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Abstract: Rural tourism has led to an increase in the number of buildings, meaning that visual inte-

gration of these buildings into the landscape is not always achieved. The silhouettes of buildings in 

rural areas are always recognisably simple but can be visually discordant if their sharpness is high. 

The literature provides analyses of how the visual impact of a given construction can be minimised 

by vegetation screening. The main objective of this study was to propose a method of quantifying 

the visual impact of isolated buildings (1 (low visual impact)–5 (high visual impact)). The method 

combines a measurement of the sharpness of building silhouette lines and vegetation screening (Scr) 

percentage (high or low) using theories based on the cognitive aspects of visual perception and 

digital image processing. The method was validated through a survey in which photos were shown 

to a wide range of respondents. A second objective was to analyse the combined effect on the visual 

perception of Scr and building colour (C), which is broadly analysed in the literature. The main 

result is that the required percentage of vegetation screening for a building with sharp lines and 

discordant colours to be accepted was determined to be around 40%. The proposed method can be 

applied by landscape planners; it is easy to use, and the cognitive principles on which it is based do 

not depend on the working environment. 

Keywords: vegetation screening; building silhouette lines; visual impact assessment;  

sustainable rural development; planning policies 

 

1. Introduction 

The European Union approved the Environmental Impact Assessment (EIA) di-

rective in 1985. Since the introduction of this directive, the landscape was considered an 

important factor for analysis in any environmental assessment [1]. In 2014, modifications 

to this directive included the need to address the visual impact of projects. Since then, in 

EIA studies, reduced visual impacts of constructions have been increasingly considered 

to better preserve the historical and cultural heritage of the landscape. 

The integration of human activities in a landscape constitutes a major challenge for 

the agents that work in and interact with the natural environment. Mitigation of visual 

impacts in these environments requires the application of various methodologies and 

modes of action that are being proposed in the scientific field, for example, those in [2–9]. 

In this context, the use of vegetation screens as a filtration medium constitutes an effective 

tool to reduce the visual impact of buildings and structures in rural areas. 
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1.1. Building Silhouette Lines 

Lines can be defined as real or imaginary paths that guide the line of vision of an 

observer when abrupt differences in form, colour, or texture are perceived. Any line has 

three characteristics that can be studied and measured [10]: sharpness, complexity, and 

direction. 

Sharpness refers to the level of line definition. Intensity and continuity define sharp-

ness and can be measured using two parameters: length and saturation [11,12].  

a. Length: The greater the length, the sharper the line. In this sense, the lengths of the 

lines of a building in a natural setting offer no relevant information from a visual 

standpoint. That is, the straight lines of a building are always sufficiently appreciable 

compared with a natural background due to their simplicity. 

b. Saturation: The more saturated the colour that defines a line, the sharper it will be. 

Saturation can be calculated by measuring the saturation of the colour that forms a 

line. If this is not possible, in instances where, for example, a line is formed by contact 

between two surfaces, then the saturation can be calculated by the difference between 

the saturations of the two colours that define it or by the difference in their standard 

deviations. Colour contrast on the border lines accentuates the boundaries more than 

the line itself [13,14]. 

Complexity refers to simplicity, direction changes, kinks, breaks, or undulations in a 

line. Simple and continuous lines are more visually dominant than discontinuous and 

broken lines [10,15]. Natural landscape lines are usually more complex than building 

lines. Therefore, building lines are normally in contrast with countryside landscapes. For 

this reason, contrast analysis of line complexity in rural areas is not performed in this 

study, as it has been reported before [11].  

Direction is the position of the line in relation to the horizontal dimension. It can be 

studied by measuring the line angle against the horizontal plane. In visual perception, the 

vertical dimension is dominant over all other directions [10,15]. This parameter is not con-

sidered in the present study, as horizontal building lines are dominant in rural environ-

ments, with the exception of buildings that exceed the skyline [16], which are not ad-

dressed here. 

In summary, the visual perception of a building depends on the nature of the bound-

ary between the building and its background. A key determinant is the sharpness of this 

boundary [13,14,17,18]. 

1.2. Building Colour 

Lines that define the forms of objects are the first elements that our brains attempt to 

locate [17] before focusing on other visual properties associated with colour and texture. 

In relation to buildings, the construction design variable that has the most significant 

visual effect on perception appears to be colour, as has been demonstrated in earlier stud-

ies [19]. 

Colour is defined by its hue (H), saturation (S), and brightness (B). Pronounced differ-

ences in mean values of H–S–B between building surfaces and a background generate 

visual impacts [20]. Internal contrast is provided by the standard deviations of each of the 

basic colours of a surface. With high deviations, colours become more intense and artificial 

[3]. Therefore, the internal contrast of colours of a building (walls and roof) against the 

background intensify the possible H–S–B impacts [14]. 

Although the effect of colour in conjunction with the lines and forms of a building 

has been studied [11], it has not been quantified in terms of aggregate impact. Notable 

differences between the colours of the surfaces of a building and the colours of the sur-

roundings create visual impacts [20]. If the colour of a building is acceptable, it is possible 

that high sharpness of its silhouette lines, while making the building recognisable, will be 

tolerable. However, if the colour is not acceptable and it occurs in combination with a 
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geometry of very sharp silhouette lines, the overall effect will be more visually discordant 

[11,19]. 

1.3. Partial Vegetation Screening of Buildings 

Building types in rural contexts comply with their function (residential, tourism, 

agro-industrial, or farming), and it is not always easy to ensure that their geometry suits 

their surroundings. It is easier to work with other changeable elements, such as colours 

and materials, the positive effects of which on integration have been demonstrated [12,19], 

or to consider visually improving the lines of the building by partial vegetation screening 

[21]. The authors of [21] showed that using vegetation around a building improves the 

visual appearance of a built area by 9–17%. 

Visual absorption capacity is defined as a landscape’s ability to absorb physical 

changes without transformation of its visual character or quality [22]. In this context, par-

tial screening of an impact that requires mitigation can contribute to improving the visual 

absorption capacity of a landscape. This concept is not new and has appeared in numerous 

studies demonstrating the benefits of its use in integrating scenes with various levels of 

intervention [23–26]. Recent studies have shown that the impact of human constructions 

(e.g., motorways) can be reduced, improving the effect of visual absorption, with trees 

placed between the construction and the point of observation [27]. 

1.4. Previous Impact Measurement Associated with the Present Study 

García et al. [11] proposed an initial method for visual impact measurement that com-

bines an analysis of the sharpness of building lines and vegetation screening. The conclu-

sions of their study were promising, as they demonstrated that vegetation screening of 

buildings with sharp lines (relative to the background scenery) has a positive effect on 

perception. In the study, the authors analysed various percentages of building screening, 

but the screening ranges (0–20%, 20–60%, 60–80%, and >80%) were not determined using 

any scientific criteria other than a gradual increment of the amount of screening in four 

intervals of equal size. Moreover, the authors did not provide precise data about the per-

centage of screening in each modified image, which would have enabled more accurate 

discussion of the comparison of the results obtained between cases. Despite this, it was 

shown that at some stage in the 20–60% interval of screening a building with sharp lines, 

the probability of obtaining improved ratings increased. This interval is very large if we 

wish to establish a critical point of change. Therefore, although the study demonstrated 

that a building is rated higher as the level of screening increases, the authors did not de-

termine the minimum percentage of vegetation necessary for visually efficient minimal 

inversion. 

The Weber–Fechner (W-F) law of stimulus [28] demonstrates that the relation be-

tween increased stimulus and the perception of the stimulus is logarithmic [29]. In this 

way, the perception of increased stimulus is appreciable only when the increases occur at 

constant ratios of change relative to the original stimulus: “If a stimulus varies as a geo-

metric progression, the corresponding perception is altered in an arithmetic progression” 

[28]. 

Recent studies have taken a further step by attempting to determine the amount of 

screening necessary for sufficient integration as a percentage of the total built area [30]. 

One of the conclusions of Garrido et al. [30] was that using vegetation with an intermedi-

ate degree of filtering in the frontal plane of a building (40–50%) increases the possibility 

of the perception of the façade improving from poor or very poor to at least acceptable. 

However, they did not determine a possible logarithmic relationship between increases 

in the percentage of vegetation concealment of buildings and their visual acceptability. 
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1.5. Aims of the Study 

The overall aim of this study was to provide planners, architects, and engineers with 

quantifiable design variables based on the use of vegetation as a design element in rural 

contexts. 

The specific objectives were: 

(1) To propose and validate a method of assessing the visual impact of isolated buildings 

in rural contexts, combining measurements of silhouette line sharpness and reduc-

tion in sharpness using vegetation screening; 

(2) To determine the aggregate effect of screening the lines and colours of a building on 

the overall visual impact of the built area; 

(3) When the colour of a building is not appropriate: 

 To determine the mathematical relationship that exists between the percentage 

of vegetation concealment of a building and the assessment of its integration by 

an average observer; and 

 To determine a minimum percentage of vegetation screening with which visual 

integration of a built area can be achieved. 

The novelty of this study lies in its approach and in the methods followed in its im-

plementation, as will be detailed later. In essence, the use of an aggregate system for the 

sum of visual impacts and the use of a psychological approach [28] to establish the appro-

priate levels of filtration by vegetation make our present findings innovative. 

A pilot area and initial buildings were chosen for the design and development of 

assessment surveys to validate the method, as explained in Section 2. 

2. Materials and Methods 

2.1. Proposal for Assessing Screening Impact (Scrl) 

2.1.1. Description of the Method 

Bearing in mind the studies mentioned in the Introduction, a proposal for measuring 

visual impact based on the initial study by García et al. [11] is shown in Table 1. In this 

case, we used 40% increments in vegetation screening, according to the results of Garrido 

et. al. [30]. Two screening classes were established: 0–40% and 40–80%. 

Table 1. Proposed assessment of screening impact (ScrI). Qualitative classification of impact: 

DWC—diversity without contrast; CC—compatible contrast; PCC—poorly compatible contrast. 

Adapted from [11]. 

 Screening: 40–80% Screening: 0 ≤ 40% 

Sharpness Lines Impact Rating Impact Rating 

Insinuated DWC-CC 1 CC-PCC moderate 3 

Intermediate DWC-CC 1 CC-PCC high 4 

Sharp CC 2 
CC-PCC 

very high 
5 

“Mystery” is defined as the promise of new information if one could travel deeper 

into an environment, which has been studied by several authors [24,31–33]. Although this 

definition is subjective, it is directly related to the degree to which a scene is concealed or 

filtered by natural elements, such as vegetation [34]. Because mystery denotes the promise 

of new information [24], scenes that are excessively concealed could decrease the attrac-

tiveness for an observer. Therefore, for this work, screening vegetation over 80% was con-

sidered to not permit visibility of constructions, and therefore, such levels of concealment 

were not analysed. 

The proposed method involves measurement of the sharpness of silhouette lines (Ta-

ble 1), as indicated below (Figure 1a). 
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Figure 1. Colour histogram statistics. 1.(a) Example of a measurement window for the sharpness of 

building lines. The standard deviations (σx) of the three colour channels (x = R, G, B) in a measure-

ment area that includes the line (L) under study: R (σRL), G (σGL), and B (σBL). The line is determined 

to be sharp if any σxL is greater than 40 (example of red channel SD measurement: σRL = 85.03). 1.(b) 

Example of measurement windows for internal contrast assessment of the building. For its calcula-

tion, σx comparisons of the three colour channels (x = R, G, B) are used between two independent 

measurement areas, not necessarily adjacent: one in the building (roof (SF1) or façade (SF2) and 

another in the environment (most dominant exterior element (SF3)). As many as six comparison 

pairs can occur between the building and the environment: three comparisons of roof–environment 

and three comparisons of façade–environment: σxSF1 vs. σxSF3 and σxSF2 vs. σxSF3, where x = R, G, B 

(example of red channel SD comparison between façade and surrounding:|σRSF2 − σRSF3| = |3.91 − 

30.51| = 26.6). Adapted from [11,12,19]. 

The relation between vegetation and sharpness (Table 1) gives rise to the following 

image types: those classified as having little impact, i.e., from “diversity without con-

trasts” to “compatible contrasts” (DWC-CC); images with compatible impacts (CC); and 

images with greater impact, from “compatible contrasts” to “poorly compatible contrasts” 

(CC-PCC). This qualitative description of impact is derived from the initial method de-

scribed by García et al. [11], which may be consulted for further information. 

However, this classification is not very accurate in terms of assessment if the aim is 

to precisely determine the thresholds of change in the rating of a building and its sur-

roundings. This is particularly important at the CC-PCC threshold, where impacts are 

more easily recognizable to the human eye [35]. In the study by García et al. [11], not all 

the cases classified as CC-PCC were rated as initially expected. In their study, images with 

lower percentages of vegetation (0–30% measured on a photo) were rated differently de-

pending on the sharpness of the lines of the building (greater or lesser). In the lowest 

screening class (0–40%), the present study therefore includes concepts of “very high”, 

“high”, and “moderate” CC-PCC impacts, according to sharpness, proposing a numerical 

ranking of impacts (1–5) based on both factors (Table 1). 
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2.1.2. Quantification of the Method 

The application of this method is based on measuring the parameters on a photo us-

ing a digital image processing program (Photoshop CC). The photo resolutions used in 

this work are in the range of 100–150 dpi. These resolutions are appropriate for comparing 

the building with its surroundings and viewing construction details [11]. This range is 

also sufficient for a web-based survey that requires a minimum resolution of 76 dpi. 

The screening percentage is obtained by dividing the number of pixels occupied by 

vegetation on the façade by the total number of pixels that make up the building façade. 

The sharpness of a border line or silhouette line is calculated by the standard devia-

tion of the mean of the colours in the basic colour channels (σxi; x = R, G, B) on the bound-

ary between the surfaces of the building and the background [11] (Figure 1a). This is per-

formed using quadrangular sample areas containing a border line that is located between 

the building and the background. The resolution of this capture window of 10 × 10 pixels 

is, in theory, sufficient for calculating the sharpness of lines in photo resolutions of 100–

150 dpi; however, photos with higher resolutions require a proportional increment in the 

quadrangular capture window. The number of sample areas or windows can vary, but a 

minimum of three must be used. 

The standard deviation (SD: σ) for the red (R) (0–255), green (G) (0–255), and blue (B) 

(0–255) channels (σxi; x = R, G, B; i = 1 − n) is calculated using Adobe Photoshop (C) for 

each sampling area, and the arithmetic mean per colour channel is calculated for the build-

ing (Equation (1)). 

σ�� =
∑ σ��

�
���

n
 (1)

where x = R, G, B, and i = number of sampling areas. 

Depending on the means obtained, sharpness is classified as high (SD > 40) (for any 

of the three channels), medium (SD 26–40), or low (SD < 26) [11]. 

2.2. Additional Assessment of Colour Impact (CI) 

The study is complemented by an analysis of the colour of the built area, using the 

method for colour impact measurement which was described previously [36]. 

This method considers both the visual characteristics of the colours (hue, saturation, 

and brightness) and the internal contrast between the building and the surroundings. 

Colour impact was determined by comparing the mean hue (H), saturation (S), and 

brightness (B) of colours between the building and the most dominant feature in the sur-

roundings. Single main colours were selected from the walls and roofs to represent the 

colour of the buildings. H, S, and B are compared using selected sampling areas (10 × 10 

pixels) representing the roof (SF1) or the facade (SF2) of the building, and the feature cho-

sen in the surroundings (SF3). 

The average values of H (0–360°), S (0–100%), and B (0–100%) obtained for SF1 and 

SF2 were then compared to the mean values recorded for SF3 by the simple subtraction of 

mean values between building and surrounding. As many as six comparisons between 

pairs were performed—three from the facade vs. three from the roof. 

Comparison pairs showing high contrast were considered based on the assumption 

that (1) the larger the number of high-contrast HSB pairs, the greater the visual impact 

should be and (2) the larger the number of impact pairs attributable to the facade, the 

more visible the building should prove to be. Differences in hue (H) exceeding 72° were 

interpreted as generating high contrast (poorly compatible contrast (PCC)), and this 

threshold was set at 30% for differences in saturation (S) or brightness (B) [19]. When dif-

ferences were between 36° and 72° in H comparisons and between 15% and 30% in S or B 

comparisons, there were no colour impacts (compatible contrasts (CC)). Lastly, diversity 

without contrast (DWC) occurs when differences fall into the range of 9–36° for H pair 

comparisons and into the range of 5–15% for S or B pair comparisons. 
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According to these earlier studies, colour impact is determined by comparing the 

means of hue (H), saturation (S), and brightness (B) of the colours of the building and the 

predominant surface or element in the surroundings, including the standard deviations 

of the internal contrast of the building relative to the background (Table 2). Using Pho-

toshop, it is possible to establish comparison pairs by colour channel between building 

surfaces (roof and façade) and the majority surface in the surroundings to classify the 

overall colour impact of a building. When an impact pair was established, the method was 

completed by measuring the internal contrast. In cases with no impact pairs, this param-

eter was not measured. Internal contrast was measured by comparing the standard devi-

ation obtained for colour channels (R, G, B) within the same sampling areas used for HSB 

comparisons (10 × 10 pixels). Internal contrast was deemed low (↓) when differences were 

<5 points, medium (≈) for differences in the range of 5–15 points, and high (↑) for differ-

ences >15 points [12] (Figure 1b). 

Table 2. Assessment of colour impact (CI).  

Colour Impact 

(CI) 

Comparison between Building Façade and 

Surroundings 

Comparison between Building Roof and 

Surroundings 
Total H/S/B Pairs 

with Poorly Com-

patible Contrast 

(PCC) 

Number of H/S/B Pairs 

with Poorly Compatible 

Contrast (PCC) 

Internal Contrast 

(+) 

Number of H/S/B Pairs 

with Poorly Compatible 

Contrast (PCC) 

Internal Contrast 

(+) 

(1–2) * 0 NM 0 NM 0 

2 0 NM 1 ↓ 1 

3 0 NM 1 ↑≈ 1 

3 1 ≈↓ 0 NM 1 

3 0 NM 2 ↓ 2 

3 1 ↓ 1 ↑≈↓ 2 

3 1 ↓ 2 ≈↓ 3 

4 1 ↑ 0 NM 1 

4 1 ↑≈ 1 ↑≈↓ 2 

4 0 NM 2 ↑≈ 2 

4 2 ≈↓ 0 NM 2 

4 1 ↑≈↓ 2 ↑ 3 

4 1 ↑≈ 2 ≈↓ 3 

4 2 ↓ 1 ↑≈↓ 3 

5 2 ↑ 0 NM 2 

5 2 ↑≈ 1 ↑≈↓ 3 

5 0 NM 3 ↑≈↓ 3 

5 3 ↑≈↓ 0 NM 3 

5 Up to 3 ↑≈↓ Up to 3 ↑≈↓ >3 

Notes: NM—not measurable; ↑—high; ≈—medium; ↓—low. (1–2) *—comparisons between building 

and surroundings reach compatible contrasts (CC) or (2) diversity without contrast (DWC) (1) at 

most. (+)—Internal contrast is measured as the standard deviation of the central colour value (mean) 

and the values on the rest of the surface in the basic channels of red (R), green (G), and blue (B). 

Data from [36]. 

Finally, the impact was converted into a simple scale of increasing ordinal impacts 

from 1 to 5 (Table 2). Further details about this method of measurement are provided in 

studies by Montero et al. [36] and García et al. [19]. 

2.3. Assessment of Aggregate Impact (AI) 

In formal impact assessment methods, the simple aggregate sum of partial impacts 

has been demonstrated to be a suitable indicator for assessing global visual impacts 

[25,26]. In the present study, the method proposed for assessing the aggregate impact 
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resulting from the screening and colour variables is the simple sum of the values of ScrI 

and CI, as calculated in Tables 1 and 2. 

2.4. Validation of the Study 

To validate the proposed method for measuring screening impact, various images 

were created in Photoshop and used in a survey administered to a wide range of respond-

ents. Real photos of isolated buildings in periurban locations were selected in a study area 

representative of the central–western region of Spain in terms of landscape, relief, and 

architecture. 

2.4.1. Study Area and Photo Capture 

The Ambroz Valley (inland Spain: [40°15′0.4″8 W-6°01′10″8 N]) was chosen as the 

study area because tourism has increased in the area despite a drop in the population, 

among other reasons [37] (Figure 2). An inventory of new constructions was conducted 

by field work and using geographical information systems (GIS). Buildings that were dif-

ficult to access or were poorly visible from main roads were not included. Eight initial 

buildings were chosen for separate or combined analysis of the study variables: scale, col-

our, materials, lines, and forms. Two of these eight buildings (Figures 2 and 3) were cho-

sen for the study objectives. The selection criteria were: (1) use or type of building: agri-

cultural or residential (the two predominant uses in the chosen area [37]); (2) location: 

isolated buildings in periurban areas on the side or in the bottom of valleys with a moun-

tainous background (allowing contrast analysis); and (3) optimum visibility for photo cap-

ture. 

The following guidelines applied to photo capture: (1) sufficient distance from the 

observer to the building so that the photos show as many details of the building as possi-

ble and part of the landscape background. In previous studies, this meant that the build-

ing occupied 25–30% of the total area of the image [38,39]. (2) Avoid taking photos in 

adverse weather conditions, such as rain, cloud cover, fog, or mid-day sun [40,41]. 

 

Figure 2. Map of location of Ambroz Valley. 
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Test images A, B, C, and D: analysis of screening maintaining constant colour. Ordered from highest to lowest AI. 

A B (Real case) C D 

 

Scr1 (0–40%+ medium sharpness) + C1(+) Scr2 (40–80% + medium sharpness) +C1(+) 

 

Scr2 (40–80% + medium sharpness) +C1(+) Scr2 (40–80% + medium sharpness) +C1(+) 

ScrI = 4; CI = 2 

% veg. measured in foreground = 0% 

AI = 4 + 2 = 6 

ScrI = 1; CI = 2  

% veg. measured in foreground= 59.83% 

AI = 1 + 2 = 3 

(Aligned) ScrI = 1; CI = 2 

% veg. measured in foreground = 51.58% 

AI = 1 + 2 = 3 

ScrI = 1; CI = 2  

% veg. measured in foreground = 79.95% 

AI = 1 + 2 = 3 

Test images E, F, A, and B: analysis of combined effect of Scr + C. Ordered from highest to lowest AI. 

E F A B (Real case) 

 

Scr1 (0–40%+ high sharpness) +C2(−) Scr2 (40–80%+ high sharpness) +C2(−) 

 

Scr1 (0–40%+ medium sharpness) + C1(+) 

 

Scr2 (40–80% + medium sharpness) +C1(+) 

ScrI = 5; CI = 4 

% veg. measured in foreground = 0% 

AI = 5 + 4 = 9 

ScrI = 2; CI = 4  

% veg. measured in foreground = 59.83% 

AI = 2 + 4 = 6 

ScrI = 4; CI = 2  

% veg. measured in foreground = 0% 

AI = 4 + 2 = 6 

ScrI = 1; CI = 2  

% veg. measured in foreground = 59.83% 

AI = 1 + 2 = 3 

Figure 3. Survey images used with group 1 participants (residential buildings). Variable screening 

(Scr) shows two levels of change in the percentage of vegetation in front of the building (0-40% or 

40-80%). The variable colour (C) presents two study proposals: (+) positive impact of building colour 

of less than 3 points; (−) negative impact of building colour of more than 3 points. 

2.4.2. Generating Survey Images 

Using the two real cases chosen for the study, six survey images were proposed for 

each building type (residential or agricultural: cases A, B, C, D, E, and F). The images were 

obtained by modifying the real case using Photoshop, resulting in 12 test images for anal-

ysis: 6 residential and 6 agricultural (Figures 3 and 4). 

Test images OS A, B, C, and D: analysis of screening maintaining constant colour. Ordered from highest to lowest AI. 

A (Real case) B  C D 

 

Scr1 (0–40%+ high sharpness) +C1(−) Scr1 (0–40% + high sharpness) +C1(−) 

 

Scr2 (40–80%+ high sharpness) +C1(−) 

 

Scr2 (40–80%+ high sharpness) +C1(−) 

ScrI = 5; CI = 5 ScrI = 5; CI = 5 (Aligned) ScrI = 2; CI = 5 ScrI = 2; CI = 5  
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% veg. measured in foreground = 0% 

AI = 5 + 5 = 10 

% veg. measured in foreground = 29.1% 

AI = 5 + 5 = 10 

% veg. measured in foreground = 71.3% 

AI = 2 + 5 = 7 

% veg. measured in foreground = 72.2% 

AI = 2 + 5 = 7 

Test images A, D, E, and F: analysis of combined effect of Scr + C. Ordered from highest to lowest AI. 

A (Real case) D  E F 

 

Scr1 (0–40%+ high sharpness) +C1(−) 

 

Scr2 (40–80%+ high sharpness) +C1(−) 

 

Scr1 (0–40%+ high sharpness) +C2(+) 

 

Scr2 (40–80%+ high sharpness) +C2(+) 

ScrI = 5; CI = 5 

% veg. measured in foreground = 0% 

AI = 5 + 5 = 10 

ScrI = 2; CI = 5  

% veg. measured in foreground = 72.2% 

AI = 2 + 5 = 7 

ScrI = 5; CI = 2 

% veg. measured in foreground = 0% 

AI = 5 + 2 = 7 

ScrI = 2; CI = 2 

% veg. measured in foreground = 72.2% 

AI = 2 + 2 = 4 

Figure 4. Survey images used with group 2 participants (agricultural buildings). The variable 

screening (Scr) presents two levels of change in the percentage of vegetation in front of the building 

(0–40% or 40–80%). The variable colour (C) presents two study proposals: (+) positive impact of 

building colour of less than 3 points; (−) negative impact of building colour of more than 3 points. 

From each sequence of six images, four cases corresponded to variations in the veg-

etation element (Figures 3 and 4, cases A–D), maintaining the original design of the initial 

photo and thus isolating the effect of vegetation from other variables in the statistical anal-

ysis. Adding a further element to the work completed in 2010, case C presents a configu-

ration of aligned vegetation, included with the aim of confirming whether the arrange-

ment of vegetation has a significant visual effect with regard to irregular configurations B 

and D. 

The other two images (Figures 3 and 4, cases E and F) are combinations of two levels 

of screening, with a change in the original colour, with the purpose of analysing the pos-

sible combined effect of colour and screening. Using the 12 cases and based on Tables 1 

and 2, the impacts (CI and ScrI) and their aggregate sum (AI) were calculated before the 

survey was administered (Figures 3 and 4). 

From the remaining six initial cases, other survey images were created (32 in total) to 

assess the analysis of change in other variables not included in this study [36,42]. This 

resulted in a total of 44 (32 + 12) images to be used for the public survey. 

2.4.3. Participants and Data Collection 

Two separate groups of respondents took part, and two samples of 22 (16 + 6) photos 

each were shown per group: residential type for group 1 (Figure 3) and agricultural type 

for group 2 (Figure 4). This design reduced the total number of photos per respondent to 

a more manageable number [11] and allowed the use of independent samples to assess 

the influence of each test image [36]. Test images were shown to each group randomly so 

that the answers were not affected by the order of appearance of the images [38,43,44]. 

Each respondent answered two questions for each image viewed: (1) “On a scale 

from 1 (Very bad) to 5 (Very good), how would you rate the integration of the building 

into the scene?” The rating scale, with increasing ordinal numbers from 1 to 5, allowed for 

ongoing processing of the answers; therefore, the average rating of each image was calcu-

lated [45]. These types of rating scales are considered reliable in studies of a social nature 

as a simple and efficient way of measuring participants’ hedonic tone when given a visual 

stimulus [46]. (2) “From the following list, what would you change to improve the inte-

gration of the building into the environment? Scale of the building, Colours of the 
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building, Construction materials, Vegetation around the building, Nothing”. Respondents 

could choose only one of five possible answers for question 2. The accumulated response 

frequencies were calculated for each image. 

A total of 1046 respondents answered one of the two designed surveys. Respondents 

were recruited through a specially designed website. The use of web pages for this type 

of study—of a social nature—has been shown to be efficient for collecting answers [47]. 

Group 1 (residential survey) comprised 559 participants, and group 2 (agricultural sur-

vey) comprised 487 participants. Participants were sorted by age, place of residence, and 

gender (Table 3). 

Table 3. Study variables. 

Variables  Categories of variables 

AGE (A) 

 1 (≤15–25 years) 

 2 (>25–55 years) 

 3 (>55 years) 

Place of residence (P) 

 1 (≤1000–10,000 inhab.) 

 2 (≥10,000–500,000 inhab.) 

 3 (≥500,000 inhab.) 

GENDER (G) 
 1 (Male) 

 2 (Female) 

TEST IMAGE (I) 

Within subject 

A 

B 

C 

D 

E 

F 

2.4.4. Statistical Analysis of Results and Initial Hypotheses 

The dependent study variables are the answers to the two questions asked. For ques-

tion 1, the averages of the ratings per test image were used (rating average, RA), and for 

question 2, the accumulated frequency of the element of change most often chosen in each 

test image (% of element of change—EC) was used. The study factors or independent var-

iables are shown in Table 3. 

An initial analysis was conducted to determine whether the variables—gender (G), 

age (A), place of residence (P), and test image type (I)—affected the rating average (RA) 

(question 1). To this end, the following repeated-measures ANOVA test was designed: 

3(A) × 3(P) × 2(G) × 6(S). The final variable (I) was a within-subject statistical analysis var-

iable, whereas the other three (A, P, and G) were between-subject analysis variables. The 

statistical weight of the social variables is limited or null in the overall rating of each test 

image; therefore, they were not included in the main study. 

Two repeated-measures ANOVA tests were performed for each building type, ex-

cluding the social variables. The independent variable was the test image type (I). The first 

test was intended to detect the isolated effect of screening (variable Scr, cases A–D) on the 

RA, whereas the second was performed to analyse the combined effects of the screening 

and the colour of the building on the rating (variable Scr: cases E, F, A, and B: residential 

(Figure 3); cases A, D, E, and F: agricultural (Figure 4)). 

Significant ANOVAs were completed with post hoc analysis (Bonferroni test). Using 

this type of analysis, we can identify where the statistical differences were between the 

categories in the variable test image (I) that had significance for the answer. 

Cohen’s d was used to analyse the effect size of the significant differences observed. 

Following methods available in the literature [48], Cohen’s d values of more than 0.8 were 

considered large effect sizes. The sample size in the final survey (n = 1047) was considered 
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sufficient to detect at least medium effect sizes (Cohen’s d of more than 0.5) at significant 

thresholds of statistical power ((0.90 = 1 − beta; beta = 0.10); alpha = 0.01) [49]. 

The results of the answers to the second question were analysed using frequency di-

agrams and the chi-squared test for both samples surveyed. 

To determine the minimum percentage of vegetation for an image with a discordant 

colour to receive a good rating, a logarithmic regression analysis was performed on initial 

cases A–D of the agricultural sample, following the cognitive theories of the W-F Law. 

The statistical research hypotheses were as follows: 

 According to the proposed method, within a single class of vegetation screening, the 

same trend would be expected in the ratings, regardless of whether the trees were in 

a disperse arrangement or aligned and regardless of whether the percentage of veg-

etation was close to the upper or lower limit of the class. To determine this, cases B, 

C, and D in the residential group in the same screening class (40–80%) had different 

percentages of vegetation (51–72%) and two screening arrangements: disperse (cases 

B and D) and aligned (case C). Similarly, in the agricultural sample and in class 0–

40%, two proposals were presented with different percentages, A (0%) and B (30%), 

to determine the performance of the chosen range. The effect of the vegetation ar-

rangement (aligned or disperse) in cases C and D of the agricultural sample (both 

with screening values around 70%) also helped to test the independence hypothesis 

in the results regarding the tree arrangement. 

 According to the proposed aggregate impact method, it was expected that the sum 

of the two impacts would cause a decrease in the rating as the sum increased. To test 

this hypothesis, test images A, B, E, and F (residential) and A, D, E, and F (agricul-

tural) were used. 

3. Results 

In the present study, we classified effect sizes with a Cohen’s d of 0.2 as small, those 

with values greater than 0.5 as medium, and those with values greater than 0.8 as high 

[48]. 

A preliminary global analysis of both samples showed that the group of respondents 

aged older than 55 years gave a better rating, on average, for all images than the youngest 

group of respondents (<25 years) and those in the middle age range (25–55 years) (data 

not shown); these results are similar to those obtained by Montero et al. [36]. However, 

the effect sizes of these results were not very high compared with the variable test image 

(residential: F (1552) = 7.693; p = 5 × 10−4; d = 0.33; agrarian: F (1481) = 16.010; p = 1.8 × 10−7; 

d = 0.52; alpha = 0.01.) 

The analysis of respondents’ place of residence in relation to the agricultural sample 

showed that respondents from places with fewer than 10,000 inhabitants gave slightly 

lower ratings than the remaining respondents (data not shown); however, the effect size 

was also low (F (1481) = 9.397; p = 1 × 10−4; d = 0.39; alpha = 0.01). In the residential sample, 

the answer trend was similar but not statistically significant. The effect of gender was not 

significant in the answers in either sample. 

Only one interaction was significant: test image type (A-F) x age; however, again, the 

effect size was less than 0.5 in both samples (data not shown). 

The variable test image (I, within-subject analysis variable) had more statistical 

weight in the rating average (RA) than the social variables (between-subject analysis var-

iables). 

For both population samples, variable I (A–F) was not only significant in the within-

subject analysis but also had a large effect size (residential: F (1552) = 173.069; p = 1.4 × 

10−34; d = 1.20; agricultural: F (1481) = 253.436; p = 3.8 × 10−46; d = 1.452; alpha = 0.01). 

In summary, only the results of the within-subject analysis are presented, in view of 

their greater statistical weight. 
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3.1. Rating of Screening 

The repeated-measures ANOVA was significant and had large effect sizes in both 

samples (Cohen’s d = 0.741 in residential sample; Cohen’s d = 1.09 in agricultural sample) 

(Figure 5). Therefore, depending on the variation in screening impact (ScrI), respondents’ 

ratings varied significantly. 

For detailed analysis of where these significant differences occurred, post hoc analy-

sis was performed to compare test images using the Bonferroni test in both samples (Fig-

ure 5). 

For the residential sample, the differences occurred only between image A (Scr = 0%; 

ScrI = 4) and the other three test images. The initial hypothesis of equal answers between 

test images with the same class of screening was also confirmed, with no significant dif-

ferences between images B, C, and D (Scr = 40–80%; ScrI = 1). The hypothesis was con-

firmed, regardless of whether tree arrangement was dispersed (B and D) or aligned (C) 

and regardless of whether the percentage of vegetation was close to the upper or the lower 

limit of the class (Figure 5a). 

Similarly, for the agricultural sample, the initial hypotheses were confirmed. Screen-

ing class 0–40% showed no significant differences between test images A and B (Scr = 0–

40%; ScrI = 5), regardless of the screening percentages. There were no significant differ-

ences between cases C and D in the 40–80% class, regardless of whether the trees were in 

an aligned or dispersed arrangement (Scr = 40–80%; ScrI = 2) (Figure 5b). 

 

Figure 5. Results of repeated-measures ANOVA to quantify the isolated effect of screening on sil-

houette lines. (a) Rating average for Residential Sample (Test images: A-B-C-D, (Figure 3). (b) Rating 

average for Agrarian Sample (Test images: A-B-C-D, (Figure 4). Different letters in lower case indi-

cate significant differences in RA between compared images (Bonferroni test). 

For the agricultural sample, wherein all cases present with a high CI, a logarithmic 

fit was sought for approximate determination of the minimum percentage of vegetation 

screening required for the test images to be rated as RA = 2.5 out of 5. In this regard, 2.5 

was considered the statistical midpoint value of rating averages from on ordinal scale of 

1–5 used in this work. This statistical value can be used as an adequate starting point for 

ensuring public approval of the visual integration of buildings. 

The results of this fit were calculated using Equation (2). The fit had a high R2, but 

parameters “a” and “b” were not significant (data not shown). 

The Scr% that meets the assessment rating of 2.5 points on the increasing rating 

scale—as predicted with this model—occurs precisely at 40%. 
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�� = a ∙ Ln(���) + b R� = 89.4% ;  a = 0.426 b = 0.992 (2)

�� = ������ ������� ��� = % ���������� �������� 

3.2. Rating of the Combined Effect of Scr × C 

Analyses of test image sequences A–D–E–F (agricultural sample) and E–F–A–B (res-

idential sample) also showed the direct influence on image rating of the aggregate sum of 

the impacts of both study variables: colour (C) and screening (Scr). The repeated-measures 

ANOVA was significant, and the effect size was large in both samples (Cohen’s d = 1.968 

in residential sample; Cohen’s d = 1.560 in agricultural sample) (Figure 6). Therefore, de-

pending on the variation in the impact in both variables (ScrI + CI), respondents’ ratings 

varied significantly. The Bonferroni test indicated the location of these differences be-

tween the test images in each sample, with a surprising similarity between samples (Fig-

ure 6). Overall and irrespective of the sample, the results show that the higher the sum of 

the impact resulting from both variables, the lower the rating will be (cases E (Figure 6a) 

and A (Figure 6b)) and vice versa (cases B (Figure 6a) and F (Figure 5b)). The cases of 

intermediate impact in both samples also had a similar response, with no significant dif-

ferences between cases (Figure 6). 

 

Figure 6. Results of repeated-measures ANOVA to quantify the combined effect of screening and 

building colour. (a) Rating average for Residential Sample (Test images: E-F-A-B, (figure 4). (b) Rat-

ing average for Agrarian Sample (Test images: A-D-E-F, (figure 4). Different letters in lower case 

indicate significant differences in RA between compared images (Bonferroni test). 

For both samples, a decreasing and significant linear fit was obtained between the 

RA and the sum of the AI (Equations (3) (residential) and (4) (agricultural)). Once again, 

it was clear that the higher the increase in aggregate impact, the lower the average rating. 

Both fits had a high R2. The fitting parameters “a” and “b” were also significant in both 

equations (data not shown). 

�� = a − b ∙ (AI) R� = 99.2% ;  a = 4.408 b = 0.196 (3)

�� = a − b ∙ (AI) R� = 99.9% ;  a = 3.694 b = 0.136 (4)

�� = Rating Average AI = Aggregate Impact 
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3.3. Analysis of Frequencies: Elements of Change 

The answers to the second question differed between samples when comparing test 

images A, B, C, and D (Figure 7a,b). In the residential sample, when the percentage of 

vegetation increased (cases B, C, and D), selections of the option to change “nothing” in-

creased. Moreover, these images had the lowest AI (3) and were the highest-rated. How-

ever, in case A (AI = 6), with no vegetation in the foreground, the number of answers 

electing to change the “surrounding vegetation” increased. Colour was rarely chosen in 

any of the four cases, consistent with the low CI in the sequence of cases (Figure 7a). How-

ever, for the agricultural sample, the effect of the highest CI (5) made colour the most 

frequently chosen element to change, irrespective of the level of screening of the building 

(Figure 7b). 

For the sequences with variation in both variables (Figure 7c,d), the effect, with a few 

differences, was similar in both samples. In cases of high AI (9/10), the predominant ele-

ment chosen for change was colour, occurring in cases of more discordant colour and 0% 

screening. In cases where the AI was lower (3), the selection of the option to change “noth-

ing” increased in both samples. 

Intermediate cases with the same AI also had a similar response in the two samples. 

In cases F (residential) and D (agricultural), in which colour contributed more to AI, colour 

was the most frequently chosen element for change. In cases A (residential) and E (agri-

cultural), the opposite occurred, with vegetation being the most frequently chosen ele-

ment for change because the impact of screening in these cases contributed more to the 

AI. 

 

Class of Scr(%) 0–40% 40–80% (40–80%) lines 40–80% Class of Scr(%) 0–40% 0–40% (40–80%) lines 40–80%

Scr(%) measured A=0% B=59.83% C=51.58% D=79.95% Scr(%) measured A=0% B=29.1% C=71.3% D=72.2%

ScrI= 4 1 1 1 ScrI= 5 5 2 2

CI (constant)= 2 2 2 2 CI (constant)= 5 5 5 5

AI (ScrI+CI)= 6 3 3 3 AI (ScrI+CI)= 10 10 7 7

(a) Residential Sample (Test images: A-B-C-D) (b) Agrarian Sample (Test images: A-B-C-D)

Chi-square (12, 2232)=293.14, p<0.001 Chi-square (12, 2232)=732.59, p<0.001
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Figure 7. Results of preferences in change elements for images with no building colour variation: 

(a) Residential Sample: test images: A-B-C-D, (figure 3) and (b) Agrarian Sample, test images: A-B-

C-D, (figure 4). Results of preferences in change elements for images with variation in building 

colour: (c) Residential Sample: test images: E-F-A-B, (figure 3) and (d) Agrarian Sample, test im-

ages: A-D-E-F, (figure 4). 

4. Discussion 

The only results included and discussed below are the within-subject results of all 

the respondents for test image type, which had more statistical significance and effect [36] 

in the preliminary ANOVA (residential d = 1.20 vs. agricultural d = 1.45). This analysis 

indicates that not all the images were rated the same, and the answers depended on the 

study variables in each test type (screening and colour). 

4.1. Rating of Vegetation Screening (Test Images A, B, C, and D) 

In both samples, the linear arrangement of trees showed no significant differences 

with dispersed arrangement in the comparison class. This shows that respondents did not 

visually prefer this type of arrangement to an irregular or dispersed arrangement. Similar 

results were obtained by Garrido et al. [39], although these authors did not quantify the 

percentage of vegetation used or measure its impact. 

The minimum percentage of vegetation screening for a building with a dissonant 

colour to start to transition towards an acceptable rating is 40%, as indicated by the ob-

tained logarithmic model (Equation (2)). The good fit of this model is encouraging and 

supports the W-F law; however, a more data points would be necessary to confirm this 

law. Nevertheless, the goodness of the obtained logarithmic fit can be understood as an 

initial approximation to affirm that the relationship between the increases in a percentage 

of a stimulus and the detection does not follow a linear trend [38,50–52]. 

The increment in the rating was significant (Bonferroni tests) in the residential cases 

with a shift from 0% vegetation to 50% vegetation (50% increment from case A to case C) 

and from 30% to 70% in the agricultural cases (40% increment from case B to case C) (Fig-

ure 5). Both graphics also show a nonlinear trend in respondents’ answers. Other authors 

reported that 40–50% shifts in visual stimuli [7,20,39] become appreciable for observers. 

Similar results were obtained by Liang B. et al. [53], who conducted a study with 

photo simulations to analyse whether increasing tree cover in residential streets would 

have a measurable effect for an average observer. Their results suggested that to ensure 

an acceptable preference value (ratings of at least three on a five-point scale), cover should 

Scr class (%) 0–40% 40–80% 0–40% 40–80% Scr class (%) 0–40% 40–80% 0–40% 40–80%

Scr(%) measured E=0% F=59.83% A=0% B=59.83% Scr(%) measured A=0% D=72.21% E=0% F=72.21%

ScrI= 5 2 4 1 ScrI= 5 2 5 2

CI = 4 4 2 2 CI = 5 5 2 2

AI (ScrI+CI)= 9 6 6 3 AI (ScrI+CI)= 10 7 7 4

(c) Residential Sample (Test images: E-F-A-B) (d) Agricultural Sample (Test images: A-D-E-F)

Chi-square (12, 1948)=119.5, p<0.001 Chi-square (12, 1948)=282.71, p<0.001
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not be less than 41%. They also demonstrated that the relationship between tree cover and 

preference followed a curvilinear function rather than a linear function. 

The chosen percentage of 40% between the screening classes proposed in this study 

therefore appears to be correct. Moreover, the recommended minimum of 40% vegetation 

to screen a poorly integrated design appears to be an efficient value [27]. 

It is clear in both samples or types that increasing the percentage of vegetation in 

front of a building significantly affects the rating of the building, irrespective of the colour 

of the façade and the roof. However, if the colours of the building are well-integrated, 

screening may not be necessary, as indicated by the ratings that were always higher than 

three in the residential sample (Figure 5a). Similar results were reported by García et al. 

[11]. 

4.2. Rating of the Combined Effect of Scr × C 

The aggregate sum of impacts followed the same trend, irrespective of building type 

and respondent group, producing a decreasing linear relation between the aggregate sum 

of impacts and the rating of the images. The fits obtained in both Equations (3) and (4) 

were very good with regard to R2 and were significant in estimating the parameters. Sim-

ilar results were reported by Montero et al. [36], who supported the theory of the influence 

of the aggregate sum of impacts on visual perception in which the whole contributed more 

as a sum of parts than each part separately [54,55]. 

Despite this, the ratings in the residential sample never dropped to the very bad cat-

egorisation, even in the test image with the greatest impact (case E, Figure 6a). This may 

be due to the construction materials of both initial buildings, which clearly performed 

better in the residential case than in the agricultural case (case B residential, Figure 3; case 

A agricultural, Figure 4). In studies on the visual impact of a building based on its visual 

design elements, the “construction materials” study variable has been shown to have a 

significant contribution [11,36,44,56–58]. However, the impacts resulting from this aspect 

were not assessed or measured in this study. 

Intermediate test images obtained similar ratings, with no significant differences in 

either sample. Both cases had the same overall total AI: six in cases F and A (residential) 

and seven in cases D and E (agricultural) (Figure 6). Buildings with a discordant colour 

that is partially screened (cases F (residential, Figure 6a) and D (agricultural, Figure 6b)) 

and a building with an integrated colour and no screening had the same effect on observer 

preference. 

4.3. Analysis of Frequencies: Elements of Change 

Although the increased percentage of screening in the foreground of a building had 

a positive effect in both samples (Figure 5a,b), in the agricultural case, the most discordant 

colour remained detectable and dissonant; therefore, this was the case that was most fre-

quently identified by respondents as requiring changes (Figure 7b). The effect of colour as 

the most recognisable surface element in visual impact studies has been described by 

other authors [19,21,59]. When the colour and the overall built design of a construction 

are good, the average observer appears to want to add some vegetation (case A, Figure 

7a). The literature includes works that showed an improvement in the visual preferences 

of respondents when the level of screening of a construction was partially increased with 

vegetation [24,25,60]. 

Although images with the same AI obtained similar ratings and showed no signifi-

cant differences (cases F and A (residential) and D and E (agricultural); Figure 6a,b), the 

average observer can recognize which element has the greater impact, choosing colour or 

vegetation as the most common element of change according to their higher or lower con-

tribution to the aggregate sum of impacts (Figure 7c,d). Similar results were obtained in 

previous studies, e.g., by Montero et al. [36] for scale and colour and by García et al. [11] 

for lines and forms. 
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5. Conclusions 

The proposed method was shown to work well and was validated using surveys. The 

use of tree vegetation to screen the view of a building clearly improves the rating of the 

visual integration of the construction, regardless of whether trees are aligned or in dis-

persed arrangement. Moreover, 40% of vegetation screening appears to be the percentage 

after which the integration of a building starts to noticeably improve. 

In the study of the vegetation–colour interaction, the colour of the building is the 

most significant element chosen for change when its impact is high or very high (impact 

of four or five for colour), irrespective of the level of vegetation screening. However, using 

tree vegetation for screening in these cases reduces the negative effect of the colour, in-

creasing the probability of obtaining an “acceptable” rating for visual integration. Using 

vegetation in these cases is highly recommended, especially in cases in which the design 

cannot be improved. 

The absence of vegetation in cases of façades with little or moderate colour impact 

(colour impacts 1–3) and high-quality finishings still results in acceptable levels of inte-

gration; therefore, the use of vegetation may be optional, although it is recommended 

wherever possible. 

The transfer of the results of this research to the planning field can contribute to a 

more sustainable environment, facilitating policy recommendations. The proposed 

method is easy to use with minimal training and could be useful, especially in tourist 

destinations, where visual integration of buildings is a problem to be addressed. 

Finally, the method can be used in similar rural areas, as the cognitive principles on 

which it is based do not depend on the working environment. 

Author Contributions: Conceptualization, M.J.M.-P. and L.G.-M.; methodology, M.J.M.-P., J.H.-B. 

and L.G.-M.; software, L.G.-M. and J.G.-V.; validation, M.J.M.-P., L.G.-M. and J.H.-B.; formal analy-

sis, M.J.M.-P.; investigation, M.J.M.-P. and L.G.-M.; resources, L.G.-M. and J.H.-B.; data curation, 

M.J.M.-P.; writing—original draft preparation, M.J.M.-P.; writing—review and editing, M.J.M.-P., 

L.G.-M., J.H.-B. and J.G.-V.; visualization, M.J.M.-P., L.G.-M. and J.H.-B.; supervision, L.G.-M. and 

J.H-B.; project administration, L.G.-M.; funding acquisition, L.G.-M. and J.G.-V. All authors have 

read and agreed to the published version of the manuscript. 

Funding: This publication has been possible thanks to funding granted by the “Consejería de 

Economía, Ciencia y Agenda Digital” (Ministry of Economy, Science and Digital Agenda of Extre-

madura govern) and by the European Regional Development Fund of the European Union through 

reference grants GR21147 and GR21135. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Dentoni, V.; Grosso, B.; Massacci, G.; Cigagna, M.; Levanti, C. Numerical Evaluation of Incremental Visual Impact. In Proceed-

ings of the 18th Symposium on Environmental Issues and Waste Management in Energy and Mineral Production, SWEMP, Santiago, 

Chile, 19–23 November 2018; Widzyk-Capehart, E., Hekmat, A., Singhal, R., Eds.; Springer: Cham, Switzerland 2019. 

2. Antrop, M.; Van Eetvelde, V. Sensing and Experiencing the Landscape. In Landscape Perspectives; Landscape Series; Springer: 

Dordrecht, The Netherlands, 2017; Volume 23. 

3. Dupont, L.; Ooms, K.; Antrop, M.; Van Eetvelde, V. Comparing saliency maps and eye-tracking focus maps: The potential use 

in visual impact assessment based on landscape photographs. Landsc. Urban Plnn. 2016, 148, 17–26. 

4. Dupont, L.; Ooms, K.; Antrop, M.; Van Eetvelde, V. Testing the validity of a saliency-based method for visual assessment of 

constructions in the landscape. Landsc. Urban Plan. 2017, 148, 17–26. 

5. Guo, S.; Sun, W.; Chen, W.; Zhang, J.; Liu, P. Impact of Artificial Elements on Mountain Landscape Perception: An Eye-Tracking 

Study. Land 2021, 10, 1102. 

6. Gobster, P.H.; Ribe, R.G.; Palmer, J.F. Themes and trends in visual assessment research: Introduction to the Landscape and 

Urban Planning special collection on the visual assessment of Landscapes. Landsc. Urban Plan. 2019, 191, 103635. 



Land 2022, 11, 1450 19 of 20 
 

7. Palmer, F.P. Effect size as a basis for evaluating the acceptability of scenic impacts: Ten wind energy projects from Maine, USA. 

Landsc. Urban Plan. 2015, 140, 56–66. 

8. Palmer, J. The contribution of key observation point evaluation to a scientifically rigorous approach to visual impact assess-

ment. Landsc. Urban Plan. 2019, 183, 100–110. 

9. Sun, H.; Kiang-Heng, C.; Reindl, T.; Yu Lau, S. Visual impact assessment of coloured Building-integrated photovoltaics on ret-

rofitted building facades using saliency mapping. Sol. Energy 2021, 228, 643–658. 

10. Español, I.M. Impacto ambiental. ETSI Caminos, Canales y Puertos; Universidad Politécnica: Madrid, Spain, 1995. 

11. García, L.; Montero, M.J.; Hernández, J.; López, S. Analysis of lines and forms in buildings to rural landscape integration. Span. 

J. Agric. Res. 2010, 8, 833–847. 

12. García, L.; Hernández, J.; Ayuga, F. Analysis of the materials and exterior texture of agro-industrial buildings: A pho-to-analyt-

ical approach to landscape integration. Landsc. Urban Plann. 2006, 74, 110–124. 

13. Grossberg, S.; Pessoa, L. Texture segregation, surface representation and figure-ground separation. Vis. Res. 1998, 38, 2657–2684. 

14. Neumann, H.; Yazdanbakhsh, A.; Mingolla, E. Seeing surfaces: The brain’s vision of the world. Phys. Life Rev. 2007, 4, 189–222. 

https://doi.org/10.1016/j.plrev.2007.09.001. 

15. Neufert, E. Arte de Proyectar en Arquitectura; Ed Gustavo Gili: Barcelona, Spain, 1982. 

16. Zacharias, J. Preferences for view corridors through the urban environment. Landsc. Urban Plan. 1999, 43, 217–225. 

https://doi.org/10.1016/s0169-2046(98)00104-2. 

17. Humphreys, G.W.; Cinel, K.; Wolfe, J.; Olson, A.; Klempen, N. Fractionating the binding process: Neuropsychological evidence 

distinguishing binding of form from binding of surface features. Vis. Res. 2000, 40, 1569–1596. 

18. Vanrell, M.; Baldrich, R.; Salvatella, A.; Benavente, R.; Tous, F. Induction operators for a computational colour-texture repre-

sentation. Comput. Vis. Image Underst. 2004, 94, 92–114. 

19. García, L.; Hernández, J.; Ayuga, F. Analysis of the exterior colour of agro-industrial buildings: A computer aided approach to 

landscape integration. J. Env. Man. 2003, 69, 93–104. 

20. O’Connor, Z. Façade Colour and Judgements about Building Size and Congruity. J. Urban Des. 2011, 16, 397–404. 

https://doi.org/10.1080/13574809.2011.574993. 

21. Hernández, J.; López-Casares, S.; Montero, M.J. Análisis metodológico de la relación entre envolvente y urbanización exterior 

en construcciones rurales para la mejora de la integración paisajística. Inf. Construcción 2013, 65, 497–508. 

22. Amir, S.; Gidalizon, E. Expert-based method for the evaluation of visual absorption capacity of the landscape. J. Environ. Manag. 

1990, 30, 251–263. https://doi.org/10.1016/0301-4797(90)90005-h. 

23. Crow, T.; Brown, T.; De Young, R. The Riverside and Berwyn experience: Contrasts in landscape structure, perceptions of the 

urban landscape, and their effects on people. Landsc. Urban Plan. 2006, 75, 282-299.  

24. Ikemy, M. The effects of mystery on preference for residential façades. J. Environ. Psychol. 2005, 25, 167–173. 

25. Bishop, I.D.; Wherrett, J.R.; Miller, D.R. Using Image Depth Variables as Predictors of Visual Quality. Environ. Plan. B Plan. Des. 

2000, 27, 865–875. https://doi.org/10.1068/b26101. 

26. Hernández, J.; García, L.; Morán, J.; Juan, A.; Ayuga, F. Estimating visual perception of rural landscapes: The influence of veg-

etation, The case of Esla Valley (Spain). Food Agric. Environ. 2003, 1, 139–141. 

27. Jiang, L.; Kang, J.; Schroth, O. Prediction of the visual impact of motorways using GIS. Environ. Impact Assess. Rev. 2015, 55, 59–

73. https://doi.org/10.1016/j.eiar.2015.07.001. 

28. Weber, E.H. De Pulsu, Resorptione, Auditu Et Tactu. In Annotationes Anatomicae et Physiologicae; Koehler: Leipzig, Germany, 

1834. 

29. Deheaene, S. The neural basis of the Weber-Fechner law: A logarithmic mental number line. Res. Focus 2003, 7, 145–147. 

30. Garrido Velarde, J.; Montero Parejo, M.J.; Hernández Blanco, J.; García-Moruno, L. Using Native Vegetation Screens to Lessen 

the Visual Impact of Rural Buildings in the Sierras de Béjar and Francia Biosphere Reserve: Case Studies and Public Survey. 

Sustainability 2019, 11, 2595. https://doi.org/10.3390/su11092595. 

31. Gimblett, H.R. Environmental cognition: The prediction of preference in rural Indiana. J. Archit. Plan Res. 1990, 7, 222–234. 

32. Lynch, J.A.; Gimblett, H.R. Perceptual values in the cultural landscape: A spatial model for assessing and mapping perceived 

mystery in rural environments. Comput. Environ. Urban 1992, 16, 453–471. 

33. Stamps, A.E., III. Mystery, complexity, legibility and coherence: A meta-analysis. J. Environ. Psychol. 2004, 24, 1–16. 

https://doi.org/10.1016/s0272-4944(03)00023-9. 

34. Gimblett, H.R.; Itami, R.M.; FitzGibbon, J.E. Mystery in an Information Processing Model of Landscape Preference. Landsc. J. 

1985, 4, 87–95. https://doi.org/10.3368/lj.4.2.87. 

35. García Moruno, L. Criterios de Diseño Para la Integración de las Construcciones Rurales en el Paisaje. Ph.D. Thesis, Universidad 

Politécnica de Madrid, Madrid, Spain, 1998. 

36. Montero-Parejo, M.J.; Garcia-Moruno, L.; Lopez-Casares, S.; Hernandez-Blanco, J. Visual Impact Assessment of Colour and 

Scale of Buildings on the Rural Landscape. Environ. Eng. Manag. J. 2016, 15, 1537–1550. https://doi.org/10.30638/eemj.2016.166. 

37. Hernández, J.; García, L.; Montero, M.J.; Sánchez, A.; Lopez, S. Determinación de los Impactos Producidos en los Humedales 

de Extremadura para su Defensa y Protección Ambiental. In 204 Landscape Architecture-The Sense of Places, Models and Applications 

(Identifying Impacts on Wetlands of Extremadura for Environmental Protection); FAME (Fundación Alfonso Martín Escudero): Ma-

drid, Spain, 2007; p. 196. (In Spanish) 



Land 2022, 11, 1450 20 of 20 
 

38. Garrido-Velarde, J.; Montero-Parejo, M.J.; Hernández-Blanco, J.; García-Moruno, L. Visual analysis of the height ratio between 

building and background vegetation. Two rural cases of study: Spain and Sweden. Sustainability 2018, 10, 1890. 

39. Garrido-Velarde, J.; Montero-Parejo, M.J.; Hernández-Blanco, J.; García-Moruno, L. Use of video and 3D scenario visualisation 

to rate vegetation screens for integrating buildings into the landscape. Sustainability 2017, 9, 1102. 

40. Grêt-Regamey, A.; Bishop, I.D.; Bebi, P. Predicting the scenic beauty value of mapped landscape changes in a mountainous 

region through the use of GIS. Environ. Plan. B Plan. Des. 2007, 34, 50–67. https://doi.org/10.1068/b32051. 

41. Bishop, I.D. Determination of Thresholds of Visual Impact: The Case of Wind Turbines. Environ. Plan. B Plan. Des. 2002, 29, 707–

718. https://doi.org/10.1068/b12854. 

42. Montero Parejo, M.J.; Jeong, J.S.; García Moruno, L.; Hernández Blanco, J. Metodología para la cuantificación del impacto visual 

de materiales y detalles de fachada en edificación rural (in spanish). In Proceedings of the VIII Iberian Congress of Agro-Engi-

neering, Orihuela, Spain, 1–3 June 2015. 

43. Imamoglu, Ç. Complexity, liking and familiarity, architecture and non-architecture Turkish students’ assessments of traditional 

and modern house facades. J. Environ. Psychol. 2000, 20, 5–16. 

44. Montero-Parejo, M.J.; García-Moruno, L.; Reyes-Rodríguez, A.M.; Hernández-Blanco, J.; Garrido-Velarde, J. Analysis of Façade 

Colour and Cost to Improve Visual Integration of Buildings in the Rural Environment. Sustainability 2020, 12, 3840. 

45. Kendrick, J. Social Statistics: An Introduction to Using SPSS, 2nd ed.; Allyn and Bacon: Boston, MA, USA, 2005. 

46. Nasar, J.L. Adult viewers’ preferences in residential scenes: A study of the relationship of the environmental attributes to pref-

erence. Environ. Behav. 1983, 15, 589–614. 

47. Roth, M. Validating the use of Internet survey techniques in visual landscape assessment—An empirical study from Germany. 

Landsc. Urban Plan. 2006, 78, 179–192. https://doi.org/10.1016/j.landurbplan.2005.07.005. 

48. Stamps, A.E. A paradigm for distinguishing significant from non significant visual impacts: Theory, implementation, case his-

tories. Environ. Impact Assess Rev. 1997, 17, 249–293. 

49. Rosenthal, R.; Rosnow, R.L. Essentials of Behavioral Research: Methods and Data Analysis, 2nd ed.; McGraw Hill: New York, NY, 

USA, 1991. 

50. Varela, M. Évaluation Pseudo–Subjective de la Qualité d’un Flux Multimédia. Ph.D. Thesis, University of Rennes 1, Rennes, 

France, 2007. 

51. Nasar, J.L.; Stamps, A.E., III. Infill McMansions: Style and the psychophysics of size. J. Environ. Psychol. 2009, 29, 110–123. 

https://doi.org/10.1016/j.jenvp.2008.09.003. 

52. Reichl, P.; Egger, S.; Schatz, R.; D’Alconzo, A. The logarithmic nature of QoE and the Role of theWeber-Fechner Law in QoE 

assessment. In Proceedings of the 2010 IEEE International Conference on Communications, Cape Town, South Africa, 23–27 

May 2010. 

53. Jiang, B.; Larsen, L.; Deal, B.; Sullivan, W.C. A dose–response curve describing the relationship between tree cover density and 

landscape preference. Landsc. Urban Plan. 2015, 139, 16–25. https://doi.org/10.1016/j.landurbplan.2015.02.018. 

54. Cañas, I.; Ayuga, E.; Ayuga, F. A contribution to the assessment of scenic quality of landscapes base don preferences expresed 

by the public. Land Use Policy 2009, 26, 1173–1181. 

55. Smardon, R.C.; Palmer, J.F.; Felleman, J.P. Foundations for Visual Project Analysis; John Wiley: New York, NY, USA, 1986. Avail-

able online: www.esf.edu/es/via (accessed on 1 March 2022). 

56. Stamps, A.E., III. Physical Determinants of Preferences for Residential Facades. Environ. Behav. 1999, 31, 723–751. 

https://doi.org/10.1177/00139169921972326. 

57. Akalin, A.; Yildirim, K.; Wilson, C.; Kilicoglu, O. Architecture and engineering students’ evaluations of house façades: Pref-

erence, complexity and impressiveness. J. Environ. Psychol. 2009, 29, 124–132. 

58. Montero-Parejo, M.J.; Jeong Su, J.; Hernández-Blanco, J.; García-Moruno, L. Rural Landscape Architecture: Traditional ver-sus 

Modern Façade Designs inWestern Spain. In Landscape Architecture; The Sence of Places, Models and Applications; Intechopen: 

London, UK, 2018. 

59. Shang, H.; Bishop, I.D. Visual Thresholds for detection, recognition and visual in landscape settings. J. Environ. Psychol. 2000, 

20, 125–140. 

60. Tveit, M.; Ode, A.; Fry, G. Key Concepts in a Framework for Analysing Visual Landscape Character. Landsc. Res. 2006, 31, 229–

255. 


