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ABSTRACT We focus on the problem of managing the energy consumption of a cellular network tailored to
cover rural and low-income areas. The considered architecture exploits Unmanned Aerial Vehicles (UAVs)
to ensure wireless coverage, as well as Solar Panels (SPs) and batteries installed in a set of ground sites,
which provides the energy required to recharge the UAVs. We then target the maximization of the energy
stored in the UAVs and in the ground sites, by ensuring the coverage of the territory through the scheduling
of the UAV missions over space and time. After providing the problem formulation, we face its complexity
by proposing a decomposition-based approach and by designing a brand-new genetic algorithm. The results,
obtained over a set of representative case studies, reveal that there exists a trade-off between the UAVs battery
level, the ground sites battery level, and the level of coverage. In addition, both the decomposed version and
the genetic algorithm perform sufficiently close to the integrated model, with a strong improvement in the
computation times.

INDEX TERMS Energy management, mixed integer linear programming, renewable energy sources,
Unmanned Aerial Vehicles, UAV mission scheduling, cellular networks.

I. INTRODUCTION
Providing cellular connectivity in rural and low-income areas
is a complex and challenging task [3]–[5]. This is due to
multiple factors, such as the relatively low Return on Invest-
ment (RoI) rate for telecom operators, as well as a general
lack of electricity derived from the grid. In this context,
Base Stations (BSs) mounted on top of Unmanned Aerial
Vehicles (UAVs) are a promising solution to bring cellular
connectivity [6], [7]. Thanks to the decomposition of the
main networking functionalities, in fact, it is possible to
install at ground locations most of BS equipment (involving
high level tasks, such as baseband processing, handovering
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functionalities, etc), while keeping on board the UAVs a lim-
ited amount of HardWare (HW) providing low level functions
(i.e., at signal level). In this way, it is possible to reduce the
amount of weight carried by the UAV, and consequently to
prolong the duration of the UAV flight. Moreover, another
great advantage of such solution is the fact that the UAVs
can be used to cover portions of territory, i.e., the ones where
the users are located, without the need of covering the whole
territory. This allows the operator to notably decrease the
costs, compared to a solution in which fixed BSs are used
to cover 100% of the territory [8].

Ensuring coverage of a set of areas by means of UAVs
is a challenging problem [9]. In fact, the limited amount
of battery capacity on board the UAVs imposes to carefully
schedule their missions as a sequence of actions over time [1].
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Typical UAV actions include moving from a ground site to
an area that needs to be covered, serving the selected areas,
returning to the ground site, and recharging the UAV battery
on the ground site. This imposes to schedule the UAV mis-
sions in a way to preserve as much as possible their battery
level.

On the other hand, however, the ground sites at which the
UAVs can recharge are also subject to energy constraints [10].
Since in rural and low-income areas the connections to the
grid may be not available and/or not reliable [8], the ground
sites drain the required energymainly frommicro-generation,
by typically exploiting a set of Solar Panels (SPs). In addition,
a local battery is used to store the surplus of energy, which can
be used during night and/or bad weather conditions. Clearly,
also this system needs to be carefully managed, in order to
ensure the recharging of the UAVs that have depleted their
battery.

In this context, several questions emerge, such as: Is it
possible to define a framework to cover a set of areas by
means of the UAVs and manage their energy consumption?
How to leverage the trade-off between the energy stored in
the ground sites (for future needs) and the energy stored in
the UAVs (used to perform their missions)? Is it possible
to define efficient strategies to solve this problem in a rea-
sonable amount of time? The goal of this work is to shed
light on these issues. More in depth, we initially provide a
complete problem formulation which is able to: i) balance
the energy stored in the ground sites and the battery level
of the UAVs, ii) schedule the UAVs missions as a sequence
of actions over time, iii) ensure coverage of a set of areas.
We then face the complexity of the problem, by introducing a
decomposed version as well as by designing a sub-optimal
heuristic, which are able to notably decrease the amount
of time to retrieve a solution. In addition, we introduce a
parameter to weigh differently the battery level of the UAVs
w.r.t. the energy stored in the ground sites, thus allowing the
operator to carefully leverage the trade-off between these two
terms, by properly varying the weight of each term in the
objective function. Our results, obtained over different case
studies, demonstrate that it is possible to cover the set of
areas by means of the UAVs, while controlling the amount
of energy stored in the ground sites and the UAVs battery
level. In addition, we also show that both the decomposed
version and the proposed heuristic are sufficiently close to
the integrated problem.

To the best of our knowledge, none of the previous work
has conducted a similar analysis. Actually, the closest papers
to our work are [1], [2], in which the authors target the
minimization of the energy due to the moving actions for a set
of UAVs, by providing the problem formulation and a simple
heuristic, which is based on a genetic algorithm. Compared
to them, in this work we go five steps further by: i) targeting
a different problem, which includes the maximization of the
energy stored by the UAVs and the one stored in the batteries
of the ground sites, ii) introducing a model decomposition
to solve the problem also for large instances, iii) defining a

new heuristic approach tailored to the considered problem,
iv) solving the problem in different scenarios, ranging from a
small one to a large-scale case study, which is composed of
dozens of ground sites and hundreds of areas to be covered,
v) thoroughly comparing the solutions obtained from the
integrated problem, the decomposed one, and the proposed
heuristic.

The remainder of the paper is organized as follows. Sec. II
reviews the related work. Sec. III describes the consid-
ered UAV-based cellular architecture. The problem formu-
lation is reported in Sec. IV. The proposed decomposition
approach is detailed in Sec. V. Sec. VI describes the pro-
posed genetic algorithm. Sec. VII thoroughly describes the
scenarios and the setting of the input parameters. Sec. VIII
reports the performance evaluation of the proposed solutions.
Sec. IX reports a discussions of the main issues impacting our
approach. Finally, Sec. X concludes our work.

II. RELATED WORK
We divide the related work in three categories: i) optimization
for UAVs usage in civil applications, ii) UAV-based networks,
and iii) UAVs mission planning.

A. OPTIMIZATION FOR UAVS USAGE
IN CIVIL APPLICATIONS
In the recent years, the number of fields where UAVs are
commonly used to improve people’s quality of life has sig-
nificantly increased, thanks to the easy-going features and
acceptable costs of such solution. A great variety of civil
applications currently use UAVs to improve their operation
and to save the costs, e.g., high-precision surveillance, pack-
age delivery or disasters management. To this aim, we refer
the interested reader to the work of Otto et al. [11], who
provide a comprehensive survey of optimization approaches
for civil applications using UAVs. Hayat et al., in turn, report
in [12] the characteristics and requirements of UAV-based
networks for envisioned civil applications from a communi-
cations and networking point of view.

One of the most common applications where UAVs are
being widely used is video surveillance [13]. Trotta et al. [14]
target the design of a multi-hop wireless network composed
of UAVs to perform city-scale video monitoring, while con-
sidering energy consumption constraints. More in depth, a set
of Points of Interest (PoIs) are covered by the UAV-based net-
work. Their solution includes public transportation buses to:
i) allow the UAVs recharge their batteries on top of them, and
ii) carry the UAVs to the next PoI to record. In contrast to
them, in this work we focus on a different scenario, where
the UAVs are used to deploy a cellular network, with the goal
of providing coverage to the users located inside a particular
set of areas.

Motlagh et al. [15] propose a UAV-based Internet of
Things (IoT) platform for crowd surveillance where face
recognition is applied to identify suspicious individuals.
Since UAVs have a limited processing power, video process-
ing is offloaded to mobile edge computing nodes, with the
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aim of extending their batteries for surveillance purposes.
Clearly, when the recording of the people is performed, visual
privacy has to be strictly taken into account, as also reported
by Clarke [16]. Similarly to these works, in this paper we
also face the energy limitation of UAVs batteries. However,
our work is tailored to the cellular service, and not video
surveillance like in [15], [16]. Moreover, another original
aspect of our work is that we exploit the SPs and batteries
installed on specific ground sites to allow UAVs recharge
when necessary. In addition, we jointly target the maximiza-
tion of UAVs battery level and the maximization of the sites
battery levels in a multi-objective function.

Another type of application in which UAVs are widely
exploited is the so-called delivery-by-drone logistics system.
In this context, the main idea is to use autonomous UAVs
for small parcel delivery. Specifically, each UAV holds a
container where the parcel is loaded and moves it from the
distribution center (warehouse) to the destination customer.
The parcel is then dropped off near the customer’s front door
and the UAV returns to the starting point without human
interaction (see e.g., the work of Gross [17]). Research efforts
have beenmade on this particular application, mainly focused
on the technical aspects of UAVs such as endurance/safety of
UAVs and the selection of the distribution centers in order to
be as much efficient as possible. Specifically, Song et al. [18]
propose a Mixed Integer Linear Programming (MILP) for-
mulation and an efficient heuristic for derivation of persis-
tent UAV delivery schedules. In their work, UAVs can share
multiple distribution centers across the field of operation
to reload products and recharge their batteries. With this
approach, the flight-time and loadable-product limitations of
UAVs can be overcome, whilst a persistent delivery service
can be achieved. Moreover, Murray and Chu [19] exploit
the combination of traditional truck delivery with the use
of autonomous UAVs that can be launched from the truck,
especially for cases where the distribution center is far away
from customers. Although with this method the coverage
range to deliver parcels is significantly increased, a human
interaction (i.e., the driver) is required to load parcels into
the UAVs and replace batteries during long trips. This idea is
also exploited by Poikonen et al. [20], where the goal is to
minimize the completion time to deliver all the packages and
to return all the trucks back to the central depot.

Although these works prove that there is a great interest
in exploiting the UAVs for persistent package delivery while
covering a wide area, the goal of this work is to provide a
different service, i.e., the wireless coverage to users by means
of UAV-based BSs, which are able to fly and complete their
missions without requiring any human interaction.

B. UAV-BASED NETWORKS
Recently, the optimal planning and management of net-
works composed by UAVs has gained attention from the
research community. Drone networking is a recent research
topic where UAVs are intended to serve as a basic element
to sense and relay information in the next generation of

wireless networks. In [21], Bor-Yaliniz et al. introduced the
UAV-BS concept, in which a BS is mounted on top of a UAV
in order to complement terrestrial heterogeneous networks
(HetNets). A multi-tier drone-cell network is proposed to
bring the supply of wireless networks exactly to the place and
time where the demand is required. Mozaffari et al. analyze
in [22] the performance of a UAV-BS in which users can
also communicate via direct device-to-device links. In par-
ticular, their main goal is to maximize the coverage provided
by a UAV to a particular area by considering two types of
communications: i) downlink UAV-to-user communication,
and ii) underlaid device-to-device communication, which can
generate potential interferences and affect i). In a recent work,
Bor-Yaliniz et al. [23] open a discussion about the set of
challenges that arise when combining the concept of UAVs
and wireless networks from the 5G perspective in order to
support network performance.

One of the most promising field of UAV-based networks
is natural disaster management, where UAVs can be com-
bined with Wireless Sensor Networks (WSN) in order to
find injured people and report their location to rescue teams.
To this aim, Adams and Friedland [24] review the related
works in which UAVs are used for imagery collection during
the phase of disaster monitoring. Maza et al. [25] exploit
the coordination of multiple UAVs to propose a distributed
decision-making architecture for challenging scenarios, such
as disaster management or civil security applications. The
smooth integration of autonomous vehicles from different
vendors and the low communication cost derived from the
distributed scheme make this approach particularly appeal-
ing. In contrast to them, the problem of this work is devoted
to the scheduling of the UAVsmissions by taking into account
the coverage of the areas, as well as the constraints on UAVs
battery level and on the battery level of ground sites.

Asadpour et al. [26] propose an ad-hoc multi-hop UAV
networking solution, which is able to: i) establish end-to-
end connectivity to the smartphone of a missing person,
and ii) stream high-resolution videos for scanning areas
and spotting injured and missing people. One step further,
Malandrino et al. [27] exploit the use of UAVs to improve
wireless network coverage during a disaster crisis by comple-
menting or replacing the traditional -yet affected- communi-
cation infrastructure. An optimization problem is presented
to provide the best possible coverage while maximizing user
throughput. A similar approach is followed by the semi-
nal work of Erdelj and Natalizio in [28], where a wireless
communication network exploiting UAVs is created between
survivors, rescue teams and still operating cellular infrastruc-
ture. Erdelj et al. [29] also survey the related works on the
joint role of WSN and UAVs for natural disaster manage-
ment and present a set of unsolved challenges whose solu-
tion would significantly improve the efficiency of disaster
management systems. One step further, Erdelj et al. [30]
classify different types of disasters considering geophys-
ical, climate-induced and meteorological issues, and pro-
pose suitable WSN and UAV-based network architectures for
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each category. Eventually, an IoT-UAV ecosystem is devised
by Erdelj et al. [31], in order to provide real-time data
and multimedia communications in unstable communication
environments by means of a multi-UAV system, which also
offers on-demand usage of available sensors, smartphones
and UAV infrastructure.

Quality-of-Experience (QoE) of mobile users can also be
improved by means of UAV-based networks. Chen et al. [32]
propose to use cache-enabled UAVs to provide the required
QoE to mobile users within a Cloud Radio Access Net-
work (C-RAN) by minimizing the UAVs transmit power and
reducing the transmission delay in the system. By exploiting
machine learning techniques, human-centric information is
used to predict both content distribution and users’ mobility
patterns. Such learned information is then used to deter-
mine UAVs placement and the content to cache. One step
further, gathered information from users can be of great
value also to enhance, e.g., the energy efficiency of wireless
networks [33].

In [34], Yanmaz et al. summarize the existing challenges
for the design of a system with multiple small UAVs. A high-
level architecture composed of UAVs and ground stations
with sensing, coordination and communication features is
proposed and evaluated in several real-world applications
with different demands and constraints, such as the assistance
during a disaster, documenting the progress of a large con-
struction site, and the process of search and rescue. As con-
clusion, the authors remark that an effective design of UAVs
network is given by the proper definition of the interactions
between sensing, coordination, and communication modules,
as well as with the specific constraints imposed by the
application.

The work of Sánchez-García et al. [35] combines the com-
mon features of aerial and aquatic wireless ad hoc networks to
apply existing solutions that are valid for the aerial medium to
the aquatic one. The authors also survey evaluation tools for
this kind of scenarios and provide a set of open challenges
about the design and evaluation of both types of networks.
Reina et al. [36] target the selection of the UAVs positions
in the 2D-space in order to ensure a connected network with
redundancy and fault tolerant constraints. Our goal is instead
to schedule the UAV missions by considering the possible
UAV actions/movement which are passed to our problem as
the arcs in a multi-period graph. Actually, the output of [36]
can be used as input to our problem.

Although these works prove that there is a great interest in
exploiting UAVs for communications and monitoring, in this
work we focus on a different aspect, i.e., the provisioning of
cellular service in rural and low-income areas by exploiting
UAVs carrying BSs and powered solely by renewable energy
sources. Moreover, we target the efficient management of the
battery levels both at the ground sites and at the UAVs.

C. UAVS MISSION PLANNING
We finally review the works focused on the problem of
UAVsmission planning. As in the case of previous categories,

different applications require the planning of the missions of
a set of UAVs.

In the context of the coverage of sports events,
Zema et al. [37] introduce the sport event filming problem
with communication and connectivity constraints, where a
court or sport field is covered by a coordinated fleet of
UAVs and the spectators receive on their personal devices
a high-quality video live stream of the game. The target
objective function is the maximization of viewers’ satisfac-
tion as well as the minimization of the distance traveled by
the UAVs. Simulations over representative case-studies show
that the performance of the proposed scheme outperforms
other related works in terms of packet loss and achieved
coverage. In contrast to them, the main differences with our
work are twofold: i) each area is served by a single UAV, and
ii) we maximize both UAVs battery level and the available
battery level on sites while respecting coverage and power
consumption constraints.

The vehicle routing problem for UAV delivery is studied
by Dorling et al. [38]. Karaman and Frazzoli [39] further
generalize this problem by introducing a MILP formulation
that integrates complex tasks and constraints in UAVs mis-
sions. This problem is further analyzed by Lamont et al. [40],
where a multi-objective evolutionary algorithm is presented
to tackle the 3D vehicle routing with the use of UAV swarms.

However, UAVs mobility is highly dependent on the spe-
cific missions they have to perform. Changes in a UAV-based
network topology due to the pre-defined movements of the
swarm of UAVs can negatively affect to the network per-
formance. In this way, the topology management problem is
deeply studied also in the scope of this type of dynamic sce-
narios in order to ensure an acceptable network performance.
In [41], Kim et al. propose a solution to create a UAV-based
network topology from the scratch, by adapting it to the topo-
logical changes caused by the unpredictable mission-based
movements of UAVs. To do that, they rely on the presence
of special nodes, namely Relaying UAVs (RUs), to relay
data between adjacent UAVs, with the aim of supporting
reliable communications in the UAV-ground site wireless link
and maximizing the network performance. Differently from
other works, the dependency between such metric and the
routing protocol is considered in the proposed Particle Swarm
Optimization (PSO) metaheuristic. Magán-Carrión et al. [42]
also use PSO to solve the topology problem in genericMobile
Ad-Hoc Network (MANET) scenarios. A centralized multi-
stage methodology is applied, in which the deployment and
movement of relaying nodes contribute to maximize both
network connectivity and throughput.

The limited battery of UAVs has also opened a niche for
the research community to propose solutions with the aim
of extending the duration of UAV missions. The robustness
aspects of the problem are studied by Evers et al. [43], where
the uncertainty in the fuel usage between targets (e.g., due to
weather conditions) is considered. Eventually, Kim et al. [44]
propose a system in which multiple-shared bases located in
different geographical places are used by UAVs to recharge
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their batteries, therefore supporting long term duration mis-
sions. In particular, their goal is to minimize the total travel
distance of the UAVs fleet taking into account power con-
sumption and recharging constraints. This problems differs,
e.g., from the one studied by Trotta et al. [9], where the focus
is to maximize geographical coverage by exploiting the 3D
placement problem in conjunction with the scheduling of the
UAVs recharging actions at ground sites. In contrast to these
works, we aim at maximizing the combination of the battery
level of UAVs and the one at ground sites for all day wireless
coverage provisioning.

Amorosi et al. [1] propose an optimization framework to
schedule UAVs missions, with the goal of providing cellular
coverage in rural areas while minimizing the energy con-
sumed by UAVs when moving from the ground sites to a set
of areas. In addition, a set of SPs is considered to recharge
UAVs batteries. Eventually, the considered MILP formu-
lation exploits a graph-based structure to optimally model
the UAVs missions by solving a variant of an unsplittable
multi-commodity flow problem defined on a multi-period
graph. Since the aforementioned problem is known to be
NP-hard (see, e.g., the work of D’Andreagiovanni et al. [45]),
a simple heuristic to practically solve it is proposed by
Galán-Jiménez et al. [2]. In contrast to them, in this work we
consider a different problem, where the main goal is to target
the maximization of the battery levels of the ground sites and
of the UAVs, while ensuring cellular coverage. In addition,
we target the solution of the problem over large scenarios.
These issues are tackled in this work by: i) designing new
approaches based on decomposition methods and genetic
algorithms to practically solve the optimization problem,
ii) introducing a multi-objective function, in order to properly
balance both the UAVs and the ground sites battery levels.

III. ARCHITECTURE DESCRIPTION
We briefly describe the considered UAV-based cellular archi-
tecture, whose main functionalities are implemented as 5G
components. We refer the reader to [5], [8] for a compre-
hensive description. In brief, we assume that most of BS
equipment, and in particular the dedicated HW one, is carried
on board of the UAV. The dedicated HW includes a Remote
Radio Head (RRH) and part of the Base Band Unit (BBU),
which ensure low-level tasks on the communication between
the UAV-based BS and the user equipment. The RRH is
connected to a set of antennas that are also carried by theUAV.
The remaining tasks (which are performed by higher layers)
are realized by virtualized elements installed on the com-
modity HW, which is placed at a ground site. The separation
between high-level and low-level functionalities is peculiar of
next-generation cellular equipment, like the forthcoming 5G.
This solution reduces the amount of HW carried by the UAV,
and consequently tends to prolong the duration of the flight
compared to the case in which all the functionalities are
carried on the UAV (thus increasing its weight). Finally, the
high-level HW functionalities hosted at the ground site and
the low-level ones carried on board of the UAV need to

FIGURE 1. Ground site battery level balance.

establish a radio link (separated from the ones between the
UAV and the users), which has to guarantee high levels of
reliability.

The considered architecture can be extended also to pre-
5G networks, like 4G. However, bringing the 4G radio func-
tionalities on board the UAV is more challenging than in a
5G scenario, due to the fact that 4G Base Stations (BSs) are
pretty monolithic and less flexible compared to 5G ones. For
example, a 4G BS would likely require to bring on board the
UAV a large amount of HardWare (HW), due to the fact both
low level functionalities and high level ones are typically run
on the same set of devices. On the other hand, bringing 5G
equipment seems a more viable solution, due to the fact that
the 5G BS functionalities can be split over a set of devices,
part of them located at ground and other ones placed on
the UAV. This architecture allows to decrease the weight of
the UAV, and thus increasing the duration of the UAV flight.

Apart from hosting the commodity HW, each site is con-
nected to a set of SPs and batteries, which are installed in
the same site location. In particular, we assume that SPs and
batteries are the only sources of energy (i.e., no connection
is requested to the grid). On the other hand, the UAVs are
equipped with batteries, and they are recharged by a ground
site when needed. We also assume that the total amount of
time is discretized in a set of Time Slots (TSs). In each TS,
the battery level of the ground site is computed as the com-
position of different terms, as reported in Fig. 1. In partic-
ular, an amount of energy may be derived from SPs (if the
energy from the sun is available). Moreover, an amount of
energy may be used to recharge the UAVs that have depleted
their batteries. At last, the remaining energy is stored in the
battery for the following TSs. Clearly, the battery level is
kept between a minimum and a maximum value. Without
loss of generality, we assume that, in case there exists a
surplus of energy coming from SPs, which is not used by
UAVs that are being recharged and which is higher than the
maximum battery level, the battery level is saturated to the
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FIGURE 2. A typical UAV mission requiring recharging, moving and
covering actions.

FIGURE 3. UAV battery level balance.

maximum one. In addition, we always ensure a minimum
battery level. In particular, this constraint is critical to pre-
vent battery failures, which may occur when the battery is
completely depleted [10].

We then detail the main UAVs features assumed in this
work. Fig. 2 shows an example of a typical mission performed
by a UAV carrying a BS. In particular, each UAV has a
battery of a given (limited) capacity. The battery may be
initially recharged by draining an amount of energy from
the ground site. In the following, the UAV moves from the
ground site to the area to be covered. When the area to be
covered is reached, the UAV activates the BS functionalities
In the following, the UAV moves back to the ground site.
Similarly to the ground sites, the UAV needs to ensure a
battery level balance, which is reported in Fig. 3. In addition,
the battery level is always kept between a minimum level and
a maximum one.

IV. PROBLEM FORMULATION
We model the problem as a Mixed Integer Linear Program-
ming (MILP), tracing it back to a variant of the unsplit-
table multicommodity flow problem defined on a multiperiod
graph. More formally, we denote: i) by A the set of areas to
be covered; ii) by S the set of available ground sites; iii) byD

FIGURE 4. Set of UAV actions between two sites and two areas to be
covered. Each action is represented as an arc between two places and
consumes one TS.

FIGURE 5. General arc transitions between consecutive TSs. The source
node ϒ, a set of two places {p1,p2}, and the final sink node � are shown.

the set of UAVs; iv) by T = {0, 1, 2, . . . , |T |} the set of Time
Slots (TSs).We also define the set of placesP , obtained as the
union of the set of areas and sites (i.e., P = A ∪ S). In each
TS each UAV can perform one among the following actions:
• REC: the UAV recharges itself at a given site;
• STAY: the UAV is idle at a given site (not consuming any
energy);

• MOV: the UAV moves from a site to an area, or from an
area to another area, or from an area to a site;

• COV: the UAV covers a given area.
Each of the aforementioned actions requires one TS to be
executed. An example of possible actions performed by the
UAVs between two sites and two areas is reported in Fig. 4.

In order to model the actions performed by the UAVs
over the considered set of TSs, a multiperiod directed graph
G(N ,L) is introduced. The set of nodes N includes one
node (p, t) for each place p ∈ P and for each TS t ∈ T .
In addition, we add to the set of nodes one source nodeϒ and
one sink node� to track the UAVs paths.We denote a generic
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FIGURE 6. Admissible arcs and energy values for each pair of places and consecutive TSs.

arc l ∈ L by [(p1, t1), (p2, t2)], where t(l) = (p1, t1) and
h(l) = (p2, t2) are the tail and the head of the arc, respectively.
We then introduce the set of arcs LREC, LSTAY, LMOV and
LCOV to denote the admissible transitions between (p1, t1)
and (p2, t2) for the recharging, staying, moving and coverage
actions, respectively. Additionally, we define the sets L� and
Lϒ connecting the source node to all places at the first TS
and all places at the last TS to the sink node, respectively.
The union of sets LREC

∪LSTAY
∪LMOV

∪LCOV
∪Lϒ ∪L�

defines the entire set of links L. Fig. 5 shows the admissible
arcs for a toy case example composed of two places. To ease
the figure, we collapse in a single arc all the parallel links
between two nodes in the graph.

In the following, we associate an energy weight for each
arc in L, as reported in Fig. 6. More in detail, when the UAV
does not change the site between two consecutive TSs, STAY
and REC links are defined (Fig. 6(a)). Specifically, when the
UAV is recharging the link weight is EREC. Alternatively,
when the UAV is in the STAY state, the link weight is zero
(i.e., the UAV does not consume any energy). In addition,
when the UAV moves from a site s ∈ S to an area a ∈
A (Fig. 6(b)), an arc l ∈ LMOV is defined.1 In this case,
the link weight is −EMOV

s,a , which denotes the amount of
energy consumed for moving the UAV from site s to area a.
Similarly, when the UAV moves from an area a to a site s
(Fig. 6(c)), a link l ∈ LMOV is introduced, with weight equal
to −EMOV

a,s . On the other hand, when the area is not changed

1The set LMOV may not include all the possible links between each pair
of places. This occurs, e.g., when a maximum distance between a UAV and
the ground site has to be ensured.

(Fig. 6(d)), the UAV performs a coverage action. In this case,
the corresponding link l ∈ LCOV has a weight of −ECOV,
denoting the amount of energy spent to cover an area in one
TS. Eventually, when the UAV moves from area a1 ∈ A to a
different area a2 ∈ A (Fig. 6(e)), a link l ∈ LMOV with weight
−EMOV

a1,a2 is introduced. Finally, the links connecting ϒ and �
to the other nodes are defined in Fig. 6(f)-6(i). Clearly, such
links do not consume any amount of energy, since bothϒ and
� are fictitious nodes. Consequently, their energy weight is
set to zero.

We then introduce the following decision variables:

1) binary flow variable f dl ∈ {0, 1} ∀ l ∈ L, d ∈ D, equal
to 1 if the UAV d uses the arc l (0 otherwise);

2) binary variable zta ∈ {0, 1} ∀ a ∈ A, t ∈ T equal to
1 if area a is not covered in TS t (0 otherwise);

3) continuous variable bts ≥ 0 ∀ s ∈ S, t ∈ T , represent-
ing the battery level of site s at TS t;

4) continuous variable etd ≥ 0 ∀ d ∈ D, t ∈ T , repre-
senting the battery level of UAV d at TS t .

The overall Optimal Energy Management of UAV-based
cellular networks (EMUC) problem is then formulated as:

max(
∑
s∈S

∑
t∈T

bts + α ·
∑
d∈D

∑
t∈T

etd − γ ·
∑
a∈A

∑
t∈T

zta) (1)

Subject to:
∑
l∈L:

h(l)=(p,t)

f dl −
∑
l∈L:

t(l)=(p,t)

f dl = β
d
(p,t)

∀p ∈ P, d ∈ D, t ∈ T (2)
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∑
d∈D

∑
l∈LCOV

:
h(l)=(a,t)

f dl + z
t
a=1, ∀a∈A, t ∈T : t≥1

(3)

bts≤b
t−1
s +E

t
s · N

SP
s −

∑
d∈D

El · f dl , ∀s∈S, t ∈T ,

∀l ∈ LREC
: h(l) = (s, t) ∧ t(l) = (s, t − 1) (4)

BMIN
· NB

s ≤ b
t
s ≤ B

MAX
· NB

s , ∀s∈S, t ∈ T
(5)

etd ≤ e
t−1
d +

∑
l∈LMOV

∪LREC
∪LCOV

:
t(l)=(∗,t−1)
h(l)=(∗,t)

El · f dl

∀d ∈ D, t ∈ T (6)

EMIN
≤ etd ≤ E

MAX, ∀d ∈ D, t ∈ T (7)

Under variables: f dl ∈ {0, 1} ∀ l ∈ L, d ∈ D, zta ∈
{0, 1} ∀ a ∈ A, t ∈ T , bts ≥ 0 ∀ s ∈ S, t ∈ T , etd ≥
0 ∀ d ∈ D, t ∈ T .

The objective function (1) is the maximization of the site
battery level and the UAV one. A parameter α is used to
change the weight of the UAV battery level w.r.t. to the one
of the ground sites. When α << 1 the problem tends to max-
imize the ground site battery level, thus possibly limiting the
amount of energy stored by the UAVs. This policy is useful to
preserve the ground sites battery level when, e.g., the energy
from SPs is not available. On the other hand, when α >> 1
the EMUC problem tends to pursue the maximization of
the energy stored by the UAVs, thus (possibly) involving
frequent recharging actions at the ground sites. This policy is
effective when it is critical to preserve the UAV battery level,
e.g., to always ensure that each UAV has enough battery to
complete a mission. Finally, the last term of (1) is a penalty
associated when an area is not covered by a UAV. In this case,
in fact, there is a loss of connectivity. Wemodel this aspect by
multiplying the Boolean variables zta for a penalty weight γ .
Note that, for sufficiently large values of γ , an area may be
not covered due to two main reasons: i) no UAV can serve the
area, ii) the current instance of the problem cannot guarantee
full coverage of the whole set of areas. The first aspect can
be overcome by imposing a sufficiently large set of UAVs
(as done in this work). The second issue instead may arise
from the problem decomposition, which is described in the
following section.

Focusing then on constraints (2)-(7), (2) impose the con-
servation of the flow variables f dl , where the term βd (p, t)
appearing in the constraint is defined in Tab. 1. The coverage
of each area is imposed through constraints (3), by consider-
ing only theLCOV arcs incoming to each area. This constraint
also sets the variable zta when it is not possible to cover area
a at TS t . Constraints (4) impose then the battery balance for
each TS t and for each site s. The balance is computed by

TABLE 1. Setting of the βd (p, t).

adding to the battery level at previous TS the energy produced
by the SPs (equal to the production of energy of a single
SP E ts times the total number of installed SPs NSP

s ) minus
the energy requested to recharge the UAVs at current TS.
In addition, the minimum and the maximum battery levels are
enforced by constraints (5), where NB

s is the total number of
batteries installed in site s. In the following, we set the UAV
battery level through constraints (6), by considering: i) the
contributions of theLMOV

∪LREC
∪LCOV energy arcs used by

the UAV at the current TS, ii) the UAV energy at previous TS.
The minimum and the maximum UAV battery levels are then
ensured by constraints (7).

We then focus in more detail on constraints (4)-(7), and in
particular on the reason why an inequality is set in constraints
(4) and (6) instead of equality. Actually, both the battery and
the energy levels have to be lower than the maximum values
appearing in (5) and (7), namely BMAX ·NB

s and EMAX . When
solving themodel, the values of the variable bts and variable e

t
d

will be theminimum between the expression in (4) andBMAX ·
NB
s and between the expression in (6) andEMAX , respectively.

However, as we maximize both battery and energy levels,
constraints (4) and (6) will be active in all cases in which the
right hand side of (4) and (6) is less than or equal to BMAX ·NB

s
and EMAX , respectively.

V. PROBLEM DECOMPOSITION
The EMUC problem is challenging to be solved, due to the
fact that the underlying multi-period graph tends to grow very
quickly as the total number of places and the total number of
TSs are increased. To tackle this issue, we apply a divide et
impera approach, which is based on the decomposition of the
original problem in subproblems of smaller size, each of them
(potentially) easier to be solved compared to EMUC.More in
depth, we split the original problem into sub-problems by first
introducing a spatial decomposition between the ground sites,
and then by including a temporal decomposition across the
set of TSs. In the following, we detail the two decomposition
approaches, and then we sketch the entire methodology.

A. SPATIAL DECOMPOSITION
We initially split the original problem into a set of subprob-
lems, each of them including a single ground site. For each
ground site s ∈ S , we find a set partition ofA by identifying a
cluster As of areas that will be covered only by UAVs whose
missions originate/terminate solely from/in s. This partition is
found according to a minimum cost rule, which is expressed
as the amount of energy consumed by a UAV for moving
from a given ground site to a given area. More formally,
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the following optimization problem is solved:

min
∑

l∈LMOV:t(l)∈S,h(l)∈A
El · xl (8)

Subject to: ∑
l∈LMOV:t(l)∈S,h(l)=a

xl = 1, ∀a ∈ A (9)

xl ∈ {0, 1}, ∀l ∈ LMOV
: t(l) ∈ S, h(l) ∈ A (10)

where the binary variable xl ∈ {0, 1} ∀l ∈ LMOV is equal
to 1 if area h(l) ∈ A is assigned to the ground site t(l) ∈ S
and 0 otherwise. The solution of this set partitioning model
provides the clusters of areas associated with the ground sites
and reduces the problem size. However, due to the temporal
dimension of the problem, the size of the multi-period graph
underlying the model remains quite large and its resolution
to optimality is still challenging. Thus, we introduce an
additional level of decomposition, which is detailed in the
following subsection.

B. TEMPORAL DECOMPOSITION
In order to further reduce the size of each problem instance,
we apply a temporal decomposition on each cluster As.
Specifically, we split the set of TSs T into subsets of con-
secutive TSs, denoted as Ti (each of them with the same
cardinality), such that T = T1 ∪ T2 ∪ ...Tn. Clearly, in order
to ensure the continuity of the UAV missions as well as the
proper computation of the battery levels of the ground sites
and of the UAVs, we need to include an additional set of
constraints. More in depth, the UAVs location at the first
TS of subset Ti must be equal to the one of the last TS
of the previous subset Ti−1, as guaranteed by the following
constraint:∑

l∈L:
t(l)=(p,Ti(1))

f dl = 1, ∀d ∈ D,∀p ∈ As : I (d) = p (11)

where Ti(1) is the first TS of the subset Ti and I (d) ∀d ∈
D represents the position of the UAV d at the last TS of the
previous subset Ti−1. In addition, the UAVs battery level at
the first TS of subset Ti must be equal to the one of the last
TS of the previous subset Ti−1, denoted by E IN

d ∀d ∈ D,
as imposed by the following constraint:

eTi(1)d = E IN
d , ∀d ∈ D (12)

Moreover, the battery level of the ground site at the first TS
of subset Ti must be equal to the one of the last TS of the
previous subset Ti−1:

bTi(1) = BIN (13)

where BIN is the battery level of the recharging site at the last
TS of the previous subset Ti−1.

The variables for each subset Ti are then retrieved by
solving the following problem:

max(
∑
s∈S

∑
t∈Ti

bts + α ·
∑
d∈D

∑
t∈Ti

etd − γ ·
∑
p∈A

∑
t∈Ti

zta) (14)

subject to (2)-(7),(11)-(13), by considering only the subset of
areas in cluster As and the ground site s.

C. OVERALL METHODOLOGY
The overall Decomposed optimal Energy Management of
UAV-based Cellular networks (D-EMUC) methodology con-
sists of: i) solving the problem (8)-(10) to find the clusters
As ∀s ∈ S, ii) solving the problem (2)-(7),(11)-(14) for each
Ti of each cluster As.

VI. GENETIC ALGORITHM DESCRIPTION
Apart from targeting the solution of EMUC and D-EMUC,
we design a new heuristic, called Genetic Algorithm for
UAVs Planning on Large-Scale Scenarios (GAUP-LS).
As suggested by its name, our solution aims at solving
the problem in large-scale scenarios. To pursue this goal,
we adopt a methodology based on a Genetic Algorithm (GA).
We refer the reader to [46] for the main theory behind the
branch of research of GAs, while here we report the main
steps.

A. MOTIVATION
Although our problem may be solved by using different kind
of metaheuristic algorithms, such as Single-State methods
(e.g., Simulated Annealing, Tabu Search, etc.), or Population-
based ones (e.g., GAs), Particle Swarm Optimization, Dif-
ferential Evolution, etc.), we chose to use GAs since they
have traditionally been used to tackle the routing problem
in the networking context. More in depth, GA-based heuris-
tics have been demonstrated to be well suited for proposing
adaptive routing solutions on all-sized and all-type network
scenarios. Starting from wireless environments, GAs have
been exploited to solve routing-related problems in a variety
of wireless settings, such as dynamic shortest path rout-
ing [47], [48], cluster-based schemes for MANETs [49],
multicast [50] and broadcast routing [51]. If we move our
attention to wired networking, the problem of dimension-
ing dynamic Wavelength Division Multiplexing (WDM) net-
works has been solved in [52] and [53] by exploiting the
evolutionary concept of GAs. Moreover, several solutions
based on GAs have also emerged to improve the energy
efficiency of wireless [54], wired [55], and optical network
scenarios [56].

B. CHROMOSOME AND FITNESS FUNCTION
Focusing on the set of chromosomes forming the popula-
tion M, each chromosome cM ∈ M is denoted as a suc-
cession of |D| × |T | genes of type gtd representing the place
p ∈ P where the UAV d ∈ D is located or moving to during
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TS t ∈ T . More formally, we define the chromosome as:

cM =
{
g11, ..., g

1
|D|, ..., g

t
d , ..., g

|T |
1 , ..., g|T |

|D|

}
(15)

∀gtd ∈ [1, |P|]; ∀d ∈ [1, |D|]; ∀t ∈ [1, |T |]

In our context, therefore, a chromosome represents a poten-
tial solution for the UAVs mission planning. In order to
evaluate each solution and obtain the best one in terms of the
pursued objective function, we define the following fitness
function:

f (cM ) =

∑
s∈S

∑
t∈T

bts + α ·
∑
gtd∈cM

etd

ψ (16)

In the previous equation, the first term aggregates the sum
of the battery level of each site bts over the full set of TSs.
The second term aggregates the energy level of each UAV
d located at place gtd . Similarly to the objective function of
EMUC, this term is multiplied by the weight α. However,
differently from EMUC, we introduce a parameter, denoted
as ψ , which is set to 1 if the solution represented by the
current chromosome is feasible. Otherwise, if the current
solution is not feasible, ψ is set to a low value (e.g., ψ =((
BMIN

· NB
s
)
· |S| + EMIN

· |D|
)
· |T |), which is the least

amount of total battery level on sites and on UAVs throughout
the set of considered TSs. In order to assess the feasibility
of the considered chromosome, a feasibility check function
is applied to verify if the individual represents a solution that
satisfies all the required constraints. The constraints that must
be met are listed next:

1) Coverage constraint. Each area a ∈ A ⊆ P must be
covered at each TS t ∈ T by exactly one UAV d ∈ D
(corresponding to constraint (3) of EMUC with zta =
0 ∀a ∈ A, t ∈ T );

2) UAVbattery level constraint.The energy level of each
UAV d ∈ D at each TS t ∈ T must be a value
in the range etd = [EMIN,EMAX] (corresponding to
constraint (7) of EMUC);

3) Ground site battery level constraint. The battery
level of each site s ∈ S ⊆ P at each TS t ∈ T must
be a value in the range bts = [BMIN

· NB
s ,B

MAX
· NB

s ]
(corresponding to constraint of (5) of EMUC);

4) Mission consistency constraint. The action of each
UAV d ∈ D at each TS t > 0 must be valid, i.e., a UAV
is able to perform an action (e.g., STAY, REC, MOV,
COV) only between admissible places. This condition
corresponds to the existence of an arc l ∈ Lwith t(l) =
(g(t−1)d , t − 1) and h(l) = (gtd , t), ∀t : t > 1 ∈ T in
the input graph of EMUC).

Finally, we stress the fact that both bts and e
t
d depend on the

procedure adopted to set the UAV actions, starting from the
initial population, and detailed in the following subsection.

C. INITIAL POPULATION AND GENETIC OPERATORS
As regards the setup of the GAUP-LS algorithm, we generate
suitable missions for the initial population by means of a

keep covering strategy. The principles behind this strategy
is to force the UAVs to consecutively cover the same area
during the largest possible number of TSs. Clearly, a UAV
da ∈ D has a maximum number of TSs, denoted with δCOVda
in Eq. (17), during which it is able to consecutively perform
coverage actions over the area a ∈ A:

δCOVda =

⌊EMAX −max{EMOV
a,si }

ECOV

⌋
; ∀si ∈ S (17)

where max{EMOV
a,si } is the maximum amount of energy con-

sumed by a UAV to reach the farthest site si ∈ S among
the available ones in order to be recharged in the next TS.
In addition, while a set of |A| UAVs covers the areas for
δCOVda consecutive TSs, another fleet of UAVs staying on the
sites will move to the closest areas in order to cover them
during the next δCOVda TSs. Eventually, when a UAV ends its
covering mission, it also moves to the closest site in order
to be recharged. This process is iteratively repeated for the
whole set of TSs.

In order to perform the evolution procedure, the genetic
algorithms apply biologically inspired operators (selection,
crossover, mutation) to the individuals in the population.
In the GAUP-LS, these parameters were empirically set
after performing different tests on the considered scenarios.
Regarding the selection procedure, three different functions
were tested: stochastic uniform, roulette wheel, and tour-
nament selection. In order to crossover selected parents to
create offspring that become part of the next generation, three
different methods were analyzed: one-point, two-point, and
uniform crossover. Finally, two additional mutation func-
tions were tested to make small changes in the individu-
als of the population and create mutation children, namely
Gaussian and uniform mutation. As a result of a set of
experiments over the Frascati scenario, the 3-tuple of type
geneticOperators = {selection, crossover,mutation} that
best fits the problem in terms of fitness function and com-
putation time was geneticOperators = {roulette_wheel,
one− point, uniform}. From such previous results, this
parameters setting is considered to be applied in our
scenarios.

Therefore, the set of individuals which survive and form
part of the next generation in the GAUP-LS algorithm is
selected by applying the classical roulette wheel criterion.
Moreover, the combination of individuals to generate off-
spring is performed by means of the single-point cross-over
function. Regarding the mutation process, a two-step uniform
mutation function is applied. First, a fraction of each indi-
vidual is selected for mutation. Every gene in this fraction
has a probability rate of being mutated. The second step is
to replace each selected gene by another valid value. The
application of selection, crossover and mutation operators is
repeated in each generation of the GAUP-LS algorithm.

Once genetic operators are applied at each generation,
a new population of chromosomes (i.e., the places visited by
the UAVs) is formed. Thus, each new chromosome represent-
ing a potential set of UAV missions over |T | TSs must first
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be checked in order to consider such solution as a valid one
(ψ parameter in (16) of Sec. VI-B). The mission consistency
constraint described in Sec. VI-B must be satisfied, as well
as the ones related to coverage and maximum and minimum
battery levels both on sites and on UAVs.

D. COMPLEXITY ANALYSIS
In the following, a complexity analysis of GAUP-LS is pro-
vided. Three variables must be considered for this analysis:
i) population size |M|, ii) chromosome length, denoted as
|cM | = |D| · |T |, and iii) number of generations θ required
by GAUP-LS to find the solution.

GAs complexity strongly depends on the fitness function to
be optimized and on the type of genetic operators selected for
crossover, offspring generation and genes mutation. In partic-
ular, the fitness function used by GAUP-LS during a partic-
ular generation, which is reported in eq. (16), takes O(|M| ·
|cM |) to complete the evaluation of the whole population,M.
Since the choice of individuals to generate offspring follows
the classical roulette wheel criterion, a complexity ofO(|M|)
is associated for the selection procedure. Finally, the process
of creating the new generation by means of crossover and
mutation operators also requires O(|M| · |cM |). Therefore,
the GAUP-LS resulting complexity is O(|M| · |cM | · θ ).

VII. DESCRIPTION OF THE SCENARIOS
We define a set of realistic scenarios to assess the perfor-
mance of EMUC, D-EMUC and GAUP-LS. We initially
detail one scenario located in Frascati (Italy). In the follow-
ing, we move our attention to a second scenario located in
Cáceres (Spain).

A. FRASCATI SCENARIO
We initially consider a rural territory in Frascati, a town in the
countryside of central Italy. Fig. 7(a) shows the aerial view
of the considered zone. Interestingly, the terrain under con-
sideration includes roads, fields, small houses, and buildings
having at most 3-4 floors. Thanks to the fact that there are not
tall obstacles (e.g., skyscrapers), this zone can be attractive
for the deployment of a UAV-based cellular architecture.
Fig. 7(b) reports the locations of the selected places, which
are spread over the Frascati territory. In order to select the
subset of installed sites over the set of places, we solve the
minimum cost design problem of [57]. We refer the reader
to [57] for the details. Fig. 7(c) reports the outcome in terms
of installed sites. In addition, the centers of the areas to
be covered and their boundaries (obtained through a simple
Voronoi tessellation) are also reported. In this case, a set S
of 3 sites and a set A of 8 areas are selected. Interestingly,
a center of an area may be co-located with a ground site.

Tab. 2 summarizes the setting of the parameters in this
scenario. More in depth, the solution of the problem of [57]
allows also to dimension each site in terms of number of
SPs and batteries, which are reported in the table. In addi-
tion, we have assumed a total number of UAVs much larger
than the number of areas. In this way, we (possibly) ensure

FIGURE 7. The Frascati scenario. (a) Aerial View (source: Google earth).
(b) Locations of the places (source: Google earth). (c) Locations of the
sites and the centers of the areas.

coverage over the territory in each TS, despite the fact that
each UAV may be recharged, moved to an area, or moved to
a site during a given TS.2 Moreover, the minimum BMIN and
maximum BMAX battery levels are set in accordance to [10].
We remark the fact that, while BMAX is fundamental to satisfy
the energy demand, the setting BMIN is important to reduce
as much as possible the detrimental effect of battery failure.

2The investigation of the impact of varying |D| is left for future work.
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TABLE 2. Parameters setting for the Frascati scenario.

FIGURE 8. SP energy production (E t
s [Wh]) - Frascati scenario.

In addition, the dimensioning of the number of SPs NSP
s

and the number of batteries NB
s , whose values are reported

in the table, is done by solving the dimensioning problem
of [57]. In particular, the dimensioning aims at minimizing
the total installation costs SPs and batteries, while taking into
consideration the areas to be served and the energy produced
by a single SP. Focusing on this last parameter, whose trend is
shown in Fig. 8, we consider historical SP production data of
Frascati from one day in June [58], which are obtained from
the PVWatts calculator. In this way, we take into account real-
istic data, which are based on theweather conditions observed
on the location for over 30 years. The resulting data are
then the average energy production of the SP over the month
under investigation. Clearly, the actual weather observed in
the location may include also bad weather conditions that
are different from the average trend. However, we point out
that these variations may be easily introduced in the model
of [57], and hence be reflected into a different set of batteries
deployed in each site. Moreover, we point out that the SP
energy production is also an input parameter of the problem
studied in this work.

Focusing then on the parameters related to the energy
consumption of the UAVs, we assume that each UAV can be

FIGURE 9. EMOV
p1,p2

∀p1 ∈ P,p2 ∈ P [Wh] (NOTE: Cells with value ‘‘NO’’

denote place pairs not connected with an LMOV arc) - Frascati scenario.

charged up to EMAX
= 1000 [Wh]. Moreover, we assume

that the UAV energy can be decreased up to a minimum
value EMIN

= 100 [Wh]. In this way, each UAV has an
amount of energy sufficiently high to safely land on a site
upon an emergency and/or badweather condition. In addition,
Fig. 9 reports the energy values of the LMOV arcs. Intuitively,
we have set EMOV

p1,p2 ∀p1 ∈ P, p2 ∈ P by considering
an amount of consumed energy proportional to the distance
between p1 and p2. However, an arc is included only if
the distance between p1 and p2 is lower than a maximum
value, which is set equal to 900 [m]. In this way, for exam-
ple, the distance between a site and the UAV serving an
area can guarantee an adequate Signal To Interference plus
Noise Ratio (SINR) for the backhaul radio link established
between the site and the UAV.3 Moreover, the value set for
the maximum distance and the considered TS duration allow
the UAV coming back to the ground site in one TS, which
would be not always feasible (due to energy limitations and/or
speed constraints) with larger distances and/or shorter TSs.
Consequently, the LMOV graph is not a full mesh (see the
yellow cells of Fig. 9, corresponding to the ‘‘NO’’ label in the
colorbar of the figure). In addition, there are places p1 and p2
with EMOV

p1,p2 = 0 [Wh], corresponding to: i) same areas or
same sites pairs, or ii) area-site pairs which are co-located,
and hence not consuming energy values for moving the UAVs
between them (see e.g, the S10-A10 pair).

B. CÁCERES SCENARIO
In the following, we move our attention to the definition
of a large-scale scenario located in Cáceres (Spain). The
selected territory, spanning over an area 1,750m2, is reported
in Fig. 1(a) (aerial view) and Fig. 10(b) (top view with place
locations). Similarly to the Frascati scenario, we solve the
minimum cost problem of [57] to retrieve the set of places,
as well as the number of installed SPs and batteries. The
resulting outcome is shown in Fig. 10(c) and in Tab. 3, while

3A more detailed evaluation of this aspect is left for future work.
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FIGURE 10. The Cáceres scenario. (a) Aerial view (source: Google earth).
(b) Locations of the places (source: Google earth). (c) Locations of the
sites and the centers of the areas.

Fig. 11 reports the SP energy during the month under consid-
eration (i.e., June). As a result, we have |A| = 184 areas and
|S| = 56 sites.
Focusing on the values of UAV energy needed to move

between places (EMOV
p1,p2 ), we adopt a similar procedure to the

Frascati scenario. The resulting values of EMOV
p1,p2 are reported

in Fig. 12. Finally, we keep the same value as in the Frascati
scenario for what concerns BMIN, BMAX, EMIN, EMAX.

TABLE 3. Parameters setting for the Cáceres scenario.

FIGURE 11. SP energy production (E t
s [Wh] (Cáceres scenario).

VIII. RESULTS
We have implemented the EMU and D-EMUC in
Cplex 12.7.1. Both the models are run on a high performance
computing cluster, composed of four nodes, each of them
with 32 cores and 64 GB of RAM. On the other hand, the
GAUP-LS algorithm is coded in Matlab and run on a dual-
core Intel-based machine at 3.1 GHz with 16 GB of RAM.

A. EVALUATION OF THE FRASCATI SCENARIO
We initially run EMUC, D-EMUC and GAUP-LS on the
Frascati scenario. Focusing on the input parameters used to
tune our algorithms, we assume a variation of α ∈ {0.01, 0.1,
1, 10, 100} to weigh differently the ground sites and the
UAVs battery levels. In addition, we always set very large
values of the penalty weight γ , in order to ensure that even
a single area not covered during a single TS has an impact
on the objective function. Specifically, we set γ = 105 when
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TABLE 4. Breakdown of the results from the Frascati scenario.

FIGURE 12. EMOV
p1,p2

∀p1 ∈ P,p2 ∈ P [Wh] (NOTE: Cells with value ‘‘NO’’

denote place pairs not connected with an LMOV arc) - Cáceres scenario
(figure best viewed on screen).

α = {0.01, 0.1, 1} and γ = 106 when α = {10, 100}. For
what concerns the EMUC formulation, we set a maximum
time limit of 18000 [s]. In case the computation is still running
after this amount of time, we get the best solution retrieved
so far. Focusing on the D-EMUC parameters, we assume a
spatial decomposition over the three sites installed in this
scenario.Moreover, a temporal decomposition of 6 sets of TS,
each of them lasting for 4 hours, is assumed.

Since GAs are evolutionary metaheuristic algorithms,
a (near) optimal solution is found after the execution of a
set of iterations (generations). Generally, the quality of the
solution is improved if the maximum number of generations
to be set in the GA is increased. Another parameter to be
tuned for improving such solution quality is the population
size. However, if a big search space is considered, a penalty in
the computation timemust also be paid. Therefore, in order to
set GAUP-LS parameters, we previously analyze the impact
of varying the population size, |M |. Fig. 13 reports the con-
vergence of GAUP-LS for different |M | when α = 0.01.
Remarkably, when using the setting |M | = 20, GAUP-LS

FIGURE 13. GAUP-LS convergence as a function of the population
size, |M|. - Frascati scenario.

converges faster (around generation 40) than in the case
where larger populations are considered. Moreover, as shown
in Tab. 4, the computation time required to find the solu-
tion is reduced in comparison with EMUC and D-EMUC,
while the optimality gap paid is negligible once the algorithm
converges.

As a result of this analysis, we set a population size of
|M | = 20 individuals, a maximum number of θMAX =

100 · |cM | generations, and a maximum number of τ = 50
consecutive generations without improvement in the value of
the fitness function (i.e., the average relative change in the
best fitness function value over τ consecutive generations is
less than or equal to a minimum value). Moreover, the type of
mission defined for each UAV in the population follows the
keep covering strategy described in Sec. VI.

Tab. 4 reports the breakdown of the results from the
Frascati scenario, which are obtained by varying the α param-
eter. We report the total value of the objective function,
as well as its main components, in terms of: i) total ground
sites battery level

∑
s∈S

∑
t∈T bts, ii) total UAVs battery level∑

s∈S
∑

t∈T ets. Focusing on the ground sites battery levels,
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the table reports upper and lower bounds, which are computed
as
∑

s∈S N
B
s ·B

MAX and
∑

s∈S N
B
s ·B

MIN, respectively. More-
over, we report upper and lower bounds for the UAVs battery
levels, which are computed as |D| · EMAX and |D| · EMIN,
respectively. In addition, the table includes the computation
time (for D-EMUC it is defined as the summation of the
computation time for all slots and all clusters considering a
specific value of parameter α), as well as the percentage of the
TSs during which an area is not covered by any UAV, which

is computed as:
∑

p∈A
∑

t∈T
stp
|A|·|T | .

Several considerations emerge from Tab. 4. First, the total
values of the objective function tend to increase with α
(as expected), due to the fact that this termmultiples theUAVs
battery level. Focusing then on the single terms of the objec-
tive function, we can see that, when α is increased, the battery
level of the ground sites is reduced. This outcome suggests
that, when the UAVs battery level becomes the predominant
term, the best choice is to transfer the energy from the ground
sites to the UAVs, in order to maximize their battery level.
Clearly, the UAVs battery level tends to have a specular trend
compared to the ground site battery level.

We then continue our analysis of Tab. 4 by comparing
the outcomes of the different algorithms. Both D-EMUC
and GAUP-LS perform very close to EMUC in terms of
total objective function, ground sites battery level, and UAVs
battery level for values of α < 100. Interestingly, all the
algorithms are pretty close to the upper bound of the total
battery level of the ground sites. This is due the fact that our
algorithms are able to efficiently exploit the SP energy to
recharge the UAVs, while allowing an high amount of energy
being stored in the battery of the site. Moreover, the UAVs
battery level is clearly lower than the upper bound. This is
due to the fact that the UAVs are used to cover portions of
the territory, and hence during their missions they tend to
deplete their batteries. Nevertheless, we can note that the
UAVs battery level is strongly higher than the minimum one.

Focusing on the computation times of the different algo-
rithms, both D-EMUC and GAUP-LS are able to retrieve a
solution in few seconds at most, while EMUC strongly suffers
from the complexity of the scenario, resulting in computation
times of several hours. For this formulation, in fact, we have
set a time limit of 5 [hours], and after this amount of time
the best solution available so far has been retrieved. The
percentage gap associated with the best obtained solution is
about 5.5% for α ∈ {0.01, 0.1, 1} and it increases for higher
values of α assuming respectively a value of 23.12% for
α = 10 and 36.73% for α = 100. This poses challenges
about the adoption of EMUC in a real deployment, where
the management of the UAVs has to be performed in short
time scales. On the contrary, both D-EMUC and GAUP-LS
appear to be good candidates in this context. Observing the
percentage of TSs inwhich an area is not covered by anyUAV,
we can note that this is equal to 0 with the exception of the
solution provided by EMUC for α = 1. However, we have
to take into account that this solution is not an optimal one

FIGURE 14. Objective function of D-EMUC and GAUP-LS vs. α - Cáceres
scenario.

but just the best one found within the time limit, hence, it is a
case in which the solution found leaves a not covered area in
a certain TS.

In the following, we concentrate our attention on the dif-
ferences between the algorithms when α = 100. Both EMUC
and D-EMUC tend to perform better compared to GAUP-LS
in terms of total objective function and UAVs battery level.
By further investigating this issue, we have found that the
percentage of not covered TSs is not negligible for EMUC
andD-EMUCwhen α = 100. In this case, in fact, keeping the
UAVs fully recharged and not using them for territory cover-
age becomes an attractive choice, despite the relatively high
penalty for not covering the areas. Moreover, we point out
that GAUP-LS always ensure full coverage of the territory,
resulting in a lower UAVs battery level compared to EMUC
and D-EMUC.

B. EVALUATION OF THE CÁCERES SCENARIO
We then run our algorithms on the Cáceres scenario. In this
case, the EMUC formulation is too challenging to be solved,
mainly due to the large number of sites and areas (much larger
than the Frascati scenario). Therefore, we concentrate our
attention on D-EMUC and GAUP-LS, which are designed to
tackle large problem instances. Similarly to the Frascati sce-
nario, we consider a variation of α ∈ [0.01, 100]. Moreover,
we set the following parameters for D-EMUC: i) a penalty
γ = 105 when α = {0.01, 0.1, 1, 5} and γ = 106 when
α = {10, 100} (as in the Frascati scenario), ii) a spatial
decomposition over the 56 ground sites characterizing this
scenario and iii) a temporal decomposition of 6 sets of TS,
each of them lasting for 4 hours. As in the case of the Frascati
scenario, we set |M | = 20, θMAX = 100 · |cM |, and τ = 50
for GAUP-LS, where the keep covering strategy is again used
for UAVs missions in the initial population.

Fig. 14 reports the values of the objective function of
D-EMUC and GAUP-LS. Also in this case, when α is
increased, the total objective function tends to increase too.
Compared to the Frascati scenario, the values of the objective
function are almost two order of magnitude higher, due to the
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FIGURE 15. Battery levels of ground sites and UAVs vs. α - Cáceres
scenario.

FIGURE 16.
∑

l El f d
l components for the different algorithms vs.

α - Cáceres scenario.

increase in the number of sites as well as in the total number
of UAVs.

In the following, we investigate the variation of the
total battery levels for the ground sites and for the UAVs,
as reported in Fig. 15. Interestingly, both the algorithms reveal
a similar trend: when α is increased, the UAVs battery level
tends to increase, while the ground sites battery level tends
to decrease. However, we can note that D-EMUC tends to be
more efficient than GAUP-LS, since the battery levels (for
both UAVs and ground sites) are constantly higher for the
former compared to the latter. This is due to the fact that
D-EMUC applies a divide et impera approach, by splitting the
original problem into smaller ones, and by optimally solving
each subproblem. However, we stress the fact that GAUP-LS
is always pretty close to D-EMUC.

In the next part, we shed light on the different components
affecting the UAVs battery level etd . We recall that etd is
computed from Eq. (6), by also ensuring that the resulting
battery level is kept between minimum and maximum values
through Eq. (7). By extending this metric to the whole set
of TSs and UAVs, the different components of the total
UAVs battery level are the following ones: i) total energy
from COV actions

∑
d
∑

l∈LCOV El · f dl , ii) total energy for
MOV actions

∑
d
∑

l∈LMOV El · f dl and iii) total energy for
REC actions

∑
d
∑

l∈LREC El · f dl . The three components
are reported in Fig. 16 for D-EMUC and GAUP-LS vs. α.

FIGURE 17. UAVs mission duration as a function of α.

Interestingly, the largest amount of energy is due to UAVs
recharging. However, the energy due to area coverage is also
not negligible. Finally, the energy due to moving is lower
compared to the previous two terms. This outcome suggests
that, when the UAVs are used, they frequently cover the
areas, while they tend to spend less energy in moving actions
(possibly to themoving from a site to an area, and vice-versa).
In addition, we can note that the total energy due to recharge
tends to increase when α is increased. This results is expected,
as maximizing the UAVs battery level is the predominant
objective for large values of α. In addition, we can note that
the energy due to coverage actions is decreased for D-EMUC
when α ∈ {10, 100}. By further investigating this issue,
we have found that, in these cases, the percentage of not
covered TSs is close to 10%, thus revealing that not all the
areas are covered for the whole set of TSs. Finally, we also
stress the fact that the term

∑
d
∑

l∈LREC El · f dl is a potential
amount of energy injected to the UAVs. Thanks to Eq. (7),
in fact, the UAV battery level etd is saturated to EMAX.

We then move our attention to the duration of the missions
performed by the UAVs. More in depth, we define a mission
as the number of TSs between two REC actions. Therefore,
a mission can be a sequence of MOV, COV, REC and STAY
actions. Fig. 17 reports the durations of the UAVs missions
(in terms of TSs) for D-EMUC and GAUP-LS vs. α. The
figure reports minimum, average, and maximum mission
durations. Interestingly, we can note that the average mission
duration is in the order of different TSs, thus suggesting
that the UAV battery does not need to be recharged very
frequently. However, the mission durations tends to decrease
when α ∈ {10, 100}. In this case, in fact, the problem tends
to pursue the maximization of the UAV battery level, thus
shortening the mission duration to guarantee high battery
levels. Moreover, we can note that the minimum and maxi-
mum mission durations tend to the average one when α ∈
{10, 100}, thus suggesting that the variability in the missions
is also reduced, i.e., all UAVs tend to perform similar (short)
missions. Finally, by comparing the GAUP-LS and D-EMUC
trends, we can note that the average mission duration is
pretty similar across the two algorithms. However, GAUP-LS
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TABLE 5. Computation time of D-EMUC and GAUP-LS.

enforces maximum and minimum mission duration closer to
the average compared to D-EMUC.

In the last part of our work, we have compared D-EMUC
and GAUP-LS in terms of computation time, as reported in
Tab. 5. Interestingly, both the algorithms are able to retrieve
a solution in a reasonable short amount of time. Moreover,
we stress the fact that the D-EMUC time is computed by
sequentially solving the different subproblems, and that this
time may be further reduced by running in parallel the tem-
poral decomposition for each site and each set of areas As
retrieved during the spatial decomposition.

IX. DISCUSSION
We then discuss two main issues that may impact the pre-
sented results, namely: i) the introduction of wireless channel
features, and ii) the consideration of battery ageing effects.

A. IMPACT OF WIRELESS CHANNEL CHARACTERISTICS
The features of the wireless channel are left outside the
formulations and the algorithms. This is due to the fact that
our primary goal is to study the impact on the battery levels
of the ground sites and the UAVs as a consequence of the
scheduling of the UAVs missions. Integrating the wireless
channel characteristics, e.g., to ensure a minimum rate to
users, would require to add the users in the formulations and
the algorithms, thus dramatically complicating the considered
problem. For example, Wu et al. [59] focus on the joint-
aware trajectory and communication design in a UAV-based
architecture. The considered model is a mixed-integer non-
convex problem,which is solved in scenarioswith atmost two
UAVs and one BS by means of an approximated technique.
In addition, the impact on the UAV battery levels and the
ground site battery level is not taken into account at all
by [59]. Moreover, the scenarios considered in this work are
1-2 orders of magnitude larger than [59].

We also point out that our architecture is conceived to
be applied in rural areas, where the connectivity is mainly
provided by the UAVs. Hence, the primary goal is coverage,
which is ensured when the UAV reaches the central location
of an area. In this position, we assume that the channel
characteristics are the best ones, i.e., short distance to users,
Line-of-Sight conditions, and minimum interference with the
neighboring UAVs.

Finally, focusing on bandwidth allocation, we assume that
each UAV realizes a small cell. Therefore, a bandwidth
of 5 [Mhz] can be assumed. Clearly, in case a single frequency
is assumed for the UAVs, the set of areas, which is an input to
our problem, should be built in such a way to limit the effect
of interference among neighboring UAVs.

B. IMPACT OF BATTERY AGEING EFFECTS
In our work, we have assumed that the batteries of ground
sites and of the UAVs are recharged and discharged over time.
In the long-term, this operation may introduce ageing effects
on the batteries, in terms e.g., of capacity degradation and life-
time. We then provide in the following some insights about
this aspect, by drawing also some possible future research
directions.

Focusing on the ground sites, we have assumed the
exploitation of lead acid batteries. In this case, we always
guarantee a minimum battery charge of 30% to ensure that
the battery is kept in a healthy condition [10]. This set-
ting should also prevent (up to a certain level), the ageing
effects. Focusing instead on the UAVs, we have assumed
lithium-based batteries. In this case, the ageing effects are
strongly impacting the features of the battery. For example,
Tröltzsch et al. in [60] reports a decrease in the battery
capacity equal to 14% after some hundreds of cycles of
discharge/charge. Moreover, the battery lifetime is limited
to a maximum number of recharge/discharge cycles [61].
In our case, therefore, the capacity of the battery, and also
its lifetime, may be influenced by the amount of REC actions
performed by the UAVs. Both these features can be easily
added to our model, as shown in the following.

Let us introduce the integer variables ctd , which store the
number of REC actions for UAV d up to the current TS t . For
a generic TS t , ctd is computed as:

ctd = ct−1d +

∑
l∈LREC

:
t(l)=(∗,t−1)
h(l)=(∗,t)

f dl , ∀d ∈ D, t > 1 ∈ T (18)

Let us denote with C IN
d the number of recharging actions

that the UAV d has done in the past (from its first usage up
to the initial TS of the current simulation). More formally,
we have:

c1d = C IN
d , ∀d ∈ D (19)

Let us denote now with EMAX(ctd ) the maximum level of
energy for UAV d at TS t after ctd transitions. The new energy
bounds for the UAV are computed as:

EMIN
≤ etd ≤ E

MAX(ctd ), ∀d ∈ D, t ∈ T (20)

Moreover, we need to include the binary variable ytd , which
is equal to 0 when c(t−1)d reaches a maximum number of
transitions CMAX

d , 1 otherwise. When this condition holds,
the UAV d cannot be used any more, since it has reached its
end of lifetime. More formally, we have:

ytd ≤ (CMAX
− c(t−1)d ), ∀d ∈ D, t ∈ T (21)

When ytd is 0, then all the MOV, REC and COV arcs are
prevented for the current UAV (i.e., the UAV can be only in a
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STAY state). More formally, we have:

f dl ≤ ytd , ∀l ∈ LMOV
∪ LREC

∪ LCOV
:

t(l) = (∗, t − 1), h(l) = (∗, t), d ∈ D, t ∈ T (22)

Summarizing, we have introduced the ageing effect of
capacity degradation in Eq. (20), the maximum number
of REC actions in Eq. (21) and the auxiliary constraints of
Eq. (18), Eq. (19), Eq. (22).

We then define the overall EMUC-AGE model by intro-
ducing in the EMUC one constraints (18)-(22). We then
test EMUC-AGE over a simple, yet representative, example.
More in detail, we consider the Frascati scenario with ageing
parameters: C IN

d = 228 ∀d ∈ D, CMAX
d = 230 ∀d ∈ D,

EMAX(ctd ) = 986 [Wh] (we assume a 14% of battery degra-
dation in accordance to [60]). In this way, we test our problem
in an extreme case, where all the UAVs have almost reached
their end of lifetime. We then run the EMUC-AGE problem
with α = 1 and we retrieve a total objective function equal
to 2.74 · 106 and 62.5% of not covered TSs. Both these
metrics are clearly lower compared to the results obtained
by EMUC in Tab. 4. This suggests that the ageing effects
have an impact on the UAVs battery and consequently on
the results. The evaluation of more detailed ageing models,
including e.g., more complex interactions among the battery
components and/or the physical properties, is an interesting
aspect that is left for future work.

X. CONCLUSIONS AND FUTURE WORK
We have targeted the problem of jointly managing the battery
levels of UAVs and ground sites in a cellular network powered
by renewable energy sources. After formulating the EMUC
problem, we have designed the D-EMUC and GAUP-LS
algorithms to solve even large instances composed of dozens
of sites and hundreds of areas. We have then built a set of
representative case-studies, including a small scenario from
Italy and a large one from Spain. Results demonstrate that
both D-EMUC and GAUP-LS perform sufficiently close to
EMUC, with a clear improvement in terms of computation
times. In addition, we have investigated the trade-off between
maximizing the UAVs battery level and maximizing the
ground sites battery level, by showing also its impact in terms
of coverage, energy components and UAVs mission duration.

We believe that this work is a first step towards amore com-
prehensive approach. To this aim, the control issues related
to the communication aspects between the UAVs and the
machine running the problem have to be faced as future work.
In addition, another interesting topic is the modeling of the
throughput provided to users, and how this term can be intro-
duced in our problem. Eventually, the throughput constraints
on the link of backhauling between the UAV and the ground
site require a further study. Moreover, we will consider the
impact of introducing different sources of energy, such as
wind and geo-thermal ones. Further research will be also
dedicated to study new different mathematical programming
models and decomposition techniques or ad hoc optimal

solution procedures (e.g., Branch&Bound). Finally, we plan
to evaluate the impact of detailed ageing models for the
batteries.
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