AUTHOR QUERY FORM

	Journal: JFOE	Please e-mail or fax your responses and any corrections to:
ELSEVIER	Article Number: 7697	E-mail: corrections.esch@elsevier.sps.co.in Fax: +31 2048 52799

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult <u>http://www.elsevier.com/artworkinstructions.</u>

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the 'Q' link to go to the location in the proof.

Location in article	Query / Remark: <u>click on the Q link to go</u> Please insert your reply or correction at the corresponding line in the proof
<u>Q1</u>	Please confirm that given name(s) and surname(s) have been identified correctly.
<u>Q2</u>	Reference 'Picouet et al. (2010)' is cited in the text but not provided in the reference list. Please provide it in the reference list or delete this citation from the text.
<u>Q3</u>	The citation 'Holmes et al. (2012)' has been changed to match the date in the reference list. Please check here and in subsequent occurrences, and correct if necessary.
<u>Q4</u>	This section comprises references that occur in the reference list but not in the body of the text. Please position each reference in the text or, alternatively, delete it. Any reference not dealt with will be retained in this section.
	Please check this box if you have no corrections to make to the PDF file

JFOE 7697

ARTICLE IN PRESS

2 February 2014

Highlights

• Data mining and MRI-CVT have been firstly used to study quality features of hams. • Data mining tasks are appropriate to deduce and predict quality traits of hams. • Physical-chemical and computer vision data are inferred by applying deductive tasks. • Quality traits can be control by using predictive techniques and computer vision data.

ARTICLE IN PRESS

Journal of Food Engineering xxx (2014) xxx-xxx

Contents lists available at ScienceDirect

Journal of Food Engineering

5 6 journal of engineering

28

29

30

31

32 33

34

35

36

37

38

39

40 41 42

62

63

64

65

66

67

68

69

70

71

72

73

75

76

77

78

79

80

81

82

83

84

85

86

journal homepage: www.elsevier.com/locate/jfoodeng

Please cite this article in press as: Pérez-Palacios, T., et al. Applying data mining and Computer Vision Techniques to MRI to estimate quality traits in Ibe-

Applying data mining and Computer Vision Techniques to MRI to esti-3 mate quality traits in Iberian hams

Trinidad Pérez-Palacios^{a,*}, Daniel Caballero^b, Andrés Caro^b, Pablo G. Rodríguez^b, Teresa Antequera^a 7 01

^a Tecnología de los Alimentos, Facultad Veterinaria, Universidad de Extremadura, Av. Universidad s/n, 10003 Cáceres, Spain

^b Departamento de Ingeniería de Sistemas Informáticos y Telemáticos, Escuela Politécnica, Universidad de Extremadura, Av. Universidad s/n, 10003 Cáceres, Spain

ARTICLE INFO

13 14 Article history: 15 Received 9 July 2013 16 Received in revised form 22 December 2013 17 Accepted 21 January 2014 18 Available online xxxx

- 19 Keywords:
- 20 Data mining 21 MRI and Computer Vision Techniques
- 22 Deduction
- 23 Prediction
- 24 Quality parameters
- 25 Iberian ham 26

ABSTRACT

This study aims to forecast quality characteristics of Iberian hams by using non-destructive methods of analysis and data mining. Magnetic Resonance Imaging and Computer Vision Techniques were conducted on hams throughout their processing. Physico-chemical parameters were also measured in these products. Information from these analyses was integrated in a database. First, deductive techniques of data mining were applied to these data. Multiple linear regression allows for the estimation of information from Magnetic Resonance Imaging, Computer Vision Techniques and physico-chemical analysis. This enables the completion of the initial database. Then, predictive techniques of data mining were applied. Both, multiple linear regression and isotonic regression achieved the prediction of weight, moisture and lipid content of hams as a function of features obtained by Magnetic Resonance Imaging and Computer Vision Techniques. Thus, data mining, Magnetic Resonance Imaging and Computer Vision Techniques could be used to estimate the quality traits of Iberian hams. This allows for the improvement of the process control without destroying any piece.

© 2014 Published by Elsevier Ltd.

43

1. Introduction 44

Quality attributes of dry-cured hams depend on characteristics 45 of raw material and processing conditions. Throughout the 46 47 processing of hams, changes on the physico-chemical (P-C) 48 characteristics of the thighs take place, also influencing the quality of the final product. Thus, not only characteristics of thighs but also 49 their modifications during the processing are important parame-50 ters to control the technological process of dry-cured hams 51 (Pérez-Palacios et al., 2011a). 52

53 Temperature and relative humidity conditions during the processing lead to ham dehydration and, hence, to weight loss. The 54 ham industry estimates the optimal ripening time by the percent-55 56 age of weight loss, related to the amount of water contained in the 57 ham muscles (Martin et al., 1998). Raw material for ham produc-58 tion should contain plenty of intramuscular fat, which is an important characteristic, due to its positive influence on quality 59 parameters on the final product, such us marbling, juiciness, odour, 60 61 and aroma (Ruiz et al., 2002).

rian hams. Journal of Food Engineering (2014), http://dx.doi.org/10.1016/j.jfoodeng.2014.01.015

Corresponding author. Tel.: +34 927 257123; fax: +34 927 257110.

E-mail address: triny@unex.es (T. Pérez-Palacios).

0260-8774/\$ - see front matter © 2014 Published by Elsevier Ltd. http://dx.doi.org/10.1016/j.jfoodeng.2014.01.015

Usual methods for evaluation of the P-C characteristics (i.e. weight loss, moisture, fat content) of dry-cured hams throughout the whole processing are tedious and time-consuming, and sometimes involve the destruction of the pieces. In this sense, the use of non-destructive techniques, such as computed tomography (CT), near infra-red reflectance spectroscopy (NIRs) and Magnetic Resonance Imaging (MRI), has been proposed for determining quality parameters in this product. Studies on salt content by means of CT have been carried out by several authors (Fulladosa et al., 2010; Haseth et al., 2012; Picouet et al., 2013; Santos-Garcés et al., 2010; Vestergaard et al., 2005). CT has also been applied for predicting the water content throughout the process of hams (Fulladosa et al., 2010; Santos-Garcés et al., 2010), and the weight Q2 74 and lean content of the raw material (Picouet et al., 2010). In pig carcass, Furnols et al. (2009) estimated the lean meat content by using CT. Collell et al. (2011) used NIRs to predict moisture, water activity and NaCl content at the surface of dry-cured ham during the process. Results obtained by Pérez-Juan et al. (2010) showed the accuracy of NIRs to predict the fatty acid composition of ham subcutaneous fat.

MRI is a non-destructive, non-invasive, non-intrusive, non-ionizing and innocuous technique. Thus, as an alternative to P-C procedures, MRI has also been proposed to study some characteristics in hams. Fantazinni et al. (2009) used this technique to obtain information on moisture and salt distribution during the

Abbreviations: KDD, Knowledge Discovery in Databases; R, raw hams; SA, end of salting; PS, end of post-salting; D, end of drying; DC, dry-cured hams; P-C, physicochemical; MRI-CVT, Magnetic Resonance Imaging and Computer Vision Techniques; B, Biceps femoris muscle; S, Semimembranosus muscle.

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

147

148

2

91

92

93

94

95

96

97

98

99

100

T. Pérez-Palacios et al. / Journal of Food Engineering xxx (2014) xxx-xxx

processing of Parma hams. Recently, predictive models have been
proposed for estimating water activity, moisture, salt content and
proteolysis extent in S. Daniele hams on the basis of the MR signal
intensity (Manzoco et al., 2013).

The implementation of active contours in MRI can be used to recognize the *Biceps femoris* and *Semimembranosus* muscles in Iberian hams, determine the volume of the muscle and estimate ham weight and moisture (Antequera et al., 2007; Caro et al., 2001). MRI and computational texture features allowed for the classification of fresh and dry-cured Iberian hams as a function of pig feeding background (Pérez-Palacios et al., 2010a, 2011b). Sensory traits in Iberian dry-cured hams were predicted from computational texture characteristics obtained from MRI of fresh hams (Pérez-Palacios et al., 2010b).

101 The calculation of intramuscular fat levels of Iberian ham has 102 also been attempted by using MRI applications (Ávila et al., 2005: Caro et al., 2003), obtaining reasonable, but not very high. 103 correlation coefficients (around 0.50-0.63), which shows the 104 potential of this technique for determining intramuscular fat level 105 in Iberian hams. In these studies, database obtained from P-C, and 106 107 MRI and computational analysis are processed by applying usual 108 statistical tools such as Pearson's correlation coefficients or princi-109 pal components analysis (Pérez-Palacios et al., 2010b, 2011b). The 110 integration of heterogeneous P-C information with computer vi-

Fig. 1. Sampling throughout the Iberian ham processing for the physico-chemical analysis (P-C) and the MRI acquisition.

sion data, and the analysis of this new data set by data management and database applications would be innovative and could give accurate results, playing an increasing role in furthering food Q3 113 research (Cortez et al., 2009; Holmes et al., 2007). 114

Data mining is an important part of a larger process known as KDD ("Knowledge Discovery in Databases") (Fayyad et al., 1996). It is associated with large data. The main goal of data mining consists in extracting hidden information from a data set. This can be achieved by the automatic or semi-automatic analysis of large amounts of data, which allows for the extraction of interesting and previously unknown patterns (Hastie et al., 2001). These patterns can be groups of data records (cluster analysis), unusual records (anomaly detection) and dependencies among data (association rules). Thus, the patterns can be seen as a summary of the input data, and can be used for further analysis.

Interest in data mining has recently grown because of the rapidly decreasing cost of large storage devices and increasing ease in data collection over networks. Other factors include, the development of robust and efficient algorithms to process this data, and the increase in computing power, enabling the use of intensive computational methods for data analysis (Mitchell, 1999).

To our knowledge, few studies apply data mining to food. Song et al. (2002) and Cortez et al. (2006) used this computing technique to predict quality traits in beef and lamb, respectively. It has also been used to predict the oxidation of menhaden fish oil (Klaypradith et al., 2010) or to model wine preferences (Cortez et al., 2009). Holmes et al. (2007) applied data mining to detect fruit and vegetables contaminated with pesticide and to identify these products as a function of their home country.

For this study, data obtained from the MRI_CVT (volume) and P-140C analysis (moisture, lipid and weight) of a homogeneous Iberian141ham batch were used to construct a database. Several data mining142techniques were applied to this database in order to (i) estimate143values for the analysed parameters in a higher number of samples144and (ii) predict moisture, lipid content and weight throughout the145processing of the Iberian ham.146

2. Material and methods

2.1. Experimental design

This study was carried out with 15 Iberian thighs, which were149processed following the traditional processing as described in150Antequera et al. (2007). Four stages were considered: raw hams151(R), 0 days; end of post-salting (PS), 90 days; end of drying (D),152

Fig. 2. Acquisition of Iberian ham data (from physico-chemical analysis and MRI and Computer Vision Techniques) used to estimate quality parameters by applying data mining.

T. Pérez-Palacios et al./Journal of Food Engineering xxx (2014) xxx-xxx

3 1 10,000 1 11,000 1 1 11,000 1 1 11,000 1 1 1 1,000 1 1 1,000 1 1 1,000 1,235 69,16 9,18 725 72,57 4,14 80,542 19,012 20,426 24,571 23 1 11,000 1,235 69,15 9,18 725 72,57 4,14 84,275 19,025 23,073 24 1 10,600 1,435 64,97 9,52 755 70,36 4,24 20,856 25,150 34 1 11,000 1,435 64,97 9,52 755 70,36 4,24 20,856 25,150 34 1 11,000 1,435 64,97 9,52 755 70,36 4,24 20,856 25,150 34 1 11,000 1,435 64,97 9,52 725 71,51 10,404 14,104 14,104,14,14,104 14,104	Α	Ν	Stage	нw	BW	BM	BL	SW	SM	SL	HV	BV	SV
4 1 11,000 8 1 11,000 8 1 11,000 12 1 11,000 12 1 11,000 12 13 11 11,000 12 14 10,600 12 15 11,000 123 69,16 9,18 725 72.57 4.14 82,764 20,426 24,571 21 11,000 1,235 69,16 9,18 725 72.57 4.14 80,624 20,826 25,150 37 1 11,000 1,475 71,95 7,61 760 72.68 5.46 4 20,856 25,150 3 15 10,800 1 1,475 71.95 7,61 760 72.68 5.46 4 20,856 25,150 3 15 10,800 1 1,475 71,95 7,61 760 72.68 5.46 4 4 20,856 25,150 3 15 10,800 1 1,475 71,95 7,61 760 72.68 5.46 4 4 20,424 23,652 <th></th> <th>3</th> <th>1</th> <th>10,800</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		3	1	10,800									
8 1 11,000 12 1 11,000 12 1 11,000 12 1 11,000 12 12 11 10,600 12 12 11 11,000 12 12 11 11,000 12 12 11 11,000 12 12 11 11,000 12 12 11 10,600 12 12 11 10,000 12 12 11 10,000 12 15 10,000 14 <th></th> <th>4</th> <th>1</th> <th>11,000</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		4	1	11,000									
12 1 11,200 1,235 69,16 9,18 725 72,57 4,14 24,639 17 1 10,600 1,235 69,16 9,18 725 72,57 4,14 20,426 24,571 23 1 11,000 1,435 64,97 9,52 755 70,56 4,24 20,426 25,150 34 1 11,000 1,435 64,97 9,52 755 70,56 4,24 20,856 25,150 34 15 10,600 1,435 64,97 9,52 755 70,56 4,24 20,856 25,150 37 1 11,000 1,435 64,97 9,52 755 70,56 4,24 20,856 25,150 31 15 10,800 1,435 71,95 7,61 760 72,68 3,46 4 20,856 25,150 32 1,5 10,800 1,391 69,37 8,49 72,66,92 6,18 68,276 20,244 23,652 32 1,5 10,000 1,386		8	1	11,000									
13 1 11,200 11,200 11,200 11,200 11,200 11,200 11,200 11,200 11,200 11,200 11,200 12,25 69,16 9,18 725 72,57 4,14 84,275 19,025 23,073 82,210 20,114 31,994 24 1 10,600 1,435 64,97 9,52 755 70,36 4,24 10,025 23,073 82,220 20,114 31,994 35 10,600 1,475 71,95 7,61 760 72,68 3,46 76,72 20,514 20,355 25,150 3 15 10,600 1,475 71,95 7,61 760 72,68 3,46 76,72 20,244 20,355 25,150 3 15 10,800 1,391 69,37 8,49 728 69,92 6,18 68,276 20,244 23,632 21 15 10,800 1,391 69,37 8,49 728 69,92 6,18 68,276 20,244 23,632 3 1 10,000 1,386 <t< th=""><th></th><th>12</th><th>1</th><th>11,200</th><th></th><th></th><th></th><th></th><th></th><th></th><th>80,542</th><th>19,614</th><th>24,639</th></t<>		12	1	11,200							80,542	19,614	24,639
17 1 10,600 20,238 23,785 22 1 11,000 223 1 110,000 224 1 10,600 1,235 69,16 9,18 725 72,57 4,14 84,275 19,025 23,073 28 1 11,000 1,435 64,97 9,52 755 70,36 4,24 3 15 10,600 1,435 64,97 9,52 756 72,68 3,46 3 15 10,600 1,435 64,97 9,52 756 72,68 3,46 4 15 10,600 1,435 64,97 9,52 75,70,36 4,24 3 15 10,600 1,381 69,37 8,49 728 69,22 6,18 68,276 20,244 23,572 3 1 10,800 1,386 69,15 8,22 743 20,315 23,704 21 11,200 1,386 69,17 8,22 74,319 6,277 74,332 20,315 23,704 21 1,200 1,335		13	1	11,200									
19 1 10,000 1,235 69.16 9.18 725 72.57 4.14 82,764 20,426 24,571 24 1 10,000 1,235 69.16 9.18 725 72.57 4.14 84,275 19,025 23,073 82,220 20,114 31,994 32 1 11,000 1,435 64.97 9.52 755 70.36 4.24 74 71 1 10,000 1,475 71.95 76.1 760 72.68 3.46 76 76.7 77.7 77.5 77.55		17	1	10,800							78,728	20,838	23,785
22 1 11,000 1,235 69.16 9.18 725 72.57 4.14 84,275 19,025 23,078 24 1 10,600 1,235 69.16 9.18 725 72.57 4.14 84,275 19,025 23,078 28 1 11,000 1,475 71.95 7.61 760 72.66 3.46 3 1.5 10,600 1,475 71.95 7.61 760 72.66 3.46 3 1.5 10,800 1 71 51 75.73 7.51 760 72.68 3.46 74		19	1	10,600									
23 1 10,000 1,235 9.16 9.18 725 72.5 7.414 84,275 19,025 23,078 28 1 11,000 1,435 64,97 9.52 755 70.36 4.24 1 30,202 20,114 3,194 3 1 11,000 1,435 64,97 9.52 755 70.36 4.24 20,856 25,150 3 1.5 10,600 1,475 7.195 7.61 760 72.68 3.46 761 760 72.68 3.46 761 760 72.68 3.46 761 760		22	1	11,200									
27 1 10,000 1,235 9,16 9,18 7/25 7/25 7/25 4,14 84,275 19,025 23,073 28 1 11,000 1,435 64,97 9,52 755 70,36 4,24 31,35 10,000 4 11,100 1,475 71,57 760 72,68 3,46 31,5 10,800 4 15 10,800 4 15 10,800 4 15 10,900 1,315 10,900 1,315 10,900 1,315 10,900 1,315 10,900 1,315 10,900 1,316 9,13 8,49 728 69,92 6,18 68,276 20,244 23,632 21 11,000 1,386 9,17 8,32 715 72,86 6,40 80,542 19,614 24,733 20,315 23,704 21 11,000 1,386 9,17 8,32 724 73,19 6,27 73,437 20,315 23,704 21 11,000 1,386 9,17 8,32 715 73,66 4,0 80,542 19,614		23	1	11,000	4 9 9 5	co 4 c		705	70.57		82,764	20,426	24,571
28 1 10,000 82,273 13,994 28 1 11,000 1,475 71.95 7.61 760 72.68 3.46 20,856 25,150 37 1 11,000 1,475 71.95 7.61 760 72.68 3.46 20,856 25,150 3 1.5 10,600 1,475 71.95 7.61 760 72.68 3.46 20,856 25,150 3 1.5 10,800 1,31 10,900 1,31 10,900 1,31 10,900 1,31 10,800 1,391 69.37 8.49 726 69.92 6.18 68.276 20,244 23,652 4 1 11,000 1,386 69.15 8.32 715 72.80 62.7 73,473 20,414 23,176 8 1 11,000 1,386 69.15 8.32 715 72.80 62.7 73,473 20,315 23,745 13 1 11,200 1,386 69.15 8.32 715 72.80 62.7 73,473 20,383 </th <th></th> <th>24</th> <th>1</th> <th>10,600</th> <th>1,235</th> <th>69.16</th> <th>9.18</th> <th>/25</th> <th>/2.5/</th> <th>4.14</th> <th>04.075</th> <th>10.005</th> <th></th>		24	1	10,600	1,235	69.16	9.18	/25	/2.5/	4.14	04.075	10.005	
22 1 11,000 1,435 64,97 9,52 755 70,36 4,24 20,856 25,150 34 1 11,000 1,475 71,95 7,61 760 72,68 3,46 3 1.5 10,600 1,475 71,95 7,61 760 72,68 3,46 3 1.5 10,600 1,315 10,600 1,31 1,01,000 1,31 1,01,000 1,31 1,01,000 1,31 1,01,000 1,31 1,01,000 1,31 1,01,000 1,31 1,000 1,31 1,000 1,31 1,01,000 1,31 1,01,000 1,31 1,000 1,386 69,17 8,32 724 73,19 6,27 73,473 20,314 23,704 12 1 11,000 1,386 69,17 8,32 724 73,19 6,27 73,473 20,314 23,704 13 1 1,000 1,386 69,17 9,22 717 73,33 20,414 <th></th> <th>27</th> <th>1</th> <th>10,800</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>84,275</th> <th>19,025</th> <th>23,073</th>		27	1	10,800							84,275	19,025	23,073
34 1 11,000 1,435 64.97 9.52 755 70.36 4.24 37 1 11,000 1,475 71.95 7.61 760 72.68 3.46 3 1.5 10,800 1,475 71.95 7.61 760 72.68 3.46 4 1.5 10,800 1.435 64.97 7.61 760 72.68 3.46 12 1.5 10,800 1.31 10,800 1.31 6.92 6.18 68.276 20,244 23,622 21 1.5 10,800 1.331 69.37 8.49 728 69.92 6.18 68.276 20,244 23,622 4 1 1,000 1.388 69.17 8.32 724 73.19 6.27 73,473 20,315 23,704 12 1 11,000 1,386 69.17 8.32 715 72.80 6.27 73,473 20,315 23,704 13 1 11,000 1,386 69.17 8.32 724 73.5 75 76,28 </th <th></th> <th>20</th> <th>1</th> <th>11,000</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>82,220</th> <th>20,114</th> <th>31,994</th>		20	1	11,000							82,220	20,114	31,994
37 1 1,000 1,475 7,195 7,61 760 72,68 3,46 3 1.5 10,600 1,475 7,195 7,61 760 72,68 3,46 4 1.5 10,800 1 1,51 10,900 1 1,51 10,900 13 1.5 10,900 1,51 10,900 1,51 10,900 1,51 10,900 22 1.5 10,800 1,331 69,937 8,49 728 69,92 6,18 68,276 20,244 23,652 28 1.5 10,800 1,386 69,17 8,32 715 72,80 6,27 73,473 20,315 23,704 12 1 11,000 1,386 69,17 8,32 715 72,80 6,27 73,473 20,315 23,704 12 1 11,200 1,382 69,14 732 712 73,96 6,40 80,542 19,614 24,549 13 1 1,000 1,382 69,27 8,66 724 70,56 59		52 24	1	11,200	1 495	64.07	0.52	755	70.26	4.24	80,824	20,850	25,150
33 1 1,000 1,017 1,037 1,037 1,037 1,037 1,037 1,037 1,037 1,037 1,037 1,037 1,037 1,037 1,037 1,037 1,030 1,030 1,031 1,0300 1,031 1,0300 1,031 1,0300 1,031 1,0300 1,031 1,0300 1,031 1,0300 1,031 1,0300 1,031 1,0300 1,031 1,0300 1,031 1,031 69,37 8,49 728 69,92 6,18 68,276 20,244 23,532 4 1 1,000 1,386 69,37 8,49 728 69,92 6,18 68,276 20,244 23,532 4 1 1,000 1,386 69,17 8,32 715 72.80 6,27 71,383 20,441 23,176 12 1 1,200 1,332 69,39 8,01 733 72.49 6,16 79,040 20,354 23,652 17 1 0,800 1,328 69,29 8,99 720 69,82 6,12 76,628		24 27	1	11,000	1,455	71 05	9.52	755	72.68	3.45			
3 1.5 10,800 4 1.5 10,800 12 1.5 11,000 13 1.5 10,900 22 1.5 10,900 23 1.5 10,800 24 1.5 10,800 25 1.5 10,800 26 1.5 10,800 27 1.5 10,800 28 1.5 10,800 32 1.5 10,800 32 1.5 10,800 33 1 10,800 1,386 69.17 8.32 724 73.19 6.27 71,383 20,441 23,176 8 1 1,000 1,386 69.15 8.32 715 72.80 6.27 73,473 20,315 23,704 12 1 11,000 1,386 69.15 8.32 715 72.80 6.27 73,473 20,315 23,704 12 1 11,200 1,382 69.18 8.32 724 6.16 79,040 20,354		37	15	10,600	1,475	/1.55	7.01	/00	72.00	3.40			
B 1.5 1.000 12 1.5 10,800 13 1.5 10,900 13 1.5 10,900 21 1.5 10,900 23 1.5 10,900 23 1.5 10,800 27 1.5 10,600 28 1.5 10,800 32 1.5 11,000 3 1 10,800 32 1.5 11,000 3 1 10,800 1,386 69.17 8.32 714 73.19 6.27 71,383 20,441 23,704 12 11,200 1,386 69.15 8.32 715 72.80 6.27 73.873 20,441 23,704 12 1 11,200 1,396 69.14 7.92 712 73.96 6.40 80,542 19.614 24,639 13 1 11,200 1,396 69.29 8.99 72.0 <th></th> <th>4</th> <th>1.5</th> <th>10,000</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		4	1.5	10,000									
Interpretation Interpretation Interpretation 12 1.5 10,000 13 1.5 10,000 13 1.5 10,000 13 1.5 10,000 19 1.5 10,000 13 1.5 10,000 22 1.5 10,000 1.3 1.5 10,000 23 1.5 10,000 1.391 69.37 8.49 728 69.92 6.18 68,276 20,244 23,652 28 1.5 10,000 1,386 69.17 8.32 715 72.80 6.27 73,473 20,315 23,704 12 1 11,000 1,386 69.15 8.32 715 72.80 6.27 73,473 20,315 23,704 12 1 11,200 1,392 69.14 79.2 712 73.9 6.16 79,040 20,354 25,475 13 1 11,200 1,392 69.14 79.2 712 73.9 73.7473 20,315 23,704 12 1 11,200 <		8	15	10,000									
IB ID ID <thid< th=""> ID ID ID<!--</th--><th></th><th>12</th><th>1.5</th><th>11,000</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thid<>		12	1.5	11,000									
17 15 10,500 19 1.5 10,300 22 1.5 10,900 23 1.5 10,800 23 1.5 10,800 24 1.5 10,800 25 1.5 10,800 26 1.5 10,800 27 1.5 10,800 28 1.5 10,800 21.5 11,000 1.88 69.17 8.32 724 73.19 6.27 73,473 20,315 23,704 12 1 11,200 1,386 69.17 8.32 715 72.40 6.27 73,473 20,315 23,704 12 1 11,200 1,392 69.14 7.92 712 73.96 6.40 80,542 20,634 24,639 13 1 10,600 1,378 69.27 8.66 724 70.56 5.95 78,728 20,888 23,866 22 1 10,600 1,325 69.16 9.18 725 7.57 7.14 <td< th=""><th></th><th>13</th><th>1.5</th><th>10,900</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>		13	1.5	10,900									
19 1.5 10,300 22 1.5 10,900 23 1.5 10,800 24 1.5 10,800 25 1.5 10,800 28 1.5 10,800 28 1.5 10,800 28 1.5 10,800 28 1.5 10,800 31 10,800 1,391 69.37 8.49 728 69.92 6.18 68,276 20,244 23,522 4 1 11,000 1,386 69.17 8.32 715 72.80 6.27 73,473 20,315 23,704 12 1 11,000 1,392 69.14 7.92 712 73.96 6.40 80,542 19,614 24,539 13 1 11,200 1,393 69.29 8.99 720 69.55 78,748 20,838 23,786 19 1 10,600 1,232 692 8.99 720 69.25 78,788 20,838 23,786 23 1 11,000		17	1.5	10,500									
22 1.5 10,900 23 1.5 10,800 27 1.5 10,800 28 1.5 10,800 32 1.5 11,000 28 1.5 10,800 32 1.5 11,000 28 1.5 10,800 3 1 10,800 4 1 11,000 1,386 69.17 8.32 724 73.19 6.27 71,383 20,441 23,176 8 1 11,000 1,386 69.15 8.32 713 11,200 1,392 69.14 7.92 72.80 6.27 73,873 20,315 23,704 12 1 11,200 1,392 69.92 8.66 724 70.56 5.95 78,728 20,838 23,785 19 1 10,600 1,328 69.29 8.10 771 73.95 5.99 83,822 20,123 26,180 22 1 11,200 1,382 69.98 8.1		19	1.5	10,300									
23 1.5 10,800 27 1.5 10,600 28 1.5 10,800 32 1.5 10,800 32 1.5 10,800 33 1 10,800 1,391 69.37 8.49 728 69.92 6.18 68,276 20,244 23,632 4 1 1,000 1,386 69.17 8.32 724 73.19 6.27 71,383 20,441 23,176 8 1 11,000 1,386 69.17 8.32 715 72.80 6.27 73,473 20,315 23,704 12 1 11,200 1,393 69.39 8.01 733 72.49 6.16 79,040 20,354 25,425 17 1 0,800 1,378 69.27 8.66 724 70.56 559 78,728 20,838 23,785 19 1 0,600 1,325 69.29 8.10 721 73.89		22	1.5	10,900									
27 1.5 10,600 28 1.5 10,800 32 1.5 11,000 3 1 10,800 3 1 10,800 4 1 11,000 1,391 69.37 8.49 728 69.92 6.18 68,276 20,244 28,632 4 1 11,000 1,386 69.15 8.32 715 72.80 6.27 73,473 20,315 23,704 12 1 11,200 1,392 69.14 7.92 712 73.96 6.40 80,542 19,614 24,639 13 1 11,200 1,393 69.29 8.99 720 69.82 6.16 79,040 20,354 25,425 17 1 0,600 1,323 69.29 8.99 721 78.95 59 83,822 20,123 26,180 22 1 11,200 1,325 69.29 8.10 721 78.95 59 83,822 20,123 26,180 20,384 22,886		23	1.5	10,800									
28 1.5 10,00 10 10 10 10 10 10 32 1.5 11,000 1,391 69.37 8.49 728 69.92 6.18 68.276 20,244 23,632 4 1 10,000 1,391 69.37 8.49 728 69.92 6.18 68.276 20,244 23,632 4 1 11,000 1,386 69.15 8.32 715 72.80 6.27 73,473 20,315 23,704 12 1 11,200 1,392 69.39 8.01 733 72.49 6.16 79,040 20,354 25,425 17 1 0,600 1,378 69.27 8.66 72.4 70.55 59 78,728 20,888 23,785 19 1 10,600 1,326 69.26 6.12 76,628 20,089 23,866 22 1 11,200 1,402 68.99 8.10 721 78,728 </th <th></th> <th>27</th> <th>1.5</th> <th>10,600</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		27	1.5	10,600									
32 1.5 11,000 B N Stage HW BW BM BL SW SM SL HV BV SV 3 1 10,800 1,391 69.37 8.49 728 69.92 6.18 68.276 20.244 23,632 4 1 11,000 1,386 69.17 8.32 724 73.19 6.27 71,383 20,441 23,176 8 1 11,000 1,386 69.15 8.32 715 72.80 6.27 73,473 20,315 23,704 12 1 11,200 1,392 69.29 8.01 73 72.49 6.16 79,040 20,354 25,425 17 1 10,600 1,323 69.29 8.99 720 69.82 6.12 76.628 20,882 23,886 22 1 11,000 1,332 69.16 9.18 725 72.57 4.14 74,918 20,344 22,4571 24 1 10,600 1,335 69.69 732		28	1.5	10,800									
B N Stage HW BW BM BL SW SM SL HV BV SV 3 1 10,800 1,391 69.37 8.49 728 69.92 6.18 68,276 20,244 23,632 4 1 11,000 1,386 69.17 8.32 724 73.19 6.27 71,383 20,441 23,176 8 1 11,000 1,392 69.14 7.92 712 73.96 6.40 80,542 19,614 24,639 13 1 11,200 1,393 69.39 8.01 733 72.49 6.16 79,040 20,354 25,425 17 1 10,800 1,378 69.27 8.66 724 70.56 5.95 78,728 20,838 23,785 19 1 10,600 1,235 69.16 9.18 725 72.57 4.14 74,918 20,384 22,895 27 <t< th=""><th></th><th>32</th><th>1.5</th><th>11,000</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		32	1.5	11,000									
B N Stage HW BW BM BL SW SM SL HV BV SV 3 1 10,800 1,391 69.37 8.49 728 69.92 6.18 68,276 20,244 23,632 4 1 11,000 1,388 69.17 8.32 724 73.19 6.27 71,383 20,441 23,176 8 1 11,000 1,386 69.15 8.32 715 72.80 6.27 73,473 20,315 23,704 12 1 1,200 1,393 69.39 8.01 733 72.49 6.16 79,040 20,354 25,425 17 1 10,800 1,378 69.27 8.66 724 70.56 5.95 78,728 20,838 23,785 19 1 10,600 1,323 69.29 8.10 721 73.89 5.99 83,822 20,123 26,180 23 <td< th=""><th></th><th></th><th>:</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>			:										
B N Stage HW BW BM BL SW SM SL HV BV SV 3 1 10,800 1,391 69.37 8.49 728 69.92 6.18 68,276 20,244 23,632 4 1 11,000 1,386 69.17 8.32 724 73.19 6.27 71,383 20,441 23,176 8 1 11,000 1,386 69.15 8.32 715 72.80 6.27 73,473 20,315 23,704 12 1 11,200 1,393 69.39 8.01 733 72.49 6.16 79,040 20,354 25,425 19 1 10,600 1,323 69.29 8.99 720 69.82 6.12 76,628 20,089 23,666 22 1 11,000 1,325 69.36 8.22 731 71.20 6.14 82,764 20,426 24,571 24 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>													
3 1 10,800 1,391 69,37 8.49 728 69,92 6.18 68,276 20,244 23,632 4 1 11,000 1,388 69,17 8.32 724 73,19 6.27 71,383 20,441 23,176 8 1 11,000 1,386 69,17 8.32 715 72.80 6.27 73,473 20,315 23,704 12 1 11,000 1,393 69,39 8.01 733 72.49 6.16 79,040 20,354 25,425 17 1 10,600 1,323 69,29 8.99 720 69,82 6.12 76,628 20,089 23,866 22 1 11,000 1,323 69,26 8.12 717 73,89 5.99 83,822 20,123 26,180 23 1 10,600 1,323 69,06 732 71.32 5.44 82,764 20,426 24,571 24 1	B	Ν	Stage	HW	BW	BM	BL	SW	SM	SL	HV	BV	SV
4 1 11,000 1,388 69.17 8.32 724 73.19 6.27 71,383 20,441 23,176 8 1 11,000 1,386 69.15 8.32 715 72.80 6.27 73,473 20,315 23,704 12 1 11,200 1,392 69.14 7.92 712 73.96 6.40 80,542 19,614 24,639 13 1 11,200 1,393 69.39 8.01 733 72.49 6.16 79,040 20,354 25,425 17 1 10,600 1,323 69.29 8.99 720 69.82 6.12 76,628 20,089 23,866 22 1 11,000 1,332 69.29 8.90 721 73.89 8,822 20,123 26,180 23 1 11,000 1,332 69.08 9.06 732 71.32 5.64 82,220 20,114 31,994 32 1 11,000 1,335 64.97 9.52 755 70.36 6.29 84,275	_	3	1	10.800	1.391	69.37	8.49	728	69.92	6.18	68.276	20.244	23.632
8 1 11,000 1,386 69.15 8.32 715 72.80 6.27 73,473 20,315 23,704 12 1 11,200 1,392 69.14 7.92 712 73,96 6.40 80,542 19,614 24,639 13 1 11,200 1,393 69.39 8.01 733 72.49 6.16 79,040 20,354 25,425 17 1 10,800 1,378 69.27 8.66 724 70.56 5.95 78,728 20,838 23,866 22 1 11,000 1,323 69.29 8.99 720 69.82 6.12 76,628 20,089 23,866 23 1 11,000 1,325 69.16 9.18 725 72.57 4.14 74,918 20,384 22,895 27 1 10,800 1,382 69.01 8.20 749 72.68 6.19 80,624 20,856 25,150 34 1 11,000 1,435 64.97 9.52 755 70.36 4.24		4	1	11.000	1.388	69.17	8.32	724	73.19	6.27	71.383	20,441	23.176
12 11,200 1,392 69.14 7.92 712 73.96 6.40 80,542 19,614 24,639 13 1 11,200 1,393 69.39 8.01 733 72.49 6.16 79,040 20,354 25,425 17 1 10,800 1,378 69.27 8.66 724 70.56 5.95 78,728 20,838 23,785 19 1 10,600 1,323 69.29 8.99 720 69.82 6.12 76,628 20,089 23,866 22 1 11,000 1,323 69.16 9.18 725 72.57 4.14 74,918 20,384 22,895 27 1 10,600 1,385 68.96 8.12 695 70.63 6.29 84,275 19,025 23,073 28 1 11,000 1,382 69.01 8.20 749 72.68 6.19 80,624 20,856 25,150 34 1 11,000 1,435 64.97 9.52 755 70.36 4.24 84,92		8	1	11.000	1.386	69.15	8.32	715	72.80	6.27	73,473	20.315	23,704
13 1,1200 1,393 69.39 8.01 733 72.49 6.16 79,040 20,354 25,425 17 1 10,800 1,378 69.27 8.66 724 70.56 5.95 78,728 20,838 23,785 19 1 10,600 1,323 69.29 8.99 720 69.82 6.12 76,628 20,089 23,866 22 1 11,200 1,402 68.99 8.10 721 73.89 5.99 83,822 20,123 26,180 23 1 11,000 1,325 69.16 9.18 725 72.57 4.14 74,918 20,384 22,895 27 1 10,800 1,385 68.96 8.12 695 70.63 6.29 84,275 19,025 23,073 28 1 11,000 1,485 69.08 9.06 732 71.32 5.64 82,220 20,114 31,994 32 1 11,000 1,485 64.97 9.52 755 70.36 4.24 84,92		12	1	11.200	1.392	69.14	7.92	712	73.96	6.40	80,542	19.614	24,639
17 1 10,800 1,378 69.27 8.66 724 70.56 5.95 78,728 20,838 23,785 19 1 10,600 1,323 69.29 8.99 720 69.82 6.12 76,628 20,089 23,866 22 1 11,000 1,392 69.36 8.22 731 71.20 6.14 82,764 20,426 24,571 24 1 10,600 1,235 69.16 9.18 725 72.57 4.14 74,918 20,384 22,895 27 1 10,800 1,385 68.96 8.12 695 70.63 6.29 84,275 19,025 23,073 28 1 11,000 1,385 68.96 8.12 695 70.63 6.29 84,275 19,025 23,073 32 1 11,000 1,385 68.96 8.12 695 70.63 6.29 84,275 19,025 23,073 34 1 11,000 1,435 64.97 9.55 70.36 4.24 84,922<		13	1	11.200	1.393	69.39	8.01	733	72.49	6.16	79.040	20.354	25.425
19 1 10,600 1,323 69.29 8.99 720 69.82 6.12 76,628 20,089 23,866 22 1 11,000 1,392 69.36 8.22 731 71.20 6.14 82,764 20,426 24,571 24 1 10,600 1,235 69.16 9.18 725 72.57 4.14 74,918 20,384 22,895 27 1 10,600 1,385 68.96 8.12 695 70.63 6.29 84,275 19,025 23,073 28 1 11,000 1,382 69.01 8.20 749 72.68 6.19 80,624 20,856 25,150 34 1 11,000 1,435 64.97 9.52 755 70.36 4.24 84,922 19,949 26,507 37 1 11,000 1,475 71.95 7.61 760 72.68 3.46 92,725 20,027 27,599 3 1.5 10,600 1,236 65.88 8.78 664 67.33 6.58 <th></th> <th>17</th> <th>1</th> <th>10,800</th> <th>1,378</th> <th>69.27</th> <th>8.66</th> <th>724</th> <th>70 56</th> <th>5.95</th> <th>78,728</th> <th>20,838</th> <th>23 785</th>		17	1	10,800	1,378	69.27	8.66	724	70 56	5.95	78,728	20,838	23 785
12 1 11,200 1,402 68.99 8.10 721 73.89 5.99 83,822 20,123 26,180 23 1 11,000 1,392 69.36 8.22 731 71.20 6.14 82,764 20,426 24,571 24 1 10,600 1,235 69.16 9.18 725 72.57 4.14 74,918 20,384 22,895 27 1 10,600 1,385 68.96 8.12 695 70.63 6.29 84,275 19,025 23,073 28 1 11,000 1,380 69.08 9.06 732 71.32 5.64 82,220 20,114 31,994 32 1 11,000 1,435 64.97 9.52 755 70.36 4.24 84,922 19,949 26,507 37 1 11,000 1,475 71.95 7.61 760 72.68 3.46 92,725 20,027 27,599 3 1.5 10,600 1,296 65.68 8.78 664 67.33 6.58 <th></th> <th>19</th> <th>1</th> <th>10 600</th> <th>1.323</th> <th>69.29</th> <th>8.99</th> <th>720</th> <th>69.82</th> <th>6.12</th> <th>76 628</th> <th>20.089</th> <th>23,866</th>		19	1	10 600	1.323	69.29	8.99	720	69.82	6.12	76 628	20.089	23,866
1 1,000 1,392 69.36 8.22 731 71.20 61.4 82,764 20,426 24,571 24 1 10,600 1,235 69.16 9.18 725 72.57 4.14 74.918 20,384 22,895 27 1 10,800 1,385 68.96 8.12 695 70.63 6.29 84,275 19,025 23,073 28 1 11,000 1,380 69.08 9.06 732 71.32 5.64 82,220 20,114 31,994 32 1 11,000 1,435 64.97 9.52 755 70.36 4.24 84,922 19,949 26,507 34 1 11,000 1,475 71.95 7.61 760 72.68 3.46 92,725 20,027 27,599 3 1.5 10,600 1,296 65.68 8.78 664 67.33 6.58 690.61 18,083 21,736 4 1.5 10,800 1,315 63.98 9.44 662 67.91 6.54 74,12		22	1	11 200	1 402	68.99	8 10	721	73.89	5.99	83 822	20 123	26 180
1 10,600 1,235 69.16 9.18 725 72.57 4.14 74,918 20,384 22,895 27 1 10,600 1,385 68.96 8.12 695 70.63 6.29 84,275 19,025 23,073 28 1 11,000 1,380 69.08 9.06 732 71.32 5.64 82,220 20,114 31,994 32 1 11,000 1,382 69.01 8.20 749 72.68 6.19 80,624 20,856 25,150 34 1 11,000 1,435 64.97 9.52 755 70.36 4.24 84,922 19,949 26,507 37 1 11,000 1,475 71.95 7.61 760 72.68 3.46 92,725 20,027 27,599 3 1.5 10,600 1,296 65.68 8.78 664 67.33 6.58 69,061 18,083 21,736 4 1.5 10,800 1,315 63.98 9.44 662 67.91 6.54 74,1		23	1	11 000	1 392	69.36	8.22	731	71 20	614	82 764	20.426	24 571
1 10,000 1,385 68,96 8.12 695 70,63 6.29 84,275 19,025 23,073 28 1 11,000 1,380 69,08 9,06 732 71.32 5.64 82,220 20,114 31,994 32 1 11,000 1,382 69,01 8.20 749 72,68 6.19 80,624 20,856 25,150 34 1 11,000 1,435 64.97 9.52 755 70.36 4.24 84,922 19,949 26,507 37 1 11,000 1,475 71.95 7.61 760 72.68 3.46 92,725 20,027 27,599 3 1.5 10,600 1,296 65.68 8.78 664 67.33 6.58 69,061 18,083 21,736 4 1.5 10,800 1,315 63.98 9.44 662 67.91 6.54 74,128 18,643 22,272 12 1.5 11,000 1,262 65.87 9.01 702 70.82 6.41 76		24	1	10,600	1 235	69.16	9.18	725	72 57	4 1 4	74 918	20 384	22,895
1 10,000 1,380 60,08 9,06 732 71,32 5,64 82,220 20,114 31,994 32 1 11,000 1,382 69,01 8,20 749 72,68 6,19 80,624 20,856 25,150 34 1 11,000 1,435 64.97 9,52 755 70,36 4.24 84,922 19,949 26,507 37 1 11,000 1,475 71.95 7,61 760 72,68 3,46 92,725 20,027 27,599 3 1.5 10,600 1,296 65.68 8.78 664 67.33 6.58 69,061 18,083 21,736 4 1.5 10,800 1,315 63.98 9.44 662 67.91 6.54 74,128 18,643 22,272 12 1.5 10,800 1,315 63.98 9.44 662 67.91 6.54 74,128 18,643 22,272 12 1.5 10,900 1,426 65.11 8.96 678 69.55 6.66		27	1	10,000	1 385	68.96	8 12	695	70.63	6.29	84 275	19.025	23.073
10 1 11,000 1,382 69,01 8.20 749 72.68 6.19 80,624 20,856 25,150 34 1 11,000 1,435 64.97 9.52 755 70.36 4.24 84,922 19,949 26,507 37 1 11,000 1,475 71.95 7.61 760 72.68 3.46 92,725 20,027 27,599 3 1.5 10,600 1,296 65.68 8.78 664 67.33 6.58 69,061 18,083 21,736 4 1.5 10,800 1,315 63.98 9.44 662 67.91 6.54 74,128 18,643 22,272 12 1.5 11,000 1,262 65.87 9.01 702 70.82 6.41 76,602 18,497 23,505 13 1.5 10,900 1,442 66.11 8.96 678 69.55 6.66 72,824 18,214 23,983 17 1.5 10,500 1,246 65.20 8.99 656 65.24		28	1	11 000	1 380	69.08	9.06	732	71 32	5.64	82 220	20 114	31 994
32 1 11,200 1,435 64.97 9.52 755 70.36 4.24 84,922 19,949 26,507 37 1 11,000 1,475 71.95 7.61 760 72.68 3.46 92,725 20,027 27,599 3 1.5 10,600 1,296 65.68 8.78 664 67.33 6.58 69,061 18,083 21,736 4 1.5 10,800 1,330 64.24 9.44 670 68.05 6.57 72,089 18,680 21,736 8 1.5 10,800 1,315 63.98 9.44 662 67.91 6.54 74,128 18,643 22,272 12 1.5 11,000 1,262 65.87 9.01 702 70.82 6.41 76,602 18,497 23,505 13 1.5 10,900 1,442 66.11 8.96 678 69.55 6.66 72,824 18,214 23,983 17 1.5 10,500 1,246 65.20 8.99 656 65.24 <td< th=""><th></th><th>32</th><th>1</th><th>11 200</th><th>1 382</th><th>69.01</th><th>8 20</th><th>749</th><th>72.68</th><th>6.19</th><th>80 624</th><th>20,856</th><th>25 150</th></td<>		32	1	11 200	1 382	69.01	8 20	749	72.68	6.19	80 624	20,856	25 150
34 1 11,000 1,475 04,57 5.32 1755 10,500 4.24 15,542 15,542 15,543 20,007 37 1 11,000 1,475 71.95 7.61 760 72.68 3.46 92,725 20,027 27,599 3 1.5 10,600 1,296 65.68 8.78 664 67.33 6.58 69,061 18,083 21,587 4 1.5 10,800 1,330 64.24 9.44 670 68.05 6.57 72,089 18,680 21,736 8 1.5 10,800 1,315 63.98 9.44 662 67.91 6.54 74,128 18,643 22,272 12 1.5 11,000 1,262 65.87 9.01 702 70.82 6.41 76,602 18,497 23,505 13 1.5 10,900 1,442 66.11 8.96 678 69.55 6.66 72,824 18,214 23,983 17 1.5 10,500 1,246 65.20 8.99 656		34	1	11,200	1 / 35	64.97	0.20	755	70.36	4.24	84 922	10 0/10	26 507
37 1 11,000 1,473 71.53 7.51 700 72.08 3.40 52,723 20,027 27,353 3 1.5 10,600 1,296 65.68 8.78 664 67.33 6.58 69,061 18,083 21,587 4 1.5 10,800 1,330 64.24 9.44 670 68.05 6.57 72,089 18,680 21,736 8 1.5 10,800 1,315 63.98 9.44 662 67.91 6.54 74,128 18,643 22,272 12 1.5 11,000 1,262 65.87 9.01 702 70.82 6.41 76,602 18,497 23,505 13 1.5 10,900 1,442 66.11 8.96 678 69.55 6.66 72,824 18,214 23,983 17 1.5 10,500 1,246 65.20 8.99 656 65.24 6.48 75,279 18,044 22,087 19 1.5 10,300 1,279 64.95 9.72 654 65.09 <		27	1	11,000	1 475	71.05	7.61	755	70.50	2 46	04,522	20,027	20,507
3 1.5 10,000 1,250 05,053 05,053 05,054 05,054 18,083 21,387 4 1.5 10,800 1,330 64,24 9,44 670 68,05 6.57 72,089 18,680 21,736 8 1.5 10,800 1,315 63,98 9,44 662 67.91 6.54 74,128 18,643 22,272 12 1.5 11,000 1,262 65.87 9.01 702 70.82 6.41 76,602 18,497 23,505 13 1.5 10,900 1,442 66.11 8.96 678 69.55 6.66 72,824 18,214 23,983 17 1.5 10,500 1,246 65.20 8.99 656 65.24 6.48 75,279 18,044 22,087 19 1.5 10,300 1,279 64.95 9.72 654 65.09 6.27 73,231 18,449 22,648 22 1.5 10,900 1,290 65.05 8.98 661 68.61 6.57 83,029 <th></th> <th>2</th> <th>15</th> <th>10,600</th> <th>1,475</th> <th>65.69</th> <th>9.79</th> <th>664</th> <th>67.22</th> <th>6.59</th> <th>52,725</th> <th>19 092</th> <th>21,555</th>		2	15	10,600	1,475	65.69	9.79	664	67.22	6.59	52,725	19 092	21,555
4 1.5 10,800 1,330 64,24 5.44 6076 68.03 6.57 74,035 18,080 21,730 8 1.5 10,800 1,315 63.98 9.44 662 67.91 6.54 74,128 18,643 22,272 12 1.5 11,000 1,262 65.87 9.01 702 70.82 6.41 76,602 18,497 23,505 13 1.5 10,900 1,442 66.11 8.96 678 69.55 6.66 72,824 18,214 23,983 17 1.5 10,500 1,246 65.20 8.99 656 65.24 6.48 75,279 18,044 22,087 19 1.5 10,300 1,279 64.95 9.72 654 65.09 6.27 73,231 18,449 22,648 22 1.5 10,900 1,290 65.05 8.98 661 68.61 6.57 83,029 18,491 24,184 23 1.5 10,800 1,347 65.23 9.79 689 67.58		3	1.5	10,000	1,290	64.24	0.70	670	69.05	6.50	72.080	10,005	21,307
3 1.5 10,800 1,315 65.38 9.44 662 67.91 6.54 74,126 18,043 22,272 12 1.5 11,000 1,262 65.87 9.01 702 70.82 6.41 76,602 18,497 23,505 13 1.5 10,900 1,442 66.11 8.96 678 69.55 6.66 72,824 18,214 23,983 17 1.5 10,500 1,246 65.20 8.99 656 65.24 6.48 75,279 18,044 22,087 19 1.5 10,300 1,279 64.95 9.72 654 65.09 6.27 73,231 18,449 22,648 22 1.5 10,900 1,290 65.05 8.98 661 68.61 6.57 83,029 18,491 24,184 23 1.5 10,800 1,347 65.23 9.79 689 67.58 6.91 79,061 18,512 24,112 27 1.5 10,600 1,271 65.45 9.39 682 67.11		•	1.5	10,800	1,000	62.09	9.44	662	67.01	6.57	74,100	10,000	21,730
12 1.5 11,000 1,262 65.87 9.01 702 70.82 6.41 70,602 18,497 23,303 13 1.5 10,900 1,442 66.11 8.96 678 69.55 6.66 72,824 18,497 23,983 17 1.5 10,500 1,246 65.20 8.99 656 65.24 6.48 75,279 18,044 22,087 19 1.5 10,300 1,279 64.95 9.72 654 65.09 6.27 73,231 18,449 22,648 22 1.5 10,900 1,290 65.05 8.98 661 68.61 6.57 83,029 18,491 24,184 23 1.5 10,800 1,347 65.23 9.79 689 67.58 6.91 79,061 18,512 24,112 27 1.5 10,600 1,271 65.45 9.39 682 67.11 6.28 80,382 18,479 24,588 28 1.5 10,800 1,285 65.18 9.05 674 66.86		12	1.5	11,000	1,515	05.90	9.44	702	70.91	0.34	74,120	10,045	22,272
1.5 10,500 1,442 60.11 8.56 678 69.55 6.66 72,824 18,214 23,983 17 1.5 10,500 1,246 65.20 8.99 656 65.24 6.48 75,279 18,044 22,087 19 1.5 10,300 1,279 64.95 9.72 654 65.09 6.27 73,231 18,449 22,648 22 1.5 10,900 1,290 65.05 8.98 661 68.61 6.57 83,029 18,491 24,184 23 1.5 10,800 1,347 65.23 9.79 689 67.58 6.91 79,061 18,512 24,112 27 1.5 10,600 1,271 65.45 9.39 682 67.11 6.28 80,382 18,479 24,588 28 1.5 10,800 1,285 65.18 9.05 674 66.86 6.31 85,031 18,628 25,043 32 1.5 11,000 1,292 65.04 8.91 657 68.90 6.56		12	1.5	10,000	1,202	66 11	9.01	670	60 FF	6.41	70,002	10,497	23,505
17 1.5 10,500 1,246 55.20 8.99 656 65.24 6.48 75,279 18,044 22,087 19 1.5 10,300 1,279 64.95 9.72 654 65.09 6.27 73,231 18,449 22,648 22 1.5 10,900 1,290 65.05 8.98 661 68.61 6.57 83,029 18,491 24,184 23 1.5 10,800 1,347 65.23 9.79 689 67.58 6.91 79,061 18,512 24,112 27 1.5 10,600 1,271 65.45 9.39 682 67.11 6.28 80,382 18,479 24,588 28 1.5 10,800 1,285 65.18 9.05 674 66.86 6.31 85,031 18,628 25,043 32 1.5 11,000 1,292 65.04 8.91 657 68.90 6.56 89,310 18,470 25,793		12	1.5	10,900	1,442	65.20	8.90	6/8	65.35	0.00	72,824	10,214	25,983
15 1.5 10,500 1,279 64.95 9.72 654 654 65.09 6.27 73,231 18,449 22,648 22 1.5 10,900 1,290 65.05 8.98 661 68.61 6.57 83,029 18,491 24,184 23 1.5 10,800 1,347 65.23 9.79 689 67.58 6.91 79,061 18,512 24,112 27 1.5 10,600 1,271 65.45 9.39 682 67.11 6.28 80,382 18,479 24,588 28 1.5 10,800 1,285 65.18 9.05 674 66.86 6.31 85,031 18,628 25,043 32 1.5 11,000 1,292 65.04 8.91 657 68.90 6.56 89,310 18,470 25,793		10	1.5	10,500	1,246	65.20	0.70	656	05.24	6.48	75,279	18,044	22,087
22 1.5 10,900 1,290 55.05 8.98 661 68.61 6.57 88,029 18,491 24,184 23 1.5 10,800 1,347 65.23 9.79 689 67.58 6.91 79,061 18,512 24,112 27 1.5 10,600 1,271 65.45 9.39 682 67.11 6.28 80,382 18,479 24,588 28 1.5 10,800 1,285 65.18 9.05 674 66.86 6.31 85,031 18,628 25,043 32 1.5 11,000 1,292 65.04 8.91 657 68.90 6.56 89,310 18,470 25,793		19	1.5	10,300	1,279	04.95	9.72	654	05.09	0.27	73,231	18,449	22,648
25 1.5 10,800 1,347 65.23 9.79 689 67.58 6.91 79,061 18,512 24,112 27 1.5 10,600 1,271 65.45 9.39 682 67.11 6.28 80,382 18,479 24,588 28 1.5 10,800 1,285 65.18 9.05 674 66.86 6.31 85,031 18,628 25,043 32 1.5 11,000 1,292 65.04 8.91 657 68.90 6.56 89,310 18,470 25,793		22	1.5	10,900	1,290	05.05	8.98	661	08.61	6.57	83,029	18,491	24,184
27 1.5 10,600 1,271 65.45 9.39 682 67.11 6.28 80,382 18,479 24,588 28 1.5 10,800 1,285 65.18 9.05 674 66.86 6.31 85,031 18,628 25,043 32 1.5 11,000 1,292 65.04 8.91 657 68.90 6.56 89,310 18,470 25,793		23	1.5	10,800	1,347	65.23	9.79	689	07.58	6.91	79,061	18,512	24,112
28 1.5 10,800 1,285 65.18 9.05 674 66.86 6.31 85,031 18,628 25,043 32 1.5 11,000 1,292 65.04 8.91 657 68.90 6.56 89,310 18,470 25,793		27	1.5	10,600	1,271	65.45	9.39	682	67.11	6.28	80,382	18,479	24,588
32 1.5 11,000 1,292 65.04 8.91 657 68.90 6.56 89,310 18,470 25,793		28	1.5	10,800	1,285	65.18	9.05	674	66.86	6.31	85,031	18,628	25,043
		32	1.5	11,000	1,292	65.04	8.91	657	68.90	6.56	89,310	18,470	25,793

Fig. 3. Initial database with incomplete records (A) and with all records filled after applying data mining (B). The data set of each record is composed by (i) processing stages (Stage) (raw hams = 1; salting = 1.5; post-salting = 2; drying = 3; dry-cured ham = 4), (ii) physico-chemical parameters (ham weight = HW, *Biceps femoris* muscle weight, moisture and lipid content = BW, BM and BL, respectively, *Semimembranosus* muscle weight, moisture and lipid content = SW, SM and SL, respectively), and (iii) MRI and Computer Vision Techniques (ham, *Biceps femoris* and *Semimembranosus* volume = HV, BV, and SV, respectively). Suspension dots indicate that the database is greater and it has been cut. N = ham identifier. HW, BW and SW are expressed in grams; BM, BL, SM and SI are expressed in g/100 g sample; HV, BV and SV are expressed in voxel.

155

156

157

158

159

160

161

166

167

168

270 days; and dry-cured hams (DC), 660 days. This experimentaldesign is shown in Fig. 1.

At each stage, 6 hams were scanned for obtaining MR images. After then, three hams were destroyed at each stage for the P-C analysis, having 12, 9 and 6 hams at PS, D and DC stages, respectively. Ham weights were recorded at these four stages and also at the end of the salting step (SA). This is how the P-C data set is formed. In this work MRI has been used as a non-invasive technique only to acquire images of the hams without destroying them. Then, our own active contour algorithms were applied to recognize the

our own active contour algorithms were applied to recognize the
 Biceps femoris and *Semimembranosus* mucles, in order to compute
 their volumes, as described in Antequera et al. (2007).
 Numerical data is extracted by Data Mining from the data sets

Numerical data is extracted by Data Mining from the data sets obtained by our MRI–CVT and from the data sets obtained by P-C. Fig. 2 describes the whole process.

2.2. MRI acquisition

169 Magnetic resonance images were generated at the "Infanta Cristina" University Hospital (Badajoz, Spain). A MRI scanner (Philips 170 171 Gyroscan NT Intera 1.5 T) was used, with a quadrature whole-body 172 coil. Sequences of T1 were applied with the following parameters: 173 120×85 mm for field-of view (FOV), 20 ms for echo time (TE), 174 500 ms for repetition time (TR), 2 mm thick slices, 90° for flip angle, i.e. a T1-weighted spin echo (SE), 0.23×0.20 mm per pixel res-175 176 olution. Sixty slices per ham piece were obtained. The MRI acquisition was done at 20 °C and it took 28 min for each ham. 177 All the images were in DICOM format, with a 512×512 resolution, 178 179 and 256 grey levels.

180 2.3. Computer Vision Techniques

After the images were acquired, our own computer vision algorithms were applied to extract numerical data from these images.
Then, data mining techniques were tested over these data to obtain
prediction equations.

185 The automated procedure was run as described in Fig. 2. First, a 186 previous image pre-processing stage was carried out. Then, the *Bi*-187 ceps Femoris and Semimembranosus muscles (B and S, respectively) 188 were recognized distinctly by using Active Contours, applying a 189 greedy algorithm method (Antequera et al., 2007). The surface and volume for all the contours is calculated by relying on classical 190 methods in analytical geometry. Volume is expressed in voxel (vol-191 192 *ume per element*), which is $0.23 \times 0.2 \times 2 \text{ mm}^3$.

193 *2.4. Physico-chemical analysis*

At each stage of the processing, ham weight was recorded and the B and S muscles of three hams were dissected, weighed and analysed for moisture (AOAC, 2000; reference 935.29) and lipid content (Pérez-Palacios et al., 2008a). Analyses were done in triplicate.

199 2.5. Data mining

209

210

The free software WEKA (Waikato Environment for Knowledge 200 201 Analysis) (http://www.cs.waikato.ac.nz/ml/weka/) was used for carrying out the data mining analysis. The primary groups in data 202 203 mining tasks are descriptive and predictive techniques. The first 204 ones include deductive techniques, which have the ability to infer 205 new values based on actual data. In predictive techniques, future 206 models can be predicted from current data by trend analysis 207 (Witten and Frank, 2005; Wu et al., 2008). Both, descriptive and 208 predictive techniques were applied in this study.

Multiple linear regression was used for the deductive tasks. The dependent variable to be estimated was always unique and numer-

ical and this method enables the removal of collinear attributes. In 211 addition, regression techniques seem to be the most appropriate to 212 forecast values, as it allows inferring numerical data from the 213 available numerical values. The M5 method of attribute selection 214 and a ridge value of 1×10^{-4} were applied. This method steps 215 through the attributes, and removes the one with the smallest 216 standardised coefficient until no improvement is observed in the 217 estimate of the error given by the Akaike information criterion 218 (Hastie et al., 2001). 219

Again, multiple linear regression was used for the experiments of prediction. This technique obtains a linear regression equation, which can be used to predict future values (Hastie et al., 2001). The M5 method of attribute selection and a ridge value of $1 \times 10^{-4}_{-4}$ were also applied.

Isotonic regression was also tested for prediction. When the values of the database are highly correlated, the use of non-linear regression is recommended. In these cases, the isotonic regression is considered as a good option. Isotonic regression provides a set of values from the information stored on a database. It is based on estimating ordered values for an independent variable (i.e. weight) as a function of one of the input parameters (attributes of the database). Thus, the ham weight is predicted as a function of the volume or the maturation stage. Only the input parameters providing better adjustment results (for example, the stage) will be selected. Finally, an interpolation function is established (polynomial trend line) to compare the provided set data with original values in the database, obtaining the prediction equation (Borge, 1985; Barlow et al., 1972).

2.6. Databases

An initial database was built with data obtained throughout the ham processing: (i) stage of the ham processing, (ii) P-C analysis (ham, B and S weight; moisture and lipid content of the B and S), and (iii) MRI_CVT (ham, B and S volume) (see Fig. 3).

As previously explained (Fig. 1), this study was carried out with 15 Iberian hams and three of them were discarded at each stage. Thus, the number of pieces at R, SA, PS, D and DC stages were 15, 12, 12, 9 and 6, respectively. The initial database contained 54 records, with each record treated as a data set obtained from a ham. Although this database might be regarded as small, it should be noted that each Iberian ham presents considerable costs, about 30 Euros per kilo plus lab work.

Since the 15 hams were not analysed at all the ripening stages, this initial database presents incomplete records (Fig. 3A). After applying data mining techniques (multiple linear regression), the values for all analysed parameters were estimated. The records thus completed made up the whole database, as can be observed in Fig. 3B.

2.7. Statistical design

Differences throughout the processing of Iberian hams with parameters determined by P-C analysis and MRI–CVT were analysed by one-way analysis of variance (ANOVA). When significant differences (p < 0.05) were found, the Tukey's test was conducted. Analyses were done by using the SPSS package (v.18.0).

3. Results and discussion

3.1. Physico-chemical and MRI-Computer Vision Techniques

Table 1 shows results on ham weight, moisture content, lipid266content, and weight of B and S muscles in Iberian hams throughout267the processing. Weight and lipid content in B are known to be268

256 257 258

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

259 260 261

> 262 263

264

265

T. Pérez-Palacios et al. / Journal of Food Engineering xxx (2014) xxx-xxx

5

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Table 1

	HW	BW	BM	BL	SW	SM	SL
	(g)	(g)	(g/100 g sample)	(g/100 g sample)	(g)	(g/100 g sample)	(g/100 g sample)
Raw hams	10960 ± 203a	1382 ± 129a	68.69 ± 3.17a	8.77 ± 0.98b	747 ± 19a	71.87 ± 1.34a	3.95 ± 0.45
Salting	10750 ± 211a	NA	NA	NA	NA	NA	NA
Postsalting	9683 ± 301b	1130 ± 30b	60.66 ± 1.16b	11.57 ± 1.79b	527 ± 15b	60.37 ± 1.65b	5.53 ± 0.32
Drying	8489 ± 401c	1030 ± 83b	54.43 ± 0.66c	10.63 ± 1.11b	552 ± 53b	34.24 ± 5.04c	6.66 ± 1.05
Dry-cured hams	7700 ± 110d	713 ± 21c	42.92 ± 2.49d	16.94 ± 1.44a	327 ± 70c	25.71 ± 2.76d	6.27 ± 1.99
p	<0.001	<0.001	<0.001	0.002	<0.001	<0.001	0.2

Results on physico-chemical analysis (ham weight = HW, *Biceps femoris* muscle weight, moisture and lipid content = BW, BM and BL, respectively, *Semimembranosus* muscle weight, moisture and lipid content = SW, SM and SL, respectively) at the different stages of the Iberian ham processing.^a

NA = not analysed.

In the same column, means with different letters differ significantly between stages.

^a Values are expressed as means ± standard deviation.

269 greater in comparison to the S muscle (Pérez-Palacios et al., 2008b, 2010c), which is corroborated in this study. As expected, ham and 270 muscle weight and moisture decreased during the processing due 271 to water loss (Martin et al., 1998; Pérez-Palacios et al., 2011b). 272 The significant increase in the percentage of lipid content in the 273 274 B muscle during the processing can be also related to the water 275 loss, since the percentage of dry matter (as fat) increased as the 276 water content decreased.

Moisture loss during the processing occurs more in the S muscle than in B, above all at the last stages of the processing. This fact agrees with previous results in Andres et al. (2005). This phenomenon is related to muscle location in the ham (the B muscle is an internal muscle, while S is external), since water loss takes place from the inner to the outer part. Thus, water loss is facilitated in external muscles, such as S.

Volume of ham, B and S muscles at R, PS, D and DC stages 284 achieved by MRI-CVT are shown in Table 2. These three objects 285 of study decreased during processing, which coincides with the 286 changes found in ham and muscle weight. The accuracy of volume 287 288 estimation for the muscles is very high, as can be examined in 289 Antequera et al. (2007). There was a high correlation ($R^2 = 0.992$) 290 between the data obtained by physical measurement and sizes 291 measured on MRI by computer vision methods.

292 3.2. Data mining for deduction

As previously explained, a database with 54 records was built 293 294 (Fig. 3A). A record is the data set of a ham, which includes (i) the stage of the processing, (ii) data from P-C analysis (ham weight, 295 B and S muscles weight, moisture and lipid content), and (iii) data 296 297 from MRI-CVT (ham, B and S muscles volume). Most of the records in the database were incomplete. By applying multiple linear 298 299 regression, the unknown information of the records in the database is estimated. Hence, a database of 54 full records is computed 300 301 (Fig. 3B). This process could be seen as a type of data reconstruc-

Table 2

Results on MRI and Computer Vision Tecniques (ham, *Biceps femoris* and *Semimembranosus* volume = HV, BV, and SV, respectively) at the different stages of the Iberian ham processing.^a

	HV	BV	SV
	(voxel)	(voxel)	(voxel)
Raw hams	81520 ± 1950a	25530 ± 7200a	25530 ± 3240a
Salting	NA	NA	NA
Postsalting	75250 ± 2050b	21640 ± 8900b	21640 ± 1070b
Drying	64500 ± 2170c	15146 ± 1230c	15140 ± 1730c
Dry-cured hams	56990 ± 5630d	12130 ± 1270d	12130 ± 1710c
p	<0.001	<0.001	<0.001

NA = not analysed.

* Values are expressed as means ± standard deviation.

tion: data that did not exist is reconstructed by using various algorithms with some degree of confidence.

Correlation index R^2 is used to prove the correctness and precision of the estimated values by using multiple linear regression. **Table 3** shows the correlation coefficients between real and predicted data for the features analysed: ham weight; B and S muscles weight, moisture and lipid content; ham, B and S muscle volume. As can be seen, high correlations ($R^2 > 0.900$) have been obtained for all traits, except for lipid content of the S muscle ($R^2 = 0.665$). This lower correlation could be related to the high variability of fat content in Iberian ham. Particularly noteworthy is the high correlation obtained for moisture in the two muscles (>0.990).

Table 4 displays the value range of the predicted features, which can be compared to the real values shown in Table 1, for the P-C characteristics, and Table 2, for data obtained by MRI_CVT, in order to corroborate the good correlation between real and predicted data. For example, at the R stage, the average moisture of the B muscle was 68.69% (BM value at Raw in Table 1) and the values predicted for this characteristic range between 64.97% and 71.95% (BM value at Raw in Table 4); at the D stage, the real value for ham volume was 64.50 voxel, and its predicted values were 58.94_67.21 voxel.

To the best of our knowledge, deductive methods from data mining techniques have not been applied at all in food science. This fact is really important since this approach yields a large number of data from a small and incomplete database. In the case of Iberian ham production, the application of deductive methods of data mining would be an interesting tool due to the high cost of this product.

3.3. Data mining for prediction

331 332

333

334

The prediction of ham quality parameters (weight, moisture content, and lipid content in the B and S muscles) was also tested. Predictive techniques from data mining were applied to informa-

Table 3

Correlation coefficient (R^2) between real and predicted data obtained by data mining for the features analysed by physico-chemical analysis and MRI and Computer Vision Techniques.

	R ²
BW	0.975
SW	0.916
BM	0.994
SM	0.993
BL	0.908
SL	0.665
HV	0.975
BV	0.999
SV	0.993

See abbreviations in Fig. 3.

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

6

T. Pérez-Palacios et al./Journal of Food Engineering xxx (2014) xxx-xxx

Table 4	1
---------	---

Minimum and ma	aximum values for th	e features predicted	l by using data mining.
----------------	----------------------	----------------------	-------------------------

	BW (g)	BM (g/100 g)	BL (g/100 g)	SW (g)	SM (g/100 g)	SL (g/100 g)	HV (voxel)	BV (voxel)	SV (voxel)
Raw hams	1235-1475	64.97-71.95	7.61-9.52	695-760	69.82-73.96	3.46-6.40	68270-92720	19020-20850	22980-31990
Salting	1245-1442	63.98-66.11	8.78-9.79	654-702	65.09-70.82	6.27-6.91	69060-89310	18040-18680	21580-25790
Post-salting	1100-1187	59.79-62.31	59.79-62.31	510-608	53.80-62.38	5.26-6.60	57710-77050	15720-18220	16950-23190
Drying	880-1110	52.27-54.63	52.27-54.63	422-585	42.39-48.03	5.66-7.70	58940-67210	12120-15980	12160-17090
Dry-cured hams	690-756	40.66-45.88	40.66-45.88	256-423	29.11-40.21	3.88-8.29	48580-62330	8120-11340	9860-14200

See abbreviations in Fig. 3.

tion retrieved from MRI_CVT (BV, SV and HV) procedures. Two
 methods in data mining were used, multiple linear regression
 and isotonic regression.

To validate the predicted results, the coefficient correlation R^2 338 339 of the two explored data mining methods was computed (Table 5). For weight, moisture content in B and S muscles and lipid 340 341 content in B, high correlation coefficients (0.87-0.99) were obtained. Very few differences were found between correlation coef-342 343 ficients achieved by multiple linear regression and isotonic 344 regression methods. The computational cost of both techniques is similar, and yet, isotonic regression is not automatic and needs a 345 subsequent interpolating step by using a spreadsheet. Thus, the 346

Table 5

Correlation coefficient (R^2) for each physico-chemical characteristic predicted by applying data mining (multiple linear regression (MLR) and isotonic regression (IR)) on data achieved by MRI and Computer Vision Techniques (BV, SV and HV).

	BW	BM	BL	SW	SM	SL
MLR	0.954	0.966	0.871	0.937	0.969	0.035
IR	0.995	0.975	0.986	0.989	0.987	0.817

See abbreviations in Fig. 3.

use of multiple linear regression for deducing these P-C parameters seems to be more comfortable.

In the case of lipid content in the S muscle, no good correlations were obtained when applying multiple linear regression, but accurate results were achieved ($R^2 = 0.817$) with isotonic regression. As previously explained, this could be related to the high variability of fat content in Iberian ham. In fact, the use of isotonic regression is indicated when having non-linear dependent data (Barlow et al., 1972).

Fig. 4 presents the adjustment between real and predicted values of lipid content in the S muscle by the two deductive techniques applied in this study. Isotonic regression shows higher accuracy in comparison to multiple linear regression for predicting the lipid content of S.

Table 6 shows prediction equations for weight, moisture and lipid content in the B and S muscles by multiple linear regression and isotonic regression. Thus, by using data obtained non-destructively by MRI_CVT (HV, BV and SV) weight, moisture and lipid content can be now reliable estimated. These determinations have always been carried out in Iberian hams, but the traditional methods are time-consuming and require the destruction of the sample. Therefore, our equations could be considered as a useful tool.

Fig. 4. Adjustment between real () and predicted values of the lipid content of *Semimembranosus* muscle by using multiple linear regression (---) and isotonic regression (-) as a function of the *Semimembranosus* volume (expressed in voxel).

Table 6

Prediction equations of Iberian ham quality traits achieved by applying multiple linear regression (MLR) and isotonic regression (IR) on data achieved by MRI and Computer Vision Techniques (BV, SV and HV).

MLR	IR
BW = 0.0445 * BV + 0.0131 * SV + 154.6591 BM = 0.0021 * BV + 0.0002 * SV + 21.6042 BL = -0.0007 * BV + 21.7736 SW = 0.0263 * BV + 0.0063 * SV + 28.4885 SM = 0.0029 * BV + 0.0007 * SV - 4.2683 SL = -0.0001 * SV + 7.8575	$\begin{split} BW &= -4 \times 10^{-23} * HV^6 + 2 \times 10^{-17} * HV^5 - 3 \times 10^{-12} * HV^4 + 2 \times 10^{-7} * HV^3 - 0.0109 * HV^2 + 280.58 * HV - 3 \times 10^6 \\ BM &= 2 \times 10^{-24} * SV^6 - 7 \times 10^{-19} * SV^5 + 5 \times 10^{-14} * SV^4 - 2 \times 10^{-9} * SV^3 + 3 \times 10^{-5} * SV^2 - 0.2673 * SV + 925.87 \\ BL &= -2 \times 10^{-25} * HV^6 + 7 \times 10^{-20} * HV^5 - 1 \times 10^{-14} * HV^4 + 1 \times 10^{-9} * HV^3 - 8 \times 10^{-5} * HV^2 + 2.4017 * HV - 29387 \\ SW &= 2 \times 10^{-21} * BV^6 - 3 \times 10^{-16} * BV^5 + 1 \times 10^{-11} * BV^4 - 3 \times 10^{-7} * BV^3 + 0.0044 * BV^2 - 29.538 * BV + 80337 \\ SM &= 8 \times 10^{-23} * SV^6 - 1 \times 10^{-17} * SV^5 + 5 \times 10^{-13} * SV^4 - 1 \times 10^{-8} * SV^3 + 0.0002 * SV^2 - 1.2033 * SV + 3543.8 \\ SL &= 2 \times 10^{-23} * SV^6 - 2 \times 10^{-18} * SV^5 + 1 \times 10^{-13} * SV^4 - 2 \times 10^{-8} * SV^3 + 3 \times 10^{-5} * SV^2 - 0.222 * SV + 636.56 \end{split}$
See abbreviations in Fig. 3.	

369 4. Conclusions

To the best of our knowledge this work has been the first to apply data mining to Iberian ham information obtained from P-C analysis, weight, moisture and lipid content, and MRI_TCVT techniques, volume.

The application of deductive techniques from data mining, multiple linear regression, to information from $MRI_{\perp}CVT$ and P-C analysis allows for the accurate estimation of more records of the analysed traits: weight, moisture content, lipid content, and volume in Iberian hams.

Multiple linear regression and isotonic regression are accurate methods of data mining for predicting weight, moisture and lipid content in Iberian ham as a function of features obtained from MRI-CVT techniques.

Data mining and MRI_CVT have been used as a pioneering approach to study the features of hams. These tools can be useful for calculating P-C parameters related to ham quality and for improving the control of the processing without destroying meat pieces.

388 5. Uncited reference

389 **Q4** Reutermann (2012).

390 Acknowledgments

The authors wish to acknowledge the funding received for this 391 research from both the Junta de Extremadura (Regional Govern-392 ment Board - Research Projects 3PR05B027 and PDT08A021; Con-393 sejería de Economía, Comercio e Innovación and FEDER - economic 394 support for research groups: GRU09148 and GRU09025) and from 395 the Spanish Government (National Research Plan) and the Euro-396 397 pean Union (FEDER funds) by means of the grant reference 398 TIN2008-03063. We also wish to thank the "Hermanos Roa" com-399 pany from Villar del Rey (Badajoz), as well as the "Infanta Cristina" University Hospital Radiology Service, specially to the Dr. Ramón 400 401 Palacios, for their contribution and support.

402 References

- Andres, A.I., Ventanas, S., Ventanas, J., Cava, R., Ruiz, J., 2005. Physicochemical changes throughout the ripening of dry cured hams with different salt content and processing conditions. Eur. Food Res. Technol. 221, 30–35.
- Antequera, T., Caro, A., Rodriguez, P.G., Pérez-Palacios, T., 2007. Monitoring the ripening process of Iberian Ham by computer vision on magnetic resonance imaging. Meat Sci. 76, 561–567.
- Association of Official Analytical Chemist (AOAC), 2000. Official Methods of Analysis
 of the Association of Official Analytical Chemists, seventeenth ed. Gaithersburg,
 Maryland.
- Ávila, M., Durán, M.L., Caro, A., Antequera, T., Gallardo, R., 2005. Thresholding methods on MRI to evaluate ilntramuscular fat level on Iberian ham. Lectures Notes in Computer Science (LNCS 3523). Pattern Recognition and Image Analysis, 697–704.
- Barlow, R.E., Bartholomew, D., Bremner, J.M., Brunk, H.D., 1972. Statistical Inferece
 Under Order Restriction: The Theory and Application of Isotonic Regression.
 Wiley, New York.
- Borge, L., 1985. Estimacion y contrastes de hipótesis en el modelo lineal general con restricciones de desigualdad. Doctoral thesis. University of Valladolid, Spain.
- Caro, A., Rodríguez, P.G., Cernadas, E., Durán, M.L., Villa, D., 2001. Applying active contours to muscle recognition in Iberian ham MRI. In: IASTED International Conference Signal Processing, Pattern Recognition and Applications, Rhodes, Greece.
- 425 Caro, A., Durán, M.L., Rodríguez, P., Antequera, T., Palacios, R., 2003. Mathematical 426 morphology on MRI for the determination of Iberian ham fat content. Lecture 427 Notes in Computer Science (LNCS 2905). Prog. Pattern Recogn. Speech Image 428 Anal., 359–366.
- 429 Collell, C., Gou, P., Arnau, J., Comaposada, J., 2011. Non-destructive estimation of moisture, water activity and NaCl at ham surface during resting and drying using NIR spectroscopy. Food Chem. 129, 601–607.

Cortez, P., Portelinha, S., Rodrigues, S., Cadavez, V., Teixeira, A., 2006. Lamb meat quality assessment by support vector machines. Neural Process. Lett. 24, 41–51.

- Cortez, P., Cedeira, A., Almeida, F., Matos, T., Reis, J., 2009. Modeling wine preferences by data mining from physicochemical properties. Decis. Support Syst. 47, 547–553.
- Fantazinni, P., Gombia, M., Schembri, P., Simoncini, N., Virgili, R., 2009. Use of magnetic resonance imaging for monitoring Parma dry-cured ham processing. Meat Sci. 82, 219–227.
- Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., 1996. From data mining to knowledge discovery in databases. Al Mag. 17, 37–54.
- Fulladosa, E., Santos-Garcés, E., Picouet, P., Gou, P., 2010. Prediction of salt and water content in dry-cured hams by computed tomography. J. Food Eng. 96, 80– 85.
- Furnols, M.F., Teran, M.F., Gispert, M., 2009. Estimation of lean meat content in pig carcasses using X-ray Computed Tomography and PLS regression. Chemometr. Intell. Lab. Syst. 98, 31–37.
- Haseth, T.T., Sørheim, O., Høy, M., Egelandsdal, B., 2012. Use of computed tomography to study raw ham properties and predict salt content and distribution during dry-cured ham production. Meat Sci. 90, 858–864.
- Hastie, T., Tibshirani, R., Friedman, J., 2001. The Elements of Statistical Learning: Data Mining. Inference and Prediction Springer-Verlag, New York.
- Holmes, G., Fletcher, D., Hernández, J., Ramírez, M.J., Ferri, C., 2007. Introducción a la Minería de Datos. Prentice-Hall.
- Klaypradith, W., Kerdpiboon, S., Singh, R.K., 2010. Application of artificial neural networks to predict the oxidation of menhaden fish oil obtained from Fourier transform infrared spectroscopy method. Food Bioprocess Technol. 4, 475–480.
- Manzoco, L., Anese, M., Marzona, S., Innocente, N., Lagazio, C., Nicoli, M.C., 2013. Monitoring dry-curing of S. Daniele ham by magnetic resonance imaging. Food Chem. 141, 2246–2252.
- Martin, L., Córdoba, J.J., Antequera, T., Timon, M.L., Ventanas, J., 1998. Effects of salt and temperature on proteolysis during ripening of Iberian ham. Meat Sci. 49, 145–153.
- Mitchell, T.M., 1999. Machine learning and data mining. Commun. ACM 42, 30–36. Pérez-Juan, M., Afseth, N.K., González, J., Díaz, I., Gispert, M., Furnols, M.F., Oliver, M.A., Realini, C.E., 2010. Prediction of fatty acid composition using a NIRS fibre optics probe at two different locations of ham subcutaneous fat. Food Res. Int. 43, 1416–1422.
- Pérez-Palacios, T., Ruiz, R., Martin, D., Muriel, E., Antequera, T., 2008a. Comparison of different methods for total lipid quantification. Food Chem. 110, 1025–1029.
- Pérez-Palacios, T., Ruiz, J., Antequera, T., 2008b. Perfil de ácidos grasos de la grasa subcutánea e intramuscular de credos ibéricos cebados en montanera y con pienso "alto oleico". Eurocarne, 1–10.
- Pérez-Palacios, T., Antequera, T., Durán, M.L., Caro, A., Rodríguez, P.G., Ruiz, J., 2010a. MRI-based analysis, lipid composition and sensory traits for studying Iberian dry-cured hams from pigs fed with different diets. Food Chem. 126, 1366–1372.
- Pérez-Palacios, T., Antequera, T., Molano, R., Rodríguez, P.G., Palacios, R., 2010b. Sensory traits prediction in dry-cured hams from fresh product via MRI and lipid composition. J. Food Eng. 101, 152–157.
- Pérez-Palacios, T., Ruiz, J., Dewettinck, K., Trung Le., T., Antequera, T., 2010c. Individual phospholipid classes from Iberian pig meat as affected by diet. J. Agri. Food Chem. 58, 1755–1760.
- Pérez-Palacios, T., Ruiz, J., Martín, D., Barat, J.M., Antequera, T., 2011a. Pre-cure freezing effect on physicochemical, texture and sensory characteristics of Iberian ham. Food Sci. Technol. Int. 17, 127–133.
- Pérez-Palacios, T., Antequera, T., Durán, M.L., Caro, A., Rodríguez, P.G., Palacios, R., 2011b. MRI-based analysis of feeding background effect on fresh Iberian ham. Food Res. Int. 43, 248–254.
- Picouet, P.A., Gou, P., Fulladosa, E., Santos-Garcés, E., Arnau, J., 2013. Estimation of NaCl diffusivity by computed tomography in the Semimembranosus muscle during salting of fresh and frozen/thawed hams. LWT – Food Sci. Technol. 51, 275–280.
- Reutermann, P., 2012. An application of data mining to fruit and vegetable sample identification using gas chromatography-mass spectrometry. In: Proceedings of International Congress of Environmental Modelling and Software Managing Resources of a Limited Planet, Leipzig, Germany.
- Ruiz, J., García, C., Muriel, E., Andrés, A.I., Ventanas, J., 2002. Influence of sensory characteristics on the acceptability of dry-cured ham. Meat Sci. 61, 347–354.
- Santos-Garcés, E., Gou, P., Garcia-Gil, N., Arnau, J., Fulladosa, E., 2010. Nondestructive analysis of aw, salt and water in dry-cured hams during drying process by means of computed tomography. J. Food Eng. 101, 187–192.
- Song, Y.H., Kim, S.J., Lee, S.K., 2002. Evaluation of ultrasound for prediction of carcass meat yield and meat quality in Korean native cattle. Asian J. Animal Sci. 15, 591–595.
- Vestergaard, C., Erbou, S.G., Thauland, T., Adler-Nissen, J., Berg, B., 2005. Salt distribution in dry-cured ham measured by computed tomography and image analysis. Meat Sci. 69, 9–15.
- Witten, İ.H., Frank, E., 2005. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco.
- Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.-H., Steinbach, M., Hand, D.J., Steinberg, D., 2008. Top 10 algorithms in data mining. Knowl. Inf. Syst. 14, 1–37.

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448 449

450

451

452

453

454

455

456

457

458 459

460

461

499

500

501

502

503

504

505

506

507