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Abstract. A discrete time branching process is considered in which the offspring distribution is generation-dependent, 
and the number of reproductive individuals is controlled by a random mechanism. This model is a Markov chain, but 
in general the transition probabilities are non-stationary. Under not too restrictive hypotheses, this model presents the 
classical duality of branching processes: it either becomes extinct or grows to infinity. Sufficient conditions for the almost 
sure extinction and for a positive probability of indefinite growth are given. Finally, the rates of growth of the process are 
studied provided there is non-extinction.
Keywords: Branching process, Controlled branching process, Inhomogeneous branching process, Extinction 
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1 INTRODUCTION

Branching processes are regarded as appropriate probability models for the description of extinction / growth 
of populations (see [9]). The oldest and simplest discrete time branching process is the standard Bienaymé-
Galton-Watson process that describes the evolution of a population in which each individual, independently 
of the others, gives rise to a random number of offspring (in accordance with a common reproduction law), 
and then dies or is not considered in the following counts. Since this standard model does not always 
adequately describe actual phenomena, it has many variants designed to deal with important properties of 
real-world populations. In particular, controlled branching processes are useful to model some situations 
where some kind of regulation is required. Thus, for example, the existence of predators in the environment 
implies that the population does not live in freedom, so that the survival of each animal (and therefore the 
possibility of giving new births) will be strongly affected by this factor. In such a case, therefore, a control 
mechanism is required at each generation that determines the number of progenitors in that generation which 
continue with the evolution of the population.

The development of a controlled branching process consists of two phases: a reproductive phase in which 
individuals give birth to their offspring according to a probability distribution called the reproduction law, and 
a control phase in which the number of potential progenitors of the generation is determined. In this phase 
some individuals can be introduced into or removed from the population according to another probability 
distribution called the control law.

In the literature on controlled branching processes (see [7] and [18], and references therein), the control 
phase is assumed to depend on the population size. In the vast majority of works, however, the reproduction 
law is assumed to be the same for every individual in any generation. Nevertheless, it seems reasonable to 
think that the reproductive abilities of the individuals of a population might vary from one generation to anot-
her, so that there have been many papers published regarding standard or multitype Bienaymé-Galton-Watson 
processes whose reproduction laws vary with the generation, usually to referred as varying environment mo-
dels (see for example [1], [3], [4] or [5] for the standard case and [2], [10] or [12] for the multitype one).
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But, until now, this possibility has not been considered in the class of controlled branching processes, at least
not from a general viewpoint.

The objective of the present work was therefore to introduce and examine controlled branching processes
in varying environments. The model is defined as follows:

Let {Xn,i : n = 0, 1, . . . ; i = 1, 2, . . .} and {φn(k) : n = 0, 1, . . . ; k = 0, 1, . . . } be two independent
sequences of non-negative, integer-valued random variables satisfying:

a) The variables Xn,i, n = 0, 1, . . . ; i = 1, 2, . . ., are independent and, for each n, Xn,i, i = 1, 2, . . . , have
the same probability distribution, {pn,j}j≥0, with pn,j = P (Xn,i = j), j ≥ 0, called the reproduction
law of the nth generation.

b) The stochastic processes {φn(k)}k≥0, n = 0, 1, . . . are assumed to be independent and, for each k,
the variables φn(k), n = 0, 1, . . . , have the same probability distribution, called the control law for the
population size k.

The controlled branching process in a varying environment (CPVE) is a sequence of random variables,
{Zn}n≥0, defined recursively by

Z0 = N, Zn+1 =
φn(Zn)∑

i=1

Xn,i , n = 0, 1, . . . , (1.1)

where the empty sum is defined to be 0, and N an arbitrary non-negative integer.
Intuitively, Xn,i represents the number of offspring produced by the ith individual in the nth generation,

and Zn represents the total number of individuals in the nth generation. Also, if Zn = k then φn(k) is the
number of progenitors in the nth generation that will produce their offspring, according to the reproduction
law {pn,j}j≥0. The offspring of these progenitors forms the (n + 1)st generation of the population. The
control is done in such a way that if φn(k) > k then new individuals are introduced into the population, and
if φn(k) < k then some individuals are removed from the population.

The CPVE generalizes two classical branching models that have been extensively studied in the scientific
literature on branching process theory. On the one hand, if φn(k) = k, n = 0, 1, . . . , k = 0, 1, . . . one has the
standard Bienaymé-Galton-Watson process in varying environments. And on the other, if the reproduction
law is the same for every generation, i.e., pn,j only depends on j, one obtains the controlled branching
process with random control function (see for example [7], [17], and [19], and references therein).

It is easy to prove that the CPVE is a Markov chain, in general inhomogeneous. Our objectives in this
paper are to establish the basic properties of this model and to study its long-term behaviour. For that,
following this Introduction, the paper is organized as follows. In Section 2, conditions for the extinction-
explosion duality to hold are stated and the extinction problem is tackled. Section 3 is devoted to studying
the rate of convergence of the process on the non-extinction set. The proofs are relegated to Section 4 for
the sake of readability of the paper.

2 The extinction problem

Homogeneous branching processes often show a dual long term behaviour: they either become extinct
or grow to infinity. However, to obtain this behaviour in inhomogeneous processes, additional regularity
conditions are required. In the following result we provide sufficient conditions, given in terms of the
reproduction and control laws, for the CPVE to also present this duality.

Theorem 1. Let {Zn}n≥0 be a CPVE satisfying:

(i) P (φ0(0) = 0) = 1.

(ii) lim infn→∞ pn,0 > 0.
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Then

P (Zn → 0) + P (Zn →∞) = 1. (2.1)

Condition (i) in Theorem 1 means that 0 is an absorbing state. Condition (ii) is trivially verified for many
families of offspring distributions, for example, geometric probability distributions with parameter αn, with
0 < lim infn→∞ αn < 1.

At this point, it is worth mentioning that for the Galton-Watson process in varying environments∑∞
n=0(1−pn,1) = ∞ is a sufficient condition for the duality extinction-explosion to hold (see [15]). Condi-

tion (ii) of the previous theorem is stronger. Indeed, if lim infn→∞ pn,0 > 0 then lim infn→∞(1−pn,1) > 0,
and therefore

∑∞
n=0(1 − pn,1) = ∞. The presence of the control variables makes it difficult to provide a

sharper condition than (ii) or a necessary and sufficient condition for (2.1) to hold.
We are now interested in stating sufficient conditions for the almost sure extinction and for the indefinite

growth of the CPVE. Such conditions will be given in terms of the first- and second-order moments of the
reproduction and control laws and in terms of their respective probability generating functions. Let us now
introduce the notation we shall use. For n, k = 0, 1, . . . , define:

mn = E[Xn,1] , σ2
n = Var[Xn,1] , E(k) = E[φ0(k)] , τ2(k) = Var[φ0(k)]

(assumed finite) and

fn(s) = E[sXn,1 ], gk(s) = E[sφ0(k)], 0 ≤ s ≤ 1.

From (1.1) it follows that, for n, k = 0, 1, . . . ,

E[Zn+1|Zn = k] = mnE(k), (2.2)
Var[Zn+1|Zn = k] = m2

nτ2(k) + σ2
nE(k). (2.3)

As usual, let us denote the probability of extinction by q = P (Zn → 0). We shall assume throughout
the paper that P (φ0(0) = 0) = 1. With this assumption, the extinction probability can be rewritten as
q = limn→∞ P (Zn = 0). We shall also assume lim infn→∞ pn,0 > 0, so that Theorem 1 applies and (2.1)
holds. Consequently, we deduce that P (Zn → ∞) = 1 − q = limn→∞ P (Zn > 0). First, in the next two
results, we will provide some sufficient conditions for the almost sure extinction of the process.

Theorem 2. Let {Zn}n≥0 be a CPVE such that

lim sup
k→∞

k−1E(k) < lim inf
n→∞ m−1

n . (2.4)

Then q = 1.

Theorem 3. Let {Zn}n≥0 be a CPVE and let γn(s) = infk≥1 gk(fn(s)), n = 0, 1, . . ., 0 ≤ s < 1. If for some
s, 0 ≤ s < 1,

lim inf
n→∞ γn(s) > 0, (2.5)

then q = 1.

Notice that Theorem 2 includes as particular cases the conditions given in [5] for the almost sure extin-
ction of the standard Bienaymé-Galton-Watson branching process in varying environments and those given
in [6] for the almost sure extinction of the controlled branching processes with random control function.
Moreover, Theorem 3 covers different cases not considered in Theorem 2. For example, for cases in which
limk→∞ E(k)k−1 = 0 and mn → ∞, condition (2.4) in Theorem 2 is not verified, but Theorem 3 could
give an answer about the extinction of such cases, as, for instance, when φ0(k) ≤ X almost surely for
k ≥ 1 and mn →∞ (obtaining the model’s almost sure extinction). From a practical outlook, this bounded
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control distribution could model the development of species living in environments where the number of
individuals with reproductive capacity in each generation is bounded by the carrying capacity or a function
of that. The carrying capacity of a biological species in an environment is the maximum population size of
the species that the environment can sustain indefinitely. Another interesting case could be when one wants
to control an invasive species in an environment, keeping it below some suitable limits.

In order to give sufficient conditions for a positive probability of non-extinction, we shall first provide
the definition of uniformly supercritical CPVE.

Definition 1. A CPVE is said to be uniformly supercritical if there exists a constant η > 1 such that

lim inf
n→∞ mn ≥ η kE(k)−1 for every k ≥ 1. (2.6)

If E(k) = k for every k then (2.6) is a sufficient condition for a Galton-Watson branching process in
varying environments to be uniformly supercritical according to the definition given in [4]. A uniformly
supercritical CPVE has a positive probability of indefinite growth if it satisfies some conditions on the
second-order moments of the reproduction and control laws. We shall establish two results. The first applies
a method similar to that used in [4] for the Galton-Watson branching process in varying environments, and
the second generalizes the conditions given in [6] for the controlled branching process with random control
function.

Theorem 4. Let {Zn}n≥0 be a uniformly supercritical CPVE, and let η > 1 satisfy (2.6). Assume also that
the following conditions hold:

(i) There exists a constant γ > 0 such that γ/η2 < 1 and

lim sup
n→∞

m2
n ≤ γ

k2

d2(k)
for every k ≥ 1,

with d2(k) = E[φ2
0(k)], k = 0, 1, . . .

(ii)
∞∑

n=0

σ2
n

m2
nηn

< ∞ .

Then q < 1.

Theorem 5. Let {Zn}n≥0 be a uniformly supercritical CPVE, and let η > 1 satisfy (2.6). Assume also that
the sequences {E(k)/k}k≥1 and {τ2(k)/k}k≥1 are bounded, and that there exists δ > 0 such that

∞∑

n=0

m2
n + σ2

n

(η − δ)n
< ∞.

Then q < 1.

From Theorems 2, 4, and 5, one deduces that the behaviour of the sequence of the expected growth rates
per individual when, in a certain generation, there are k individuals, that is, E[Zn+1Z

−1
n | Zn = k] =

mnk−1E(k), k = 1, 2, . . ., seems quite important in order to determine the extinction probability. Indeed,
this is quite usual in most branching models. Again, it is not surprising that its behaviour relative to the
value unity establish in some form the threshold for the process’s extinction or non-extinction. Indeed,
conditions (2.4) and (2.6) can be rewritten as mnk−1E(k) < 1 for all k ≥ k0 and n ≥ n0, k0, n0 > 0, and
mnk−1E(k) > 1 for all n ≥ N0, for all k ≥ 1, N0 > 0, respectively. It is a matter for further research
to study the behaviour of the process when this double indexed sequence {mnk−1E(k)}n,k≥0 approaches
unity.
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3 Asymptotic behaviour

If q < 1, we are interested in the rate of growth of {Zn}n≥0 on the non-extinction set. In particular,
do there exist sequences of positive constants {rn}n≥0 such that limn→∞ Zn/rn exists almost surely and
P (0 < limn→∞ Zn/rn < ∞) > 0? To this end, let us assume asymptotic linear growth of the mathematical
expectations of the control means, i.e., we shall assume that τ = limk→∞ k−1E(k) exists and is finite. Let
us consider the sequences

rn = τn
n−1∏

i=0

mi and Wn = r−1
n Zn.

By the supermartingale convergence theorem, if {k−1E(k)}k≥1 is a monotonic increasing sequence,
then {Wn}n≥0 converges almost surely to a non-negative and finite random variable, W , as n → ∞. So,
from now on we shall assume that the sequence {k−1E(k)}k≥1 is increasing, and write δk = τ − k−1E(k).
Consequently {δk}k≥0 is a non-increasing sequence with limit equal to zero. Moreover we assume that
the process {Zn}n≥0 is uniformly supercritical so that τ lim infn→∞mn ≥ η, for some constant η > 1,
i.e., there exists n0 such that for all n ≥ n0, τmn ≥ η. For simplicity, we shall assume without loss of
generality that n0 = 0.

The following result establishes a condition for the existence of the limit of {E[Wn]}n≥0 as n → ∞.
Such a limit will be positive and finite if the process starts with a large enough number of individuals.

Proposition 1. Let {Zn}n≥0 be a uniformly supercritical CPVE, and let η > 1 satisfy (2.6). Assume that the
sequence {δk}k≥1 is non-increasing and that

∑∞
k=1 k−1δk < ∞. Then there exists N0 such that

lim
n→∞E[Wn] > 0, if Z0 = N > N0 with q < 1.

Finally we provide the following result in which we prove the almost sure convergence in L1 and in
L2 of {Wn}n≥0 to a non-degenerate random variable by assuming that q < 1, and therefore we establish
the geometric growth of the CPVE in uniformly supercritical cases.

Theorem 6. Let {Zn}n≥0 be a uniformly supercritical CPVE, and let η > 1 satisfy (2.6). Assume that:

(i) The sequence {δk}k≥1 is non–increasing and
∑∞

k=1 k−1δk < ∞.

(ii) The sequence {k−2τ2(k)}k≥1 is non–increasing and
∑∞

k=1 k−3τ2(k) < ∞.

(iii)
∑∞

n=0

σ2
n

m2
nηn

< ∞.

Then {Wn}n≥0 is an L2-bounded supermartingale, and converges almost surely in L1 and in L2 to the random
variable W that is finite almost surely and non-degenerate at zero.

Concluding remark

We have introduced a new branching model which we have termed the CPVE presenting the novelty
of conjoining the possibility of the reproduction laws varying with the generation and the incorporation
of a random mechanism that determines the number of progenitors in each generation. We adapted the
methodological approaches developed independently for controlled branching processes and for Galton-
Watson processes in varying environments so as to be able to study the extinction problem and the rates
of growth for the CPVE. It is interesting to mention that a CPVE could also be non-trivially thought of
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as a general branching process with size- and time-dependent reproduction laws. In particular, using the
notation of (1.1)

Zn+1 =
Zn∑

i=1

Yn,i(Zn), n = 0, 1, . . . , with

Yn,i(Zn) = Xn,i + Z−1
n

φn(Zn)−Zn∑

j=1

Xn,jI{φn(Zn)>Zn} − Z−1
n

Zn−φn(Zn)∑

j=1

Xn,jI{φn(Zn)<Zn}.

In this case, the expected value µn,k = E[Yn,i(Zn) | Zn = k] = k−1mnE(k), n, k = 1, 2, . . ., depends
on the generation and the population size. Therefore, one could expect that by adapting techniques of
size-dependent branching processes it would be possible to obtain some results about this process (indeed
Theorem 6 follows these ideas). While this is an interesting open topic for further research, this approach
involves a certain dilution of the mathematical modeling of the control of the population sizes achieved
at each generation. In this sense, as has been done in the present paper, it is worth conjoining the
ideas of control on the population and a generation-dependent reproduction law in such a way that the
two features both appear explicitly in the definition of the model. This allows one to study potential
regularity conditions for the control and reproduction laws that lead to the extinction or survival of the
process. It also provides a clearer viewpoint from which to consider the problem of estimating the
model’s parameters, and facilitates the task of developing potential relevant applications of the process.

4 Proofs

Proof of Theorem 1 From condition (i), one has that 0 is an absorbing state. The result is obtained as a
consequence of the very general Theorem 2 in [11] if one proves that for any x there is a δ > 0 such
that P (∃n : Zn = 0 | Z1 = z1, . . . , Zk = zk) ≥ δ if only zk ≤ x, with z1, . . . , zk being non-negative
integers. Indeed, since (ii) holds, there exist n1 > 0 and 0 < a < 1 such that pn,0 ≥ a > 0 for every
n ≥ n1. Moreover, gk(a) > 0 for every k = 0, 1, . . . , Therefore, for n ≥ n1,

P (Zn+1 = 0 | Z1 = z1, . . . , Zn = zn) = P




φn(zn)∑

l=1

Xn,l = 0


 = E[pφn(zn)

n,0 ]

= gzn
(pn,0) ≥ gzn

(a) ≥ min
k≤x

gk(a) > 0

if only zn ≤ x.
Proof of Theorem 2 One needs the following auxiliary lemma, for which we shall just sketch the proof.

The details can be found in [16], p. 41:

Lemma 1. Let {Xn}n≥0 be a sequence of non-negative random variables and {Fn}n≥0 a sequence of σ-
algebras such that Xn is Fn-measurable for all n. If there exists a constant A > 0 such that, for every n,
E[Xn+1|Fn] ≤ Xn almost surely on {Xn ≥ A}, then P (Xn →∞) = 0.

Proof of the Lemma:
Let A > 0 satisfy the hypothesis of the lemma. It is enough to prove that, for every N > 0,

P (infn≥N Xn ≥ A,Xn →∞) = 0. Fixed N > 0, define the stopping time T (A) by inf{n ≥ N : Xn <
A} if infn≥N Xn < A and by ∞ otherwise. Define also the sequence of random variables {Yn}n≥0, with
Yn for n ≥ 0 as follows

Yn =
{

XN+n if N + n ≤ T (A),
XT (A) if N + n > T (A).
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Since E[Xn+1|Fn] ≤ Xn almost surely on {Xn ≥ A}, {Yn}n≥0 is a non-negative supermartingale.
Applying the martingale convergence theorem, one obtains the almost sure convergence of the sequence
{Yn}n≥0 to a non-negative and finite limit, and therefore the proof of the Lemma ends.

Now let us prove the theorem. By hypothesis there exist A > 0 and n0 > 0 such that

k−1E(k) < m−1
n , for all k ≥ A and n ≥ n0. (4.1)

Assume without loss of generality that n0 = 0. Otherwise one would proceed with the sequence
{Zn}n≥n0 .

Let us write Fn = σ(Z0, . . . , Zn), n = 0, 1, . . . , i.e., the σ-algebra generated by the random variables
{Z0, . . . , Zn}. Since {Zn}n≥0 is a Markov chain, and using (2.2) and (4.1), one deduces that, for all n,

E[Zn+1|Fn] = E[Zn+1|Zn] = mnE(Zn) ≤ Zn on {Zn ≥ A}.
Now, since we are assuming that P (Zn →∞) = 1− q, applying Lemma 1 the proof is finished.

Proof of Theorem 3 Let us denote the probability generating function of Zn by Fn(s), 0 ≤ s ≤ 1. One
has, for n = 0, 1, . . ., and 0 ≤ s < 1,

Fn+1(s) = E[gZn
(fn(s))] = P (Zn = 0) + E[gZn

(fn(s))I{Zn>0}].

Using (2.1), limn→∞ sZn = I{Zn→0} almost surely and therefore limn→∞ Fn+1(s) = q.
Hence, for all 0 ≤ s < 1,

lim
n→∞E[gZn

(fn(s))I{Zn>0}] = 0,

and by Fatou’s lemma,

E[lim inf
n→∞ gZn

(fn(s))I{Zn>0}] = 0.

Now on {Zn →∞},

lim inf
n→∞ gZn

(fn(s))I{Zn>0} ≥ lim inf
n→∞ γn(s),

and therefore 0 = (1 − q) lim infn→∞ γn(s) for all 0 ≤ s < 1, so that, using (2.5), one deduces that
q = 1.

Proof of Theorem 4 Since the CPVE is uniformly supercritical and hypothesis (i) holds, one can take
n0 such that for all n ≥ n0

E(k) ≥ m−1
n ηk for every k ≥ 1 (4.2)

and

d2(k) ≤ m−2
n γk2 for every k ≥ 1. (4.3)

Assume without loss of generality that n0 = 0. Otherwise one would proceed with the sequence
{Zn}n≥n0 .

We shall make use of the fact that, for every non-negative random variable Y , the following inequality
holds:

P (Y > 0) ≥
(

Var[Y ]
E[Y ]2

+ 1
)−1

. (4.4)

Let us write Tn = φn(Zn). Using (2.2), (2.3) and

Var[Zn+1] = Var[E[Zn+1|Zn]] + E[Var[Zn+1|Zn]],

Lith. Math. J., X(x), 20xx, October 16, 2014,Author’s Version.
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one obtains
Var[Zn+1]
E[Zn+1]2

=
Var[Tn]
E[Tn]2

+
σ2

n

m2
nE[Tn]

=
E[T 2

n ]
E[Tn]2

− 1 +
σ2

n

m2
nE[Tn]

.

Using (4.2) recursively, one has

E[Tn] = E[E(Zn)] ≥ m−1
n ηE[Zn] = ηE[Tn−1] ≥ E[T0]ηn,

and, using (4.3),

E[T 2
n ] = E[d2(Zn)] ≤ m−2

n γE[Z2
n].

Since γ/η2 < 1, one deduces from the previous equations that

Var[Zn+1]
E[Zn+1]2

≤ E[Z2
n]γ

E[Zn]2η2
− 1 +

σ2
n

m2
nE[T0]ηn

≤ Var[Zn]
E[Zn]2

+
σ2

n

m2
nE[T0]ηn

.

By iteration, one obtains that, for every n ≥ 0,

Var[Zn+1]
E[Zn+1]2

≤ 1
E[T0]

∞∑

j=0

σ2
j

m2
jη

j
,

and, by hypothesis (ii), this series is convergent. So, applying (4.4), for every n ≥ 0 one obtains

P (Zn+1 > 0) ≥

 1

E[T0]

∞∑

j=0

σ2
j

m2
jη

j
+ 1



−1

.

The right hand side of this inequality is positive and does not depend on n. Therefore

P (Zn →∞) = lim
n→∞P (Zn > 0) ≥


 1

E[T0]

∞∑

j=0

σ2
j

m2
jη

j
+ 1



−1

> 0,

which finishes the proof.

Proof of Theorem 5 We shall prove that P (Zn → ∞) = 1 − q > 0. Since the process is uniformly
supercritical, there exists n0 such that for all n ≥ n0 and for every k ≥ 1

mn
E(k)

k
≥ η. (4.5)

Assume without loss of generality that n0 = 0. Otherwise one would proceed with the sequence
{Zn}n≥n0 by showing that P (Zn →∞|Zn0 = N ′) > 0 for some N ′ > 0.

Take δ′ > 0 such that δ′ < min{η − 1, δ} and write An = {Zn+1 > (η − δ′)Zn}. Since η − δ′ > 1, it
is immediate that ∩∞n=0An ⊆ {Zn →∞}, so that it is enough to prove that P (∩∞n=0An) > 0.

By the Markov property and using that Z0 = N , one has

P

( ∞⋂

n=0

An

)
= lim

l→∞
P

(
l⋂

n=0

An

)
= P (A0) lim

l→∞

l∏

n=1

P


An |

n−1⋂

j=0

Aj




≥ P (A0)
∞∏

n=1

inf
k>(η−δ′)nN

P (An|Zn = k). (4.6)



9

Take a and b to be bounds for the sequences {E(k)/k}k≥1 and {τ2(k)/k}k≥1, respectively. Applying
(2.3), (4.5) and Chebyshev’s inequality, one obtains

P (Ac
n|Zn = k) ≤ P (Zn+1 ≤ mnE(k)− kδ′|Zn = k)

≤ P (|Zn+1 −mnE(k)| ≥ kδ′ | Zn = k)

≤ Var[Zn+1|Zn = k]
k2δ′2

=
m2

nτ2(k) + σ2
nE(k)

k2δ′2
≤ m2

na + σ2
nb

kδ′2
.

Therefore, from (4.6),

P

( ∞⋂

n=0

An

)
≥ P (A0)

∞∏
n=1

inf
k>(η−δ′)nN

(
1− m2

na + σ2
nb

kδ′2

)

= P (A0)
∞∏

n=1

(
1− m2

na + σ2
nb

(η − δ′)nNδ′2

)
.

Since δ′ < δ, by hypothesis the series
∑∞

n=1 m2
n/(η − δ′)n and

∑∞
n=1 σ2

n/(η − δ′)n are convergent, and
consequently

P

( ∞⋂

n=0

An

)
≥ P (A0)

∞∏

n=1

(
1− m2

na + σ2
nb

(η − δ′)nNδ′2

)
> 0,

which finishes the proof.

Proof of Proposition 1 In [14], it was proved that, under the hypotheses satisfied by the sequence
{δk}k≥0, there exists a positive and non-increasing function δ(x) such that δk ≤ δ(k) for all k, xδ(x) is
concave, and

∑∞
k=1 k−1δ(k) < ∞. Thus, by Jensen’s inequality, one can check that

0 ≤ E[Wn]− E[Wn+1] ≤ τ−1E[Wn]δ(ηnE[Wn]),

.
Now, one can use Lemma 2 of [13], by assuming an = E[Wn], f = τ−1δ, and m = η, to conclude

the result.

Proof of Theorem 6 Under the hypotheses of the theorem, one has that {Wn}n≥0 is a supermartingale.
It will be enough to check that it is L2-bounded to obtain its L1-convergence to W . Moreover, the
limit W is non-degenerate at 0 because, under L1-convergence, limn→∞E[Wn] = E[W ], and using
Proposition 1, this limit is greater than 0 if N is large enough.

Let us prove that {E[W 2
n ]}n≥0 is a bounded sequence. The proof is an appropriate adaptation of

Theorem 3 in [8], so that we shall only show the main steps. Some calculations lead us to

E[W 2
n+1] = E[W 2

n ] +
1
τ2

E

[
W 2

n

(
τ2(Zn)

Z2
n

+ δ2
Zn
− 2τδZn

)]
+ σ2

n

E[E(Zn)]
r2
n+1

.

By the properties of the sequences {δk}k≥0 and {τ2(k)}k≥0 and results in [8], there exist positive
and non-increasing functions δ(x) and h(x) such that:

a) δk ≤ δ(k), for all k ≥ 0,
∑∞

k=1 k−1δ(k) < ∞ and the functions xδ(x), xδ(x1/2), and xδ2(x1/2)
are concave.

b) k−2τ2(k) ≤ h(k), for all k ≥ 0,
∑∞

k=1 k−1h(k) < ∞, and the function xh(x1/2) is concave.

Lith. Math. J., X(x), 20xx, October 16, 2014,Author’s Version.
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Therefore,

E[W 2
n+1] ≤ E[W 2

n ]
(

1 +
1
τ2

(h(E[Zn]) + δ2(E[Zn]) + 2τδ(E[Zn]))
)

+ σ2
n

E[E(Zn)]
r2
n+1

.

By Proposition 1, there exists c > 0 such that E[Wn] > c for all n, and since the process is
uniformly supercritical, one deduces that E[Zn] ≥ cηn. Hence, using that h(x), δ(x), and δ2(x) are
non-increasing functions, one obtains that

E[W 2
n+1] ≤ Z2

0

n∏

i=0

(
1 +

1
τ2

(h(cηi) + δ2(cηi) + 2τδ(cηi))
)

+
n∑

i=0

σ2
i

E[E(Zi)]
r2
i+1

n∏

j=i+1

(
1 +

1
τ2

(h(cηj) + δ2(cηj) + 2τδ(cηj))
)

.

To conclude that {E[W 2
n ]}n≥0 is a bounded sequence, it is enough to check that

∞∑

n=0

σ2
n

E[E(Zn)]
r2
n+1

< ∞ (4.7)

and

∞∏

n=0

(
1 +

1
τ2

(h(cηn) + δ2(cηn) + 2τδ(cηn))
)

< ∞. (4.8)

In respect of (4.7), using that {k−1E(k)}k≥1 converges to τ in a non-increasing way, that {Wn}n≥0

is a supermartingale, that the process is uniformly supercritical, and condition (iii), one has that

∞∑

n=0

σ2
n

E[E(Zn)]
r2
n+1

<
∞∑

n=0

τσ2
n

E[Zn]
(τm2

n)rn
≤ N

τ

∞∑

n=0

σ2
n

m2
nrn

< ∞.

The convergence in (4.8) follows from
∑∞

k=1 k−1δ(k) < ∞ and
∑∞

k=1 k−1h(k) < ∞ assumed in a) and
b).

Finally, the L2-convergence of {Wn}n≥0 is proved using Doob’s decomposition and following simi-
lar ideas to those used in Theorem 3 in [8].
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