−wi
α

< 1
Γ (1+1/θ1)

u
1/θ1
1i

}
,

Θ2i =

{
θ2 :

wi−xTi β

(1−α) < 1
Γ (1+1/θ2)

u
1/θ2
2i

}
.

Given that the prior distribution of β is multivariate normal, then the conditional distri-
bution of βj given β(−j) is normal, where βT(−j) = (β1, . . . , βj−1, βj+1, . . . , βk). The subscript

(−j) denotes that the jth element has been removed.
Note that the distributions given in (10), (11) and (12) are standard and their sampling

is straightforward. The final algorithm consists of choosing initial values w(0), β(0), α(0), θ
(0)
1

and θ
(0)
2 , and iteratively sampling u

(j)
1 , u

(j)
2 , w(j), β(j), α(j), θ

(j)
1 , θ

(j)
2 , c(j) and λ(j) from the

full conditional distributions (10), (11), (12), (13), (14), (15), (16), (4) and (5), respectively.
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