
Original Paper

Measurement and Control
2022, Vol. 55(1-2) 102–115
© The Author(s) 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/00202940211064471
journals.sagepub.com/home/mac

Population size influence on the energy
consumption of genetic programming

Josefa Dı́az-Álvarez1, Pedro A Castillo2, Francisco Fernández de Vega1,
Francisco Chávez3 and Jorge Alvarado4

Abstract
Evolutionary Algorithms (EAs) are routinely applied to solve a large set of optimization problems. Traditionally, their
performance in solving those problems is analyzed using the fitness quality and computing time, and the effect of evolutionary
operators on both metrics is routinely used to compare different versions of EAs. Nevertheless, scientists face nowadays the
challenge of considering the energy efficiency in addition to computational time, which requires studying the energy
consumption of algorithms.
This paper discusses the interest of introducing power consumption as a new metric to analyze the performance of standard
genetic programming (GP). Two well-studied benchmark problems are addressed on three different computing platforms,
and two different approaches to measure the power consumption have been tested.
Analyzing the population size, the results demonstrates its influence on the energy consumed: a non-linear relationship was
found between size and energy required to complete an experiment. This analysis was extended to the cache memory and
results show an exponential growth in the number of cache misses as the population size increases, which affects the energy
consumed. This study shows that not only computing time or solution quality must be analyzed, but also the energy required
to find a solution.
Summarizing, this paper shows that when GP is applied, specific considerations on how to select parameter values must be
taken into account if the goal is to obtain solutions while searching for energy efficiency. Although the study has been
performed using GP, we foresee that it could be similarly extended to EAs.

Keywords
energy consumption, evolutionary algorithms, energy-aware computing, performance measurements

Date received: 24 October 2020; accepted: 2 September 2021

Introduction

Energy efficiency has acquired a remarkable importance
in the last decades for the scientific community, due to
the growing need of information and communication
technologies and therefore power-operated systems in
society.1

In recent years, attention has been paid on the manage-
ment of the power consumption on the whole field of In-
formation Technology (IT), from the circuit level—which
includes microprocessors, network-based systems, hand-held
devices, etc.

Regarding microprocessors, the most successful technique,
the DynamicVoltage and Frequency Scaling (DVFS) is widely
spread in available computer architectures. DVFS, initially
aimed at single processors, saves energy by switching the
processor’s frequency and voltage according to the workload
needs. Relying on this technique, many algorithms have been

developed,2–4 also to minimize energy consumption of a real
time parallel application with precedence-constrained tasks on
a heterogeneous distributed system.5

Multiple approaches have addressed the cache memory in
order to save energy. Hu et al.6 for instance, proposed a
feedback mechanism to perform the data cache resizing. This

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License
(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without
further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-

us/nam/open-access-at-sage).

1Computer architecture department, University of Extremadura, Mérida,
Spain
2Department of Computer Architecture and Computer Technology, ETSIIT
and CITIC, University of Granada, Granada, Spain
3Computer and Telematics Systems Department, University of
Extremadura, Mérida, Spain
4GEA group, University of Extremadura, Mérida, Spain

Corresponding author:
Josefa Dı́az-Álvarez, Computer architecture department, University of
Extremadura, Santa Teresa Jornet, no 38, Mérida 06800, Spain.
Email: mjdiaz@unex.es

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/00202940211064471
https://journals.sagepub.com/home/mac
https://orcid.org/0000-0003-2105-3905
https://creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
mailto:mjdiaz@unex.es
http://crossmark.crossref.org/dialog/?doi=10.1177%2F00202940211064471&domain=pdf&date_stamp=2022-04-28

approach blocks the low yields of cache resizing using the
information of the cache footprint, improving the cache
performance and saving 10% energy, compared with the
cache without the feedback mechanism. Manohar et al.7

presented a value-based refresh saving method for Muti-
level cache hierarchy with large sized last level caches
(LLCs). The aim is minimizing the number of refreshes and
save energy when embedded-DRAMs (eDRAM) are used as
an alternative to SRAM.

These techniques are directly applicable to different
hardware components configuration. Nevertheless, power
consumption can also be studied from the algorithm point of
view, where optimizations can also be applied. Our approach
is focused on this level, particularly the algorithms settings.

If we focus on this area, we found several works that study
algorithms considering energy consumption point of view.
Mota et al.8 tackled a comparative analysis, where commonly
used symmetric and asymmetric encryption algorithms are
analyzed using several metrics, including efficiency in terms
of power consumption. Kong et al.9 presented a routing
protocol based on genetic algorithm to construct an energy-
aware middle layer oriented network. The schemes proposed
consume less energy when compared to other methods, and
they also extend the network lifetime.

More recently, Rashid et al. measured in Ref. 10 the power
consumption of several sorting algorithms. In that work, the
algorithms were coded in different languages and were run on
an ARM architecture and the key factors affecting energy
consumption were identified. Same authors in Ref. 11 ana-
lyzed the power consumption of common image encoding
and decoding algorithms such as JPEG and PNG on an ARM
platform. They found JPEG consumes up to 37% more
energy than PNG.

As described above, a number of algorithms have already
been analyzed from the point of view of power consumption.
But in the case of EAs, this idea has only been presented in
the literature very recently, and still needs development as
Camacho et al. described in Ref. 12. Recently, Talbi et al.13

proposed a unified view to guide the design and im-
plementation of efficient and effective parallel evolutionary
algorithms for multi-objective optimization, where the en-
ergy consumption of the MOEA itself is proposed to be
considered as a metric.

As we show below, few authors have ever considered that
power consumption must be studied in the case of EAs, and
the possible influence of the parameter values on the energy
efficiency of the algorithm has never been studied. In this
paper, we pursue that goal: to analyze the influence of
population size on Genetic Programming (GP) power con-
sumption. To the best of our knowledge, this is the first
systematic study of such an issue. Thus, the main contri-
bution of this paper is to show that energy consumption is not
directly related to runtime for GP. Moreover, we show the
relationship between population size and energy consumed,
describe some anomalies detected and look for the reasons
behind that behavior.

Our results demonstrate the influence of the population
size on the energy consumed: a non-linear relationship was
found between size and energy required to complete an
experiment. The extension of the study to the cache memory
shows an exponential growth in the number of cache misses

as the population size increases, which affects the energy
consumed. Therefore, our study results contribute to confirm
that not only computing time or solution quality must be
analyzed, but also the energy required to find a solution. We
thus hope this paper will pave the way towards energy ef-
ficiency of GP and EAs in the future.

The rest of the paper is organized as follows: in Power
Consumption and EAs we describe previous approaches in
the area, the motivation for this analysis and the outlines of
this study are presented. Methodology describes the meth-
odology for the analysis and the benchmark problems se-
lected. Results presents the results obtained, and finally
Conclusion draws our conclusions and future work.

Power consumption and EAs

From a historic perspective, EA researchers have always
considered the quality of solutions found and computing time
required to find them as the most important metrics to
evaluate the performance of the algorithm, while the energy
consumption has usually been ignored. In regard of the
computing time, it seems to be accepted that the relationship
between the power consumption and runtime is linear, and
the processor’s instantaneous energy consumption is con-
stant, whatever the operation performed by the CPU. Thus,
the power consumption could be easily calculated by mul-
tiplying the instantaneous consumption of energy, at any time
during the experiment, by the total execution time. This
assumption has probably kept researchers from considering
energy consumption as something that deserves attention.
But this is certainly not the case, as has already been shown
when the power consumption is analyzed from the point of
view of computer architectures.14

Moreover, in a previous and preliminary research work,
we detected some anomalies related to the parameter values
employed when running the algorithm.15

Although the relationship between power consumption
and EAs is not new, the literature frequently describes works
where the role of the EA is the standard one, an optimization
method, and power consumption is simply the goal to be
optimized in a given context. A proper review of this idea can
be found in Refs. 16, 17. In Ref. 18, for instance, researchers
proposed a Genetic Algorithm (GA) to improve the ware-
houses energy management to minimize the impact on the
environment and to reduce the associated costs.

On the other hand, Liqat et al. developed in Ref. 19 a
scheduling tool in charge of dividing a program into basic
blocks; then an EA is applied to establish the maximum limit
of energy for each block. Recently Ibrahim et al.20 presented
an adaptive GA to search the optimal scheduling solution to
minimize the power consumption in a cloud computing
infrastructure.

A recent study21 performed a systematic study of the
energy complexity of several classic algorithms exploring the
time/space/energy trade-off in order to reduce their energy
complexity by applying Landauer’s principle.

Similarly, as in the previous works, we share the quest for
energy-efficient algorithms as the main goal. Nevertheless,
some differences can be drawn. Our study is applied to GP,
while above-mentioned work deals with several classical
algorithms. We study some parameter values that affect the

Dı́az-Álvarez et al. 103

algorithm behavior, while they focus on a lower level,
particularly on word-level operations, and build pseudo-code
for well-known and new programming structures, both in
terms of control logic, memory allocation, garbage collec-
tion, logging, and unrolling operations.

Therefore, our point of view is quite different since we
focus on studying the optimal parameter values for EAs,
particularly GP in this work, to achieve a trade-off between
quality of solutions and energy consumption.

Closer to our goals, Garcı́a-Martı́n et al.22 presented a
general literature review of different methods and power
models to estimate power consumption in machine learning
applications. Additionally, they presented the latest software
tools available to estimate power consumption in this context.
Some of the methods reviewed are applied in this work, as we
describe below, although we also include additional mea-
surement procedures, as we describe below.

To the best of our knowledge, few research works deal
with the problem of quantifying the energy required by
evolutionary algorithms when tackling a real-world problem
optimization. Closely related to that idea, Abdelhafez et al.23

compared a sequential and a parallel genetic algorithm in
terms of the power consumption. Regarding the parallel GA
approach, authors analyzed both the synchronous and
asynchronous version of the algorithm. They worked with a
different number of cores and dimensions for several
problems and focused on crossover and mutation operators.
Lately, several works were presented related to this goal.

Population and chromosome size were studied for the first
time in Ref. 15, where the energy consumption patterns
where analyzed using two well-known benchmarks of a
simple GA. However, this analysis did not include GP.

Power consumption in genetic programming

The work presented here improves on some aspects of the
previous work, allowing us to draw useful conclusions. First
of all, the benchmark problems must be carefully selected, as
described in Ref. 24. On the other hand, we should focus on
the main parameters of the GP, and their influence on its
energy footprint. Furthermore, this should be contextualized
in relation to standard metrics, such as fitness quality and
computation time.

In terms of the benchmark issues to be tested, the GP
community identified some issues over the last decade,24

which were related to the quality of the traditionally employed
GP benchmarks. In that work, the authors warned of the need
to design a good benchmark suite. In this context, McDermott
et al.25 proposed a new set of GP benchmarks as better
candidates for testing GP. With this in mind, we have selected
two of them to work with, namely Lid and Order Tree.

Lid is a GP benchmark, which can adjust its difficulty by
changing maximum individual sizes and depths allowed.
Order tree is a new GP benchmark that shares properties with
other GP benchmarks and solves some shortcomings. The
problem size and the linearity of the fitness structure can be
increased and decreased, respectively, to tune the difficulty of
the problem. In this paper, we focus on the population size
and the rest of the alternatives will be addressed later.

Based on the foregoing, in this paper, we consider the
standard version of GP to be run on selected benchmark

problems, and we decided to explore the influence of pop-
ulation size as one of its main parameters.

The standard operations of the algorithm, fitness evalu-
ation, selection, crossover, and mutation are repeated in each
generation. But from the point of view of the CPU, running
the algorithm, there are no major differences when CPU time
is devoted to running the algorithm, although perhaps other
issues may affect the energy consumed, such as cache
memory operations, as we study below.

In a previous work, we focused on a preliminary analysis
of the algorithm, taking into account the hardware platform
on which it can be run (see Ref. 26). As a result, a profile was
generated for each platform that was then analyzed in Ref. 27.
A preliminary study limited to the 6-bit multiplexer GP
problem was conducted using small population sizes.
Nevertheless, that work was aimed at studying the most
energy-efficient platform, and the goal is now quite dif-
ferent. All in all, those results suggest that the idea is worth
pursuing further.

When we look at the number of generations and pop-
ulation size, as well as the running time of the algorithm,
computing N + 1 generations will take longer than N;
evaluating a population size of I + 1 individuals will take
longer than I. In addition, a more complex fitness function
needs more time to evaluate each individual and, conse-
quently, the runtime grows. Similarly, a greater depth of the
trees increases the difficulty of the problem and, conse-
quently, the computing resources required. Therefore, the
study of the influence of different parameter values is crucial
for the analysis of energy consumption behavior.

In this work, we consider two different perspectives to
analyze the energy consumption behavior for each GP
benchmark: (i) Running the algorithm for a given time
without taking into account the quality of the solution found
and (ii) Running the algorithm until a given quality solution
or number of generations is reached. Both perspectives co-
incide with those proposed when considering real-world
problems.

We believe it is important to evaluate the influence of the
main parameters on the energy required to run an EA, and to
make decisions based on finding a compromise between
solution quality, execution time and energy efficiency.

In the following section, we describe the methodology
applied to study the energy consumption of the GP. Three
different computing platforms have been used and two dif-
ferent approaches have been applied to measure as accurately
as possible the energy consumption. Our main goal here is to
provide evidence on the importance of parameter selection if
we want to achieve energy efficiency in the future for EAs;
we also try to show that there is no linear relationship be-
tween computing time and energy consumption, and there-
fore studies like the one we present deserve attention. To the
best of our knowledge, this is the first time this relationship
has been studied with the precision described here.

Methodology

This work is based on the hypothesis that the main EA
parameters not only influences computing time or quality of
solutions, but they highly influence the total energy con-
sumed by the algorithm when addressing a problem.

104 Measurement and Control 55(1-2)

Moreover, previous work has shown that correlation between
time and energy, that is assumed as a direct one, seems to be
not so direct and deserves attention. Therefore, this study
focuses particularly on this issue, specifically applied to GP.
In this light, an appropriate selection of parameter values
could further provide more energy-efficient algorithms.

We have thus selected and studied the population size as
one of the most influencing parameters and tackled the two
GP benchmarks previously described: LID andORDER Tree.
The main objective is measuring accurately the energy
consumption for a set of population size values and analyzing
results obtained.

Our experiments were carried out on three different
computer platforms, which provide different computational
resources. We consider that the use of multiple platforms
allows the results to be extrapolated to any other hardware
platforms. The first one was a Raspberry Pi 3 Model B+,1

which is a Single-board computer equipped with a Quad
Core 1.2GHz Broadcom BCM2837 64bit CPU 1GB RAM
and connectivity with a BCM43438 wireless LAN and
Bluetooth Low Energy (BLE) on board. The operating
system was Raspbian 7. Raspberry Pi has been widely used
as the target platform in many optimization process, some
very recently.28,29 The second platform was an ASUS Laptop
with a processor Intel(R) Core(TM) i5-2450M 2.5 GHz, 4
cores and 8GB RAM and Ubuntu 14.04.1 LTS as the oper-
ating system. Finally, we also ran our experiments on a
desktop personal computer (PC) provided with an Intel(R)
CoreTM i5-4430 processor, 3 GHz, 4 cores, 32GB RAM using
as operating system Ubuntu 14.04.1 LTS.

The reason for including the Raspberry Pi platform is due
to previously published results describing it as the most
energy-efficient platform for running an EA.26

Once the target platforms were selected, we needed to
choose the measurement system to quantify the energy
consumption of the algorithm. We decided to use two dif-
ferent methodologies. On the one hand, we measured the
power consumption on the Raspberry Pi and Laptop plat-
forms with a professional digital power meter. On the other
hand, we used a software tool for measuring the power
consumption on the PC platform taking advantage of the
specific registers of the CPU. This decision was taken as the
PC is integrated into a rack at another research center, making
it impossible to install the professional digital power meter to
obtain the energy consumption data.

The following elements composes the instrumentation
tools used to measure the energy consumption:

• A digital power meter, particularly the WT310E model
from Yokogawa,30 which is a power measurement instrument
that can measure parameters such as voltage, current, and
power at customized regular intervals (between 100ms to
20s), when running the algorithm on the target platforms,
Laptop and Raspberry Pi in this case. Moreover, it provides
of the WTViewer software application to save the samples
taken in a complete log for further analysis and visualizing.

• The APPPowerMeter2 software application, which is a
powerful tool for monitoring CPU power with Intel’s RAPL
interface.31–34 AppPowerMeter monitors an application and
takes samples of the CPU every 100ms. Thus, it is able of
measuring the total energy and average power of the CPU
while an application is run.

As previously mentioned, two well-known GP benchmark
problems were chosen for this study: LID and ORDER Tree
problems. The evolutionary engine ECJ35,36 was used to
carry out the experiments. All experiments used ECJ’s de-
fault values for evolutionary parameters. Particularly, prob-
abilities of crossover and mutation equal to 0.9 and 0.1,
respectively. The trees initialization method applied was
ramped half-and-half. The number of generations is selected
large enough to exceed 300 s and population size corresponds
to the customized settings of each experiment. We must bear
in mind that a run will finish always after a given number of
generations is completed, or when the running time is longer
that 300 s.

Six different population size values were tested, 256, 512,
1024, 2048, 4096, and 8192. Once the specific parameters
settings are established, the generational version of the al-
gorithm is launched (30 independent runs for each population
size). As a result, the average values are obtained. The setup
establishes that each independent run will finish when ex-
ceeding 300 s (maximum time allowed per run), which may
correspond to different number of generations computed,
given variable individual size that GP features.

In order to gather results and energy consumption data, a
differentiation needs to be made between the experiments
carried out on the PC platform, and those on the Laptop and
Raspberry Pi platforms. Both collect evolutionary informa-
tion from the evolutionary engine ECJ, which provides a log
with evolutionary data such as the best fitness value for each
generation. This log was enlarged to add the total system time
to complete each generation. However, the measurement of
the energy consumed is carried out of the tool, using two
different approaches. When the PC platform is employed, we
use the AppPowerMeter software, which receives as an ar-
gument the application to be executed and when finishing it
returns the average total energy consumed, power, and time,
obtained from the registers of the CPU via the Intel’s RAPL
interface. The idea behind the use of different methods to
monitor the energy consumption allows us to evaluate the
reliability of the results.

The energy consumed running the experiments on the
Laptop and Raspberry Pi platforms is measured using the
digital power meter and the WTViewer software application,
which stores all samples taken during the algorithm run into a
log file. This information is further processed for obtaining
the energy consumed. Results obtained are summarized and
analyzed in the following section.

Results

Three different experiment settings, detailed in the next
subsections, have been designed, that are summarized as
follows:

• Experiment #1: Running experiments for 300 s, and
analyzing energy consumption for every population
size considered.

• Experiment #2: Running experiments until solutions
with a given fitness values are found.

• Further Experiments: The conclusions reached in the
previous stages led us to conduct further experiments
that may shed light into results and behaviors found.

Dı́az-Álvarez et al. 105

Experiments with time limit 300 s

The initial experiment aims at evaluating all benchmark
problems on hardware platforms and testing all population
sizes selected. Thus, 30 independent runs were launched and
each run was stopped when a given generation ends and the
running time overpass 300 s, which is the maximum allowed
time. Therefore, time monitoring is performed just after each
generation is completed. Given that some runs will for sure
exceed the limit of 300 s, two types of graphs are shown for
this kind of experiment.

• Figure type #1 consists of two graphs (a) and (b), where
graph (a) represents the results obtained when exceeding
300 s after the completion of a generation, and graph (b)
shows the results at the previous generation to exceed 300 s.
Despite the fact that the study of the fitness value is not the
objective for this experiment, it has been included on the
graph to observe and analyze its behavior. The X axis rep-
resents the population size, Y-left axis is the fitness value and
Y-right axis corresponds to the power consumption. We must
bear in mind that the larger the population size, the longer the
time to evaluate each generation. We consider this time limit
to be enough for our purposes.

• Figure type #2 also contains two graphs corresponding to
the growth rate of energy consumption and runtime in the
graph (a) until 300 s are exceeded, and the energy con-
sumption in the graph (b) before 300 s are surpassed, both
between consecutive population sizes. X axis represents the
population sizes compared, while the Yaxis is the growth rate
values.

Raspberry Pi platform We focus first on the Raspberry Pi
platform, where only five different population size values
were tested, due to its limited hardware resources. The energy
consumption was measured through the digital power meter
Yokogawa WT310E. Results obtained for the LID problem
are shown in Figure 1, which belongs to figure type #1.

Regarding the fitness value, we can notice in both graphs
included in the figure that in this experiment, with this time
limit, the fitness value not only does not improve but also it
gets worst when population size grows. This kind of behavior
has already been shown in the literature, particularly in 2006
it was first described in Ref. 37: when a time limit is imposed
a best population size exist to find the best possible solution
in the allotted time.

We focus next on our main goal, the energy consumption.
In order to do so, the energy consumption in graph (a) is
analyzed and then an interesting behavior is observed: the
larger the population size, the longer the runtime.

We must remember that the experiment can only finish
when a generation is completed and the 300s time limit is
surpassed. We can see in Figure 2 averaged fitness values and
energy over 30 runs per population size: smaller population
sizes produce short generations, and this influences shorter
differences with the 300s time limit. Similarly, large pop-
ulations require longer time per generation, and this means
that the last generation after 300 s will be completed in a
much longer time. Similarly, the larger the population size,
the larger the energy required to complete the experiment,
given that more time is required to complete the experiment.

Yet, if we check Figure 2(a), we see that growth rate is not
the same for running time as for power consumption.
Moreover, some anomalies are found for some specific
values (check the growth when comparing 1024 and 2048 for
energy consumption).

It can be observed that the growth rate when small
population sizes are used, is similar for both the energy
consumption and execution time, although the growth rate of
energy consumption is always a bit higher (i.e., population
sizes = 256 and 512). However, it shoots up from size 1024 to
2048, being 26% higher than the time increase rate and,
although between 2048 and 4096 the growth rate is more
similar, this represents a 6% more.

On the other hand, Figure 2(b) represents the energy
consumption at exactly 300 s. In this second experiment, we
are measuring power consumption exactly at that time step,
although it is not possible to catch fitness values at that
point, given the way ECJ tool works, providing fitness values
only after a generation is completed. Therefore, we include
fitness values obtained in the last generation computed before
300 s are surpassed, so that we have an idea of the algorithm
behavior.

We notice that differences found when comparing pop-
ulation sizes at 300 s are narrow, although some anomaly
appears when comparing 1024 and 512 population sizes.
Even though the difference is small, the energy consumption
is a bit lower for 1024 individuals. Again, growth rates are
shown in Figure 2(b), where the anomaly for 512 and 1024
population sizes is clearly shown.

Figure 1. LID problem on Raspberry Pi. Analyzing the power consumption for different population sizes. X axis represents the population
sizes, Y-left axis is the average fitness values obtained in 30 runs; and Y-right axis corresponds to the average power consumption. Graph (a)
represents results including the excess time (when 300 s are overpassed after a given generation completed), and graph (b) results at the 300 s.

106 Measurement and Control 55(1-2)

This behavior could be seen at first sight as counter-
intuitive given that the CPU is working at any time re-
gardless of the operation performed. In the next sections, we
try to confirm the anomalies detected, and then describe
further experiments that tries to study why this is so.

We address now the ORDER Tree problem. Figure 3
(Type #1) is described in the same terms as the previous
one for the LID problem. As in the case of the fitness value for
LID, the fitness value does not improve when population size
grows: the smaller the size, the larger the fitness value.
Similarly, if we analyze the energy consumption and we put
the spotlight on Figure 3(a), we observe how energy

consumption is increased as the size of the population
grows. Despite the fact that this increase is not constant and
the highest increases happen in the changes of population
sizes from 512 to 1024 and from 2048 to 4096, differences
are now smaller when compared to those obtained for LID.
The evolution at 300 s Figure 3(b) is similar for both runtime
and energy consumption. As it can be noticed in Figure 4
(Type 2), the growth rates are again narrow, but again
differences are found even when all the measures are taken
after exactly 300 s.

Results obtained in this specific experiment show sig-
nificant variations in energy consumption across different

Figure 2. LID problem on Raspberry Pi. Analyzing the growth rates of execution time versus power consumption for each population size.
X axis represents the population sizes and, Y axis is the growth rate values.

Figure 3. ORDER Tree problem on Raspberry Pi. Analyzing the power consumption for different population sizes. X axis represents the
population size, Y-left axis is the fitness value and Y-right axis corresponds to the power consumption. Graph (a) represents results
including the excess time, and graph (b) results at the 300 s.

Figure 4. ORDER Tree problem on Raspberry Pi. Analyzing the growth rates of execution time versus power consumption for each
population size in a Raspberry Pi. X axis represents the population sizes and, Y axis is the growth rate values.

Dı́az-Álvarez et al. 107

population sizes, particularly for LID, and not so much for
ORDER tree, at least in this hardware platform. This suggests
that when addressing a real problem, power consumption
should be a metric to be considered in the configuration of the
algorithm’s parameters, although the problem itself induce
differences in the energy required.

In any case, as the Raspberry Pi platform has limited
hardware resources, more experiments on two additionally
hardware platforms have been performed as described below,
trying to confirm that the relationship between runtime and
energy consumed is not linear, and that differences are
influenced by parameter values selected for the algorithm.

x86 architecture. Once Raspberry Pi -ARM architecture—
has been analyzed, we decided to repeat the experiments
using the widespread x86 architecture. In this case, a Laptop
and a PC have been considered. Moreover, given the
availability of internal equipment to measure energy con-
sumption, we have also employed this one together with the
previous approach, as described in Methodology.

We begin this analysis using the laptop and still using the
digital power meter Yokogawa WT310E for measuring the
energy consumption.

With higher capacity in computing resources than a
Raspberry Pi, we included the population size 8192 as a
value to be analyzed in this experiment.

Figure 5 (Type #1) shows results obtained for LID. If we
analyze both graphs (a) and (b), we observe a growing

general trend similar to the one observed in previous ex-
periments: the larger the population size, the higher the
energy consumption. However, an exception appears with
population size 256. Actually, the energy required to run a
population size of 512 is 8.36% smaller than that of 256. We
may notice that the total energy required for 256, is larger
than the values for 512, 1024, and 2048. Therefore, although
fitness value obtained using 256 individuals is slightly better,
the larger energy consumption required, clearly shows for the
first time, that specific values for population size are
sometimes better when the goal is energy savings. This is
quite an interesting behavior, given that it deviates from what
we expected: the larger the population size, the higher energy
consumption when we wait until a generation finished after
more than 300 s. In any case, the most interesting result is
shown in (b) graph: even when exactly 300 s have elapsed for
each of the experiments, the 512 seems to be the population
size tested that requires the smallest energy to reach that time
step.

Figure 6 (Type #2) shows the respective growth rates
between consecutive population sizes for LIDs on the laptop.
We may notice that the highest growth rates appear when
changing from 512 to 1024, 2048 to 4096, and 4096 to 8192,
with 5.4%, 5.39%, and 5.87% percentages, respectively.
These values are far from the growth rates for runtime 0.14%,
0.65%, and 1.23%, respectively. Although in most of the
results shown when increasing runtime, the energy con-
sumption also increases, the intensity with which it increases

Figure 5. LID problem on Laptop. Analyzing the power consumption for different population sizes on a laptop platform. X axis represents
the population size, Y-left axis is the fitness value and Y-right axis corresponds to the power consumption. Graph (a) represents results
including the excess time, and graph (b) results at the 300 s.

Figure 6. LID problem on Laptop. Analyzing the growth rates of execution time versus power consumption for each population size on a
laptop platform. X axis represents the population sizes and, Y axis is the growth rate values.

108 Measurement and Control 55(1-2)

is not the same. There is not a perfect linear correlation.
Could the reason behind this behavior be due to additional
hardware or software resources, beyond the cpu, required for
larger population sizes? As we will show below, this question
requires further analysis.

In similar terms, the results forORDER, plotted in Figures
7 and 8, are analyzed and shown. The highest increase occurs
from 1024 to 2048 with 8.32% and more sustained among the
next consecutive population sizes. As it happens to LID, the
time increase is lower than the energy consumption in-
creasing with 0.58% as the highest percentage reached

between 4096 and 8192, which confirm the trend shown
before for the laptop.

So, these differences need further research. Therefore, in
the next section, we analyze a second x86 endowed device,
and we apply energy measurement using a second method.

x86 & AppPowerMeter. In this case, a more powerful platform
has been used to perform the experiments. As we previously
mentioned, the measurements on this platform were taken
through the AppPowerMeter software, which provides values
for the energy consumed, the average power and the total

Figure 7. ORDER Tree problem on Laptop. Analyzing the power consumption for different population sizes on a laptop. X axis represents
the population size, Y-left axis is the fitness value and Y-right axis corresponds to the power consumption. Graph (a) represents results
including the excess time, and graph (b) results at the 300 s.

Figure 8. ORDER Tree problem on Laptop. Analyzing the growth rates of execution time versus power consumption for each population
size on a laptop. X axis represents the population sizes and, Y axis is the growth rate values.

Figure 9. Analyzing the power consumption for different population sizes on PC platform. X axis represents the population size, Y-left axis
is the fitness value and Y-right axis corresponds to the power consumption. Graph (a) represents results for LID problem and graph (b)
results for ORDER Tree.

Dı́az-Álvarez et al. 109

time. Figure 9 shows the average values for both the energy
consumption and fitness values. The graphs (a) correspond to
results for LID and graph (b) for ORDER Tree.

Regarding the fitness value, the trend is identical to the
previous ones for Raspberry Pi and Laptop platforms. At
the time established as limit, a degradation is produced on the
fitness value. The behavior observed in relation to the energy
consumption is also the same as that seen in the previous
platforms and closer to the laptop for obvious reasons, in
terms of the capacity of computing resources. On average, the
amount of energy consumed on the laptop is higher than on
the PC.

Figure 10(a) and (b) presents the growth rates of energy
consumption and runtime, between consecutive population
sizes for LID and ORDER Tree, respectively. The more
relevant are differences when large population sizes are
employed: For both benchmark problems, the time increase
between consecutive population sizes never reaches 1%.
However, the growth rate of energy consumption for larger
population sizes exceeds 10% in all cases. In case of LID
peaks at 12.28% and 12.96%, when changing from 1024 to
2048 and 2048 to 4096, respectively. With respect toORDER
Tree, a peak of 17.31% is registered when moving from 2048
to 4096. On the other hand, the energy increase we found
when doubling population size from 4096 to 8192 is just
around 10%. And comparatively, energy increase when
doubling population size is never the double.

In any case, this confirms that the energy consumption is
affected by parameters configuration, particularly in our case,
by the population size.

The main conclusion is that energy consumed when
running GP for 300 s varies influenced by population sizes,
with some anomalies that show specific values as the best
ones to reduce power consumption. Given that traditionally
population sizes are chosen to optimize the fitness, this result
shows that a new perspective should be considered: both
measures should be taken into account when looking for an
efficient way of finding solutions.

We are aware of differences found in each of the hardware
platforms, that are due to different number of generations
computed per experiment in each case, given hardware
differences. Table 1 presents the evolution of fitness values
and number of generations computed for each device. For
each problem and population size, the average number of
generations is also shown. As we see, large differences are
found among platforms tested. Yet, all of them have shown a
common trend regarding energy consumption: energy re-
quired depends on populations size employed.

As we had previously seen, every hardware platform
features some differences that affect power consumption:
memory hierarchy, particularly cache sizes and levels,
number of cores available, processor frequency, etc. Given
that population size is related to memory consumption,
processor frequency determines the time required to compute

Figure 10. Analyzing the growth rates of execution time versus power consumption for each population size on PC platform. X axis
represents the population sizes and, Y axis is the growth rate values. Graph (a) corresponds to LID and (b) to ORDER Tree.

Table 1. Summary of the average fitness values for each population size and both Lid and ORDER Tree problems. Fv corresponds to the
fitness value and Ge represents the average number of generations.

Evolution in fitness value for experiments with time limit 300 s.

Raspberry Pi Laptop PC

Pop. Size Lid ORDER Lid ORDER Lid ORDER

Fv Ge Fv Ge Fv Ge Fv Ge Fv Ge Fv Ge
256 50.08 52.67 229.27 124.50 58.33 8708.53 579.07 4883.93 48.56 7499.70 709.47 4953.80
512 47.96 30.70 201.67 81.27 55.57 4041.83 793.73 2137.43 55.57 4861.40 694.63 2519.60
1024 40.57 18.33 179.30 53.13 53.23 1794.37 909.40 912.60 53.25 2195.33 902.47 1339.83
2048 30.55 13.00 129.53 35.57 55.57 936.27 756.73 442.23 53.23 1076.53 959.47 701.50
4096 29.85 10.80 103.23 24.30 41.59 230.63 627.47 276.70 41.54 312.77 802.13 387.10
8192 - - - - 36.87 65.90 493.63 155.73 41.54 151.30 609.10 211.30

110 Measurement and Control 55(1-2)

a generation, and so on and so for, clearly hardware platforms
influence power consumption.

Running experiments until a fitness level is reached

The main goal when addressing an optimization problem
through a standard EA is to find a solution good enough for
the problem at hand. Thus, the EA can be run either for a
given number of generations or can be configured to stop
when a solution overpasses a specific fitness value. The
question that arises in this second version stands as follows:
How much energy would consume the algorithm to reach a
solution with a specific quality level? How to find a balance
between quality of solutions and energy consumed? Could
we configure energy-efficient execution of the algorithm to
not spend so much energy even if we have to obtain a bit
worse solution?

Although it is not easy to find cut and clear answers to all
those questions, in our next step, we designed an experiment
on the PC platform for GP algorithm that hopes to provide
some clues for further research in the future.

Again, we use ECJ with the same benchmark problems
and population sizes. A conservative fitness quality to be
reached was established: 60 and 960 for LID and ORDER
Tree, respectively. Moreover, the value of the maximum
number of generations to be executed if the given fitness
value is not found was established at 1000.

As in previous experiments, 30 independent runs of the
algorithm were performed and average values were computed.
Figure 11 shows for each population size the fitness value
obtained and the energy consumed till one of the stop con-
ditions is met. This figure consists of two graphs, where graph
(a) corresponds to LID problem and graph (b) toORDER Tree.
X axis represents the population size, Y-left axis denotes the
fitness value and Y-right axis is the power consumption.

Regarding the fitness value, we may notice that for all
population sizes in LID, the quality fitness level is not achieved
while in ORDER Tree this is only reached with the largest
population size (8192). Thus, all except one of the population
sizes for ORDER Tree ended when 1000 generations were
completed. We will now focus on the energy consumption and
let’s first analyze the results obtained for the LID problem.

Table 2 presents the average values of the 30 runs for
runtime, energy consumption, and fitness value for each
population size and both problems.

We may first compare the energy consumption between
consecutive population sizes and we see that for each step
from 256 to 8192, always increase over the previous energy
value 2.16, 3.14, 5.24, 3.32, and 2.8 times, respectively.
Nevertheless, when we examined the consecutive differences
in the runtime—comparing each population size with the
previous one, the total time is multiplied by 2, 2.58, 4.59,
2.94, and 2.8. The last one is the only one, where both values
matched, time and energy consumption increase. So, we
clearly see, that the relationship between time and energy is
not linearly correlated.

We show in Figure 12 the results for ORDER Tree, where
energy consumption increases for successive population
sizes 2.44, 1.54, 2.98, 2.54, and 2.66, respectively. Similarly,
for the runtime, we obtain 2.40, 1.49, 2.59, 2.14, and 2.39. As
we can see, both values are closer for ORDER Tree than for
LID.

These results show us that every problem has a different
behavior when considering energy consumption. The main
conclusion is that we cannot assume that energy consumption
does not deserve attention, as has been the case traditionally
in the area. On the contrary, this topic should be more deeply
analyzed for GP given the different behavior shown when
analyzing computing time or quality of solutions. Moreover,
in previous sections, we have shown that one of the most
important GP parameter, population size, shows non-linear
influences in energy required to find a solution as well as
instantaneous energy consumption when a computer is
running the algorithm.

All in all, we have not considered yet which could be the
reason why different population sizes show different in-
stantaneous energy consumption. In the next subsection, we
try to shed light into this behavior.

Why does populations size influence instantaneous
energy consumption?

In previous experiments, we had measured energy con-
sumption of the whole computer, as a way to analyze al-
gorithm energy behavior. But certainly, hardware resources,
and also the operating system operations, may affect the
energy values we measure. On the basis of this idea, and
considering all the issues that may affect this behavior, we
decided to carry out an additional test consisting of studying
the cache memory. The idea behind this test is related to the

Figure 11. Analyzing the power consumption for different population sizes on PC platform with a quality fitness value and a maximum
number of generation as constraints. X axis represents the population size, Y-left axis is the fitness value and Y-right axis corresponds to
the power consumption. Graph (a) represents results for LID problem and graph (b) results for ORDER Tree.

Dı́az-Álvarez et al. 111

specific parameter we are studying: population size. The
reason is directly related to the nature of GP algorithm, that
employs variable-size chromosomes.

Moreover, the bloat phenomenon38 induces size growth as
generations are computed, and this affects memory usage.
Therefore, different values for population sizes will surely
affect the use of memory, and particularly cache misses while
the algorithm is running, which may induce changes in
energy consumption. The cache memory system is one of the
most energy-consuming components and it represents large
share of processor power consumption.39,40

In this experiment, we use the perf3 command41,42 to
access hardware performance counters, particularly counters
for monitoring cache memory. Perf is a powerful open source
performance monitoring tool, available in linux kernel, for
tracking system events both hardware and software using a
command line interface. It can also access the counters of the
energy and power measurements provided through the Intel’s
Running Average Power Limit (RAPL).

Therefore, we run the perf command customized with
each benchmark problem and population sizes addressed. As
a result, the statistic data collected for the cache memory were
collected. This experiment analyzed cache misses, L1-

Dcache load misses and L1-Dcache store misses. Cache
misses are the number of non-served memory accesses by
any of the caches, L1-Dcache load misses represents the
number of non-served load accesses by the level 1 data cache,
and L1-Dcache store misses is the number of non-served
store accesses by the level 1 data cache.

Figure 13 shows results for this monitoring experiment of
the cache memory while our GP algorithm for LID and
ORDER Tree is running. This figure consists of two graphs
(a) and (b). The first one (a) plots the number of non-server
memory accesses by the cache memory system, while the
second one (b) plots the percentage increase between con-
secutive population sizes. It is interesting to see how there is
an exponential growth in the number of cache misses as the
population size grows, which leads the next level of the
memory system to be accessed, the RAM memory or disk, in
case the data is not found on RAM. This involves the ac-
tivation of the access mechanisms to the corresponding
hardware, which increases time and energy consumption.
The memory cache monitoring for both benchmarks shows
an exponential growth in the number of cache misses. In the
case of LID from population size 1024, the percentage in-
crease is always higher than 225% and the highest is reached
between 512 and 1024 with 391.7% of misses. The number
of cache misses in ORDER Tree grows also exponentially,
and although with lower intensity it exceeds 100%, reaching
the highest increase between 2048 and 4096 with 279.9%.
Identical study was carried out on the L1 cache memory,
particularly we measured the load misses and store misses to
the data cache. Figures 14 and 15 show the L1-data-cache
load and store misses, respectively. The design for both
figures can be described in terms of Figure 13. Regarding the
results obtained for load and store misses, these follow the
same behavior than the number of non-served memory ac-
cesses by any of the caches.

Based on the obtained results, we can confirm that the
larger the population size, the higher the number of cache
misses, which in some cases is one order of magnitude
higher. This affects the energy consumed by the algorithm
because it results in more frequent accesses to the main
memory, which consume more energy than cache accesses.

In short and after this series of experiments, we can
confirm that population size has an effect on EAs power
consumption, particularly on GP, which is the objective of
this work. We have identified that population size has an

Figure 12. Analyzing runtime versus energy consumption for each population size on PC platform with a quality fitness value and a
maximum number of generation as constraints. X axis represents the population size, Y-left axis is the energy consumption in Jules. Y-
right axis corresponds to the time in seconds. Graph (a) represents results for LID problem and graph (b) results for ORDER Tree.

Table 2. Summary of the average values for each population size
and LID and ORDER Tree problems.

LID

Pop. Size Time Energy consumption Fitness

256 151.54 3541.21 39.16
512 302.89 7672.24 44.92
1024 782.86 24,088.60 45.21
2048 3598.70 127,322.01 37.02
4096 10,516.07 422,535.56 38.02
8192 29,514.00 1,187,011.76 31.88
ORDER Tree

Pop. Size Time Energy consumption Fitness

256 36.90 873.05 549.83
512 88.73 2131.71 776.03
1024 132.04 3291.17 891.17
2048 342.32 9808.70 915.43
4096 735.31 24,963.00 945.50
8192 1760.16 66,397.00 960.50

112 Measurement and Control 55(1-2)

influence on energy consumption, at least partially due to
cache memory usage. We have also seen that the increase of
cache misses is not proportionally correlated to population size
increase. Moreover, we have seen that energy consumption is
not directly correlated with runtime of the algorithm.

We can thus conclude that although processors maybe
working similarly regardless of the population size values
employed when running GP, other factors affect energy
consumption, and therefore the relationship between quality
of solution found and energy required to find that solutions.

Although more experiments will be required for a better
understanding of this phenomenon, a clear conclusion is
reached here: the main parameters of the algorithm influences
energy consumption, and this topic deserves attention in the
future if we want to reach energy-efficient GP and also EAs.

Conclusions

This paper addresses a topic that has been scarcely consid-
ered before in the area of Evolutionary Algorithms: the

Figure 13. Analyzing the cache misses when running our GP algorithm on PC platform. Graph (a) represents the number of cache misses
for each population size and Graph (b) plots the percentage increases of cache misses between consecutive population sizes. X axis
represents the population size in both graphs and Y axis corresponds to the cache misses at logarithm scale in (a) and the percentage
increases in (b). Dotted line on graphs corresponds to LID and the solid line represents ORDER Tree.

Figure 14. Analyzing the L1-Dcache load misses when running our GP algorithm on PC platform. Graph (a) represents the number of L1-
Dcache loadmisses for each population size and Graph (b) plots the percentage increases of misses between consecutive population sizes.
X axis represents the population size in both graphs and Y axis corresponds to the cache misses at logarithm scale in (a) and the percentage
increases in (b). Dotted line on graphs corresponds to LID and the solid line represents ORDER Tree.

Figure 15. Analyzing the L1-Dcache store misses when running our GP algorithm on PC platform. Graph (a) represents the number of L1-
Dcache store misses for each population size and Graph (b) plots the percentage increases of misses between consecutive population
sizes. X axis represents the population size in both graphs and Y axis corresponds to the cache misses at logarithm scale in (a) and the
percentage increases in (b). Dotted line on graphs corresponds to LID and the solid line represents ORDER Tree.

Dı́az-Álvarez et al. 113

possible influence that parameter values may have on energy
required to reach a solution.

We have thus selected population size as the main goal for
the analysis presented, and have compared how much energy
is required to run the algorithm in three different scenarios:
(a) Until 300 s are surpassed after computing a generation; (b)
Exactly after running the algorithm 300 seconds; (c) when a
given fitness quality is looked for or a maximum number of
generations computed.

The results have shown something of interest. On the one
hand, the energy consumption is not directly correlated with
runtime. Secondly, population size influences energy consumed,
but again, there is not a direct relationship between size and
energy required to complete the experiment. Moreover, in
some experiments, for certain population size values, smaller
generations require more energy than larger ones. This means
that population size not only influences quality of results, but
also energy consumed, and therefore a deeper study is required
to understand the relationship between quality of solutions,
parameter values, and energy required to reach such solutions.

Finally, we have also tried to see why the above-described
results have been found, considering population size and
energy. We have thus studied possible influence of cache
memory—given that GP is particularly affected by memory
problems due to variable-size chromosomes—and have seen
that the number of cache misses is not proportional to
population size, and therefore further studies will be useful in
the future to perfectly understand and choose appropriate
values for GP and EA parameters.

All in all, this paper paves the way to future research on
the influence and proper selection of GP and EA main pa-
rameters when looking for energy-efficient algorithms.

Acknowledgements

We acknowledge support from Spanish Ministry of Economy and
Competitiveness under project TIN2017-85727-C4-\{2,4\}-P. Grant
PID2020-115570GB-C22 and PID2020-115570GB-C21 funded by
MCIN/AEI/10.13039/501100011033. Junta de Extremadura under
project GR15068.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect
to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: This work was
supported by the Spanish Ministry of Economy and Competitive-
ness under project TIN2017-85727-C4-\{2,4\}-P. Grant PID2020-
115570GB-C22 and PID2020-115570GB-C21 funded by MCIN/AEI/
10.13039/501100011033. Junta de Extremadura under project GR15068.

ORCID iD

Josefa Dı́az-Álvarez https://orcid.org/0000-0003-2105-3905

Notes

1. https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
2. https://github.com/kentcz/rapl-tools
3. https://perf.wiki.kernel.org/

References

1. Gelenbe E and Caseau Y. The impact of information tech-
nology on energy consumption and carbon emissions.Ubiquity
2015; 2015: 1–15. DOI: 10.1145/2755977.

2. Fettes Q, Clark M, Bunescu R, et al. Dynamic voltage and
frequency scaling in NoCs with supervised and reinforcement
learning techniques. IEEE Trans Comput 2019; 68(3):
375–389. DOI: 10.1109/TC.2018.2875476.

3. Arroba P, Moya JM, Ayala JL, et al. Dynamic voltage and
frequency scaling-aware dynamic consolidation of virtual
machines for energy efficient cloud data centers. Concurrency
Comput Pract Exper 2017; 19(10): e4067. DOI: 10.1002/cpe.4067.

4. Haj-Yahya J, Alser M, Kim J, et al. Sysscal exploiting multi-
domain dynamic voltage and frequency scaling for energy
efficient mobile processors. In: 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture, 30May-3
Jun, Valencia, Spain: ISCA, 2020, pp. 227–240. DOI: 10.1109/
ISCA45697.2020.00029.

5. Xie G, Zeng G, Xiao X, et al. Energy-efficient scheduling
algorithms for real-time parallel applications on heterogeneous
distributed embedded systems. IEEE Trans Parallel Distrib-
uted Syst 2017; 28(12): 3426–3442. DOI: 10.1109/TPDS.
2017.2730876.

6. Hu S, Ji W and Wang Y. Feedback cache mechanism for dy-
namically reconfigurable VLIW processors. Tsinghua Sci Technol
2017; 22(3): 303–316. DOI: 10.23919/TST.2017.7914202.

7. anohar SS and Kapoor HK. Dynamic reconfiguration of
embedded-DRAM caches employing zero data detection based
refresh optimisation. J Syst Archit 2019; 100: 101648. DOI: 10.
1016/j.sysarc.2019.101648.

8. Mota AV, Azam S, Shanmugam B, et al. Comparative analysis
of different techniques of encryption for secured data trans-
mission. In: 2017 IEEE international conference on power,
control, signals and instrumentation engineering. ICPCSI),
Chennai, India, 21-22 September 2017, pp. 231–237. DOI: 10.
1109/ICPCSI.2017.8392158.

9. Kong L, Pan JS, Snášel V, et al. An energy-aware routing
protocol for wireless sensor network based on genetic algo-
rithm. Telecommun Syst 2018; 67: 451–463, DOI: 10.1007/
s11235-017-0348-6.

10. Rashid M, Ardito L and Torchiano M. Energy consumption
analysis of algorithms implementations. In: 2015 ACM/IEEE
International Symposium on Empirical Software Engineer-
ing and Measurement. Beijing: ESEM, 22-23, October 2015,
pp. 1–4. DOI: 10.1109/ESEM.2015.7321198.

11. Rashid M, Ardito L and Torchiano M. Energy consumption
analysis of image encoding and decoding algorithms. In: IEEE/
ACM 4th International Workshop on Green and Sustainable
Software, Florence, 18 May, 2015, IEEE, pp. 15–21. DOI: 10.
1109/GREENS.2015.10.

12. Camacho D, Lara-Cabrera R, Merelo-Guervós JJ, et al. From
ephemeral computing to deep bioinspired algorithms: new
trends and applications. Future Gener Comput Syst 2018; 88:
735–746. DOI: 10.1016/j.future.2018.07.056.

13. El-Ghazali T. A unified view of parallel multi-objective evo-
lutionary algorithms. J Parallel Distributed Comput 2019; 133:
349–358. DOI: 10.1016/j.jpdc.2018.04.012.

14. Dargie W. A stochastic model for estimating the power con-
sumption of a processor. IEEE Trans Comput 2015; 64(5):
1311–1322. DOI: 10.1109/TC.2014.2315629.

114 Measurement and Control 55(1-2)

https://orcid.org/0000-0003-2105-3905
https://orcid.org/0000-0003-2105-3905
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://github.com/kentcz/rapl-tools
https://perf.wiki.kernel.org/
https://doi.org/10.1145/2755977
https://doi.org/10.1109/TC.2018.2875476
https://doi.org/10.1002/cpe.4067
https://doi.org/10.1109/ISCA45697.2020.00029
https://doi.org/10.1109/ISCA45697.2020.00029
https://doi.org/10.1109/TPDS.2017.2730876
https://doi.org/10.1109/TPDS.2017.2730876
https://doi.org/10.23919/TST.2017.7914202
https://doi.org/10.1016/j.sysarc.2019.101648
https://doi.org/10.1016/j.sysarc.2019.101648
https://doi.org/10.1109/ICPCSI.2017.8392158
https://doi.org/10.1109/ICPCSI.2017.8392158
https://doi.org/10.1007/s11235-017-0348-6
https://doi.org/10.1007/s11235-017-0348-6
https://doi.org/10.1109/ESEM.2015.7321198
https://doi.org/10.1109/GREENS.2015.10
https://doi.org/10.1109/GREENS.2015.10
https://doi.org/10.1016/j.future.2018.07.056
https://doi.org/10.1016/j.jpdc.2018.04.012
https://doi.org/10.1109/TC.2014.2315629

15. Fernández de Vega F, Dı́az J, Garcı́a JÁ, et al. Looking for
energy efficient genetic algorithms in artificial evolution. In:
Idoumghar L, Legrand P and Liefooghe A (eds) Artificial
Evolution EA 2019. Lecture Notes in Computer Science. Cham:
Springer, 2019, Vol. 12052, pp. 96–109. DOI: 10.1007/978-3-
030-45715-0_8.

16. Albers S. Energy-efficient algorithms. Commun ACM 2010;
53: 86–96, DOI: 10.1145/1735223.1735245.

17. Gao K, Huang Y, Ali S, et al. A review of energy-efficient
scheduling in intelligent production systems. Complex & In-
telligent Systems 2020; 2: 237–249. DOI: 10.1007/s40747-
019-00122-6.

18. Ene S, Küçükoglu I, Aksoy A, et al. A genetic algorithm for
minimizing energy consumption in warehouses. Energy 2016;
114: 973–980. DOI: 10.1016/j.energy.2016.08.045.

19. Liqat U, Banković Z, Lopez-Garcia P, et al. An evolutionary
scheduling approach for trading-off accuracy vs. verifiable
energy in multicore processors” in Logic J the IGPL 2017;
25(6): 1006–1019, DOI: 10.1093/jigpal/jzx048.

20. Ibrahim H, Aburukba RO and El-Fakih K. An integer linear
programming model and adaptive genetic algorithm approach
to minimize energy consumption of cloud computing data
centers. Comput Electr Eng 2018; 67: 551–565. DOI: 10.1016/
j.compeleceng.2018.02.028\enleadertwodots.

21. Demaine ED, Lynch J, Mirano GJ, et al. Energy-efficient algo-
rithms. In: Proceedings of the 2016 ACM Conference on Inno-
vations in Theoretical Computer Science, CambridgeMasachusetts
USA, 14-17 January 2016, pp. 321–332.

22. Garcı́a-Mart́ın E, Rodrigues CF, Riley G, et al. Estimation of
energy consumption in machine learning. J Parallel Distributed
Comput 2019; 134: 75–88. DOI: 10.1016/j.jpdc.2019.07.007.

23. Abdelhafez A, Alba E and Luque G. A component-based study
of energy consumption for sequential and parallel genetic al-
gorithms. J Supercomput 2019; 75: 6194–6219. DOI: 10.1007/
s11227-019-02843-4.

24. O’Neill M and Lee S. Automatic programming: The open issue?
Genetic Programming and EvolvableMachines, 2019; 21: 1–12.

25. McDermott J, White DR, Luke S, et al. Genetic programming
needs better benchmarks. In: Proceedings of the 14th annual
conference on Genetic and evolutionary computation (GECCO
’12), Philadelphia Pennsylvania USA, 7-11 July 2012. New
York, NY, USA: Association for Computing Machinery,
pp. 791–798. DOI: 10.1145/2330163.2330273.

26. Fernández de Vega F, Chávez F, Dı́az J, et al. A cross-platform
assessment of energy consumption in evolutionary algorithms.
In: Parallel problem solving from nature – PPSN XIV Lecture
Notes in Computer Science. Cham: PPSNSpringer, 2016,
pp. 548–557. DOI: 10.1007/978-3-319-45823-6_51.

27. Álvarez J, Francisco CO, Pedro C, et al. A fuzzy rule-based
system to predict energy consumption of genetic programming
algorithms. Computer Sci Inf Syst 2018; 15: 635–654. DOI: 10.
2298/CSIS180110026A.

28. Freeborn TJ. Performance evaluation of raspberry Pi platform
for bioimpedance analysis using least squares optimization.

Pers Ubiquit Comput 2019; 23: 279–285, DOI: 10.1007/
s00779-019-01203-6.

29. Zhuang L., et al. Parameter estimation of lorenz chaotic system
based on a hybrid jaya-powell algorithm. IEEE Access 2020; 8:
20514–20522. DOI: 10.1109/ACCESS.2020.2968106.

30. Yokogawa Electronic Corporation.Digital PowerMeter WT310E.
2020. https://www.yokogawa.com (accessed 24 August 2020).

31. Spencer D, Paradis C, Vincent M, et al. A validation of DRAM
RAPL power measurements. In: Proceedings of the Second
International Symposium onMemory Systems (MEMSYS ’16).
New York, NY, USA: Association for Computing Machinery;
2016, pp. 455–470. DOI: 10.1145/2989081.2989088.

32. Intel. Intel 64 and IA-32 architectures software developer’s
manual. Volume 3B, 2017. https://software.intel.com/en-us/
articles/intel-sdm (accessed 24 August 2020).

33. Khan KN, HirkiM, Niemi T, et al. RAPL in action: experiences in
using RAPL for power measurements. ACM Trans Model Per-
form Eval Comput Syst 2018; 3(2): 1–26, DOI: 10.1145/3177754.

34. Garcia J. Exploration of energy consumption using the intel
running average power limit interface. In: IEEE Space Com-
puting Conference (SCC), Pasadena, CA, USA, 30 July-1 August
2019, IEEE Space Computing Conference (SCC), 2019, pp. 1–10.
DOI: 10.1109/SpaceComp.2019.00005.

35. Luke S, ECJ then and now. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion (GECCO
’17), Berlin, 15-19 July 2017, New York, NY, USA: Associ-
ation for Computing Machinery, pp. 1223–1230. DOI: 10.
1145/3067695.3082467.

36. Scott EO and Luke S. ECJ at 20: toward a general meta-
heuristics toolkit. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference Companion (GECCO ’19),
Prague, 13-17 July New York, NY, USA: Association for
Computing Machinery; 2019, p. 1391. DOI: 10.1145/3319619.
3326865.

37. Piszcz A and Soule T. Genetic programming: optimal pop-
ulation sizes for varying complexity problems. In: Proceedings
of the 8th annual conference on Genetic and evolutionary
computation, Seattle, 8-12 July 2006.

38. Fernández de Vega F, Olague G, Lanza D, et al. Time and
individual duration in genetic programming. IEEE Access 2020;
8: 38692–38713. DOI: 10.1109/ACCESS.2020.2975753.

39. Mutlu O and Subramanian L. Research problems and oppor-
tunities in memory systems. Supercomputing Front Innov
2015; 13: 19–55.

40. Mittal S. A survey of architectural techniques for improv-
ing cache power efficiency. Sust Comput Inform Syst 2014;
4(Issue 1): 33–43. DOI: 10.1016/j.suscom.2013.11.001.

41. Gregg B. Systems Performance: Enterprise and the Cloud.
2020, Addyson-Wesley, ISBN:978-0-13-339009-4.

42. Debbarma T and Chandrasekaran K. Comparison of FOSS
based profiling tools in Linux operating system environment.
In: 2016 2nd International Conference on Contemporary
Computing and Informatics (IC3I). Noida, 14-17 December.
2016, pp. 65–72. DOI: 10.1109/IC3I.2016.7917936.

Dı́az-Álvarez et al. 115

https://doi.org/10.1007/978-3-030-45715-0_8
https://doi.org/10.1007/978-3-030-45715-0_8
https://doi.org/10.1145/1735223.1735245
https://doi.org/10.1007/s40747-019-00122-6
https://doi.org/10.1007/s40747-019-00122-6
https://doi.org/10.1016/j.energy.2016.08.045
https://doi.org/10.1093/jigpal/jzx048
https://doi.org/10.1016/j.compeleceng.2018.02.028\enleadertwodots
https://doi.org/10.1016/j.compeleceng.2018.02.028\enleadertwodots
https://doi.org/10.1016/j.jpdc.2019.07.007
https://doi.org/10.1007/s11227-019-02843-4
https://doi.org/10.1007/s11227-019-02843-4
https://doi.org/10.1145/2330163.2330273
https://doi.org/10.1007/978-3-319-45823-6_51
https://doi.org/10.2298/CSIS180110026A
https://doi.org/10.2298/CSIS180110026A
https://doi.org/10.1007/s00779-019-01203-6
https://doi.org/10.1007/s00779-019-01203-6
https://doi.org/10.1109/ACCESS.2020.2968106
https://www.yokogawa.com
https://doi.org/10.1145/2989081.2989088
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://doi.org/10.1145/3177754
https://doi.org/10.1109/SpaceComp.2019.00005
https://doi.org/10.1145/3067695.3082467
https://doi.org/10.1145/3067695.3082467
https://doi.org/10.1145/3319619.3326865
https://doi.org/10.1145/3319619.3326865
https://doi.org/10.1109/ACCESS.2020.2975753
https://doi.org/10.1016/j.suscom.2013.11.001
https://doi.org/10.1109/IC3I.2016.7917936

	Population size influence on the energy consumption of genetic programming
	Introduction
	Power consumption and EAs
	Power consumption in genetic programming

	Methodology
	Results
	Experiments with time limit 300 s
	x86 architecture
	x86 & AppPowerMeter

	Running experiments until a fitness level is reached
	Why does populations size influence instantaneous energy consumption?

	Conclusions
	Acknowledgements
	Declaration of conflicting interests
	Funding
	ORCID iD
	Notes
	References

