1	Long-term physiological and morphological acclimation by the evergreen shrub Buxus
2	sempervirens L. to understory and canopy gap light intensities
3	
4	Matthew G. Letts ^{1*§} , Jesús Rodríguez-Calcerrada ^{2§} , Victor Rolo ^{2,3} and Serge Rambal ²
5	
6	¹ Department of Geography, Alberta Water and Environmental Science Building, University
7	of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4
8	
9	² Centre d'Écologie Fonctionnelle et Evolutive, Centre National de la Recherche Scientifique
10	(CEFE-CNRS), 1919 Route de Mende, Montpellier 34293, France
11	
12	³ Permanent address: Departamento de Producción Vegetal, Ecología y Ciencias de la Tierra,
13	Universidad de Extremadura, Plasencia 10600, Spain
14	
15	
16	* Corresponding author: matthew.letts@uleth.ca, Tel: 1-(403)-317-2842, Fax: 1-(403)-332-
17	4039
18	
19	[§] The two lead authors contributed equally to this manuscript.
20	

21 Abstract

22	Physiological and morphological plasticity are essential for growth and reproduction in
23	contrasting light environments. In dry forest ecosystems, light generalists must also cope
24	with the trade-offs involved in synchronous acclimation to light availability and drought. To
25	understand how the broadleaf evergreen tree-shrub Buxus sempervirens L. (common box)
26	inhabits both understory and successional terrain of Mediterranean forest, we measured
27	photosynthesis-fluorescence light response, morphological traits and architectural
28	characteristics across a light gradient. Our results show that <i>B. sempervirens</i> exhibits stress
29	resistance syndrome, with little change in net photosynthesis rate across a light availability
30	gradient, due to compensatory physiological and morphological acclimation. Light energy
31	processing and dissipation potential were highest in leaves of well-illuminated plants, with
32	higher electron transport rate, fraction of open Photosystem II reaction centres, non-
33	photochemical quenching, photorespiration and dark respiration. By contrast, traits reducing
34	light capture efficiency were observed in high light shrubs, including higher leaf mass per unit
35	area, leaf clumping, leaf inclination and branch inclination. We suggest that both
36	physiological and morphological plasticity are required for <i>B. sempervirens</i> to survive across
37	a light gradient in a dry forest ecosystem, while exhibiting homeostasis in photosynthetic gas-
38	exchange. We further speculate that the low growth rate of <i>B. sempervirens</i> is effective in full
39	sun only due to a lack of competition in low resource microsites.
40	

- 41 Key words: chlorophyll fluorescence, irradiance, leaf economics spectrum, phenotypic
- 42 plasticity, self-shading, stable carbon isotope
- 43

44 Introduction

45 Distinct physiological and morphological traits have evolved among plant species in 46 understory and full sun environments. These traits represent the net effect of natural selection 47 in response to a range of environmental stressors, in balance with the need to facilitate 48 adequate carbon gain in low light and to avoid photoinhibition in full sun. At the leaf scale, 49 understory species have evolved low light compensation points (Walters and Reich 1996; 50 Craine and Reich 2005), carboxylation efficiency (Givnish et al. 2004) and leaf nitrogen 51 content per unit area (Sack et al. 2003), resulting in a tendency for reduced dark respiration 52 rates (R_d) , but also lower net photosynthesis rates at light saturation (A_{max}) . By contrast, high 53 light specialists exhibit high electron transport rates (Rodríguez-Calcerrada et al. 2007), leaf 54 nitrogen content per unit area (Gratani et al. 2006) and A_{max} , but also high R_d . To cope with 55 the stresses associated with strong irradiance, including photoinhibition and desiccation, high 56 light specialists also show higher leaf inclination angles, leaf clumping and turnover rates than 57 shade specialists (Valladares and Niinemets 2008), at the expense of light interception 58 efficiency (Falster and Westoby 2003) and leaf lifespan (Hikosaka 2003). Because of the 59 opposing benefits of sun and shade plant adaptations, species that exhibit rapid growth rates 60 in full sun generally show low understory survivorship (Kobe et al. 1995). Hence, species 61 that grow, compete and reproduce effectively in both sun and shade environments must 62 exhibit phenotypic plasticity in physiological or morphological characteristics related to light 63 harvesting and use. In this study, we measure the physiological and morphological 64 acclimation of the slow-growing, broadleaf evergreen tree-shrub Buxus sempervirens to 65 understory, canopy gap and full sun light regimes. 66 Phenotypic plasticity in response to contrasting irradiance

Within individual species, phenotypic plasticity is required for growth, reproductionand survival in distinct irradiance regimes.. This entails orchestrated changes at the whole-

69	plant level that help to maintain a balance between light energy harvesting and use. Plants that
70	grow in full sun reduce investment in nitrogen for leaf chlorophyll, but increase the
71	production of pigments involved in photoprotection, including xanthophylls (Bilger and
72	Bjorkman 1990; Demmig-Adams 1990; Galmés et al. 2007; Matsubara et al. 2009). Under
73	long-term exposure to high irradiance, carbon allocation is directed toward high leaf dry mass
74	per unit area (LMA; Lusk et al. 2008; Poorter et al. 2009; Coste et al. 2010), dense branching
75	and leaf clumping (Ali and Kikuzawa 2005). Leaf inclination also tends to increase, resulting
76	in lower radiation interception per unit leaf area when solar zenith angles are small (Falster
77	and Westoby 2003). These architectural and biochemical adjustments help to prevent
78	photoinhibition, by reducing light capture efficiency (Kern et al. 2004), defined broadly as the
79	ability of leaves to intercept a high amount of radiation per unit carbon allocation at the
80	branch scale. When light absorption still exceeds the capacity of chloroplasts to process light
81	energy, permanent photoinhibition of Photosystem II (PSII) is mitigated through
82	photorespiration (Krömer 1995), mitochondrial respiration (Padmasree et al. 2002) and non-
83	photochemical quenching of chlorophyll fluorescence (Ort 2001; Coopman et al. 2010).
84	Species that grow and reproduce successfully in both low and high light sites often
85	exhibit high phenotypic plasticity (Valladares et al. 2002; Matos et al. 2009). Light plasticity
86	is thought to be related to plant form and function (Valladares and Niinemets 2008), but
87	similar plasticity of leaf traits has been observed in co-occurring tropical evergreens differing
88	in successional status and LMA (Coste et al. 2010). Physiological plasticity tends to be
89	higher in species tolerant of high light, while higher morphological plasticity has been
90	observed in certain shade-tolerant species at the leaf (Feng et al. 2004), shoot (He and Dong
91	2003) and whole-plant scales (Kitajima 1994).
92	Light plasticity is also affected by resource availability, with lower plasticity observed

93 where plants are exposed to drought stress or low nutrient availability (Chapin 1993). In

94	resource-rich environments, plasticity might be enhanced by selective pressures favouring
95	high photosynthetic capacity and other traits that facilitate rapid growth under strong
96	irradiance. Conversely, in environments constrained by limiting resources, stress adaptation
97	may reduce the potential for plasticity in response to environmental heterogeneity (Lortie and
98	Aarssen 1996). For example, in drought-prone regions, enhanced photoprotection and
99	reduced light capture efficiency are essential for evergreen species to tolerate periods of low
100	moisture availability. Consequently, low plasticity to light was observed in the Mediterranean
101	evergreen oak Quercus ilex L. (Valladares et al. 2000a), and in European holly (Ilex
102	aquifolium L.; Valladares et al. 2005; Aranda et al. 2008), reflecting its conservative resource-
103	use strategy.
104	Assessment of long-term light acclimation
105	Physiological and morphological acclimation to environmental conditions occurs at
106	varying time scales (Külheim et al. 2002; Schurr et al. 2006; Rodríguez-Calcerrada et al.
107	2008a). Photosynthetic gas exchange characteristics, including stomatal conductance to water
108	vapour (g_s) , transpiration (E) and A_{max} , rapidly respond to changes in light intensity,
109	temperature, vapour pressure deficit (VPD) and leaf water potential (ψ_L), but can also
110	acclimate to distinct environmental conditions more slowly, as a result of long-term changes
111	in LMA and leaf chemistry (Brooks et al. 1996). In response to contrasting light availability,
112	changes in photosynthetic capacity occur over periods of several days or weeks in woody
113	plants, due to gradual adjustments of maximum electron transport rate (ETR _{max}) and
114	maximum rate of Rubisco-mediated carboxylation (V_{cmax}), which increase with light
115	availability (Frak et al. 2001). Changes in branch morphology develop over a period of years,
116	while differences in leaf morphology occur within a single growth season. Unfavourable
117	growth conditions, including soil moisture stress, can cause large changes in rapidly
118	responding variables that can mask long-term light acclimation. To isolate long-term

110		
119	physiological acclimatory responses to contrasting light regimes in a field setting, it is, thus,	
120	important to assess differences in fully-developed leaves and under optimal growth	
121	conditions, including moderate temperature, high soil moisture availability, similar ψ_L and	
122	controlled leaf chamber conditions. Inevitably, long-term acclimatory responses to	
123	understory and canopy gap light regimes will also reflect slow acclimatory responses to other	
124	abiotic and biotic conditions that might differ between these contrasting environments, such	
125	as drought stress, herbivory and competition. Therefore, any long-term morphological and	
126	physiological differences observed between contrasting light regimes must be interpreted	
127	within a broader ecological context, as a net response to multiple environmental stressors	
128	representative of understory and canopy gap sites.	
129	The common box: Buxus sempervirens L.	
130	Buxus sempervirens L. is a broadleaf evergreen tree-shrub, prevalent throughout warm	
131	temperate and northern Mediterranean climates of Europe (Quézel and Médail 2003). It is	
132	found in both the evergreen and deciduous forest understory, in canopy gaps, and in low-	
133	shrub secondary successional areas with full sunlight. Previous research on B. sempervirens	
134	in deciduous forest regions of northern Spain has demonstrated higher chlorophyll content,	
135	but lower antioxidant and photoprotective mechanisms in understory specimens (Hormaetxe	
136	et al. 2005, 2007), including lower ratios of xanthophyll cycle to chlorophyll pigments	
137	(García-Plazaola et al. 2008). These results demonstrate specific mechanisms of	
138	physiological adjustment to light conditions. However, little is known regarding the impact	
139	of long-term acclimation to distinct light regimes on photosynthetic gas-exchange or	
140	morphological characteristics, including LMA, leaf inclination angle and leaf clumping.	
141	Objectives and hypotheses	
142	In this study, photosynthetic gas-exchange, chlorophyll fluorescence and	

143 morphological characteristics are measured along a light gradient in *B. sempervirens*, to

144	develop greater insight into the physiological and morphological acclimatory changes that
145	enable the growth and reproduction of a sclerophyllous evergreen shrub in contrasting light
146	regimes. Given the shade tolerance, drought tolerance and high leaf longevity of <i>B</i> .
147	sempervirens (García-Plazaola et al. 2008), we hypothesized that this shrub would exhibit
148	only modest physiological acclimation to differences in light availability, including higher
149	$A_{\rm max}$, dark respiration rate ($R_{\rm d}$), maximum quantum yield of Photosystem II ($F_{\rm v}/F_{\rm m}$) and
150	electron transport rate (ETR_{max}) in shrubs of full sun environments. We further anticipated
151	that morphological acclimation to understory, gap and full sun light regimes would exhibit
152	greater plasticity than physiological acclimation, with full sun shrubs exhibiting higher LMA,
153	self-shading and leaf inclination angles.
154	Materials and methods
155	Site description
156	The study was carried out at the Puéchabon Experimental Site, a forested plateau, located 35
157	km north-west of Montpellier, Hérault, France (3°35'45"E, 43°44'29"N, 270 m.a.s.l.). The
158	site was managed as a coppice for centuries, but has not been logged since 1942. The forest is
159	dominated by Quercus ilex L., which provides a partially-closed canopy of about 5.5 m in
160	height, but the forest is also interspersed with canopy gaps of variable size. The tree-shrub B.
161	sempervirens is the most common woody plant in the understory and in open areas, achieving
162	heights of up to three metres. Soils at Puéchabon contain a very high stone fraction,
163	composed primarily of Jurassic limestones. Mean volumetric stone fraction within 50 cm of
164	the surface is 0.75, increasing to 0.90 at greater depths (Rambal et al. 2003).
165	Mean annual temperature at Puéchabon was 13.2°C during the period from 1984 –
166	2009, ranging seasonally from 5.5°C in January to 22.9°C in July. Mean annual precipitation
167	was 907 mm, with 80% occurring between September and April (Misson et al. 2010).
168	Meteorological data were obtained from April 18 to May 25, using a weather station located

169	in a large forest gap (Allard et al. 2008). Predawn leaf water potential (ψ_L) was measured
170	with a pressure chamber (PMS 1000, PMS Instruments, Corvallis, Oregon, USA) on May 19,
171	2010, to coincide with the photosynthesis-fluorescence measurement period (May 7 - May
172	25). Soil water content was determined at $0 - 15$ cm, with a time-domain reflectometry
173	(TDR) probe (MiniTrase 6050X3K1B, Soil Moisture Equipment Corp., USA) on April 27
174	and May 18, 2010.
175	Plant sampling and light treatment design
176	Thirty-three mature B. sempervirens shrubs were chosen for morphological,
177	physiological and radiation regime analysis along a light gradient. All shrubs were apparently
178	healthy and at least 1.5 m in height. Mean stem diameter of the study specimens was 4.39 cm,
179	with no significant difference along the light gradient. To obtain a complete and continuous
180	light gradient, 21 plants were selected from three 140 m ² forest understory plots in variable
181	light conditions, while six plants were chosen from two large gaps with full sun exposure and
182	six plants were sampled from a small canopy gap with intermediate light conditions. The
183	understory plots contain inverted PVC gutters, because they also serve as a control plot in an
184	ongoing drought acclimation experiment. The gutters have no effect on soil moisture
185	(Limousin et al. 2010), but provide additional shading. We chose 9 of 21 understory branches
186	below the gutters to expand the lower end of the light intensity range. Plants in full sun
187	exhibited new (2010) growth in most branches, but many understory branches were devoid of
188	new shoots with growth (see Results). To ensure an adequate sample of 2010 leaves for
189	morphological analyses, we restricted our branch selection to those containing at least one
190	shoot with new growth. Sampled leaves and branches were selected exclusively from the
191	outer crown of individuals. To ensure long-term acclimation to the contrasting light regimes
192	of understory and canopy gap environments, all measurements were made on previous-year
193	leaves (second growth unit) from branches with new growth. Current-year leaves were not

194	studied, because they had not fully developed. While this selection scheme was designed to
195	reduce ontogenetic effects resulting from differential leaf age, it is possible that not all <i>B</i> .
196	sempervirens leaves flushed in spring, and that not all branches flushed each year.
197	Relationships between light availability and leaf physiological and morphological traits must,
198	therefore, be considered with regard to the possibility that some leaves may have developed in
199	seasons differing in abiotic conditions, including light and drought intensity.
200	To assess light availability, we calculated percent above-canopy photosynthetic photon
201	flux density (% PPFD) during completely overcast periods on April 18 and 20, 2010.
202	Measurements were taken with an LI-250 Light Meter (LI-COR Biosciences, Lincoln, NB,
203	USA) at the site of leaf photosynthesis measurements and compared to above-canopy values
204	obtained above a permanent canopy walk platform. The instantaneous percent above-canopy
205	PPFD method effectively estimates light levels in understory environments beneath
206	continuous canopies (Machado and Reich 1999). For the discontinuous canopy of
207	Puéchabon, we caution that this method does not account for the timing and duration of light
208	flecks, which can also impact the light acclimation response.
209	Photosynthesis-fluorescence light response curves
210	Simultaneous chlorophyll fluorescence and photosynthetic gas-exchange were
211	measured with two LI-COR 6400XTR Portable Photosynthesis Systems (LI-COR
212	Biosciences), equipped with a LI-COR 6400-40 Leaf Chamber Fluorometer. An assessment
213	of the equilibration period required to achieve A_{max} was carried out from April 27 to May 5,
214	2010. Measurements were then taken on twelve dates between May 7 and May 25, 2010,
215	alternating among understory, gap and high light specimens, to prevent measurement
216	condition effects, including developmental, time of day and day of year (DOY) bias. Before
217	each fluorescence-light curve was produced, leaves were allowed to equilibrate to PPFD
218	intensity of 1500 μ mol m ² s ⁻¹ , air temperature near 25°C and relative humidity near 50% for

219	45 minutes. A long equilibration period was required, because A_{max} and g_{s} usually did not
220	reach asymptotic maxima, assessed visually from the graphic display, for 30 to 45 minutes.
221	Atmospheric conditions on the measurement dates caused moderate deviation from chamber
222	microclimate target conditions, but mean leaf-to-atmosphere vapour pressure deficit (VPD)
223	and chamber air temperature (T_a) were similar at PPFD-saturation in leaves from high light
224	$(1.63 \pm 0.10 \text{ kPa}, 26.3 \pm 0.6 \text{ °C})$, intermediate light $(1.81 \pm 0.10 \text{ kPa}, 25.6 \pm 0.5 \text{ °C})$ and low
225	light shrubs(1.79 \pm 0.07 kPa, 24.8 \pm 0.5 °C), with these three categories defined as leaves with
226	ambient % PPFD in the 60 - 90 %, 30 - 60 % and 0 - 30 % ranges, respectively (one-way
227	ANOVA tests; $P > 0.2$). Most leaves did not fill the 2.0 cm ² LI-6400-40 chamber. Projected
228	leaf area was, thus, determined with a light table system (MK2 Area Meter; Delta-T devices
229	Ltd., Cambridge, UK), after cutting out the measured portion with a sharpened 2.0 cm^2 borer.
230	Gas exchange parameters were corrected for the actual leaf area enclosed in the chamber.
231	Photosynthetic gas-exchange and fluorescence parameters were measured at PPFD
232	intensities of 1500, 1000, 650, 400, 200, 120, 80, 50, 20 and 0 $\mu mol \; m^2 \; s^{\text{-1}}.$ For each leaf,
233	twenty photosynthesis readings were taken at each level, with the mean value used for the
234	production of the light curves. Chlorophyll fluorescence was determined after the last record
235	of gas exchange at each of the target PPFD intensities. The leaves were allowed to equilibrate
236	for a minimum of five minutes between each light level, to ensure steady state conditions of
237	net photosynthesis (A). Dark respiration (R_d) measurements were taken after dark acclimation
238	for 30 minutes, accompanied by a chlorophyll fluorescence measurement. While the use of
239	ambient initial PPFD is recommended for light response curves, we elected to use identical
240	sequences of descending PPFD intensity with long equilibration times, to minimize among-
241	specimen differences in hysteretic effects resulting from changing PPFD. Photosynthetic gas-
242	exchange characteristics examined included A_{max} , stomatal conductance of water vapour (g_s),
243	transpiration rate (<i>E</i>), apparent quantum yield (α), light compensation point (LCP), and <i>R</i> _d .

244 Apparent quantum yield was estimated by non-linear regression, after fitting the Mitscherlich 245 equation to individual photosynthesis light response curves (Peek et al. 2002). Light 246 compensation points were calculated as the intercepts of the initial, linear portions of the 247 photosynthesis-light curves with the light axis. 248 Fluorescence parameters determined included the dark-adapted maximum quantum yield of photosystem II $(F_v/F_m = (F_m - F_o) / F_m)$ and, at each PPFD level, the fraction of open 249 250 PSII reaction centres (q_L), efficiency of open reaction centres (ϕq_L), quantum yield of PSII 251 $(\phi_{PSII} = (F_m' - F_s) / F_m'))$, non-photochemical quenching (NPQ= $(F_m - F_m') / F_m')$ and electron 252 transport rate (ETR). The parameters q_L and ϕq_L were calculated assuming all open reaction 253 centres compete for excitons, according to Kramer et al. (2004): $q_L = ((F_m' - F_s) \cdot F_o')/((F_m' - F_s)/((F_m' - F_s))/((F_m' - F_s)/((F_m' - F_s))/((F_m' - F_s)/((F_m' - F_s)/((F_m' - F_s))/((F_m' - F_s)/((F_m' - F_s)/((F_$ 254 F_{o}') $\cdot F_{s}$) and $\phi q_{L} = ((F_{m}' - F_{o}') \cdot F_{s}) / (F_{m}' \cdot F_{o}')$. In these equations, F_{m} and F_{m}' represent the 255 fluorescence values of leaves in darkness and illumination, respectively, during a pulse of 256 saturating light, F_0 is the minimum value of fluorescence in darkness, and F_0 is the minimum 257 value of fluorescence in light, obtained after supplying leaves with a far-red light pulse. 258 Electron transport rate was determined using the Krall and Edwards (1992) formulation: 259 $ETR = 0.5 \cdot PPFD \cdot 0.84 \cdot \phi_{PSII}$ (1)260 In the absence of calibration curves, an average absorptivity value of 0.84 is commonly 261 applied in light gradient studies involving a wide range of species, including Mediterranean 262 evergreens (eg. Peguero-Pina et al. 2009, Puértolas et al. 2010). However, in some species, 263 this value varies among specimens from microsites differing in PPFD availability (Evans, 264 1989). Therefore, we caution that ETR, ϕq_L and photorespiration (R_p) estimates are subject to 265 errors introduced by deviation from the estimated absorptivity value. 266 The responses of each parameter to %PPFD were fitted to non-mechanistic, non-linear 267 models, described in Rodríguez-Calcerrada et al. (2007). Photorespiration (R_p) was calculated 268 from photosynthesis and ETR data, as follows (Valentini et al. 1995):

269	(2) $R_p = 1/12 \cdot \left[ETR_{\max} - 4(A_{\max} + R_d) \right]$
270	Leaf chlorophyll, stable carbon isotope $({}^{13}C/{}^{12}C)$ and nitrogen content
271	A surrogate measure of chlorophyll content was obtained with a SPAD chlorophyll
272	meter (SPAD-502, Konica Minolta Sensing Co., Japan), as the mean value of three leaves
273	adjacent to the measured leaf, taken from the same branch and growth unit. Leaves used for
274	photosynthesis-fluorescence curves were collected following measurement, dried for 96 hours
275	at 60°C, and then weighed to determine leaf mass per unit area (LMA). Leaf stable carbon
276	isotope composition (δ^{13} C) was measured, to determine whether water stress might have
277	differed during leaf development and subsequent carbon turnover at sites of high,
278	intermediate and low light availability. Leaf $\delta^{13}C$ serves as an integrative measure of
279	photosynthetic water-use efficiency (WUE = A/E ; Farquhar et al. 1982), which tends to
280	increase in response to soil moisture stress (Meinzer et al. 1992). To prepare foliar material
281	for $\delta^{13}C$ and leaf N analysis, dry leaf samples (petioles excluded) were placed into centrifuge
282	tubes and crushed into a fine powder using a ball mill (2000 Retsch, Haan, Germany). The
283	δ^{13} C composition and total N concentration of the leaf tissue were then determined by
284	combustion of leaf samples in an elemental analyzer (Flash EA1112 Series, ThermoFinnigan,
285	Milan, Italy), coupled to a gas isotope ratio mass spectrometer (Delta S, Finnigan, San Jose,
286	CA, USA). All analysis was carried out at the CNRS Central Analysis Centre in Solaze,
287	France. Stable carbon isotope composition was calculated from the ratio R, $({}^{13}CO_2/{}^{12}CO_2)$:
288	(3) $\delta^{13}C = \left[\frac{R_{sample}}{R_{std}} - 1\right] \cdot 1000,$
289	where R_{std} is the molar ratio of the international standard Pee Dee Belemnite (Craig 1957).
290	Architectural and morphological characteristics

- 291 Architectural traits, morphological characteristics and fruit production were
- 292 determined in the same tree-shrub specimens, to assess plasticity along the light gradient. The

293 percentage of terminal shoots with new growth was calculated on each of ten randomly 294 selected, southeast-oriented branches. The oldest growth unit with at least one apparently 295 healthy leaf was counted on four of these branches, to estimate relative leaf lifespan. In the 296 youngest three growth units of the same four branches, mean stem and leaf inclination were 297 measured relative to the horizontal, using a protractor. Maximum proportional midday light interception was approximated for south-facing leaves as the cosine of the difference between 298 299 the solar declination at solar noon on May 16, 2010 and the mean leaf inclination. Solar 300 declination was calculated for Puéchabon, using the Iqbal (1983) formulation. 301 One of the four branches of each sampled specimen was severed at the base of the 302 eighth growth unit, taken to the laboratory, and refrigerated at 4°C. Mean growth unit length 303 was determined by dividing total branch length by the number of growth units. Leaves were 304 removed to determine total projected leaf area (TLA) with an area meter (MK2, Delta-T 305 devices Ltd., Cambridge, UK). The stem diameter of the eighth growth unit was measured 306 before and after bark removal, to determine stem cross-sectional area and the Huber value 307 (stem area / TLA). Archimedes' principle was used to determine the volume of a 2 cm-long 308 stem segment stripped of bark. The volume displaced by the stem was determined using an 309 analytical balance (Sartorius CP224S, Germany) and density determination kit (Sartorius 310 YDK01, Germany) to determine the displacement weight, which was divided by the density of water at the measurement temperature ($\rho = 0.998$ g cm⁻³ at 20°) to determine stem segment 311 312 volume. Wood density (ρ_{wood}) was determined by dividing the dry weight of the 2-cm stem 313 segment by its volume,

All plant material was oven-dried for 72 hours at 60 °C, and weighed. The branch leaf area ratio (LAR) was determined in every specimen, by dividing TLA by the total branch dry weight, including all leaves and stems. Leaf mass fraction (LMF) was calculated by dividing total leaf dry weight by total branch dry weight. A leaf clumping index (LCI) was defined as 318 the ratio of TLA to total branch length. Lastly, all fruits in the south half of the sampled

319 individuals were collected, counted and weighed. Total fruit production was expressed on a

320 dry weight basis.

321 Data analysis

322 Scatterplots were produced with PPFD availability as the independent variable, and 32 323 physiological and morphological characteristics as dependent variables. To assess the 324 strength of the resulting relationships, best-fit regression lines and curves were produced, as 325 appropriate, to determine correlation coefficients (R^2) and associated *P*-values. Sample means 326 and standard errors were also tabulated for all variables in three distinct light regimes: low light (<30% above-canopy per-cent PPFD; N = 15), intermediate light (30% - 60% PPFD; N 327 328 = 12) and high light (>60% PPFD; N = 6). To facilitate further analysis, the full dataset used 329 in this study is provided as online supplementary material (Supplement I). 330 A standard phenotypic plasticity index (PI; see Valladares et al. 2000b) was calculated 331 as the difference between the highest and lowest means among the three light treatments, 332 divided by the highest mean. To account for the full range of plasticity along the continuous 333 light gradient, a modified PI was also calculated as the difference between the best-fit values at 10% and 80% PPFD availability, divided by the higher of these two means (PIr). Plasticity 334 indices were not calculated for δ^{13} C, because of its relative scale. We caution that PI is more 335 336 useful for meta-analysis than for comparison of plasticity among variables, because of non-337 linear responses and among-variable differences in the proportional ranges observed in 338 response to light availability. 339 Results

340 Environmental conditions

The first four months of 2010 were 66 % wetter than normal, with 447 mm of precipitation
observed between January and April at the Puéchabon Experimental Site. An additional 76

343	mm of rain fell during the photosynthesis measurement period in May. In response to above-
344	average precipitation, mean soil water content of the 0–15 cm soil layer was 19.1 \pm 4.5% on
345	April 27 and 19.9 \pm 3.4% on May 18, 2010, which is equivalent to 92% field capacity. Daily
346	mean and maximum air temperature (T_a) were 15.0 ± 3.4 °C and 19.6 ± 4.7 °C at Puéchabon
347	from May 7 - 25, while corresponding values of vapour pressure deficit (VPD) were 0.7 \pm 0.5
348	kPa and 1.4 \pm 0.8 kPa. The highest and lowest air temperatures recorded during the study
349	period were 27.6 °C (May 24) and 5.1 °C (May 19), while the highest ambient VPD recorded
350	was 2.33 kPa (May 24). As a result of high soil moisture, moderate temperature and low
351	atmospheric demand, predawn leaf water potential $\left(\psi_L\right)$ was high in all specimens, though a
352	trend was observed toward slightly lower values at high light sites (Table 1).
353	Physiological acclimation to light conditions
354	Net PPFD-saturated photosynthesis rates (A_{max}) were low relative to other
355	sclerophyllous evergreens of the Mediterranean (Gulías et al. 2011) and increased slightly
356	with light availability on an area basis (Figure 1), but not on a mass basis ($R^2 = 0.01$, $P =$
357	0.60). Dark respiration (R_d) and R_p were also very low, but increased sharply with light
358	availability (Figure 1), so that LCP was highest at open sites (Table 1). Maximum electron
359	transport rate (ETR _{max}), the fraction of open PSII reaction centres (q_L) and non-photochemical
360	quenching (NPQ) each increased with light availability (Figure 1). No change was observed
361	in the dark-adapted maximum quantum yield of Photosystem II (F_v/F_m ; Table 1), but PPFD-
362	saturated $\phi q_L (\phi q_{L \text{ sat}})$ decreased linearly across the light gradient (Figure 1). Leaf N increased
363	with light availability on an area basis, while chlorophyll content decreased (Table 1).
364	Water-use efficiency (WUE = A_{max}/E) did not differ significantly among low (5.9 ±
365	0.3 mmol mol ⁻¹), intermediate ($6.0 \pm 0.5 \text{ mmol mol}^{-1}$) and high ($6.5 \pm 0.7 \text{ mmol mol}^{-1}$) light
366	sites in May 2010 ($P = 0.63$). However, stable carbon isotope composition (δ^{13} C) increased

367 with both PPFD availability ($R^2 = 0.42$; P < 0.0001) and leaf mass per unit area (LMA; $R^2 =$

368 0.49, *P* < 0.0001; Figure 2).

369 Morphological acclimation to light conditions

370	Morphological changes were observed at the leaf and branch scale in response to
371	increasing light availability. At the leaf scale, LMA increased linearly, while leaf inclination
372	angles increased logarithmically with light availability (Figure 3), resulting in lower
373	maximum light interception (Table 2). Branch inclination also increased, rising linearly from
374	near 0° at low light sites, to about 40° in high light. The leaf clumping index (LCI) doubled
375	from the low to high extremes of the light gradient, while branch LAR decreased (Figure 3).
376	Whereas factors directly related to light capture efficiency differed significantly along the
377	light gradient, other morphological variables showed little or no change. Mean dry wood
378	density (ρ_{wood}) remained near 0.85 throughout the light gradient. The number of successive
379	growth units with green leaves decreased with PPFD exposure, but there was a tendency for a
380	greater percentage of shoots to exhibit new (spring 2010) growth (Figure 3). No significant
381	differences in fruit size or production were observed across the PPFD gradient (Table 2).
382	Mass-based leaf nitrogen and photosynthesis
383	Relationships among mass and area-based measures of leaf nitrogen and
384	photosynthesis reflect the combined effect of physiological and morphological acclimation to
385	light availability. Mass-based leaf nitrogen content $\left(N_{mass}\right)$ was weakly correlated with LMA
386	(Figure 4). Consequently, area-based leaf nitrogen content (N_{area}) increased in proportion
387	with LMA. Consistent with the weakly positive effect of light availability on A_{max} (Figure 1)
388	and the strong correlation between LMA and light availability (Figure 3), the relationship
389	between A_{max} and LMA was significant on an area basis (R ² = 0.13, P = 0.04), but not on a
390	mass basis (R^2 =0.05, P = 0.22; Figure 4).

391 <u>Phenotypic plasticity</u>

392	Physiological acclimation to irradiance was observed in A_{max} , R_{d} , R_{p} , LCP, ETR _{max} ,
393	q_{Lsat} , NPQ and ϕq_{Lsat} . The phenotypic plasticity indices (PI and PI _r) were 0.46 - 0.71 in the
394	respiration-related variables, 0.34 - 0.45 in those related to photosynthetic capacity (ETR _{max} ,
395	$q_{\text{L sat}}$ and $\phi q_{\text{L sat}}$) and 0.36 for non-photochemical quenching (NPQ; Table 1). Light plasticity
396	was comparatively low for leaf gas-exchange (E , g_s and A_{max}), with no significant effect of
397	%PPFD on <i>E</i> , g_s or mass-based A_{max} . Low plasticity was observed for leaf N_{area} and
398	chlorophyll content (0.14 - 0.24), while N_{mass} showed no difference among light classes.
399	Strong morphological acclimation to irradiance was observed, with increasing branch
400	inclination, leaf inclination, leaf clumping and LMA, but lower branch LAR and maximum
401	light interception. The number of successive growth units with green foliage decreased with
402	%PPFD availability, while the percentage of shoots with new growth increased (PI = 0.16 -
403	0.34; Table 2).
404	Discussion
405	Phenotypic plasticity can be constrained by stress adaptations that confer tolerance of limiting
406	resources (Chapin 1993; Lortie and Aarsen 1996). Given that B. sempervirens is a
407	sclerophyllous, woody evergreen tree-shrub known for its tolerance of severe drought
408	(García-Plazaola et al. 2008), it was hypothesized that only limited leaf physiological
409	plasticity would be observed across a light gradient. Despite the conservative resource-use
410	strategy of this species, phenotypic plasticity was observed in a number of leaf photochemical

- 411 and morphological variables that can influence photosynthetic gas-exchange rates. However,
- 412 light regime had only modest impact on A_{max} (area), and no significant impact on A_{max} (mass),
- 413 g_s , or *E*. The lack of light plasticity observed in photosynthetic gas-exchange characteristics
- 414 was the result of a co-ordinated acclimatory response at different levels of organization,
- 415 including leaf physiology, leaf and branch morphology and leaf chemistry. Long-term

Commented [HAC1]: Need to discuss potential causes of low Fv/Fm.

- 416 acclimation to high irradiance was achieved through (i) less effective light interception, (ii)
- 417 higher LMA, and (iii) higher potential for light energy dissipation.
- 418 <u>Co-ordination of physiological and morphological light acclimation</u>

419 Self-shading is a key mechanism used to reduce light capture efficiency (Pearcy et al. 420 2005). Our data suggest that this was achieved at the canopy scale in high light individuals of B. sempervirens, through high branch inclination and leaf clumping, which increase the ratio 421 422 of leaf area to silhouette area (Domingo et al. 2000). Higher leaf inclination causes light to be 423 received more obliquely at low solar zenith angles. This serves a photoprotective role, by 424 reducing the intensity of intercepted solar radiation, but at the expense of potential carbon 425 gain (Falster and Westoby 2003). In *B. sempervirens*, leaf inclination was $48.7^{\circ} \pm 25.3^{\circ}$ 426 (mean \pm standard deviation), with more vertically-oriented leaves in high light than in low 427 light environments causing lower proportional light interception at high light sites near 428 midday (Table 2). Similar leaf inclination has been observed in a variety of Mediterranean 429 evergreen sclerophylls, with vertically-oriented leaves showing higher F_v/F_m than horizontal 430 leaves during the summer months (Werner et al. 2001). 431 The invariability of F_v/F_m across the light gradient suggests that B. sempervirens 432 adjusts its branch and leaf morphology to alter light capture efficiency, thus preventing crown 433 photoinhibition in high light environments, but increasing light capture in understory sites. In 434 a winter study of ten Mediterranean evergreens in the Basque region of Spain, García-435 Plazaola et al. (2003) found that *B. sempervirens* had much lower F_v/F_m (0.63 ± 0.01) than all 436 other species during a mild winter period of 1999, but higher F_v/F_m (0.66 ± 0.03) than all 437 other species following an episode of intense cold in 2001. The low F_v/F_m observed in this study during spring (0.69 ± 0.01) is consistent with what García-Plazaola et al. (2003) 438 439 describe as a high 'constitutive level of photoprotection,' and suggests slow and limited 440 relaxation of photoprotection in response to cold and irradiance stress.

441	At sites of high light availability, higher LMA may cause mass gain to be diverted
442	away from photosynthetic enzymes and toward structural investments, thus reducing the
443	efficiency of light use by the chloroplasts (Niinemets and Valladares 2004). At Puéchabon,
444	the LMA of <i>B. sempervirens</i> leaves increased from 150 to 250 g cm ⁻² from low to high light
445	sites, with only a slight increase in A_{max} (area). Given that increasing LMA resulted in larger
446	increases in leaf N_{area} than A_{max} (area), while chlorophyll content decreased, it is possible that
447	a substantial fraction of leaf nitrogen may be present in cell wall proteins of the
448	sclerophyllous foliage, found at high light sites (see Loomis 1997). We further speculate that
449	low mesophyll conductance (g_m) might have limited A_{max} in leaves acclimated to high light
450	intensity. Although greater leaf thickness, as observed in high light plants, tends to increase
451	LMA and A_{max} without restricting g_{m} , higher leaf density can reduce internal conductance of
452	CO ₂ , lower its concentration within the chloroplast and increase the photorespiration rate,
453	thereby reducing A_{max} (Niinemets and Kull 1998; Mediavilla et al. 2001; Niinemets and Kull
454	2001, Limousin et al. 2010). Along with differences in antecedent drought exposure during
455	leaf development, a negative relationship between g_m and light availability could help explain
456	why higher foliar δ^{13} C was observed in high light plants (Figure 2), even though WUE
457	(A_{max}/E) was not significantly higher. To address these questions, there is a need for further
458	leaf physiological and morphological measurement during drought, including an assessment
459	of the impact of light availability, leaf thickness and leaf density on mesophyll conductance.
460	To balance light input and utilization, leaves of high light specimens of <i>B</i> .
461	sempervirens exhibited lower chlorophyll concentration and a higher capacity for light energy
462	dissipation. Non-photochemical quenching (NPQ), R_d and R_p increased with light availability
463	(Table 1). The exponential increase in dark respiration resulted in a 161% increase in
464	R_d/A_{max} , from sites of low light (5.9 ± 0.7 %) to high light availability (15.4 ± 3.5 %; $P=$
465	0.001). These acclimatory changes resulted in a higher fraction of open PSII reaction centres

466	$(q_{\text{L sat}})$ in leaves exposed to high light, which can prevent photoinhibition (Ögren and
467	Rosenqvist 1992). Effects of long-term exposure to contrasting light regimes on R_d and R_p
468	may explain the greater light plasticity of ETR_{max} relative to A_{max} (Table 1).
469	Buxus sempervirens is often a dominant understory tree-shrub in forest understory,
470	edge, canopy gap and full sun environments. High plasticity might be expected in species
471	that are prevalent in contrasting light regimes, as observed for several morphological (eg.
472	branch inclination, leaf inclination and leaf clumping) and physiological variables (eg. q_L , R_d ,
473	LCP and R_p) in this study. However, this coordinated response resulted in low plasticity of
474	photosynthetic gas-exchange across the light availability gradient. The ability of B .
475	sempervirens to thrive in full sun, despite low A_{max} , is likely explained by the absence of
476	strong interspecific competition and by its high drought tolerance.
477	Light plasticity in drought-prone ecosystems
478	When assessing long-term acclimation to environmental stressors in a natural
479	environment, it is important to consider that multiple stressors operate simultaneously in
480	resource-limited environments. In summer-dry forest ecosystems of the Mediterranean,
481	drought is common. The tree-shrubs examined in this study are acclimated both to long-term
482	exposure to distinct light regimes and to frequent drought stress, which can be severe in both
483	high light and understory environments (Rodríguez-Calcerrada et al. 2008a). B. sempervirens
484	displayed a number of physiological, morphological and architectural traits that serve to
485	enhance drought tolerance, including high LMA, WUE and ρ_{wood} , as well as low A_{max} , g_s and
486	shoot growth increment. These characteristics also imply low resource use and turnover rates.
487	For example, high LMA and ρ_{wood} reduce leaf and stem respiration, respectively (Larjavaara
488	
	and Muller-Landau 2010). High ρ_{wood} also decreases xylem cavitation vulnerability, which is

490	It has been suggested that there are both physiological and morphological trade-offs
491	that prevent effective and simultaneous adaptation to irradiance and water stress (Smith and
492	Huston 1989). For example, at the low end of the PPFD availability gradient, shade plants
493	tend to maximize leaf display to ensure effective light capture, but this reduces drought
494	tolerance (Aranda et al. 2005). There are other adaptations, however, such as high wood
495	density, that clearly serve to promote both shade and drought tolerance. At the high end of
496	the PPFD availability gradient, leaves that are well-adapted to withstand drought tend to
497	possess a greater fraction of non-assimilative tissues to help resist collapse when exposed to
498	strongly negative leaf water potentials (Oertli et al. 1990), and B. sempervirens is known to
499	withstand low leaf water potential without embolism (Aussenac and Valette 1982).
500	Allocation of mass gain to non-assimilative tissues can reduce photosynthetic capacity
501	(Niinemets and Valladares 2004), illustrating an important trade-off in terms of simultaneous
502	acclimation to irradiance and drought. In the case of <i>B. sempervirens</i> , successful occupation
503	of both low and high light sites in a drought-prone ecosystem required (i) coordinated
504	physiological and morphological acclimation in selected traits and (ii) the absence of strong
505	competition in high light.
506	Chapin (1993) suggested that natural selection for traits promoting tolerance to
507	stressors in low resource environments can produce a "stress resistance syndrome," in which
508	productivity remains low in resource-limited environments, to avoid excessive growth or
509	resource allocation to leaf tissues, even during temporary periods of favourable environmental
510	conditions. Our results support the hypothesis that <i>B. sempervirens</i> exhibits this sort of
511	obligate conservatism. Very low A_{max} , g_s and E were observed, even in specimens acclimated
512	to full sun and presented with optimal temperature and moisture availability. This likely
513	reflects the trade-off between light and drought acclimation in a woody evergreen species that
514	is limited in its capacity for rapid resource use, due to the natural selection of traits conferring

515	stress tolerance. However, the hypothesis that morphological plasticity would exceed
516	physiological plasticity is not fully supported by our findings. Instead, numerous
517	physiological and morphological variables showed strong acclimation to changing light
518	conditions, which were compensatory in terms of photosynthetic gas-exchange. Additional
519	research is needed to elucidate the complex relationships between drought and light plasticity
520	in species occupying wide fractions of the light availability gradient
521	Acknowledgements
522	This project was supported by funding from the University of Lethbridge Research Fund
523	(MGL), photosynthesis equipment purchased through Western Economic Diversification
524	Canada (MGL), a postdoctoral fellowship from the Spanish Ministry of Science and
525	Innovation (JR-C) and a scholarship from the Regional Government of Extremadura (VR).
526	We thank Eva Rosenqvist for helpful advice on the construction of photosynthesis-
527	fluorescence light response curves. This work is a contribution to the Drought ⁺ research
528	program (ANR-06-VULN-003-01), at the Centre d'Ecologie Fonctionnelle et Evolutive of the
529	Centre National de la Recherche Scientifique (CEFE-CNRS).
530	References
531	Ali MS, Kikuzawa K (2005) Plasticity in leaf area density within the crown of Aucuba
532	japonica growing under different light levels. J Plant Res 118:307-316
533	Allard V, Ourcival JM, Rambal S, Joffre R, Rocheteau A (2008) Seasonal and annual
534	variation of carbon exchange in an evergreen Mediterranean forest in southern France.
535	Glob Change Biol 14:714-725. doi: 10.1111/j.1365-2486.2008.01539.x
536	Aranda I, Castro L, Pardos M, Gil L and Pardos JA (2005) Effects of the interaction between
537	drought and shade on water relations, gas exchange and morphological traits in cork
538	oak (Quercus suber L.) seedlings. For Ecol Manag 210:117-129. doi:
539	10.1051/forest:2005033

540	Aranda I, Robson M, Rodríguez-Calcerrada J, Valladares F (2008) Limited capacity to cope	
541	with excessive light in the open and with increased drought in the shade in	
542	Mediterranean <i>Ilex aquifolium</i> populations.Trees Struct Funct 22:375-384. doi:	
543	10.1007/s00468-007-0192-5	
544	Aussenac G, Valette JC (1982) Comportement hydrique estival de Cedrus atlantica Manetti,	
545	Quercus ilex L. et Quercus pubescens Willd. et de divers pins dans le Mont Ventoux.	
546	Ann Sci Forest 39:41-62	
547	Bilger W, Bjorkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by	
548	measurements of light-induced absorbency changes, fluorescence and photosynthesis	
549	in leaves of Hederacanariensis. Photosynth Res 25:173-185	
550	Chapin FS, Autumn K, Pugnaire F (1993) Evolution of suites of traits in response to	
551	environmental stress. Amer Nat 142:S78-S92	
552	Coopman RE, Fuentes-Neira FP, Briceño VF, Cabrera HM, Corcuera LJ, Bravo LA (2010)	
553	Light energy partitioning in Photosystems I and II during development of Nothofagus	
554	nitida growing under different light environments in the Chilean evergreen temperate	
555	rain forest. Trees Struct Funct 24:247-259. doi: 10.1007/s00468-009-0395-z	
556	Coste S, Roggy JC, Sonnier G, Dreyer E (2010) Similar irradiance-elicited plasticity of leaf	
557	traits in saplings of 12 tropical rainforest tree species with highly different leaf mass to	
558	area ratio. Funct Plant Biol 37:342-355. doi: 10.1051/forest/2009062	
559	Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass	
560	spectrometric analysis of carbon dioxide. Geochim Cosmochim Ac 12:133-149	
561	Craine JM, Reich PB (2005) Leaf-level compensation points in shade-tolerant woody	
562	seedlings. New Phytol 166:710-713. doi: 10.1111/j.1469-8137.2005.01420.x	
563	Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the	
564	xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1-24	

565	Domingo F, Villagarcía L, Brenner A, Puigdefabregas J (2000) Measuring and modelling the
566	radiation balance of a heterogeneous shrubland. Plant Cell Environ 23:27-38.doi:
567	10.1046/j.1365-3040.2000.00532.
568	Evans JR. (1989). Partitioning of nitrogen between and within leaves grown under different
569	irradiances. Aust J Plant Physiol 16:533-548.
570	Falster DS, Westoby M (2003) Leaf size and angle vary widely across species: what
571	consequences for light interception? New Phytologist 158:509-525
572	Farquhar GD, O'Leary MH, Berry JA (1982) On the relationship between carbon isotope
573	discrimination and the intercellular carbon dioxide concentration in leaves. Aust J
574	Plant Physiol 9:121-137.
575	Feng YL, Cao KF, Zhang JL (2004) Photosynthetic characteristics, dark respiration and leaf
576	mass per unit area in species grown under three irradiances. Photosynthetica 42:431-
577	437.doi: 10.1023/B:PHOT.0000046163.83729.e5
578	Frak E, Le Roux X, Millard P, Dreyer E, Jaouen G, Saint-Joanis B, Wendler R (2001)
579	Changes in total leaf nitrogen and partitioning of leafnitrogen drive photosynthetic
580	acclimation to light in fully developed walnut leaves. Plant Cell Environ 24:1279-
581	1288. doi: 10.1046/j.0016-8025.2001.00784.x
582	Galmés J, Abadia A, Cifre J, Medrano H, Flexas J (2007) Photoprotection processes under
583	water stress and recovery in Mediterranean plants with different growth forms and leaf
584	habits. Physiol Plantarum 130:495-510. doi: 10.1111/j.1399-3054.2007.00919.x
585	García-Plazaola JI, Esteban R, Hormaetxe K, Becerril JM (2008) Seasonal reversibility of
586	acclimation to irradiance in leaves of common box (Buxus sempervirens L.) in a
587	deciduous forest. Flora 203:254-260.doi: 10.1016/j.flora.2007.03.007

García-Plazaola JI, Olano JM, Hernández A, Becerril JM (2003) Photoprotection in evergreen
Mediterranean plants during sudden periods of intense cold weather. Trees Struct
Funct 17: 285-291.
Givnish TJ, Montgomery RA, Goldstein G (2004) Adaptive radiation of photosynthetic
physiology in the Hawaiian lobeliads: light regimes, static light responses and whole-
plant compensation points. Am J Bot 91:228-246
Gratani L, Covone F, Larcher W (2006) Leaf plasticity in response to light of three evergreen
species of the Mediterranean maquis. Trees Struct Funct 20:549-558. doi :
10.1007/s00468-006-0070-6
Gulías J, Flexas J, Abadía A, Medrano H (2002) Photosynthetic responses to water deficit in
six Mediterranean sclerophyll species: possible factors explaining the declining
distribution of Rhamnus ludovici-salvatoris, an endemic Balearis species. Tree Physiol
22:687-697
Hacke UG, Sperry JS, Pittermann J (2000) Drought experience and cavitation resistance in six
shrubs from the Great Basin, Utah. Basic Appl Ecol 1:31-41
Hanba YT, Kogami H, Terashima I (2002) The effect of growth irradiance on leaf anatomy
and photosynthesis in Acer species differing in light demand. Plant Cell Environ
25:1021-1030. doi: 10.1046/j.1365-3040.2002.00881.x
He WM, Dong M (2003) Physiological acclimation and growth response to partial shading in
Salix matsudana in the Mu Us Sandland in China. Trees Struct Funct 17:87-93. doi:
10.1007/s00468-002-0217-z
Hikosaka K (2003) A model of dynamics of leaves and nitrogen in a plant canopy: an
integration of canopy photosynthesis, leaf life span, and nitrogen use efficiency. Am

611 Nat 162:149–164.doi: 10.1086/376576

612	Hormaetxe K, Becerril JM, Fleck I, Pinto M, García-Plazaola JI (2005) Functional role of red
613	(retro)-carotenoids as passive light filters in the leaves of Buxus sempervirens L.:
614	increased protection of photosynthetic tissues? J Exp Bot 56:2629-2636. doi:
615	10.1093/jxb/eri255
616	Iqbal M (1983) An Introduction to Solar Radiation. Academic Press, New York, 309 p.
617	Kern SO, Hovenden MJ, Jordan GJ (2004) The impacts of leaf shape and arrangement on
618	light interception and potential photosynthesis in southern beech (Nothofagus
619	cunninghamii). Funct Plant Biol 31:471-480
620	Kitajima K (1994) Relative importance of photosynthetic traits and allocation patterns as
621	correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98:419-428
622	Kobe RK, Pacala SW, Silander JA, Canham CD (1995) Juvenile tree survivorship as a
623	component of shade tolerance. Ecol Appl 5:517-532
624	Krall JP, Edwards GE (1992) Relationship between photosystem II activity and CO ₂ fixation
625	in leaves. Physiol Plant 86:180-187
626	Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the
627	determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209-
628	218
629	Krömer S (1995) Respiration during photosynthesis. Annu Rev Plant Physiol Plant Mol Biol
630	46:45-70
631	Külheim C, Ågren J, Jansson S (2002) Rapid regulation of light harvesting and plant fitness in
632	the field. Science 297:91–93.doi: 10.1126/science.1072359
633	Larjavaara M, Muller-Landau HC (2010) Rethinking the value of high wood density. Funct
634	Ecol 24:701-705. doi: 10.1111/j.1365-2435.2010.01698.x

635	Limousin JM, Misson L, Lavoir AV, Martin NK, Rambal S (2010) Do photosynthetic
636	limitations of evergreen Quercus ilex leaves change with long-term increased drought
637	severity? Plant Cell Environ 33:863-875.doi: 10.1111/j.1365-3040.2009.02112.x
638	Lortie CJ, Aarssen LW (1996) The specialization hypothesis for phenotypic plasticity in
639	plants. Int J Plant Sci. 157:484-487
640	Loomis RS (1997) On the utility of nitrogen in leaves. Proc Nat Acad Sci USA 94:13378-
641	13379
642	Lusk CH, Reich PB, Montgomery RA, Ackerly DD, Cavender-Bares J (2008) Why are
643	evergreen leaves so contrary about shade? Trends Ecol Evol 23:299-303.
644	doi:10.1016/j.tree.2008.02.006
645	Machado JL, Reich PB (1999) Evaluation of several measures of canopy openness as
646	predictors of photosynthetic photon-flux density in deeply shaded conifer-dominated
647	forest understory. Can J For Res 29: 1438-1444
648	Matos FS, Wolfgramm R, Goncalves FV, Cavatte PC, Ventrella MC, DaMatta FM (2009)
649	Phenotypic plasticity to light in the coffee tree. Environ Exp Bot 67:421-427.
650	doi:10.1016/j.envexpbot.2009.06.018
651	Matsubara S, Krause GH, Aranda J, Virgo A, Beisel KG, Jahns P, Winter K (2009) Sun-shade
652	patterns of leaf carotenoid composition in 86 species of neotropical forest plants.
653	Funct Plant Biol 36:20-36. doi: 10.1071/FP08214
654	Mediavilla S, Escudero A, Heilmeier H (2001) Internal leaf anatomy and photosynthetic
655	resource-use efficiency: interspecific and intraspecific comparisons. Tree Physiol
656	21:251-259
657	Meinzer FC, Rundel PW, Goldstein G, Sharifi MR (1992) Carbon isotope composition in
658	relation to leaf gas-exchange and environmental conditions in Hawaiian Metrosideros
659	polymorpha populations. Oecologia 91:305-311.doi:10.1007/BF00317617

660	Misson L, Limousin JM, Rodriguez R, Letts MG (2010) Leaf physiological responses to
661	extreme droughts in Mediterranean Quercus ilex forest. Plant Cell Environ.doi:
662	10.1111/j.1365-3040.2010.02193.x
663	Niinemets Ü, Tenhunen JD (1997) A model separating leaf structural and physiological
664	effects on carbon gain along light gradients for the shade-tolerant species Acer
665	saccharum. Plant Cell Environ 20:845-866
666	Niinemets Ü, Kull O (1998) Stoichiometry of foliar carbon constituents varies along light
667	gradients in temperate woody canopies: implications for foliage morphological
668	plasticity. Tree Physiology 21:899-914
669	Niinemets Ü, Kull O (2001) Site fertility and the morphological and photosynthetic
670	acclimation of Pinus sylvestris needles to light. Tree Physiol 21:1231-1244
671	Niinemets Ü, Valladares F (2004) Photosynthetic acclimation to simultaneous and interacting
672	environmental stresses along natural light gradients: optimality and constraints. Plant
673	Biol 6:254-268. doi: 10.1055/s-2004-817881
674	Oertli JJ, Lips SH, Agami M (1990) The strength of sclerophyllous cells to resist collapse due
675	to negative turgor pressure. Acta Oecol 11:281-289
676	Ögren E, Rosenqvist E (1992) On the significance of photoinhibition of photosynthesis in the
677	field and its generality among species. Photosynth Res 33: 63-71
678	Ort, DR (2001) When there is too much light. Plant Physiol 125:29-32
679	Padmasree K, Padmavathi L, Raghavendra AS (2002) Essentiality of mitochondrial oxidative
680	metabolism for photosynthesis: optimization of carbon assimilation and protection
681	against photoinhibition. Crit Rev Biochem Mol 37:71-119
682	Pearcy RW, Muraoka H, Valladares F (2005) Crown architecture in sun and shade
683	environments: assessing function and trade-offs with a three-dimensional simulation
684	model. New Phytol 166:791-800. doi: 10.1111/j.1469-8137.2005.01328.x

685	Peek MS, Russek-Cohen E, Wait DA, Forseth IN (2002) Physiological response curve
686	analysis using nonlinear mixed models. Oecologia 132: 175-180.doi: 10.1007/s00442-
687	002-0954-0
688	Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of
689	variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565-588. doi:
690	10.1111/j.1469-8137.2009.02830.x
691	Peguero-Pina JJ, Sancho-Knapik D, Morales F, Flexas J, Gil-Pelegrín E (2009) Differential
692	photosynthetic performance and photoprotection mechanisms of three Mediterranean
693	evergreen oaks under severe drought stress. Funct Plant Biol 36:453-462.
694	doi:10.1071/FP08297
695	Puértolas J, Oliet JA, Jacobs DF, Benito LF, Peñuelas JL (2010) Is light the key factor for
696	success of tube shelters in forest restoration plantings under Mediterranean climates?
697	Forest Ecol Manag 260:610-617. doi:10.1016/j.foreco.2010.05.017
698	Quézel P, Médail (2003) Ecologie et biogéographie des forêts du bassin méditerranéen.
699	Elsevier (Collection Environnement), Paris, 573 p.
700	Rambal S, Ourcival JM, Joffre R, Mouillot F, Nouvellon Y, Reichstein M, Rocheteau A
701	(2003) Drought controls over conductance and assimilation of a Mediterranean
702	evergreen ecosystem: scaling from leaf to canopy. Glob Change Biol 9:1813-1824.
703	doi: 10.1111/j.1365-2486.2003.00687.x
704	Rodríguez-Calcerrada J, Pardos JA, Gil L, Aranda I (2007) Acclimation to light in seedlings
705	of Quercus petraea (Mattuschka) Liebl. and Quercus pyrenaica Willd. planted along a
706	forest-edge gradient. Trees Struct Funct 21:45-54.doi: 10.1007/s00468-006-0095-x
707	Rodríguez-Calcerrada J, Pardos JA, Gil L, Aranda I (2008) Ability to avoid water stress in
708	seedlings of two oak species is lower in a dense forest understory than in a medium
709	canopy gap. For Ecol Manag 255: 421-430. doi:10.1016/j.foreco.2007.09.009

/10	Rodriguez-Calcerrada J, Reich PB, Rosenqvist E, Pardos JA, Cano FJ, Aranda I (2008) Leaf
711	physiological versus morphological acclimation to high-light exposure at different stages
712	of foliar development in oak. Tree Physiol 28:761-771. doi: 10.1093/treephys/28.5.761
713	Sack L, Grubb PJ, Marañón T (2003) The functional morphology of juvenile plants tolerant of
714	strong summer drought in shaded forest understories in southern Spain. Plant Ecol
715	168: 139-163. doi: 10.1023/A:1024423820136
716	Schurr U, Walter A, Rascher U (2006) Functional dynamics of plant growth and
717	photosynthesis - from steady-state to dynamics - from homogeneity to heterogeneity.
718	Plant Cell Environ.29:340-352.doi: 10.1111/j.1365-3040.2005.01490.x
719	Shipley B, Lechowicz MJ, Wright I, Reich PB (2006) Fundamental trade-offs generating the
720	worldwide leaf economics spectrum. Ecology 87:535-541.doi: 10.1890/05-1051
721	Smith T, Huston M (1989) A theory of the spatial and temporal dynamics of plant
722	communities. Vegetatio 83:49-69
723	Brooks JR, Sprugel DG, Hinckley TM (1996) The effects of light acclimation during and after
724	foliage expansion on photosynthesis of Abies amabilis foliage within the canopy.
725	Oecologia 107:21-32
726	Sterck F, Zweitel R, Sass-Klaassen U, Chowdhury Q (2008) Persisting soil drought reduces
727	leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus
728	pubescens). Tree Physiol 28:529-536. doi: 10.1093/treephys/28.4.529
729	Valentini R, Epron D, de Angelis P, Matteucci G, Dreyer E (1995) In situ estimation of net
730	CO_2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q .
731	cerrisi L.) leaves: diurnal cycles under different levels of water supply. Plant Cell
732	Environ 18:631-640

733	Valladares F, Martínez-Ferri E, Balaguer L, Pérez-Corona E, Manrique E (2000a) Low leaf-
734	level response to light and nutrients in Mediterranean evergreen oaks: a conservative
735	resource strategy? New Phytol 148:79-91. doi: 10.1046/j.1469-8137.2000.00737.x
736	Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW (2000b) Plastic phenotypic
737	response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology
738	81:1925-1936.doi:10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2
739	Valladares F, Chico JM, Aranda I, Balaguer L, Dizengremel P, Manrique E, Dryer E (2002)
740	The greater seedling high light tolerance of Quercus robur over Fagus sylvatica is
741	linked to greater physiological plasticity. Trees Struct Funct 16: 395-403. doi:
742	10.1007/s00468.002.0184.4
743	Valladares F, Arrieta S, Aranda I, Sánchez-Gómez D, Tena D, Suárez F, Pardos JA (2005)
744	Shade tolerance, photoinhibition sensitivity and phenotypic plasticity of <i>Ilex</i>
745	aquifolium in continental Mediterranean sites. Tree Physiol 25:1041-1052. doi:
746	10.1093/treephys/25.8.1041
747	Valladares F, Niinemets U (2008) Shade tolerance, a key plant feature of complex nature and
748	consequences. Ann Rev Ecol Syst 39:237-257. doi:
749	10.1146/annurev.ecolsys.39.110707.173506
750	Walters MB, Reich PB (1996) Are shade tolerance, survival and growth linked? Low light
751	and nitrogen effects on hardwood seedlings. Ecology 77:841-853
752	Werner C, Ryel RJ, Correia O, Beyschlag W (2001) Structural and functional variability
753	within the canopy and its relevance for carbon gain and stress avoidance. Acta
754	Oecologica 22:129-138

755	Table 1. Means, standard errors and plasticity indices (PI) of Buxus sempervirens L. physiological characteristics in low (0 - 30 % PPFD; N =
756	15), intermediate (30 - 60 % PPFD; N = 12) and high light (60 - 90 % PPFD; N = 6) sites at Puéchabon. A second plasticity index is
757	based on best-fit regression values at 10% vs. 80% PPFD availability (PIr), and is shown in bold for variables exhibiting regression
758	slopes differing significantly from 0 at $P < 0.05$. Abbreviations: ψ_L = leaf water potential; A_{max} = net photosynthesis at light saturation;
759	$R_{\rm d}$ = dark respiration, α = apparent quantum yield; $R_{\rm p}$ = photorespiration; LCP = light compensation point; $g_{\rm s}$ = stomatal conductance;
760	ETR_{max} = light-saturated electron transport rate; $q_{L sat}$ = fraction of open PSII reaction centres at light saturation; NPQ = non-
761	photochemical quenching; $\phi q_{\text{L sat}}$ = efficiency of open reaction centres at light saturation; F_v/F_m = maximum quantum yield of PSII;
762	δ^{13} C = stable carbon isotope composition.
763	

Category	Variable	Means \pm standard error			PI	$\mathbf{PI}_{\mathbf{r}}$	\mathbb{R}^2	Р
		Low light	Intermediate	High light				
Leaf water status	ψ_L (MPa)	$\textbf{-0.64} \pm 0.02$	$\textbf{-0.68} \pm 0.02$	$\textbf{-0.73} \pm 0.02$				
Leaf gas-exchange	$A_{\rm max} (\mu { m mol} \ { m m}^{-2} \ { m s}^{-1})$	4.1 ± 0.3	4.6 ± 0.3	5.1 ± 0.5	0.20	0.26	0.16	0.02
	$A_{\text{max}} \pmod{\text{g}^{-1} \text{s}^{-1}}$	25.6 ± 1.6	23.1 ± 1.6	24.1 ± 2.4	0.10	0.07	0.01	0.60
	$g_{\rm s}$ (mmol m ⁻² s ⁻¹)	41.1 ± 3.7	45.1 ± 5.3	52.7 ± 7.5	0.22	0.39	0.06	0.15
	$E (\text{mmol } \text{m}^{-2} \text{ s}^{-1})$	0.73 ± 0.05	0.82 ± 0.09	0.89 ± 0.16	0.18	0.22	0.03	0.33
	$R_{\rm d} \; (\mu { m mol} \; { m m}^{-2} \; { m s}^{-1})$	0.22 ± 0.02	0.39 ± 0.06	0.76 ± 0.16	0.71	0.70	0.42	<0.0001
	$R_{\rm d} \ ({\rm nmol} \ {\rm g}^{-1} \ {\rm s}^{-1})$	1.41 ± 0.12	1.95 ± 0.25	3.56 ± 0.81	0.61	0.54	0.24	0.004
	$\alpha (g \text{ mol}^{-1})$	0.28 ± 0.02	0.31 ± 0.04	0.27 ± 0.03	0.12	0.10	0.01	0.51
	$R_{\rm p} (\mu { m mol} { m m}^{-2}{ m s}^{-1})$	1.94 ± 0.23	2.50 ± 0.21	3.59 ± 0.53	0.46	0.57	0.28	0.002
	LCP (μ mol m ⁻² s ⁻¹)	8.7 ± 1.1	12.6 ± 2.3	23.5 ± 3.8	0.63	0.66	0.37	0.0002
Leaf photochemistry	$ETR_{max}(\mu mol m^{-2} s^{-1})$	40.8 ± 2.7	50.2 ± 2.4	67.0 ± 7.9	0.38	0.45	0.39	0.0001
	$q_{ m Lsat}$	0.16 ± 0.01	0.18 ± 0.01	0.27 ± 0.04	0.42	0.45	0.29	0.001
	NPQ	1.96 ± 0.07	2.03 ± 0.06	3.08 ± 0.24	0.36	0.36	0.39	0.0001
	$\phi q_{ m Lsat}^*$	0.45 ± 0.02	0.39 ± 0.01	0.32 ± 0.03	0.30	0.34	0.47	<0.0001
	$F_{\rm v}/F_{\rm m}$ dark	0.69 ± 0.01	0.68 ± 0.01	0.69 ± 0.01	0.01	0.03	0.03	0.31
Leaf chemistry	leaf N (mg g ⁻¹)	15.6 ± 0.42	14.8 ± 0.64	14.2 ± 0.73	0.09	0.11	0.09	0.10
	leaf N (g m ⁻²)	2.51 ± 0.11	2.97 ± 0.15	3.07 ± 0.21	0.18	0.24	0.24	0.004
	chlorophyll (SPAD units)**	72.5 ± 1.0	70.1 ± 1.9	62.2 ± 4.5	0.14	0.14	0.19	0.01
Isotopic composition	leaf δ^{13} C (‰)	$\textbf{-29.0}\pm0.2$	-27.6 ± 0.3	-27.3 ± 0.5			0.42	<0.0001

764 * one intermediate light outlier removed; ** one missing value

Table 2.Means, standard errors and plasticity indices (PI) of Buxus sempervirens L. morphological characteristics in low (0 - 30 % PPFD; N = 766 15), intermediate (30 - 60 % PPFD; N = 12) and high light (60 - 90 % PPFD; N = 6) sites at Puéchabon. A second plasticity index is based on 767 best-fit regression values at 10% and 80% PPFD availability, and is shown in bold for variables exhibiting regression slopes differing 768 significantly from 0 at P < 0.05. Maximum light interception refers to the theoretical maximum intensity of spectral light that would be 769 absorbed by south-facing leaves at solar noon, relative to a leaf plane oriented perpendicular to the sun. A forced-origin regression line was used 770 to calculate the PI_r for branch inclination. Abbreviations: LMA = leaf mass per unit area; LAR = branch leaf area ratio; LMF = leaf mass 771 fraction; and ρ_{wood} = wood density. *Measures of reproductive allocation refer to the dry weight of fruit present on the south half of the tree-shrub 772 canopy on the date of measurement, and do not account for herbivory and senescence. Mean fruit mass was calculated only for shrubs with fruit 773 774 present, including ten low, seven intermediate and six high light shrubs.

Category	Variable	Means \pm standard error			PI	PI_r	\mathbb{R}^2	Р
		Low light	Intermediate	High light				
Leaf morphology	LMA (g m^{-2})	161 ± 5	202 ± 7	215 ± 6	0.25	0.32	0.61	<0.0001
	leaf inclination (°)	38 ± 6	47 ± 6	73 ± 6	0.48	0.48	0.33	0.0005
	max. light intercept. (12h00, %)	87 ± 3	83 ± 4	58 ± 9	0.34	0.26	0.34	0.0004
Branchmorphology	branch inclination (°)	0.2 ± 3.2	13.6 ± 4.4	39.4 ± 8.2	1.00	0.88	0.41	<0.0001
	branch LAR ($cm^2 g^{-1}$)	42.4 ± 1.9	38.6 ± 1.7	36.1 ± 2.2	0.15	0.23	0.23	0.005
	$LMF(g g^{-1})$	0.67 ± 0.02	0.71 ± 0.01	0.75 ± 0.02	0.09	0.08	0.07	0.14
	Huber ($cm^2 m^{-2}$)	2.40 ± 0.18	2.33 ± 0.13	2.31 ± 0.25	0.04	0.03	0.00	0.78
	leaf clumping (cm ² cm ⁻¹)	6.4 ± 0.4	9.7 ± 1.4	12.3 ± 1.8	0.48	0.51	0.26	0.002
	# growth units with foliage	6.4 ± 0.3	5.5 ± 0.4	5.3 ± 0.5	0.16	0.24	0.14	0.03
	growth unit length (cm)	3.98 ± 0.28	3.81 ± 0.32	2.81 ± 0.16	0.29	0.24	0.08	0.10
	% shoots with new growth	52 ± 8	63 ± 7	78 ± 11	0.34	0.34	0.15	0.03
	ρ_{wood} (g cm ⁻³)	0.85 ± 0.01	0.85 ± 0.01	0.84 ± 0.02	0.01	0.01	0.00	0.75
Reproductive allocation*	fruit mass (mg, south)	104 ± 7	102 ± 11	96 ± 14	0.12	0.11	0.02	0.50
	fruit production (mg, south)	414 ± 182	584 ± 243	489 ± 183	0.29	0.35	0.01	0.57

776 Figure captions

- 777 Figure 1. Relationships between per-cent PPFD availability and leaf physiological
- 778 characteristics on *B. sempervirens*, including net photosynthesis rate at light saturation (A_{max}),
- dark respiration rate (R_d), maximum photosynthetic electron transport rate (ETR_{max}), quantum
- 780 efficiency of open Photosystem II (PSII) reaction centres at a saturating PPFD of 1500 μmol
- 781 $m^{-2} s^{-1} (\phi q_{L \text{ sat}})$, fraction of open PSII centres ($q_{L \text{ sat}}$), and non-photochemical quenching
- 782 (NPQ).
- Figure 2. Stable carbon isotopic composition of *B. sempervirens* leaves (δ^{13} C), as a function
- of leaf dry mass per unit area (LMA), in shrubs exposed to low light (0 30% PPFD),
- intermediate light (30 60% PPFD) and high light (PPFD > 60%).
- 786 Figure 3. Relationships between per-cent photosynthetic photon flux (PPFD) availability and
- 787 morphological characteristics of *B. sempervirens*, including leaf mass per unit area (LMA),
- 788 branch inclination, leaf inclination, leaf clumping index, branch leaf area ratio (LAR) and the
- 789 percentage of shoots with new growth.
- Figure 4. Relationships between leaf mass per unit area (LMA) and area and mass-based leaf
- nitrogen content (Narea and Nmass) and net photosynthesis rates (Amax).
- 792

Figure 1.

803 Figure 4.