
1	Introduction
The	evaluation	of	quality	of	meat	products	has	been	the	subject	for	a	great	quantity	of	studies	for	decades.	In	most	cases,	physico-chemical	characteristics,	such	as	colur,	content	of	moisture,	lipid,	protein	or	salt	 in

fresh	and	dry-cured	meat	products,	have	been	evaluated	by	means	of	destructive	techniques,	which	also	involve	the	use	of	organic	solvents	and	take	long	time	(Alasvand	et	al.,	2012).

Magnetic	Resonance	Imaging	(MRI)	and	computer	vision	techniques	have	emerged	as	ones	of	the	alternative	methodologies	to	the	physico-chemical	analysis,	due	to	its	non-destructive,	non-invasive,	non-intrusive,	non-ionizing

and	innocuous	nature.	Several	works	aimed	to	determine	quality	characteristics	of	meat	products	by	MRI	have	been	published,	most	of	them	centred	on	loin	and	hams.	The	image	acquisition	has	been	carried	out	by	using	high	field

scanners	 (1.5	 T)	 in	most	 studies,	 e.g.	 in	 Iberian	 dry-cured	 loins	 of	 different	 sensory	 qualities	 (Cernadas	 et	 al.,	 2005),	 in	 fresh	 and	 dry-cured	 hams	 from	 Iberian	 pigs	 fattened	 different	 diets	 (Pérez-Palacios	 et	 al.,	 2010a,	 2014),

for	detecting	the	muscle	and	fat	in	pig	carcasses	(Monziols	et	al.,	2006),	throughout	the	processing	of	Iberian	 (Antequera	et	al.,	2007;	Caballero	et	al.,	2016a,	2016b;	Caro	et	al.,	2001) and	S.	Daniele	hams	(Manzoco	et	al.,	2013).

However,	low	field	scanners	(0.18–0.2	T)	have	also	been	used	for	MRI	acquisition	in	some	meat	products:	during	the	maturing	process	of	Parma	hams	(Fantazinni	et	al.,	2009),	in	dry-cured	stuffed	boned	shoulders	from	Iberian	pigs

(Antequera	et	al.,	2015),	in	fresh	and	dry-cured	Iberian	ham	and	loins	(Ávila	et	al.,	2015a,	2015b;	Caballero	et	al.,	2016a,	2016b;	2017a;	Pérez-Palacios	et	al.,	2014,	2015;	2017).	Some	of	these	studies	carried	out	with	low-field	scanners

have	also	indicated	the	importance	of	the	acquisition	sequence	of	MRI	(Caballero	et	al.,	2016a,	2016b,	2017a;	Pérez-Palacios	et	al.,	2017).

Once	 the	MRI	 images	 are	 acquired,	 the	 following	 step	 consists	 on	 the	MRI	 analysis,	 in	 order	 to	 obtain	 numerical	 data	 that	 can	 be	 further	 processed.	 For	 that,	 there	 are	many	 algorithms	 of	 computer	 vision:	 for	 image

segmentation,	for	texture	feature	extraction,	for	patterns	recognition,	etc.	(Venkatramana	and	Jayachandra,	2010).	Focusing	on	texture	features	extraction,	classical	2D	algorithms	have	been	usually	applied	for	analyzing	MRI	from
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Abstract

This	study	firstly	proposed	the	use	of	3D	MRI	images	to	analyze	loins	in	a	non-destructive	way.	For	that,	interpolation	and	reconstruction	techniques	are	applied	on	2D	MRI	images	of	loins	and	the	computational	texture

algorithms	were	adapted	to	analyze	the	obtained	3D	images.	The	influence	of	the	i)	MRI	acquisition	sequences	(Spin	Echo	(SE),	Gradient	Echo	(GE),	Turbo	3D	(T3D)),	 ii)	3D	texture	features	algorithms	(GLCM,	NGLDM,

GLRLM,	GLCM	+	NGLDM	+	GLRLM),	and	iii)	regression	techniques	(Multiple	Linear	Regression	(MLR),	Isotonic	Regression	(IR))	was	also	evaluated.	Combinations	of	SE	or	GE	with	any	texture	algorithm	and	any	regression

technique	gave	accurate	results,	with	correlation	coefficients	higher	than	0.75	and	mean	absolute	error	lower	than	2.	However,	considering	not	only	the	accuracy	of	the	methodology	but	also	the	computational	cost,	the	use	of

GE,	GLCM	and	IR	could	be	proposed	to	determine	physico-chemical	parameters	of	loins	non-destructively.
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meat	products	(Caballero	et	al.,	2016a,	2016b;	Cernadas	et	al.,	2005;	Kitanowski	et	al.,	2012;	Pérez-Palacios	et	al.,	2011a,b).

Results	obtained	in	these	studies	using	2D-algorithms	are	reasonably	good,	however,	the	study	of	volumetric	3D	structures	could	be	a	step	forward,	offering	new	possibilities	(Melado-Herreros	et	al.,	2013).	Real	world	is	not	flat

images	but	is	three-dimensional.	Therefore,	there	is	loss	of	information	when	working	with	2D	images,	while	working	with	3D	images	means	trying	to	get	all	information	within	the	images.	Studies	focused	on	3D	images	are	getting

interest,	finding	some	examples	in	the	field	of	medicine,	mostly	for	tumour	detection	and	classification	(Arunadevi	and	Nachimuthu,	2013;	Madabhushi	et	al.,	2003).	Nevertheless,	few	examples	on	3D	images	have	been	found	in	meat

products.	3D	reconstructions	models	of	meat	were	reached	by	 (Ávila	et	al.,	2007;	Goñi	et	al.,	2008),	 in	order	 to	generate	a	geometry	database	saving	efforts	and	decreasing	error	associated	 to	experimental	measurements.	More

recently,	a	new	3D	algorithm	has	been	proposed	to	study	the	distribution	of	textures	in	3D	images	of	loin	from	different	orientations	(Ávila	et	al.,	2015a).	The	application	of	this	3D	algorithm	has	allowed	determining	some	sensory

attributes	of	loin	non-destructively	(Ávila	et	al.,	2015b).	Other	authors	have	also	calculated	the	weight	of	broiler	chickens	using	3D	computer	vision	(Krogh	et	al.,	2016).

Following	with	the	procedure	for	determining	quality	parameters	of	meat	by	means	of	MRI,	last	step	consists	of	analyzing	the	numerical	data	given	by	the	algorithm	of	computer	vision.	At	this	respect,	currently,	there	is	a

growing	interest	in	data	mining.	It	is	related	to	large	data,	being	within	a	larger	process	known	as	Knowledge	Discovery	in	Databases	(KDD)	(Fayyad	et	al.,	1996).	Its	principal	task	is	extracting	hidden	information	from	a	large	data	set,

by	automatic	or	semi-automatic	analysis,	allowing	interesting	and	previously	unknown	patterns	(Hastie	et	al.,	2001).	These	patterns	are	seen	as	a	summary	of	the	input	data,	and	can	be	groups	of	data	records	(cluster	analysis),	unusual

records	(anomaly	detection)	and	dependencies	among	data	(association	rules).	The	goodness	of	data	mining	can	be	mainly	ascribed	to	the	rapidly	decreasing	cost	of	large	storage	device	and	the	increasing	ease	in	data	collection	over

networks	(Mitchell,	1999).	The	application	of	MRI-computer	vision	techniques	based	on	2D	algorithm	and	data	mining	have	allowed	analyzing	some	physico-chemical	and	sensory	parameters	of	loin	and	ham	(Caballero	et	al.,	2016a,

2016b;	2017a;	Pérez-Palacios	et	al.,	2014,	2017).	However,	there	are	no	studies	applying	data	mining	on	3D	algorithm	for	MRI	analysis.

This	works	aims	to	i)	interpolate	new	images	in	the	gaps	between	the	multi-slices	ones	to	obtain	3D	volumes,	ii)	adapt	computational	texture	algorithms	to	analyze	the	obtained	3D	reconstructed	MRI,	and	iii)	determine	physico-

chemical	characteristics	of	meat	products	non-destructively,	based	on	this	new	3D	approach	by	means	of	data	mining.

2	Material	and	methods
2.1	Material

Ten	Iberian	pork	loins	were	used	in	this	work	(five	fresh	loins	and	five	dry	cured	loins).	Loins	were	acquired	from	Montesano	(Jerez	de	los	Caballeros,	Spain).	Average	weight	for	fresh	and	dry-cured	loin	was	around	3.5	kg	and

1.4	kg,	respectively.

Dry-cured	Iberian	loins	were	processed	according	to	a	traditional	dry-curing	method:	loins	were	seasoned	with	a	pickling	sauce	made	of	(per	kg	of	raw	loin):	22	g	salt,	5	g	sweet	paprika,	3	g	hot-sweet	paprika,	3	g	garlic	and	6	g

of	a	commercial	mixture	(sodium	chloride,	sucrose,	sodium	ascorbate,	sodium	citrate,	sodium	nitrite	and	potassium	nitrate),	and	subsequently	kept	for	3	days	at	3°	C	to	allow	seasoning	mixture	uptake.	Thereafter,	loins	were	stuffed

into	collagen	casings	and	held	for	90	days	at	6°	C	with	a	relative	humidity	around	85%.

2.2	General	procedure
Fig.	 1	 shows	 the	 general	 procedure	 design	 followed	 in	 this	 work.	 Iberian	 loins	 were	 MRI	 scanned,	 testing	 three	 multi-slice	 acquisition	 sequences.	 Firstly,	 an	 interpolation	 method	 was	 applied	 for	 three-dimensional

reconstruction.	The	3D	images	obtained	were	analyzed	by	means	of	three	computational	texture	analysis	algorithms.	Then,	the	loins	were	physico-chemically	analyzed,	data	obtained	by	means	of	physico-chemical	analysis	and	MRI	3D

texture	analyses	were	grouped	in	a	numerical	database.	Finally,	prediction	techniques	of	data	mining	were	applied	on	that	database,	in	order	to	obtain	prediction	equations	for	the	physico-chemical	parameters	as	a	function	of	3D

computational	texture	features.

Fig.	1	General	procedure.



2.3	Physico-chemical	analysis
Fresh	 and	 dry-cured	 loins	 were	 analyzed	measuring	 the	moisture	 (AOAC,	 2000;	 reference	 935.29),	 lipid	 content	 (Pérez-Palacios	 et	 al.,	 2008),	 water	 activity	 and	 instrumental	 colour .	 For	 the	 water	 activity,	 the	 system

LabMaster-aw	 (NOVASINA	 AG,	 Lachen,	 Switzerland)	 was	 used	 after	 calibration.	 Instrumental	 colour 	 was	measured	 using	 a	Minolta	 CR-300	 colourimeter 	 (Minolta	 Camera	 Corp.,	 Meter	 Division.	 Ramsey,	 NJ)	 with

illuminant	D65,	a	0°	 standard	observer	 and	a	2.5	 cm	port/viewing	 area.	 The	 following	 colour 	 coordinates	were	 determined:	 lightness	 (L),	 redness-greenness	 (a*)	 and	 yellowness-blueness	 (b*).	 The	 colourimeter 	was

standardized	before	use	with	a	white	tile	having	the	following	values:	L	=	93.5,	a*	=	1.0	and	b*	=	0.8.	Salt	content	(AOAC,	2000;	reference	971.19)	was	also	determined	in	dry-cured	loins.

2.4	Image	acquisition
MRI	images	were	generated	at	the	‘‘Animal	Source	Foodstuffs	Innovation	Services”	(SiPA)	of	University	of	Extremadura	(Caceres,	Spain).	A	low	field	MRI	scanner	(ESAOTE	VET-MR	E-SCAN	XQ	0.18	T)	with	a	hand/wrist	coil

was	used.	Three	different	sequences	of	T1	were	tested:	spin	echo	(SE),	gradient	echo	(GE)	and	turbo	3D	(T3D).	T1-weighted	sequences	have	been	used	due	to	these	MRI	images	are	adequate	for	the	application	of	computational	texture

algorithms.	Eight	different	configurations	of	the	parameters	were	used	for	SE,	eight	configurations	for	GE	and	eleven	for	T3D.	Table	1	show	in	detail	the	selected	values	for	each	of	the	parameters.

Table	1	Parameters	for	each	configuration	of	the	different	acquisition	sequences:	SE	(spin	echo),	GE	(gradient	echo)	and	T3D	(turbo	3D).

alt-text:	Table	1

Sequence Conf. TE	(ms) TR	(ms) NA FA NIm Thick	(ms) FOV	(mm) FOH

SE 1 26 630 3 n/a 29 4 150	×	150 None

2 18 900 3 n/a 29 4 150	×	150 None

3 34 630 3 n/a 29 4 150	×	150 None

4 26 630 3 n/a 29 4 150	×	150 None

5 26 630 1 n/a 29 4 150	×	150 None

6 26 630 5 n/a 29 4 150	×	150 None

7 26 630 3 n/a 29 4 150	×	150 High

8 26 630 3 n/a 29 4 150	×	150 Low

GE 1 14 1450 7 75 29 4 160	×	160 None

2 14 1450 9 75 29 4 160	×	160 None

3 14 1800 7 75 29 4 160	×	160 None

4 14 800 7 75 29 4 160	×	160 None

5 14 2500 7 10 29 4 160	×	160 None

6 14 1450 7 90 29 4 160	×	160 None

7 14 1450 7 75 29 4 160	×	160 High

8 14 1450 7 75 29 4 160	×	160 Low

T3D 1 16 38 2 65 122 1.1 180	×	180	×	140 None

2 8 38 2 65 122 1.1 180	×	180	×	140 None

alt-text:	Fig.	1
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3 24 51 2 65 122 1.1 180	×	180	×	140 None

4 8 25 2 65 122 1.1 180	×	180	×	140 None

5 16 120 2 65 122 1.1 180	×	180	×	140 None

6 16 38 2 10 122 1.1 180	×	180	×	140 None

7 16 38 4 10 122 1.1 180	×	180	×	140 None

8 16 38 2 65 122 1.1 180	×	180	×	140 Low

9 16 38 2 90 122 1.1 180	×	180	×	140 None

10 16 38 2 65 122 1.1 180	×	180	×	140 High

11 16 38 2 65 122 1.1 180	×	180x1v.	40 Low

Conf.	=	Configurations;	TE	=	Echo	Time;	TR	=	Repetition	Time;	NA	=	Number	of	Acquisitions;	FA	=	Flip	Angle;	NIm	=	Number	of	Images;	Thick	=	Thickness;	FOV	=	Field	Of	View;	FOH	=	Filter	Of	Hamming;
n/a	=	not	applicable.

In	GE,	the	MR	signal	is	refocused	by	inverting	the	gradient	instead	of	using	a	180°	radiofrequency	pulse.	GE	sequences	are	characterized	by	a	strong	signal-to-noise	ratio.

In	SE,	a	90°	radiofrequency	excitation	pulse	is	followed	by	a	180°	radiofrequency	refocusing	pulse	to	reduce	the	effect	of	field	inhomogeneity.

The	T3D	sequence	is	a	GE	sequence	in	which	a	special	second	encoding	in	the	direction	of	the	selection	gradient	enables	3D	reconstruction.	The	signal-to-noise	ratio	is	also	high	in	this	type	of	sequence.

The	MRI	acquisition	was	done	at	23	°C.	All	the	images	were	in	DICOM	format,	with	a	256	×	256	resolution,	and	256	grey	levels.

2.5	Interpolation	and	3D	reconstruction
A	3D	image	is	reconstructed	using	all	MRI	slices	obtained	of	each	loin	with	each	configuration	of	each	acquisition	sequences.	This	is	done	by	linear	interpolation	methods,	using	VTK	(Visualization	Toolkit).	It	is	a	set	of	free	code

libraries	for	the	visualization	and	processing	of	images,	such	as	the	creation	of	graphic	objects	in	2D	and	3D	(http://www.vtk.org/).

Once	the	3D	images	have	been	obtained,	they	will	be	analyzed	by	using	several	texture	algorithms.

Fig.	2	shows	images	from	different	MR	sequences	with	their	corresponding	interpolation	and	3D	reconstruction.



2.6	Texture	analysis
Firstly,	on	each	image,	a	central	area	with	20	×	20	pixels	was	selected,	which	is	called	Region	of	Interest	(ROI).	The	ROI	is	the	area	inscribed	in	the	same	spatial	situation	in	all	MRI.	ROIs	of	each	loin	were	reconstructed	in

three	dimensions.	In	total,	270	three-dimensional	images	were	used	(270	loins	reconstructed	in	three	dimensions),	given	that	the	number	of	configurations	for	each	sequence	(8,	8	and	11	for	SE,	GE	and	T3D,	respectively)	and	the

number	of	loins	(10).

Then,	three	classical	algorithms	for	texture	analysis	were	adapted	to	work	with	three-dimensional	images	and	be	applied	on	3D	images	of	loins,	as	described	below.	While	classical	algorithms	use	four	orientations	to	obtain	the

texture	features	(Fig.	3a),	3D	algorithms	use	the	thirteen	orientations	(Fig.	3b)	available	 in	their	structural	space.	The	darkest	pixel	of	each	grid	can	be	considered	the	referent.	When	working	on	two-dimensional	 images	only	four

directions	are	considered	(horizontal,	vertical	and	two	diagonal	orientations),	however,	when	working	in	three-dimensional	space	some	more	orientations	can	be	considered.

Fig.	2	Interpolation	and	3D	reconstruction	of	MRI	images	from	different	acquisition	sequences.

alt-text:	Fig.	2

Fig.	3	Adaptation	of	computational	texture	algorithms	from	2D	(a)	to	3D	images	(b).



The	grey	level	co-occurrence	matrix,	GLCM	(Haralick	et	al.,	1973),	is	based	on	the	estimation	of	the	second-order	joint	conditional	probability	density	functions,	P(m,	n,	d,	a).	Each	P(m,	n,	d,	a)	is	the	probability	of	moving	from	grey

level	m	to	grey	level	n,	provided	that	the	spacing	between	pixels	is	d	and	the	orientation	is	given	by	a.	If	an	image	has	Ng	grey	levels,	then	the	GLCM	can	be	written	as	the	addition	of	Ng	x	Ng	matrices,	one	for	each	for	the	orientations.

The	number	of	matrices	will	depend	on	the	orientations	that	are	taken	into	account.	Each	matrix	is	calculated	by	counting	the	number	of	times	each	pair	of	grey	levels	(m,	n)	occurs	at	the	separation	d	and	in	the	direction	a.	We	assume

d	=	1.	In	the	case	of	2D	images	the	orientations	on	which	the	matrix	is	calculated	are	4:	0°-180°,	45°-225°,	90°-270°	and	135°-315°,	as	it	can	be	seen	in	Fig.	3a.	In	our	proposal,	for	the	3D	images,	the	matrices	are	calculated	according	to

13	orientations:	0º-180º,	90º-270º,	135º-315º,	45º-225º	in	the	XY	plane,	0º-180º,	135º-315º,	45º-225º	in	YZ	plane,	135º-315º,	45º	-	225º	in	the	XZ	plane	and	135º,	315º,	45º,	225º	in	the	XYZ	space

,	as	can	be	seen	in	Fig.	3b.	For	the	13	orientations,	the	coocurrence	matrix	of	grey	levels	has	been	computed	in	one	direction,	in	order	to

avoid	repeating	the	cooccurrence	computations	in	the	opposite	directions	(the	other	13	orientations).	Following	it	is	added	to	each	cooccurrence	matrix	its	transposed	matrix,	having	the	26	orientations.

In	this	way,	the	images	are	being	analyzed	in	all	possible	directions	so	that	all	information	is	considered.	Subsequently,	these	thirteen	matrices	are	added	to	obtain	a	final	GLCM	with	some	degree	of	rotation	invariance.

Finally,	a	vector	of	10	features	is	obtained.	It	is	common	to	use	derived	features	defined	by	Haralick	et	al.	(1973):	ENE	(Energy),	ENT	(Entropy),	COR	(Correlation),	HC	(Haralick's	correlation),	IDM	(Inverse	difference	moment),

INE	(Inertia),	CS	(Cluster	shade),	CP	(Cluster	prominence),	CON	(Contrast)	and	DIS	(Dissimilarity).

Neighborhood	grey	level	dependence	matrix	(NGLDM)	provides	rotation	invariant	features,	by	considering	the	relationship	between	an	element	and	all	its	neighbor	elements	at	one	time	instead	of	one	direction	at	a	time.	This

eliminates	the	angular	dependency,	while	at	the	same	time	reduces	the	calculation	required	to	process	an	image.	It	is	based	on	the	assumption	that	a	grey	level	spatial	dependence	matrix	of	an	image	can	adequately	specify	this	texture

information	(Siew	et	al.,	1988).	In	our	3D	proposal,	the	neighborhood	is	a	cube,	not	only	a	plane	rectangular	area.	So,	the	relationships	between	the	central	voxel	and	its	neighbors	are	analyzed,	in	the	same	thirteen	angular	directions

indicated	before.	One	more	time	one	matrix	for	a	3D	image	is	obtained.

The	usual	numerical	measures	on	this	matrix	are:	SNE	(Small	number	emphasis),	LNE	(Large	number	emphasis),	NNU	(Number	non-uniformity),	SM	(Second	moment),	ENT	(Entropy).

Grey	level	run	length	matrix	(GLRLM)	(Galloway,	1975),	which	is	a	method	based	on	measuring	runs	of	grey	levels	in	the	image.	A	run	is	a	set	of	consecutive	pixels	in	the	image	having	the	same	grey-level	value.	This	method

involves	the	counting	runs	length	(the	number	of	consecutive	pixels	with	the	same	grey	level	in	a	particular	orientation).	In	our	proposal,	for	the	3D	images,	the	orientations	are	13:	0º-180º,	90º-270º,	135º-315º,	45º-225º	in	the	XY	plane,

0º-180º,	135º-315º,	45º-225º	in	YZ	plane,	135º-315º,	45º	-	225º	in	the	XZ	plane	and	135º,	315º,	45º,	225º	in	the	XYZ	space.

A	large	number	of	straight	pixels	with	the	same	grey	level	represent	a	coarse	texture,	a	small	number	of	these	pixels	represent	a	fine	texture.	So,	the	lengths	of	these	texture	primitives	in	different	spatial	directions	can	serve

as	texture	description.	From	this	method,	the	features	being	applied	are:	SRE	(Short	run	emphasis),	LRE	(Long	run	emphasis),	GLNU	(Grey	level	non-uniformity),	RLNU	(Run	length	non-uniformity),	RPC	(Run	percentage),	LGRE	(Low

grey-level	run	emphasis),	HGRE	(High	grey-level	run	emphasis),	SRLGE	(Short	run	low	grey-level	emphasis),	SRHGE	(Short	run	high	grey-level	emphasis),	LRLGE	(Long	run	low	grey-level	emphasis),	LRHGE	(Long	run	high	grey-level

emphasis)	(Siew	et	al.,	1988;	Sonka	et	al.,	1999).

Each	method	(GLCM,	NGLDM,	GLRLM)	was	applied	individually	and	altogether	(GLCM	+	NGLDM	+	GLRLM),	obtaining	feature	vectors	with	10,	5,	11,	and	26	computational	texture	features,	respectively.

2.7	Predictive	techniques
The	free	software	WEKA	(Waikato	Environment	for	Knowledge	Analysis)	(http://www.cs.waikato.ac.nz/ml/weka/)	was	used	for	carrying	out	the	predictive	techniques	of	data	mining.

Two	correlation	techniques	have	been	applied	for	the	prediction	experiments,	multiple	linear	regression	(MLR)	and	isotonic	regression	(IR).	MLR	is	the	most	common	technique	of	linear	regression	analysis.	It	is	used	to	explain

the	relationship	between	one	dependent	variable	from	independent	variables.	This	technique	gives	a	linear	regression	equation,	which	can	be	used	to	predict	future	values	(Hastie	et	al.,	2001).	The	M5	method	of	attribute	selection	and	a

ridge	value	of	1	×	10−4	were	applied.	It	is	based	on	stepping	through	the	attributes,	being	the	one	with	the	smallest	standardized	coefficient	removed	until	no	improvement	is	observed	in	the	estimation	of	the	error.

When	the	values	of	 the	database	are	highly	correlated,	 the	use	of	non-linear	regression	 is	recommended.	 In	these	cases,	 the	IR	 is	considered	as	a	good	option.	 It	provides	a	set	of	values	 from	the	 information	stored	on	a

database.	 It	 is	based	on	estimating	ordered	values	 for	a	dependent	variable	 (i.e.	moisture)	as	a	 function	of	one	of	 the	 input	parameters.	Only	 the	 input	parameters	providing	better	adjustment	 results	will	be	selected.	Finally,	an

interpolation	function	is	established	(polynomial	trend	line)	to	compare	the	provided	set	data	with	original	values	in	the	database,	obtaining	the	prediction	equation	(Barlow	et	al.,	1972;	Borge,	1985).

alt-text:	Fig.	3

0°-180°,	90°-270°,	135°-315°,	45°-225°	in	the	XY	plane,

0°-180°,	135°-315°,	45°-	135°	-	315°,	45°	-	225°	in	the	XZ	plane	and	135°,	315°,	45°,	225°	in	the	XYZ	plane

0°-180°,	90°-270°,	135°-315°,	45°-225°	in	the	XY	plane,	0°-180°,	135°-315°,	45°-	135°	-	315°,	45°	-	225°	in	the	XZ	plane	and	135°,

315°,	45°,	225°	in	the	XYZ	plane.



The	correlation	coefficient	 (R)	was	used	 for	evaluating	 the	goodness	of	 fit	of	 the	prediction	according	 to	 the	 rules	given	by	Colton	(1974),	who	considered	 that	a	 correlation	coefficient	 from	0	 to	0.25	 indicates	 little	 to	no

relationship;	from	0.25	to	0.50	indicates	a	weak	relationship;	from	0.50	to	0.75	indicates	a	moderate	to	good	relationship;	and	from	0.75	to	1	indicates	a	very	good	to	excellent	relationship.

Additionally,	the	mean	absolute	error	(MAE)	(Hyndman	and	Koehler,	2006)	was	used	to	validate	the	prediction	results	too.	The	MAE	measures	the	difference	between	real	values	and	predicted	ones.	Values	of	MAE	less	than	2	are

appropriate	(Hyndman,	2006).	

2.8	Statistical	analysis
One-way	analysis	of	variance	(ANOVA)	of	the	General	Linear	Model	(GLM)	was	used	i)	to	evaluate	the	effect	of	the	MRI	sequence	acquisition	on	the	values	of	the	computational	texture	features	and	ii)	to	validate	the	prediction

results	by	comparing	real	and	predicted	values	of	the	physico-chemical	characteristics.	Analyses	were	done	by	using	the	SPSS	package	(v.20.0)	(IBM	Co.,	New	York,	New	York,	U.S.A.).

3	Results	and	discussion
3.1	Results	on 	physico-chemical	analysis	of	loins

In	fresh	loins,	percentage	of	moisture	and	lipid	were	65.55	±	1.82	and	12.78	±	1.36%,	respectively,	and	the	water	activity	was	0.98	±	0.00.	The	colur	coordinates,	L,	a*,	and	b*	were,	respectively,	55.32	±	3.12,	12.92	±	0.69,	and

5.58	±	0.72.	In	comparison	to	fresh	loins,	in	dry-cured	loins	lower	values	of	moisture	and	water	activity	were	found	(32.22	±	2.96%	and	0.86	±	0.00,	respectively).	This	is	due	to	the	dry-curing	process.	And,	consequently,	the	lipid

content	increased	(21.61	±	6.84%)	in	dry-cured	loins.	Similar	findings	have	been	previously	reported	(Estevez	et	al.,	2004;	Muriel	et	al.,	2004;	Ramírez	and	Cava,	2007;	Utrilla	et	al.,	2010).	Analyzing	the	colur	coordinates	in	dry-cured	loins:	L

decreased	(40.61	±	4.44),	as	consequence	of	the	desiccation	process;	a*	and	b*	increased	(15.31	±	1.60	and	8.04	±	1.48,	respectively),	which	could	be	also	ascribed	to	the	water	losses	that	lead	to	a	higher	pigment	concentration,	and

therefore	to	the	redder	and	more	vivid	colur	(Pérez-Palacios	et	al.,	2011a,b).

3.2	Effect	of	sequence	acquisition	on	3D	MRI
Fig.	2	shows	2D	MR	images	of	loins	acquired	by	different	sequence	acquisition,	SE,	GE	and	T3D	and	the	respective	3D	reconstructions	obtained	from	these	images.	Some	visual	differences	can	be	appreciated	depending	on	the

sequence	acquisition.	In	2D	images,	intramuscular	fat	is	represented	by	the	white	colur	and	the	lean	is	illustrated	by	the	grey	colur.	In	general,	SE	offered	images	that	are	sharper	and	better	defined	than	those	obtained	by	GE	and	T3D

acquisition	sequences.	This	effect	of	the	sequence	acquisition	of	MRI	has	been	previously	reported	in	(Caballero	et	al.,	2017a;	Pérez-Palacios	et	al.,	2017).

Once	the	3D	images	of	loins	were	reconstructed,	they	were	analyzed	by	three	computational	texture	algorithm	previously	adapted	to	3D	images.	Table	2	shows	the	average	values	of	all	3D	computational	texture	features	from

MRI	of	loins	acquired	with	different	sequences.	This	finding	is	so	remarkable,	since	it	shows	the	goodness	of	the	interpolation	and	3D	reconstruction	procedures	and	of	the	modified	texture	analysis	algorithms,	and	let	it	evaluate	the

influence	of	the	acquisition	sequence	on	the	values	of	the	3D	texture	features.	As	can	be	observed	in	Table	2,	SE	obtained	the	highest	values	for	Energy,	Correlation,	IDM,	LNE,	SM,	LRE,	GLRE,	LRLGE	and	LRHGE,	while	the	highest

levels	of	HC,	Contrast,	ENT,	SER,	HGRE	and	SRHGE	were	found	in	GE,	and,	in	T3D,	Entropy,	Inertia,	CS,	CP,	Dissimilarity,	SNE,	NNU,	GLNU,	RLNU,	RPC	and	SRLGE	showed	the	highest	values.	The	computational	texture	features	have

been	related	to	some	properties	of	the	images	(Ávila	et	al.,	2015a;	Mohanty	et	al.,	2011;	Murali	et	al.,	2011).	Energy	and	NNU	measure	the	uniformity	of	the	images,	Entropy	and	SM,	the	complexity,	IDM	and	ENT,	the	homogeneity,	SNN	the

fineness,	and	LNE	the	roughness.	Correlation,	HC	and	Inertia	are	associated	to	the	grey	level	of	the	pixels.	The	symmetry	of	the	images	and	of	the	grey	levels	are	related	to	CS	and	CP,	respectively.	Contrast	and	Dissimilarity	yield

measurement	of	the	contrast	and	the	differences	among	the	grey	levels	of	the	image.	SER,	LRE	and	RPC	are	associated	to	the	quantity	and	size	of	the	runs.	GLNU	and	RLNU	depend	on	the	equitable	distribution	of	the	runs,	and	LGRE

and	GLRE	on	the	high	and	low	grey	levels	distribution.	SRLGE	y	SRHGE	are	associated	to	long	runs	and	LRHGE	and	LRLGE	to	big	runs.

Table	2	Normalized	values	of	the	3D	computational	texture	features	(from	three	adapted	algorithms)	of	the	MRI	of	loins	acquired	with	spin	echo,	gradient	echo	and	Turbo	3D	sequences.

alt-text:	Table	2

Features Spin	echo Gradient	echo Turbo	3D p

GLCM Energy 0.2866 0.0924 0.0352 <0.001

Entropy 0.4374 0.6093 0.7264 <0.001

Correlation 0.2409 0.0441 0.0214 <0.001

It	is	calculated	by	the	following	equation:

ON



HC 0.6118 0.6540 0.5546 0.010

IDM 0.4270 0.2502 0.1965 <0.001

Inertia 0.1159 0.1988 0.3248 <0.001

CS 0.3365 0.3849 0.4558 <0.001

CP 0.0665 0.1849 0.3115 <0.001

Contrast 0.5734 0.5949 0.5045 0.026

Dissimilarity 0.2436 0.3567 0.4638 <0.001

NGLDM SNE 0.5096 0.4581 0.7892 <0.001

LNE 0.2688 0.0839 0.0777 <0.001

NNU 0.5068 0.2874 0.7197 <0.001

SM 0.4162 0.2090 0.2452 <0.001

ENT 0.4100 0.6775 0.5610 <0.001

GLRLM LRE 0.6559 0.3938 0.6294 <0.001

SER 0.2099 0.4841 0.2093 <0.001

GLNU 0.6394 0.2820 0.8796 <0.001

RLNU 0.4621 0.4484 0.7924 <0.001

RPC 0.7660 0.5817 0.9311 <0.001

GLRE 0.4254 0.1782 0.2462 <0.001

HGRE 0.4334 0.5533 0.3747 <0.001

SRLGE 0.0532 0.0644 0.1138 0.005

SRHGE 0.4254 0.5672 0.3891 <0.001

LRLGE 0.3597 0.1386 0.1726 <0.001

LRHGE 0.4434 0.4165 0.2667 <0.001

These	semantic	approximation	between	computational	texture	features	and	properties	of	the	images	could	be	considered	to	explain	some	differences	due	to	the	sequence	acquisition.	Images	from	SE	seems	to	be	rougher	and

less	fine	than	those	from	T3D,	since	LNE,	which	measures	the	roughness	of	the	images,	showed	the	highest	values	in	SE,	and	SNE,	which	is	related	to	the	fineness	of	the	images,	obtained	the	highest	values	in	T3D.	In	T3D	images,	the

runs	should	not	be	distributed	equitably,	due	to	the	highest	values	for	GLNU	and	RLNU	when	this	sequence	acquisition	is	applied.	And	big	runs	should	be	found	in	SE	images,	because	of	this	sequence	acquisition	obtained	the	highest

values	of	LRHGE	and	LRLGE.

3.3	Prediction	of 	physico-chemical	characteristics	of	loin	as	a	function	of	3D	textures	features
The	physico-chemical	parameters	related	to	the	loin	quality	were	predicted	from	the	3D	texture	features	by	using:	a)	three	sets	of	3D	images	acquired	with	different	sequences	(SE,	GE	and	T3D),	b)	different	texture	algorithms

(GLCM,	NGLDM,	GLRLM,	GLCM	+	NGLDM	+	GLRLM)	and	c)	different	predictive	techniques	(MLR,	IR).	Therefore,	the	discussion	focuses	on	determining	the	best	combination	of	sequence	of	image	acquisition,	algorithm	of	3D	texture

features	and	prediction	technique.

Thus,	 for	 each	physico-chemical	 parameter,	 twenty-four	prediction	 equations	were	 obtained	 (3	 acquisition	 sequence	 x	 4	 computational	 texture	 algorithms	 x	 2	predictive	 techniques).	Tables	3	 and	4	 show	 the	 values	 of	 the
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correlation	coefficients	and	MAE	for	the	predictive	analysis	carried	out	by	MLR	and	IR,	respectively.

Table	3	Correlation	coefficient	(R)	and	mean	absolute	error	(MAE)	of	the	prediction	equations	for	physico-chemical	parameters	of	loin	obtained	by	multiple	linear	regression	(MLR),	as	function	of	3D	computational

texture	features	algorithms	from	different	sequences	of	MRI	acquisition	(spin	echo:	SE,	gradient	echo:	GE,	turbo	3D:	T3D)*. (Please	include	the	following	sentence	as	a	footnote	of	Table	3	and	Table	4:	"*	R=first
number	in	bold/MAE=second	number")
alt-text:	Table	3

GLCM NGLDM GLRLM GLCM/
NGLDM/ 	GLRLM

Moisture

SE 0.931/	4.090 0.978/2.898 0.948/3.808 0.978/2.601

GE 0.965/3.234 0.882/5.254 0.975/2.704 0.976/2.198

T3D 0.796/7.247 0.632/9.325 0.734/7.685 0.739/8.208

Water	activity

SE 0.956/0.013 0.975/0.011 0.945/0.014 0.959/0.010

GE 0.971/0.010 0.853/0.020 0.972/0.010 0.974/0.007

T3D 0.795/0.026 0.635/0.033 0.742/0.029 0.724/0.031

Lipid

SE 0.639/4.265 0.718/3.711 0.823/3.061 0.908/2.182

GE 0.765/3.235 0.627/4.112 0.603/3.974 0.852/2.521

T3D 0.649/3.633 0.542/3.891 0.505/3.838 0.603/3.766

Salt

SE 0.946/0.288 0.968/0.249 0.945/0.308 0.987/0.165

GE 0.962/0.271 0.850/0.458 0.970/0.226 0.972/0.173

T3D 0.784/0.589 0.635/0.738 0.718/0.706 0.683/0.717

Color

L

SE 0.906/2.847 0.709/4.373 0.919/2.630 0.924/2.381

GE 0.835/3.358 0.692/4.093 0.874/3.245 0.855/3.354

T3D 0.629/5.042 0.602/4.638 0.574/5.326 0.642/4.899

a*

SE 0.820/0.941 0.835/0.774 0.854/0.784 0.924/0.572

GE 0.842/0.857 0.673/1.233 0.712/1.105 0.779/0.994

T3D 0.734/0.991 0.444/1.305 0.562/1.218 0.665/1.081

b*

SE 0.733/0.832 0.744/0.850 0.771/0.804 0.686/0.941

GE 0.823/0.787 0.680/0.908 0.726/0.835 0.810/0.820

T3D 0.653/0.959 0.380/1.109 0.517/1.008 0.575/0.995

Table	4	Correlation	coefficient	(R)	and	mean	absolute	error	(MAE)	of	the	prediction	equations	for	physico-chemical	parameters	of	loin	obtained	by	isotonic	regression	(IR),	as	function	of	3D	computational	textures

feature	algorithms	from	different	sequences	of	MRI	acquisition	(spin	echo:	SE,	gradient	echo:	GE,	turbo	3D:	T3D)*.

alt-text:	Table	4

GLCM

/MAE /MAE /MAE /MAE
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GLCM/MAE NGLDM/MAE GLRLM/MAE NGLDM/MAE	GLRLM

Moisture

SE 0.993/1.444 0.993/1.543 0.904/3.333 0.993/1.503

GE 0.989/2.009 0.891/3.204 0.906/3.712 0.989/2.009

T3D 0.881/4.179 0.623/10.145 0.782/6.756 0.881/4.179

Water	activity

SE 0.994/0.004 0.994/0.005 0.954/0.008 0.994/0.004

GE 0.995/0.004 0.874/0.013 0.916/0.008 0.995/0.004

T3D 0.872/0.015 0.522/0.041 0.791/0.011 0.872/0.015

Lipid

SE 0.751/3.003 0.730/3.095 0.654/3.567 0.727/3.136

GE 0.880/2.301 0.910/2.105 0.554/4.160 0.702/3.298

T3D 0.675/3.317 0.564/3.745 0.551/3.739 0.675/3.317

Salt

SE 0.998/0.051 0.997/0.061 0.954/0.138 0.998/0.051

GE 0.998/0.043 0.860/0.270 0.921/0.204 0.998/0.043

T3D 0.869/0.285 0.561/0.847 0.791/0.496 0.869/0.285

Color

L

SE 0.915/2.207 0.880/3.004 0.942/1.908 0.915/2.210

GE 0.842/3.250 0.695/3.925 0.828/3.104 0.842/3.250

T3D 0.745/3.925 0.340/5.975 0.660/4.925 0.745/3.925

a*

SE 0.862/0.627 0.802/0.743 0.739/0.907 0.798/0.724

GE 0.936/0.448 0.933/0.470 0.629/1.205 0.933/0.471

T3D 0.724/0.938 0.652/1.061 0.614/1.109 0.724/0.938

b*

SE 0.749/0.825 0.723/0.848 0.684/0.945 0.749/0.749

GE 0.782/0.831 0.823/0.753 0.643/1.044 0.782/0.831

T3D 0.705/0.862 0.464/1.048 0.587/0.978 0.705/0.862

When	using	MLR,	combination	of	SE	and	GE	acquisition	sequence	with	any	computational	algorithm	(GLCM,	NGLDM,	GLRLM,	GLCM	+	NGLDM	+	GLRLM)	gave	correlation	values	higher	than	0.75	(very	good	to	excellent

correlation)	and	MAE	values	lower	than	2	for	most	physico-chemical	parameters.	In	the	case	of	T3D,	in	general,	correlation	coefficient	between	0.5	and	0.75	(moderate	to	very	good	correlation)	and	MAE	lower	than	2	were	obtained	in

combination	to	any	computational	algorithm.	Thus,	initially,	all	studied	combination	of	sequence	acquisition,	especially	of	SE	and	GE,	with	3D	algorithms	could	be	appropriated.

Regarding	to	IR	(Table	4),	a	similar	trend	than	observed	when	using	MLR	was	found.	Generally,	the	combination	of	SE	or	GE	with	any	algorithm	of	3D	MRI	analysis	(GLCM,	NGLDM,	GLRLM,	GLCM	+	NGLDM	+	GLRLM)	offered

very	good	to	excellent	correlation	coefficients	(R	>	0.75)	and	MAE	values	lower	than	2.	In	the	case	of	T3D	in	combination	with	any	computational	algorithm,	moderate	to	very	good	correlation	coefficient	(R	=	0.5–0.75)	and	MAE	lower

than	2	were	obtained	for	most	physico-chemical	parameters.	In	this	case,	again,	any	combination	of	sequence	acquisition,	especially	SE	or	GE,	with	any	3D	algorithm	could	be	initially	applied.

3D	approaches	showed	a	higher	accuracy,	especially	when	using	T3D	acquisition	sequence	in	comparison	to	prediction	results	on	physico-chemical	parameters	of	loins	based	on	2D	texture	features	(Pérez-Palacios	et	al.,	2017).

This	could	be	ascribed	to	the	distance	between	slices	that	is	lower	in	T3D	than	in	SE	and	GE.	Consequently,	T3D	obtains	more	information	from	MRI	than	the	other	sequences.	Thus,	when	using	classical	texture	features	to	analyze	2D

MRI	from	T3D	sequence	acquisition,	some	information	may	be	lost,	however,	in	reconstructed	3D	images	all	information	is	considered	in	a	useful	way.	Moreover,	other	authors	have	also	found	better	results	using	3D	than	2D	images

(Miklos	et	al.,	2015).
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Correlation	coefficients	and	MAE	values	obtained	by	MLR	and	IR	have	also	been	compared.	In	general,	no	marked	differences	have	been	found	in	most	physico-chemical	parameters.

Thus,	considering	the	prediction	accuracy	the	following	combinations	of	sequence	acquisition	-	3D	texture	algorithm	–	prediction	technique	of	data	mining	could	be	used	for	prediction	physico-chemical	parameters	of	loins	as	a

function	of	3D	texture	features:	SE	-	GLCM	+	NGLDM	+	GLRLM	–	MLR;	SE	-	GLCM	–	 IR;	SE	-	NGLDM	–	 IR;	SE	-	GLRLM	–	 IR;	SE	-	GLCM	+	NGLDM	+	GLRLM	–	 IR;	GE	 -	GLCM	 –	 IR;	GE	 -	NGLDM	 –	 IR;	GE	 -	GLRLM	 –	 IR;	GE	 -

GLCM	+	NGLDM	+	GLRLM	–	IR.

Taking	a	step	forward	regarding	the	best	combination	for	prediction	physico-chemical	parameters	of	loins,	apart	from	the	accuracy	in	the	determination,	the	sake	of	simplicity	and	the	computational	efficiency	are	also	notable

aspects	 that	 should	be	 take	 into	 account.	 In	 regards	 to	 the	MRI	 sequence	 acquisition,	 both	SE	and	GE	 could	be	used.	However,	 exploring	 on	 the	 results	with	more	detail,	 it	 is	 noted	 that	SE	achieved	 slightly	 higher	 correlation

coefficients	and	lower	MAE	than	GE,	when	applying	MLR.	This	can	be	ascribed	to	the	better	performance	in	terms	of	the	signal-to-noise	ratio	of	SE	than	GE	and	T3D,	which	are	characterized	by	a	strong	signal-to-noise	ratio	and	fast

acquisition.	However,	in	IR,	SE	and	GE	are	so	similar.	In	this	case,	the	computational	time	(total	time	to	acquire	all	MRI	of	one	loin	for	each	configuration	of	each	acquisition	sequence)	should	be	considered,	which	is	lower	in	GE

(38	min)	than	in	SE	and	T3D	(50	and	58	min,	respectively).	As	for	the	3D	texture	algorithm,	in	the	case	of	MLR,	GLCM	+	NGLDM	+	GLRLM	offered	slightly	better	prediction	results	than	GLCM,	NGLCM	and	GLRLM.	When	using	IR,

GLCM	could	be	selected	as	the	best	option.	In	terms	of	computational	time,	GLCM	and	GLRLM	are	more	appropriate	(O(n2))	than	NGLDM	and	GLCM	+	NGLDM	+	GLRLM	(O(n³))	(Caballero	et	al.,	2017b).	In	relation	to	the	predictive

technique	of	data	mining,	which	were	comparable	 in	terms	of	prediction	results,	MRI	 leads	to	two-order	polynomial	equations,	with	a	number	of	 independent	variables	(computational	texture	features),	and	IR	 leads	to	sixth-order

equations	with	only	one	 independent	variable.	Thus,	MLR	 is	 simpler	and	requires	 less	algorithm	complexity,	but	 the	prediction	equation	of	 IR	needs	 less	computational	data.	The	 lineally	dependence	between	data	should	also	be

considered.	In	fact,	the	application	of	IR	is	recommended	when	the	values	of	the	database	are	highly	correlated	(Pérez-Palacios	et	al.,	2014).	Considering	all	these	premises,	it	could	be	indicate	the	combination	of	GE	with	GLCM	and	IR

for	predicting	physico-chemical	parameters	of	loins	as	a	function	on	3D	texture	features	from	MRI	with	high	accuracy	and	low	computational	complexity.	A	different	option	is	indicated	when	using	2D	texture	features.	In	this	case,	the

combination	of	SE	acquisition	sequence,	GLCM	method,	and	MLR	seems	to	the	best	option	(Pérez-Palacios	et	al.,	2017).

MRI	techniques	allow	for	the	detection	of	Hydrogen	and	other	features	like	fat	fluidity	and	water	retention,	which	easily	explains	the	accurate	results	for	prediction	moisture,	water	activity	and	lipid.	In	the	case	of	colour

coordinates	and	salt,	some	discussion	is	worth	mention.	Colour 	coordinates	are	mainly	related	to	characteristics	of	fresh	meat	and	changes	during	processing	(water	loss,	myoglobin	oxidation)	(Pérez-Palacios	et	al.,	2011a,b),	and	salt

influences	on	the	activity	of	muscle	enzymes,	water	activity	and	protein	solublization,	and	consequently	on	the	texture	and	flavour	of	the	final	product	(Toldrá	et	al.,	1997).	These	chemical	reactions	could	modify	the	relation	of	Hydrogen

with	other	molecules,	leading	to	a	different	response	of	Hydrogen	in	MRI	and	image	texture	parameters.	 	In	addition,	previous	authors	have	shown	that	 H	MRI	(Fantazzini	et	al.,	2005,	2009;	Caballero	et	al.,	2017a,b)	is	a

suitable	tool	to	investigate	salt	in	inner	layers	of	hams,	finding	that	computational	texture	features	are	able	to	differentiate	muscle	with	different	salt	content.

As	example,	Table	5	shows	prediction	equations	for	physico-chemical	parameters	of	loins	by	applying	IR	on	computational	texture	features	of	GLCM	method	from	MRI	acquired	with	GE	sequence.	As	can	be	seen,	moisture	and

water	activity	depend	on	IDM,	lipid	and	L	colour 	coordinate	on	HC,	salt	on	CS	and	a*	and	b*	colour 	coordinates	on	Energy.	These	associations	between	the	physico-chemical	parameters	and	the	computational	texture	features

could	be	ascribed	 to	 the	properties	of	 the	 images	 that	are	defined	by	 the	computational	 texture	 features.	Thus,	moisture	and	water	activity	would	be	associated	 to	 the	homogeneity	of	 the	 image,	 lipid	and	L,	a*	and	b*	 colour

coordinates	to	the	grey	level	of	the	pixels	and	salt	to	the	symmetry	of	the	images.	This	can	be	an	important	contribution	for	the	‘‘semantic	gap”	existing	between	the	computational	features	and	some	biological	terms,	which	has	been

previously	claimed	(Jian	et	al.,	2009;	Reyes	et	al.,	2008;	Pérez-Palacios	et	al.,	2010b).

Table	5	Prediction	equations	for	physico-chemical	parameters	of	loins	obtained	by	applying	isotonic	regression	on	3D	computational	texture	features	from	GLCM	of	MRI	images	acquired	by	gradient	echo	sequences.

alt-text:	Table	5

Moisture	= 1E-08	*	IDM6	-	4E-06	*	IDM	5	+	0,0006	*	IDM	4–0,045	*	IDM	3	+	1,7593	*	IDM	2	-	35,188	*	IDM	+282,21

Water	activity	= −120,49	*	IDM	2	+	227,2	*	IDM	-	106,15

Lipid	= 0,0009	*	HC4	-	0,1103	*	HC3	+	5,0511	*	HC2	-	98,099	*	HC	+	662,09

Salt	= 1,5734	*	CS6	+	214,18	*	CS5	-	3627,4	*	CS4	+	21959	*	CS3	–	58395	*	CS2	+	57959	*	CS	-	0,0425

Color

L 	= -9E-07	*	HC6	+	0,0002	*	HC5	-	0,0286	*	HC4	+	1,7359	*	HC3	-	58,586	*	HC2	+	1043,7	*	HC	-	7666,7

a*	= −0,0204	*	Energy5	+	1,4142	*	Energy4	-	39,227	*	Energy3	+	543,34	*	Energy2	-	3759,1	*	Energy	+10,396

colur

Colur

In	the	same	way. 1

colur colur

colur

*



b*	= 0,1136	*	Energy6	-	4,7197	*	Energy5	+	81,058	*	Energy4	-	736,67	*	Energy3	+	3736,2	*	Energy2	–	10026	*	Energy	+11,125

To	validate	the	proposed	prediction	equations,	real	and	predicted	values	of	physico-chemical	parameters	were	statistically	compared	(Table	6).	As	can	be	seen,	no	significant	differences	(p	>	0.05)	were	found	for	all	physico-

chemical	parameters	of	both	fresh	and	dry-cured	loins.	This	finding	reinforced	the	accuracy	of	this	method.	It	is	also	worth	noting	the	fact	that	the	same	prediction	equations	can	be	applied	for	predicting	in	fresh	and	dry-cured	loins,

which	is	more	comfortable	than	having	to	use	different	equations	for	fresh	and	dry-cured	products,	as	proposed	previously	in	2D	images	(Caballero	et	al.,	2017a;	Pérez-Palacios	et	al.,	2017).

Table	6	Validation	of	the	prediction	equations	by	statistical	comparison	between	real	and	predicted	values	for	the	physico-chemical	parameters	of	fresh	and	dry-cured	loins.

alt-text:	Table	6

Fresh	loin Dry-cured	loin

Real Predicted p Real Predicted p

Moisture	(%) 65.53 64.55 0.239 32.26 33.08 0.238

Water	activity	(%) 0.98 0.98 0.082 0.86 0.86 0.173

Lipid	(%) 12.77 13.31 0.213 21.61 21.16 0.713

Salt	(%) – – 2.67 2.60 0.121

L 55.33 54.81 0.321 40.61 41.05 0.64

a* 12.30 12.43 0.354 15.31 15.20 0.716

b* 5.58 5.66 0.558 8.05 7.98 0.77

4	Conclusions
Interpolation	and	3D	reconstruction	procedures	as	well	as	the	adaptation	of	classical	computational	texture	analysis	algorithms	to	analyze	3D	images	described	in	this	work	allow	i)	analyzing	MRI	of	fresh	and	dry-cured	loins

appropriately,	and	ii)	carrying	out	predictive	analysis	of	the	physico-chemical	parameters	of	loins.

The	sequence	acquisition	of	MRI	of	loins	significantly	influences	the	visual	appearance	of	the	3D	reconstructed	MRI	of	loins,	as	well	as	the	values	of	the	3D	computational	texture	features.

It	is	possible	to	achieve	prediction	equations	for	the	physico-chemical	parameters	of	loins	as	a	function	of	3D	computational	texture	features	of	MRI.

The	accuracy	of	the	prediction	equations	are	principally	influenced	by	the	sequence	acquisition	of	MRI,	whereas	the	3D	algorithm	and	the	predictive	technique	are	not	notable	effects.	However,	these	three	factors	have	an

effect	on	the	computational	cost	of	the	prediction	results.

Thus,	in	terms	of	accuracy,	different	combinations	of	sequence	acquisition	(SE	or	GE),	3D	algorithm	(GLCM,	GLRLM,	NGLDM,	GLCM	+	NGLDM	+	GLRLM)	and	predictive	technique	(MLR,	IR)	can	be	used	to	determine	physico-

chemical	parameters	of	fresh	and	dry-cured	loins	non-destructively.	However,	if	the	computational	cost	is	also	considered,	the	combination	of	GE	–	GLCM	–	IR	seems	to	be	the	best	option.
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Highlights

• Interpolation	and	3D	reconstruction	allow	analyzing	MRI	of	loins	appropriately.

• The	sequence	acquisition	of	MRI	influences	on	3D	texture	features.

• 3D	texture	algorithms	are	suitable	to	analyze	MRI	of	loins.

• Quality	traits	of	loins	can	be	predicted	by	using	3D	texture	features	of	MRI.
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