
1

Distributed Deep Learning for Remote Sensing
Data Interpretation

Juan M. Haut, Senior Member, IEEE, Mercedes E. Paoletti, Senior Member, IEEE, Sergio Moreno-Álvarez,
Javier Plaza, Senior Member, IEEE, Juan A. Rico-Gallego and Antonio Plaza, Fellow, IEEE

Abstract—As a newly emerging technology, deep learning is
a very promising field in big data applications. Remote sensing
often involves huge data volumes obtained daily by numerous
in-orbit satellites. This makes it a perfect target area for data-
driven applications. Nowadays, technological advances in terms
of software and hardware have a noticeable impact on Earth
observation applications, more specifically in remote sensing
techniques and procedures, allowing for the acquisition of data
sets with greater quality at higher acquisition ratios. This
results in the collection of huge amounts of remotely sensed
data, characterized by their large spatial resolution (in terms
of the number of pixels per scene), and very high spectral
dimensionality, with hundreds or even thousands of spectral
bands. As a result, remote sensing instruments on space borne
and airborne platforms are now generating data cubes with
extremely high dimensionality, imposing several restrictions in
terms of both processing runtimes and storage capacity. In this
paper, we provide a comprehensive review of the state-of-the-art
in deep learning for remote sensing data interpretation, analyzing
the strengths and weaknesses of the most widely used techniques
in the literature, as well as an exhaustive description of their
parallel and distributed implementations (with particular focus
on those conducted using cloud computing systems). We also
provide quantitative results, offering an assessment of a deep
learning technique in a specific case study (source code available:
https://github.com/mhaut/cloud-dnn-HSI). The paper concludes
with some remarks and hints about future challenges in the
application of deep learning techniques to distributed remote
sensing data interpretation problems. We emphasize the role
of the cloud in providing a powerful architecture that is now
able to manage vast amounts of remotely sensed data due to
its implementation simplicity, low cost and high efficiency when
compared to other parallel and distributed architectures, such
as grid computing or dedicated clusters.

Index Terms—Remote sensing, deep learning, parallel and
distributed architectures, cloud computing, big data.

This work was supported by Junta de Extremadura under Grant GR18060,
by Spanish Ministerio de Ciencia e Innovación through project PID2019-
110315RB-I00 (APRISA), by the European Union’s Horizon 2020 research
and innovation program under grant agreement No. 734541 (EOXPOSURE),
and by the computing facilities of Extremadura Research Centre for Advanced
Technologies (CETA-CIEMAT), funded by the European Regional Develop-
ment Fund (ERDF). CETA-CIEMAT belongs to CIEMAT and the Government
of Spain.

J.M. Haut is with the Department of Communication and Control Systems,
Higher School of Computer Engineering, National Distance Education Uni-
versity, 28015 Madrid, Spain (e-mail: juanmariohaut@unex.es).

M.E. Paoletti, J. Plaza and A. Plaza are with the Hyperspectral Computing
Laboratory, Department of Technology of Computers and Communications,
Escuela Politécnica, University of Extremadura, 10003 Cáceres, Spain (e-mail:
mpaoletti@unex.es; jplaza@unex.es; aplaza@unex.es).

Sergio Moreno-Álvarez and Juan A. Rico-Gallego are with the Department
of Computer Systems Engineering and Telematics, University of Extremadura,
10003 Cáceres, Spain (email: smoreno@unex.es; jarico@unex.es).

I. INTRODUCTION

A. Big remote sensing data
Remotely sensed images provide very detailed information

about the surface of the Earth, which often results in very
significant computational requirements. Present and future
missions for Earth Observation (EO) have significantly in-
creased the spatial, spectral and temporal resolution of ex-
isting imaging instruments, resulting in higher data volumes.
Meanwhile, the variety of multi-sensor and multi-resolution
acquisitions inevitably lead to the gradual acceptance of the
generated data sets as “big remote sensing data” [1], not
merely due to their high volume, but also due to the inherent
complexity of the data, which calls for advanced processing
techniques that often use external sources of information (e.g.,
social media data) for adequate interpretation [2].

For instance, remotely sensed hyperspectral images [3]
record information using hundreds of spectral bands collected
at nearly contiguous wavelengths in the electromagnetic spec-
trum. This significantly increases their volume with regards
to other kinds of image data used in remote sensing appli-
cations, such as multi-spectral images (tens of bands), radar,
or microwave data sets, creating important requirements in
terms of storage and processing. In fact, there has been
an exponential growth in these requirements due to recent
technological advances in both the quality and number of
available imaging instruments. This results from the ever-
increasing number of EO missions, that are now generating a
nearly continuous flow of remotely sensed data, which fostered
the creation of large remote sensing data repositories that
can only be exploited using adequate parallel and distributed
processing techniques [4]. Only in the hyperspectral domain,
the Airbone Visible/Infrared Imaging Spectrometer (AVIRIS)
[5] and its new generation (AVIRIS-NG) –operated by NASA’s
Jet Propulsion Laboratory– acquires almost 9 gigabytes (GBs)
of data per hour. Similarly, the EO-1 Hyperion sensor acquires
about 71.9 GBs of data per hour, which means over 1.6
terabytes (TBs) of data per day. Most of the EO missions
that will be operational soon, e.g. the German Environmental
Mapping and Analysis Program (EnMAP)1, exhibit equal or
even higher data acquisition rates. This confirms that remote
sensing data has entered the “big data era” [6]. To be more
specific, we summarize below the properties that qualify
remote sensing data a kind of big data [7]:
• Data volume. As mentioned before, remote sensing data

in the optical, radar and microwave domains are now

1http://www.enmap.org/

2

characterized by their huge dimensionality, which results
in the acquisition of several TBs of data per day. The total
amount of data archived by the Earth Observing System
Data and Information System (EOSDIS)2 now exceeds
30 petabytes (PBs) of data. The amount of archived data
at the China National Satellite Meteorological Center
(NSMC)3 exceeds 5 PBs, and the China Center for
Resources Satellite Data and Application (CCRSDA)4 has
more than 20 PBs of remote sensing data in its archive.

• Data variety. According to the state of the satellite indus-
try report5, there are more than 300 EO satellites currently
in orbit. All of them carry at least one EO instrument, and
they are able to collect and transmit data continuously
to Earth stations. This means that hundreds of different
kinds of remotely sensed data are transmitted (in parallel)
to the respective ground receiving stations every day. In
addition, since Landsat-1 was first operational in 1972,
there have been more than 500 EO satellites launched into
space, collecting and archiving more than 1000 different
types of remote sensing data.

• Data velocity. With the development of satellite constella-
tions, the satellite revisit times have gradually transitioned
from months to days, hours, or even minutes. As a result,
the multi-temporal resolution of remote sensing data has
increased exponentially, allowing for advanced environ-
mental monitoring and climate change applications. As
mentioned before, data centers now receive an almost
continuous flow of remote sensing data at ever-increasing
speeds, which creates important requirements in terms of
storage and analysis (particularly in the context of real-
time applications).

In addition to the three aforementioned characteristics, com-
monly known as the “three V’s” of remote sensing big data [6],
there are also other important aspects inherent to the analysis
and interpretation of such data. One of the most important ones
is data heterogeneity. Specifically, due to the existence of vari-
ous satellite orbits and specifications for different sensors (with
different storage formats, data projections, spatial resolutions,
and revisit times), there are vast differences in the formats
of the archived data, and these differences create difficulties
when developing general data interpretation techniques. Cur-
rently, big remote sensing data analysis is attracting significant
attention from governmental and commercial partners, as well
as from academic institutions. This is because the high-level
products that can be obtained from the data are useful in many
relevant applications, including agriculture, disaster prevention
and reduction, environmental monitoring, public safety and
urban planning, among many others [8].

One of the most important remote sensing big data projects
has been the EOSDIS [9], which provides end-to-end capa-
bilities for managing NASA’s Earth science data from various
sources. In Europe, the European Space Agency (ESA) has
been organizing the “Big Data from Space” conference, with

2https://earthdata.nasa.gov/eosdis
3https://www.nsmc.org.cn/en/
4https://data.globalchange.gov/organization/china-center-resources-

satellite-data-application
5https://sia.org/news-resources/state-of-the-satellite-industry-report/

the ultimate goal of stimulating interactions and bringing
together partners and service providers willing to exploit and
interpret remotely sensed big data collected from space. The
Group on Earth Observations (GEO) [10], a large-scale co-
operation organization, also promotes the development of big
data in remote sensing applications. As for commercial appli-
cations, Google Earth6 is a success case of bringing remotely
sensed big data to a large number of users around the world.
Many remote sensing applications such as target detection,
land-cover classification, spectral unmixing, pansharpening,
etc. can now be developed easily by resorting to Google Earth
and advanced processing algorithms. At the academic level,
we have also seen important efforts in top journals launching
multiple special issues devoted to the processing and analysis
of remotely sensed big data [1], [6]. Despite these significant
advances, the processing of remotely sensed big data still faces
significant challenges that we summarize below:

• Data integration challenges. A unified data standard is
needed for heterogeneous remote sensing data integration.
This includes uniform data standards, metadata standards
and image standards. However, due to the massive, multi-
modal and heterogeneous nature of big remote sensing
data, this is a challenging and yet unaccomplished goal.

• Data processing challenges. How to design computa-
tionally efficient and application-specific data processing
and storage techniques (while providing unified interfaces
to simplify the access to distributed collections of big
remote sensing data) is also a pressing challenge. In
a computing system, data transmission is generally the
bottleneck due to the limited network bandwidth [8].
Also, the dependency between tasks may introduce or-
dering constraints, and the optimized scheduling of these
tasks may be critical to achieve satisfactory processing
performance.

B. Cloud computing in remote sensing

Currently, cloud computing7 platforms are increasingly be-
ing used to process and store remotely sensed big data in
distributed architectures [7]. The explosive growth of remote
sensing big data has revolutionized the way these data are
managed and processed. Still, important challenges remain due
to the complex management of multi-modal, multi-spectral,
multi-resolution and multi-temporal remote sensing data sets,
which appear in various formats and/or distributed across data
centers. In this regard, cloud computing (based on virtualiza-
tion technology) offers the potential to integrate computing,
storage, network and other physical resources to build a virtual
resource pool where advanced techniques for remote sensing
data processing can be developed and deployed. In other
words, the cloud provides users with services to integrate
data, processing, production, computing platforms, storage,
and integrated spatial analysis, so as to provide solutions in
different application domains such as environmental problems,

6https://www.google.com/intl/es/earth/
7A formal widely accepted definition of cloud computing can be found in

[11].

3

land-use/land-cover, urban planning and so on. Cloud comput-
ing technology also offers advanced capabilities for service-
oriented and high-performance computing (HPC). The use
of cloud computing for the analysis of large repositories of
remote sensing images is now considered a natural solution, re-
sulting from the evolution of techniques previously developed
for other types of computing platforms, such as commodity
clusters or grid environments [12].

Quite surprisingly, there are not too many works yet de-
scribing the use of cloud computing infrastructures for the
implementation of remote sensing data processing techniques.
This is partially due to the lack of open repositories containing
labeled remote sensing images for public use, a situation that
is now changing thanks to initiatives such as BigEarthNet8.
Also, NASA and ESA are now providing large distributed
repositories of remote sensing data for open use by the
scientific community (e.g., the Sentinel program9). Due to the
availability of such repositories, the development of techniques
based on cloud computing for distributed processing of remote
sensing images has become a very timely research line.

A relevant question at this point is whether cloud comput-
ing can become a de-facto architecture for remotely sensed
data interpretation in future years. Our belief is that, by
virtue of its elasticity and high transparency levels, cloud
computing offers a truly unique paradigm for big remote
sensing data processing, in which computational resources
can be accommodated in the form of ubiquitous services on-
demand, on a pay-per-use basis. In addition, cloud-enabled
remote sensing data processing infrastructures and services can
now be delivered for large-scale remote sensing data across
geographically distributed data centers, which was impossible
even with the most powerful compute clusters. As a result,
the incorporation of the cloud to big remote sensing data
processing initiatives reveals its capacity to deal with the
increased computational and storage challenges introduced by
modern remote sensing applications, especially when coupled
with the powerful new deep learning (DL) algorithms [13] that
have been shown to provide an excellent tool for information
extraction from scientific data in general and from remotely
sensed data sets in particular [14].

C. Paper organization and contributions

In this paper, we provide a review of the most important
initiatives that have been developed so far in the use of cloud
computing architectures (as compared with other HPC solu-
tions, such as commodity clusters or grid computing platforms)
for remote sensing data interpretation, with particular focus
on DL techniques and their implementations in the cloud. We
believe that this review is quite unique in the sense that it pro-
vides a completely new flavour with regards to other published
works that focus on DL in remote sensing [15], [16], [17], big
remote sensing data [1], [6], or high performance computing
in remote sensing [4], [18], [19]. None of these review papers
considered cloud computing as a de-facto architecture for big
remote sensing data processing, which is now a widespread

8http://bigearth.net/
9https://sentinel.esa.int/

implementation option (in particular, when computationally
demanding DL algorithms are involved in the information
extraction process). As a result, we believe that this review is
necessary given the recent advances in processing strategies,
which inevitably led to using DL algorithms in the cloud
for the successful processing and interpretation of big remote
sensing data sets. The remainder of the paper is structured as
follows:
• Section II provides a general overview of techniques for

DL in remote sensing data processing, and a taxonomy
of DL architectures that have been widely used in this
context.

• Section III provides a comprehensive review of available
approaches for the efficient implementation of remote
sensing data processing techniques based on DL algo-
rithms in HPC architectures, including clusters, grids and
cloud computing systems. This section also includes a
discussion and some critical observations resulting from
the in-depth analysis of the works published so far in
these areas.

• Section IV focuses on cloud computing as the current de-
facto architecture for big remote sensing data processing
using DL algorithms. This section first provides some
basic concepts about cloud computing. Then, it details
some of the most popular frameworks and programming
models that have been used for DL-based processing of
remotely sensed data and other scientific applications in
the cloud.

• Section V describes the most popular machine learning
(ML) and DL libraries and frameworks in cloud comput-
ing environments, with particular emphasis on those that
have been already used in remote sensing applications.

• Section VI provides a case study with a processing
example that illustrates a representative technique for DL-
based distributed processing of remotely sensed hyper-
spectral data in the cloud, providing also some sugges-
tions for practical use and exploitation.

• Finally, section VII concludes the paper with some re-
marks and hints at plausible future research avenues.

II. DEEP LEARNING IN REMOTE SENSING

A. Remote sensing data processing

Remote sensing technology now provides high quality data
from the surface of the Earth (in terms of detailed resolution,
good signal-to-noise ratio, robustness to perturbations, and ac-
curate error corrections). Advanced analysis and interpretation
methods are required to extract the most useful information
contained in the data. As a result, the remote sensing discipline
involves many Earth science disciplines, such as meteorology,
geology or ecology, as well as a variety of engineering skills
to properly interpret the huge amount of remotely sensed data
provided by a constellation of air/space EO instruments.

Furthermore, a wide variety of remotely sensed data can
be obtained from these instruments, where optical imaging
systems capturing reflected sunlight are pretty popular due to
the rich information they contain, with different formats and
resolutions (spatial, spectral and temporal), enabling a very

4

detailed and comprehensive assessment of surface properties
[20], [21]. For illustrative purposes, Table I lists some popular
remote sensing instruments which have been or are currently
operational.

TABLE I
LIST OF POPULAR REMOTE SENSING INSTRUMENTS.

GSD: GROUND SAMPLE DISTANCE, PAN: PANCHROMATIC, MSI: MULTISPECTRAL, HSI: HYPERSPECTRAL

Name Type Spatial resolution Spectral bands Spectral Range
RADARSAT-2 [22] SAR 1-100 m 1 (C-band) 5.405 GHz

ALOS PALSAR [23] SAR 6.25-12.5 m 1 (L-band) 1.27 GHz
AirMOSS [24] SAR 100 m 1 (P-band) 0.43 GHz

TerraSAR-X [25] SAR 0.24-40 m 1 (X-band) 19.65 GHz
Sentinel-1 [26] SAR 5-20 m 1 (C-band) 5.404 GHz

LVIS [27] Laser 20 m 1 1064 nm
EROS-B [28] PAN 0.7m 1 500-900nm

GAOFEN-1 [29] MSI 2.0-8 m

5: PAN 450-900 nm
Blue 450-520 nm

Green 520-590 nm
Red 630-690 nm
NIR 770-890 nm

GAOFEN-2 [29] MSI 0.81-3.24 m

5: PAN 450-900 nm
Blue 450-520 nm

Green 520-590 nm
Red 630-690 nm
NIR 770-890 nm

IKONOS [30] MSI 0.82-3.2 m

5: PAN 526-929 nm
Blue 445-516 nm

Green 506-595 nm
Red 632-698 nm
NIR 757-853 nm

WorldView-4[31] MSI 0.3-1.2 m

5: PAN 450-800 nm
Blue 450-510 nm

Green 510-580 nm
Red 655-690 nm
NIR 780-920 nm

Sentinel-2 [32] MSI 10-60 m 13 443-2190 nm
Sentinel-3 OLCI [33] MSI 300-1200 m 21 400-1200 nm

Landsat-8 [34] MSI 15-30 m 11 300-12510 nm
MODIS [35] MSI 250 - 1000 m 36 405-14385 nm
CHRIS [36] HSI 18-36 m 62 415-1050 nm
AVIRIS [5] HSI 20 m 224 360-2450 nm

AVIRIS-NG [37] HSI 0.3-4.0 m 600 380-2510 nm
ROSIS [38] HSI 1.3 m 115 430-860 nm
CASI [39] HSI 2.5 m 114 360-1050 nm

HYDICE [40] HSI 1-7 m 210 400-2500 nm
HYMAP [41] HSI 5 m 126 450-2500 nm
PRISM [42] HSI 2.5 m 248 350-1050 nm
EnMAP [43] HSI 30 m 228 420-2400 nm
HISUI [44] HSI 30 m 185 400-2500 nm
DESIS [45] HSI 30 m 180 400-1000 nm

HYPERION [46] HSI 30 m 220 400-2500 nm
PRISMA [47] HSI 30 m 237 400-2500 nm
SHALOM [48] HSI 10 m 241 400-2500 nm

In fact, optical remote sensing data play an important role
in many different activities [49]. On the one hand, panchro-
matic, standard RGB and multi-spectral products often exhibit
impressive spatial resolution, which strongly facilitates the
detection of contours, textures and structures within the scene.
On the other hand, although the spatial resolution is partially
sacrificed, hyperspectral instruments collect hundreds of nar-
row and near-continuous bands ranging from the VNIR to the
shortwave infrared (SWIR) wavelength regions, providing very
detailed spectral signatures of the materials covered by each
pixel, thus allowing a more accurate and detailed analysis of
the spectral features available in the data [50].

The advanced products resulting from the analysis and
interpretation of remotely sensed data sets allow for the
implementation of long-term development strategies in several
fields, such as precision agriculture [51], urban planning [52],
or desertification monitoring [53], among others.

The rich and detailed information contained in remote sens-
ing data needs to be adequately extracted and processed to be
consequently exploited at the user level. In this regard, there is

a strong demand for an accurate and computationally efficient
analysis techniques, which can be categorized considering
different criteria. In particular, according to their purpose [54],
we can classify available techniques into the following groups:
• Restoration and denoising methods manage data corruption

and anomalies introduced during the acquisition process
that may significantly degrade the quality of the collected
data [55], involving radiometric and geometric corrections,
or diffuse solar radiation and management of atmospheric
effects.

• Enhancement methods transform the captured data to in-
crease the quality of certain features, making them more
suitable to human vision skills to conduct visual analysis.
This involves contrast enhancement, super-resolution and
pan-sharpening, for instance.

• Transformation methods modify the scene content in either
the spectral or spatial domain for feature extraction, image
compression or filtering purposes, such as the principal com-
ponent analysis (PCA), tasseled cap transformation (TCT),
vegetation indices or the wavelet transform (WT).

Fig. 1. Remote sensing classification can be tackled at three different levels:
pixel-level (left), object-level (center), and scene-level (right)

• Classification methods interpret the content of remotely
sensed scenes. Three classification levels can be distin-
guished (see Fig. 1) [56], where pixel-level classification
labels each pixel in a scene with a semantic class [57];
object-level classification seeks to recognize the elements
present in the scene (by usually combining spectral-spatial
features) [58]; and scene-level classification provides a
global meaning (i.e., a semantic class) to the entire scene by
understanding and interpreting its features [59]. Moreover,
sub-pixel analyses can also be conducted by analyzing the
spectral mixtures at each pixel (termed sub-pixel classifica-
tion or spectral unmixing) [60], [61], [18].
Focusing on data transformation and classification ap-

proaches, ML and DL methods have provided a wide range
of processing algorithms for both regression and classification
of complex nonlinear systems [62], [63], [14], [16], imple-
menting promising learning paradigms to derive information
from the data. These methods range from purely unsupervised
strategies to supervised ones, with a vast collection of semi-
supervised and hybrid-based methods in between [64], [65],
[66], [67].

5

For instance, k-means clustering is a popular unsupervised
method that groups similar samples together by exploring
similarity measures, and is able to discover underlying patterns
[68]. On the contrary, the k-nearest neighbors (kNN) usually
explores the similarity between samples in a supervised way
[69]. Also, decision trees (DTs) [70] and random forests (RFs)
[71] are supervised methods, where RFs develop multiple trees
from the randomly sampled subspace of the input sample
and then combine the output through a voting/maximum rule.
In addition, the multinomial logistic regression (MLR) [72],
Gaussian mixture models (GMMs) [73] and naive Bayes-based
(NB) approaches [74] are probabilistic models that analyze
the data distribution to conduct their assumptions. Hidden
Markov models (HMMs) [75] and support vector machines
(SVMs) [76] are accurate statistical classifiers. Particularly,
the SVM is considered an efficient and stable algorithm for
high-dimensional data classification. This method learns the
decision hyperplane that can best separate training samples
in a kernel-included high dimensional feature space. Finally,
artificial neural networks (ANNs) [77] are versatile empirical-
modeling algorithms composed of hierarchical layers of neu-
rons that process input stimuli using synaptic weights, and
transmit their responses through activation functions. As a
result, each layer refines the neural responses to the input data,
obtaining increasingly abstract representations by adjusting
the model weights, which are automatically learned from the
data through the forward-backward propagation mechanism
to extract the most relevant information. Moreover, ANNs
offer a very flexible architecture in which both the number
of layers and neurons (and even the shape and direction
of the connections) can be established by the programmer.
In this sense, the great flexibility and automatic adjustment
of neural models (without any prior knowledge about the
statistical features of the data) are major advantages that have
positioned ANNs as a very attractive approach, creating a
sharp contrast to traditional ML techniques, which usually
require careful engineering to extract complex handcrafted
features, requiring specific knowledge to recognize the specific
regularities present in the data.

(a) Papers (b) Citations
Fig. 2. Total number of papers per year (a) and citations received by papers
(b) in the area “DL in remote sensing”. Source: Web of Knowledge. Search
string: AB=(“deep learning” AND “remote sensing”). Total number of results:
1621. Date of the query: February 20, 2021.

Indeed, the study and implementation of ANNs is so ex-
tensive that, within ML, the sub-field of DL has emerged
as a hot topic for signal data processing [13]. Particularly,
DL algorithms have gained significant popularity in remote

sensing data analysis over the past few years. For illustrative
purposes, Fig. 2 shows the total number of papers per year
published in this topic, and also the number of citations
received, revealing an exponential increase in recent years. The
figure was generated using the Web of Knowledge engine10,
and the exact search string used (and the date of the query)
are specified in the figure caption –where “AB” indicates that
the search was conducted in the abstracts of the papers– for
reproducibility purposes.

A detailed review of available approaches in this area was
given in [15], which discusses how DL has been applied
for remote sensing data analysis tasks such as image fusion,
registration, scene classification, object detection, land use and
land cover classification, segmentation, etc. Different applica-
tion fields are also covered, including open challenges, and
directions for future research. Also, the paper [17] focuses on
remotely sensed hyperspectral data, providing a comprehen-
sive review of methods for DL-based classification in this field
and discussing the strengths and weaknesses of these methods.
Accordingly, the following section includes a brief taxonomy
of the main DL models developed for remote sensing data
analysis.

B. Taxonomy of deep learning (DL) architectures

There is a great variety of deep models due to the great
flexibility of existing architectures in terms of topology, data-
path connections and types of layers. In general terms, the
scientific community recognizes five models, i.e., stacked
autoencoders (SAEs), deep belief networks (DBNs), recurrent
neural networks (RNNs) and convolutional neural networks
(CNNs), as the main architectures, from which a great variety
of modified networks have been implemented [17], such as
generative adversarial networks (GANs), which have gradually
become a mainstream architecture in the field of remote
sensing. In the following, we review these DL models.

1) SAEs: The auto-encoder (AE) implements an encoder-
decoder structure to learn a code representation from the
input data in an unsupervised way. It defines an optimization
problem that attempts to minimize the reconstruction error
||
(
Wdσ

(
WeX

T
))T −X||22 by learning the matrices of bases

Wd and We, where X ∈ RN×B defines the remote sensing
data as an input matrix of N samples with B channels
(feature space), We ∈ RB′×B comprises the recognition
weights of the encoder, which maps the input data to a
code/latent representation with B′ 6= B features (code/latent
space), and Wd ∈ RB×B′ comprises the generative weights
of the decoder, which recovers the original feature space by
reconstructing the input data. σ acts as an activation function.
The SAE deepens the model by stacking several AEs [see Fig.
3(a)], where the AEs of the stacked-encoder (bottom-half) find
a series of lower-dimensional features and the stacked-decoder
(top-half) performs the opposite function [78].

2) DBNs: The DBN is a multi-layer generative model
inspired by restricted Boltzmann machines (RBMs). An RBM
is a two-layer stochastic network trained to minimize the input
reconstruction error in a similar way as AEs (Gibbs sampling),

10http://www.webofknowledge.com/

6

a) Stacked auto-encoder (SAE)

b) Recurrent neural network (RNN)

c) Convolutional neural network (CNN)

d) Deep belief network (DBN) based on restricted Boltzmann machine (RBM), where the visible layer is highlighted with a colored border

Fig. 3. Graphical illustration of traditional deep network architectures applied for processing remote sensing data cubes. The SAE (a) optimizes the
reconstruction error between its vector input X and its output X′, where the bottleneck layer contains the latent data representation. In the traditional
RNN model (b), the data cube is processed in band-by-band fashion, where the spectral signature of each pixel xi is processed as a temporal sequence,
obtaining as a result a hidden state h that works as the model memory. The CNN (c) processes 3D inputs (i.e., the pixel xi and its surrounding area) by
applying multidimensional kernels that act as filters for particular features (borders, shapes, etc.), obtaining a set of feature maps with the neuronal responses
to that stimuli. Finally, the DBN (d) is composed of several RBMs which process and reconstruct the input data, mimicking the SAE behaviour to learn the
probability distribution of the input in an unsupervised fashion.

where the visible layer deals with the input data and the hidden
layer conducts feature extraction, capturing higher-order data
correlations observed in the visible units while learning a
probability distribution over the input data [see Fig. 3(d)].
DBNs take advantage of RBMs, concatenating several pre-
trained RBMs and refining the full-model parameters through
labeled data.

3) RNNs: The RNN [see Fig. 3(b)] retains memory and
learns data sequences by introducing loops in its connections.
As a result, the neural responses in each step depend on those
of the previous step by means of a an internal state, which
creates a sequential dependency that provides an association
between the current and the previous data sample. According
to which hidden states are created and how they are managed,
three types of RNNs can be distinguished [79]: the simple
vanilla RNN, the gate-based long short memory (LSTM), and
the simplified gated recurrent unit (GRU).

4) CNNs: In contrast to other deep models (which were
originally implemented with fully connected layers, e.g., the
AE), the CNN introduces the convolution layer as a set of
locally connected weights which are rearranged in an n-
dimensional grid. As a result, the convolution kernels act as
feature detection-extraction filters, where neuronal responses

are arranged in a feature map that not only indicates the
presence of a particular stimulus detected by the kernel (edges,
borders, shapes) but also the location of these stimuli in
the spatial domain. This enables abstract and refined spa-
tial relationships to be maintained and extracted within the
data through a hierarchical stack of convolution layers [see
Fig. 3(c)], which are combined with other layers (activation,
normalization and pooling functions, for instance) to extract
elaborate patterns from the raw inputs.

The flexibility of convolution kernels has demonstrated a
great potential to extract any kind of feature from the raw
data, without applying complex pre-processing mechanisms.
Furthermore, the great architectural plasticity in terms of ker-
nel size and grid organization (which produces 1D, 2D and 3D
models), layer connections (direct, residuals, skip and short-
connections), data paths settings and wide/depth configuration,
along with the impressive generalization power and the ability
to make strong assumptions about the input data, have estab-
lished convolution-based models as the most successful and
popular deep networks. In fact, these networks represent the
state-of-the-art in image processing through derived network
models, such as residual (ResNets), dense (DenseNets) and
capsule-based (CapsNets), among many others [80], [81].

7

Fig. 4. Generative adversarial network (GAN) for remote sensing data
processing

5) GANs: The aforementioned networks work as discrim-
inative models, which map original inputs to some desired
outputs (by learning conditional distributions between them)
to minimize a loss function. In contrast, generative approaches
(such as GANs) learn the joint probability between inputs
and outputs, modeling the data distribution to generate new
samples rather than just evaluating the available ones. Thus,
GANs (see Fig. 4) model a data distribution from a random
noise vector through an adversarial process, where two neu-
ral models, i.e. generative and discriminative networks, are
simultaneously trained in competition (the former to deceive
the latter, and the latter to avoid being deceived by the samples
generated by the former).

III. IMPLEMENTATIONS

In typical DL models, such as those illustrated in Fig. 3,
there are millions of parameters (which define the model) and
large amounts of data are required to learn these parameters.
This leads to a computationally intensive process in which the
learning step consumes a lot of time. Therefore, it is important
to come up with parallel and distributed algorithms which can
run much faster and drastically reduce the training times in the
context of remote sensing applications. In the following, we
provide a description of different parallelization strategies for
accelerating DL algorithms in remote sensing applications by
resorting to three types of HPC architectures: clusters, grids
and clouds. A description of the main challenges faced by
these different architectures, along with a brief comparison
among them is then presented. The section concludes with a
discussion on their potential role in solving remote sensing
problems via DL algorithms.

A. Cluster computing

In this subsection, we describe some of the most relevant
approaches in the recent literature to exploit cluster computer
architectures (including GPU clusters) for the efficient inter-
pretation of remote sensing data. Fig. 5 shows the total number
of papers published in this area, along with the number of
citations received (according to Web of Knowledge). In the
following, we discuss some of the most relevant contributions
in this field.

(a) Papers (b) Citations
Fig. 5. Total number of papers per year (a) and citations received by papers (b)
in the area “deep learning in remote sensing using cluster computing”. Source:
Web of Knowledge. Search string: AB=(“deep learning” AND “remote
sensing” AND “cluster” AND “comput*”). Total number of results: 11. Date
of the query: February 20, 2021.

As one of the most notable recent developments, the authors
in [82] implement a remote sensing data flow (RESFlow) for
improving DL algorithms and allowing them to perform com-
putations on large-scale remotely sensed images. The RES-
Flow works by dividing the data into homogeneous partitions
that can fit simple models in homogeneous (i.e., commodity
cluster-based) machines. Despite its cluster-oriented nature,
RESFlow uses Apache Spark (a tool that has been widely used
in cloud computing, as described in section IV) to accelerate
DL inference. The RESFlow incorporates a strategy to opti-
mize resource utilization across multiple executors assigned
to a single worker. The framework invokes DL inference
at three stages: during deep feature extraction, deep metric
mapping, and deep semantic segmentation. Resource sharing
in graphical processing units (GPUs) is adopted to achieve a
fully parallelized pipeline for all execution steps.

RESFlow uses Apache Spark, but there are multiple options
to distribute training over cluster computing implementations.
Other options include TensorFlow11, PyTorch12 or Horovod13.
These frameworks provide multiple benefits. For example,
Pytorch includes multiple extensions (as NVIDIA Apex14) to
enable streamline mixed precision with distributed training,
and Horovod employs efficient inter-GPU communications.
Similar to Apache Spark, some cluster computing approaches
take advantage of Kubernetes15 (k8s) architecture workflow,
which allows for the deployment automation, scaling, and
management of ML/DL applications, as described in [83].

The work in [84] exemplifies the unique advantages pro-
vided by parallel computing environments and programming
techniques to solve large-scale problems, such as the training
of classification algorithms for remote sensing data. Specifi-
cally, the authors demonstrate that the training of deep CNNs
can be efficiently implemented using cluster computers con-
taining a large number of GPUs. The obtained results confirm
that parallel training can dramatically reduce the amount of
time needed to perform the full training process, obtaining
almost linear scalability in a cluster of GPUs without losing
any test accuracy.

11https://www.tensorflow.org/
12https://pytorch.org/
13https://horovod.ai/
14https://nvidia.github.io/apex/
15https://kubernetes.io/es/

8

At this point, we emphasize that some works do not need to
exploit clusters of GPUs to conduct the desired calculations.
For instance, in the work [85], the authors resort to a shared
memory system with only 4 GPUs to develop a Multi-GPU
Training Framework (MTFC) of a CNN for remotely sensed
hyperspectral image classification. The authors first develop
a parallel neighbor pixel extractor (PNPE) that generates 3D
cube samples from the input data automatically. Then, they
perform a series of optimizations in the MTFC, such as
task division, fine-grained mapping between tasks and GPU
thread blocks and shared memory usage reduction. To further
improve the training speed, the authors exploit CUDA streams
and multiple GPUs to train mini-batches of data samples
simultaneously. The MTFC is shown to outperform popular
ML frameworks such as Caffe16 and Theano17, while offering
the same level of classification accuracy.

The paper [86] provides several parallelization approaches
for deep neural networks (DNNs), taking into account net-
work overheads as well as optimal resource allocation, since
network communication is often slower than inter-machine
communication (while some layers are more computationally
expensive than others). Specifically, the authors consider a
multi-modal DNN architecture and identify several strategies
to optimize performance when training is accomplished on
Apache Spark (this framework will be described in details
in section IV). The authors compare their newly developed
architecture with an equivalent DNN architecture modeled
after a data parallelization approach. The experiments in the
paper reveal that the way in which the model is parallelized
has a very significant impact on resource allocation, and
that hyperparameter tuning can significantly reduce network
overheads.

Other relevant developments in this area include the paper
[87], which presents parallel versions of DL techniques for
dimensionality reduction of remotely sensed images, also
implemented in an Apache Spark cluster. The paper [88]
presents an improved version of the aforementioned develop-
ment which scales even better in clusters of GPUs. The paper
[89] presents a parallel and distributed DL-based spectral
unmixing algorithm for remotely sensed hyperspectral data,
again using Apache Spark for the implementation on a cluster
computer.

B. Grid computing

Although many parallel systems are inherently homoge-
neous, a most recent trend in HPC systems is to use highly
heterogeneous computing resources, where the heterogene-
ity is generally the result of technological advancement in
progress of time. With increasing heterogeneity, grid com-
puting emerged as a premier technology that could facilitate
the processing of remote sensing data in heterogeneous and
distributed computing platforms.

Although the grid has recently evolved into architectures
with more quality of service, such as the cloud, there were
several reasons for using grid computing for remote sensing

16https://caffe.berkeleyvision.org/
17https://github.com/Theano/

image processing when the first grid-oriented architectures
appeared. First and foremost, the required computing per-
formance may not be available locally. Also, the required
performance may not be available in just one location, with
a possible solution being cooperative computing. Last but not
least, the required computing services may be only available in
specialized centres, and in this case the solution is application-
specific computing. This led to the development of some
grid-based approaches that are now mostly transitioning into
cloud computing implementations, as will be described in the
following subsection.

For illustrative purposes, Fig. 6 shows the total number
of papers published in this area, along with the number of
citations received. In the following, we discuss some of the
most relevant contributions focused on using grid computing
platforms for solving remote sensing problems via DL algo-
rithms.

(a) Papers (b) Citations
Fig. 6. Total number of papers per year (a) and citations received by papers (b)
in the area “deep learning in remote sensing using grid computing”. Source:
Web of Knowledge. Search string: AB=(”deep learning” AND ”remote
sensing” AND ”comput*” AND ”grid”). Total number of results: 9. Date
of the query: February 20, 2021.

The GEOGrid project was one of the first DL-oriented
initiatives aimed at providing an e-Science infrastructure to
the remote sensing community. It is specifically developed to
integrate a wide variety of remote sensing data sets, and is
accessible online as a set of services18.

The platform called grid processing on demand, shortly G-
POD19, was the first one to provide a grid-based environment
for processing satellite images provided by ESA, offering
several image processing services and DL algorithms mainly
intended for environmental studies. G-POD has been success-
fully applied in real applications, like flood area detection.

As an add-on to this tool, the platform for satellite im-
agery search and retrieval, called Ground European Network
for Earth Science Inter-operations and Digital Repositories
(GENESI-DR) [90], offers an advanced interface for digital
data discovery and retrieval, where the original images are
processed using G-POD facilities (comprising some DL algo-
rithms). The ultimate goal of GENESI-DR was to build an
open access service to digital repositories focusing on fast
search, discovery, and access to remotely sensed imagery in the
context of post-disaster damage assessment. Once a disaster
alert has been issued, response time is critical to providing
relevant damage information to analysts and/or stakeholders.

18https://www.geogrid.com/
19https://gpod.eo.esa.int/

9

In this regard, GENESI-DR provides rapid area mapping and
near real-time ortho-rectification web processing services to
support post-disaster damage needs.

Also, the GiSHEO20 platform (on-demand Grid services for
training and high education in Earth Observation) addresses
an important need for specialized training services in Earth
observation. Solutions were developed for data management,
image processing service deployment, workflow-based service
composition, and user interaction, with particular attention
to services for image processing (able to exploit free image
processing tools, along with some DL techniques). A special
feature of the platform is the connection with the GENESI-DR
catalog, which provides plenty of remote sensing data sets for
free.

To conclude this subsection, it is important to emphasize
that the Committee on Earth Observation Satellites (CEOS)21,
an international coordinating body for space borne missions
focused on the study of the Earth, maintains a working
group on information systems and services, with the ultimate
goal of promoting the development of inter-operable systems
for managing EO data internationally. In this regard, several
grid platforms have greatly benefited from CEOS standards
when developing grid-based tools for accurate interpretation
of remotely sensed data [7].

C. Cloud computing
Cloud computing solutions represent an evolution of grid-

based approaches and exhibit the potential to manage and
process vast amounts of remotely sensed data in fault-tolerant
environments by interconnecting distributed and specialized
nodes. This strategy can significantly reduce the processing
costs often involved in grid computing, leading to natural
and cheap solutions for remotely sensed data processing. For
illustrative purposes, Fig. 7 shows the total number of papers
published in this area, along with the number of citations.
In the following, we review some of the most significant
contributions based on cloud computing for solving remote
sensing problems via DL techniques.

(a) Papers (b) Citations
Fig. 7. Total number of papers per year (a) and citations received by papers (b)
in the area “deep learning in remote sensing using cloud computing”. Source:
Web of Knowledge. Search string: AB=(”deep learning” AND ”remote
sensing” AND ”comput*” AND ”cloud”). Total number of results: 78. Date
of the query: February 20, 2021.

One of the most relevant works addressing the implementa-
tion of DL algorithms for remote sensing data analysis in the

20http://cgis.utcluj.ro/projects/gisheo
21https://ceos.org/

cloud was presented in [91], in which the authors introduced a
new cloud-based technique for spectral analysis and compres-
sion of hyperspectral images. Specifically, the authors provide
a cloud implementation of the AE, a popular deep network
for non-linear data compression. Apache Spark (described in
detail in section IV) serves as the backbone of the cloud
computing environment by connecting the available processing
nodes using a master-slave architecture. The obtained results
indicate that cloud computing architectures offer an adequate
solution for compressing and interpreting big remotely sensed
data sets.

The paper [92] proposes an acceleration method for hy-
perspectral image classification that exploits scheduling meta-
heuristics to automatically and optimally distribute the work-
load across multiple computing resources on a cloud platform.
A representative DL-based classification processing chain is
first distributed and implemented in parallel based on the
MapReduce mechanism (described in detail in section IV)
on Apache Spark. The optimal execution on Spark is further
formulated as a divisible scheduling framework that takes into
account both task execution precedences and task divisibility
when allocating the divisible and indivisible sub-tasks onto
computing nodes. The scheduling results provide an optimized
solution to automatic processing of big hyperspectral data
on cloud environments. The experimental results demonstrate
that this approach can achieve significant speedups in the
classification of hyperspectral imagery on Spark, obtaining
also significant scalability with regards to increasing data
volumes.

The paper [93] exploited the idea that state-of-the-art DL-
based algorithms and cloud computing infrastructure have
become available with a great potential to revolutionize the
processing of remotely sensed images. Specifically, their study
evaluated, using thousands images obtained over a 12-month
period, the performance of three ML and DL approaches
(RFs, LSTMs, and U-Nets). The DL algorithms (LSTMs and
U-Nets) were implemented using the TensorFlow framework
(described in detail in section IV), while the ML-based RF uti-
lized the Google Earth Engine platform. The study concluded
that, although the use of ML/DL algorithms depends highly
on the availability of labeled samples and the generalization
of these methods still presents some challenges, algorithms
based on ANNs can still be used in the cloud to map large
geographic regions that consider a wide variety of satellite
data formats.

The paper [94] uses cloud computing to make global-
oriented spatio-temporal data simulations using the OpenStack
management framework (described in detail in section IV).
This is accomplished by resorting to discrete global grid
systems (DGGS), designed to portray real-world phenomena
by providing a spatio-temporal unified framework on discrete
geo-spatial data structures, along with DL-based algorithm to
address the challenges resulting from big remote sensing data
storage, processing, and analysis.

The paper [95] presents a new parallel content-based image
retrieval (CBIR) system from remotely sensed hyperspectral
image repositories, implemented on a cloud computing plat-
form. The method exploits information from spectral unmix-

10

ing [96] and DL to accurately retrieve hyperspectral scenes.
To this end, the authors implement a distributed and DL-
based unmixing method that operates on a cloud computing
environment. In addition, they implement a global standard
distributed repository of hyperspectral images equipped with
a large spectral library in a software as a service mode (this
concept will be described in detail in section IV), providing
users with big hyperspectral data storage, management, and
retrieval capabilities through a powerful web interface. The
parallel unmixing process is then incorporated into the CBIR
system to achieve a highly efficient unmixing-based content
retrieval system.

Other important contributions in this area include the paper
[97], which proposed a model that facilitates the utilization
and performance of Apache Spark algorithms in cloud en-
vironments. Also, the paper [98] presents the architecture
of InterIMAGE cloud Platform (ICP) data mining package,
a distributed tool for the analysis of remotely sensed data.
The paper [99] proposes an extension of Apache Hadoop
(described in detail in section IV) that executes operations for
processing remotely sensed images (including DL methods)
in a highly distributed and efficient way. The paper [100]
proposes a highly scalable and efficient segmentation model
for remotely sensed images, capable of segmenting very high
resolution imagery with DL algorithms. The paper [101] pro-
poses a method for DL-based cloud computing based on image
sampling, which models the remotely sensed data set to be
processed as a streaming service and divides it with a Voronoi
diagram. The paper [102] describes a Java software based on
the MapReduce model for handling and processing remotely
sensed images using DL methods. The paper [103] presents
a deep method for storing images using MapReduce. The
paper [104] also uses a MapReduce framework for DL-based
parallel processing of remotely sensed data through Apache
Hadoop. The work [105] describes a set of requirements to
achieve a generalized and integrated EO information system
and the associated (real-time and off-line) data processing
techniques, based on DL. The paper [106] presents a new
DL-based approach for distributed processing of large-scale
satellite images in the cloud. The paper [107] presents a
distributed spatio-temporal indexing architecture implemented
on the cloud, and a distributed DL-based algorithm for im-
proved spatial-temporal queries. The paper [108] discusses the
requirements of overlapping data organization and proposes
two extensions of the Hadoop File System (HDFS) –described
in section IV– and the MapReduce programming model for
dealing with remotely sensed data. The paper [109] describes
a DL framework for the efficient analysis of large image
volumes which processes daily the data obtained by NASA’s
EO-1 satellite.

D. Challenges and comparison
The different distribution perspectives described in the three

previous subsections exhibit numerous differences. As a sum-
mary, Table II provides an overlook of the main similarities
and differences between the discussed strategies.

Regarding the cost, there are initiatives that provide free
computing platform services for the scientific and research

TABLE II
COMPARISON BETWEEN CLUSTER, GRID AND CLOUD ARCHITECTURES

Cluster computing Grid computing Cloud computing
Scalability Low Low High
Elasticity No No Yes
Heterogeneity No Yes Yes
Compute capability Cluster dependant Grid dependant On-demand
Business services No No Yes
Private service cost Medium High On-demand
Public service available Yes Yes Yes
Resource handling/allocation Centralized Distributed Both
Job queuing Yes Yes No

communities. An example is PRACE22 (Partnership for Ad-
vanced Computing in Europe), aimed at high-impact scientific
research and engineering development across different disci-
plines. Also, there are specific projects for different distributed
computing approaches. Condor23 was created for research and
education purposes. EGI-InSPIRE24 (Integrated Sustainable
Pan-European Infrastructure for Researchers in Europe) was
created by the European Commission for the benefit of the
scientific communities within the European Research Area to
exploit grid infrastructures. This project is also available for
cloud computing.

Usually, cloud computing has been identified as a distributed
service, which is not entirely true. Alternatives are UCI25 (Uni-
fied Cloud Interface) or OpenNebula26, which bring flexibility,
scalability and simplicity for cloud computing management.
In addition to these projects, the XSEDE27 (Extreme Science
and Engineering Discovery Environment) ecosystem and the
EGI28 (European Grid Infrastructure) provide different cost-
free alternatives.

One of the most important features of the cloud (and one
of the main reasons for its popularity) is the elasticity and
scalability of its architecture. Since cluster/grid architectures
are limited to available hardware resources, cloud computing
offers the possibility to increase such resources by resorting
to the elasticity property, i.e., using resources from different
infrastructures. This leads to an increase in the heterogeneity
of computing and communication resources, and to the use
of both centralized and distributed resource handling and
allocation.

Finally, another relevant feature of cloud computing is
that the infrastructure does not need to use a job queue for
managing executions from different users. This significantly
reduces the waiting times for the execution of jobs that are
needed in other architectures, such as clusters and grids.

E. Discussion

In this subsection we discuss some important aspects iden-
tified after the systematic review conducted in the previous
subsections, in an attempt to answer relevant questions such
as the role of parallel and distributed computing as an efficient
tool for solving remote sensing problems via DL algorithms.

22https://prace-ri.eu/
23http://www.cs.wisc.edu/condor/condorg
24http://www.egi.eu/projects/egi-inspire/
25https://code.google.com/archive/p/unifiedcloud/
26https://opennebula.io/
27https://www.xsede.org/
28https://www.egi.eu/services/cloud-compute/

11

In our systematic review we have found that distributed
computing technologies are highly demanded for DL-based
data processing when large volumes of remotely sensed data
need to be processed. Commodity cluster computers (possibly
including hardware accelerators such as GPUs) [110], grid
environments [111], [112], and cloud computing systems [113]
have been the most demanded types of HPC platforms for big
remote sensing data processing. Recently, cloud computing
has become a standard for distributed processing due to its
scalability, low cost, service-oriented and high-performance
properties [7]. Therefore, this technology offers the potential
to deal with tasks that must be accomplished over large data
repositories. As result, cloud computing can be seen as the
most natural solution for the analysis of large volumes of
remotely sensed data, as well as an evolution of other HPC
techniques (such as cluster and grid computing) that corrects
their limitations and expands their possibilities.

We have also observed that there are comparatively few
efforts in the literature aimed at the exploitation of cluster
and grid computing infrastructure for the processing of remote
sensing images as compared to cloud computing implemen-
tations. In fact, we have noticed that the cloud is now in
clear expansion and routinely used to solve remote sensing
problems (particularly those involving DL algorithms). This is
because of the popularity of the programming languages and
frameworks available for implementing DL-based algorithms
in the cloud (some of these tools will be described in detail
in the following section).

Another important observation arising from our literature
review is that the most widely used tool for remote sensing
data processing in cloud computing environments is Apache
Hadoop [114], described in mode details in section IV) [115],
although recently Apache Spark [116] has also become a ref-
erence tool. The main difference between Spark and Hadoop
is the fact that the former distributes the data in Resilient
Distributed data sets (RDDs) [117] that can be managed more
efficiently. As a result, the speedup that Spark can achieve with
respect to Hadoop is very high. In addition, Spark provides a
ML/DL library called MLlib [118] –described in section IV–
that operates in a distributed and parallel manner, so that it
provides very good performance with big remote sensing data.
Although Hadoop has been widely used in the past, Spark is
now a standard due to its speed and better memory usage.
Our study also shows that most researchers take advantage
of existing cloud computing frameworks when dealing with
remote sensing data, rather than developing new ones.

In the following section we focus on cloud computing as
a de-facto paradigm for distributed processing of remotely
sensed data sets, and describe the most widely used frame-
works and programming languages that have been adopted in
this context (some of them already mentioned in this section),
with particular emphasis on the availability of DL-oriented
tools.

IV. FOCUS ON CLOUD COMPUTING

This section first introduces some basic concepts about
cloud computing, and then glances at the delivery models,

available execution frameworks and programming models sup-
porting this technology (with particular emphasis on the tools
that have been specifically used in remote sensing applica-
tions).

A. Cloud computing basics

Advances in distributed computing technologies, together
with the high amount of data generated and consumed by
a growing number of devices (including remote sensing
instruments), have leveraged the adoption of the emergent
cloud computing technology. Nowadays, cloud computing has
become a suitable model to cover a wide range of users
needs, including data analytics, data mining, remote sensing,
social media and other computational and data-intensive ap-
plications. Cloud computing is a model that provides users
with ubiquitous, on-demand access to remote hardware and
software resources in the form of services. This model has
become a cost-effective solution that usually reduces initial
investment, management and maintenance costs with respect
to previous clusters and grid technologies. Cloud computing
provides elastic computing, storage and networking payment
services. The term elastic refers to the ability of the model
to dynamically adapt to user scalability and variable workload
necessities [119], [120].

At the core of cloud computing is the virtualization tech-
nology [121], [122]. Virtualization abstracts the underlying
physical resources, such as computing, storage and network-
ing, as a set of virtual resources, typically enclosed in the
form of isolated instances called virtual machines (VMs).
Such modular design enables some advantageous features,
as replication of data instances, fault tolerance, security (by
limiting the interaction between modules) and migration of
instances [123].

Cloud computing determines how the virtualized resources
are allocated, deployed and delivered to users. In this sense,
delivery models are structured in three basic categories that
describe the form in which users access the resources [124]:
• At the higher level of abstraction is software as a service

(SaaS), in which the user accesses to end applications
usually developed, managed and maintained by the cloud
provider in its cloud infrastructures. Users access these
applications via web interfaces. A common example is a
CBIR systems for remote sensing data repositories.

• Platform as a service (PaaS) refers to the provision of
development full stacks, including operating systems,
libraries, management and monitoring tools. The users
accessing those services are usually software developers
with limited control over the underlying infrastructure,
that is managed by cloud providers.

• The infrastructure as a service (IaaS) model lies at the
lower level of abstraction, and allows users to manage
an elastic infrastructure composed of a set of compu-
tational, storage and networking virtual resources. The
users develop and deploy their applications on such
virtual resources and manage the infrastructure.

Without neglecting its benefits, cloud computing faces an
important set of challenges. The most significant is security,

12

in the sense of both ensuring the access to the data exclusively
by authorized users and systems (privacy), and maintaining
the integrity and availability of the data distribution (even
geographically) and replication across different locations (e.g.,
as in different remote sensing data centers). Performance is
an additional key factor impacting the adoption of cloud
computing, specially by scientific applications that usually
execute on tightly coupled high performance clusters.

Clusters and clouds have different design goals and features
[125]. While the main goal of clusters is performance (sup-
ported by dedicated parallel computing resources connected
with minimal latency and stable high bandwidth networks),
the goal of clouds is to make available on-demand vir-
tual resources in a elastic platform with a reasonable cost.
Hence, technical management issues –derived from the shared
use of physical resources by virtual machines and multiple
users, dynamic on-demand scalability, data movement, vir-
tualization overhead and workload balance in the presence
of heterogeneity– impact the performance of applications
deployed on the cloud infrastructure.

B. Deployment frameworks

Henceforth, we adopt the perspective of users of an IaaS
model, allocating a pool of virtual resources connected by
networking services to deploy and run scientific applications.
As an effective management framework to deploy and run
the applications we highlight OpenStack29, although there are
other open-source frameworks such as Apache Cloudstack30

and OpenNebula that offer similar features. In the following,
we review the functionality of several of the multiple services
available in OpenStack.

Openstack is oriented to manage the complete life cycle of
an IaaS cloud system composed of a large number of virtual
resources for computing, storage and networking. The Open-
stack design architecture is highly modular. Each independent
module implements a specific service and exposes a well-
defined application programming interface (API), making the
system extensible and able to support the integration of third-
party services.

Some of the main software components of the OpenStack
framework are outlined next and shown in Fig. 8. We structure
them in three categories:
• Computing service components for deploying and man-

aging virtual machine and Linux containers. These facil-
ities are supported fundamentally by the Nova compute
engine. Furthermore, OpenStack offers a general purpose
management framework component for hardware accel-
erators (such as GPUs) called Cyborg.

• Networking service components with support for different
network technologies and equipment. Neutron is the main
component, and it allows to manage software-defined
networks (SDNs) and attach virtual devices to ports on
these networks.

• Storage service components, including Cinder component
for block storage and Swift component that delivers

29https://www.openstack.org
30https://cloudstack.apache.org

Fig. 8. OpenStack main computing, networking and storage components.

services for securely storing unstructured data as a pool
of objects and files.

In addition to the aforementioned computing, networking
and storage services, it is worth noting that OpenStack includes
multiple software services for monitoring, development, recov-
ery, databases, orchestration of virtualized resources, work-
load balance and more. Among them, for instance, Keystone
provides services for security and authentication of users
and applications. Finally, Horizon presents a web interface
in the form of a dashboard to manage the virtual resources
composing the cloud infrastructure.

C. Programming models

The term remote sensing big data was coined to refer to
the increasing need of storing, managing and processing vast
amounts of remotely sensed data, produced at a high rate and
in a wide range of formats. Such overwhelm flow of data
requires flexible parallel platforms with a large computational
capacity and specific programming facilities.

In contrast to cluster computer-centric paradigms, as mes-
sage passing, big data applications require a data-centric
approach, in which a computational task should be deployed
in a computational resource as close as possible to the data
location. As a result, the movement of data through the
network can be minimized. The limited capability of the
network bandwidth is a factor that, together with the high
volume and heterogeneity of remotely sensed data, highly
affects the performance. In the following, we review some
relevant programming models and application ecosystems that
have been widely used in big remote sensing applications.

1) MapReduce: It is a programming model aimed at devel-
oping scalable and robust applications working with large data
sets [126], [127]. It was originally developed by Google and,
together with the distributed Google File System (GFS) [128],
has been successfully used in solving numerous big remote
sensing data problems (as described in section III). This model

13

is particularly suitable for data-centric environments, such
as big remote sensing data processing on cloud computing
platforms [129]. MapReduce provides the developer with a
simple interface based on the map and reduce functions.
An application takes as an input a structured set of key-
value data. The map(k1,v1) function transforms the input to
an intermediate set of key-value pairs in the target domain
(k2,v2). The MapReduce library combines the intermediate
values (v2) in a per-key basis. Finally, the reduce(k2, list(v2))
function operates on the list of values corresponding to each
target key to generate the output. Usually, both map and
reduce are executed by parallel tasks deployed across a set
of computational resources. The model interface abstracts the
complexities of the execution of the remote sensing application
in the specific platform, and leaves the underlying details to
the implementation.

MapReduce implementations are ultimately based on the
master-worker approach, in which a master process manages
the automatic parallelization and scheduling of the tasks on
the computational nodes, and coordinates their execution.
It partitions the remotely sensed data to be processed by
each map and reduce tasks, and schedules those tasks on
computational resources as close as possible to the data to be
processed. To achieve this, it relies on GFS, which provides
the locations of the blocks of data to be processed. This
design improves data locality and minimizes the data transfers
through the network, hence improving the performance.

Besides, MapReduce combines the output intermediate files
of the map tasks and combines the data according to the
output keys. This intermediate stage tackles the complexity
of a high amount of communication and coordination tasks,
that are hidden to the developer. Finally, the implementation
delivers processed data chunks to the reduce tasks. Further-
more, MapReduce implementation promotes fault tolerance
mechanisms to detect and re-execute tasks when necessary.
In this sense, the communication between the deployed tasks
is achieved using intermediate files.

2) Hadoop Ecosystem: Hadoop31 has been widely used to
parallelize remote sensing data processing tasks (see section
III). It is a popular open-source and scalable big data software
framework based on the MapReduce paradigm, the HDFS
and Yet Another Resource Negotiator (YARN) [115] resource
manager.

HDFS basic functionality is similar to that of GFS. Data
are split up in blocks of fixed size and replicated across
several nodes to ensure fault tolerance and availability. Its
implementation follows a master-worker approach. A Na-
menode process manages metadata (such as block mapping
information) and delivers that information to the MapReduce
library when requested. DataNode processes execute in each
virtual resource and effectively store data blocks and provide
data reading and writing services to applications.

MapReduce functionality is implemented by a JobTracker
process, which receives job requests and schedules job tasks
to different nodes. Each node is controlled by a TaskTracker
process which monitors the execution and reports to the

31https://hadoop.apache.org

JobTracker if a problem appears. In such case, JobTracker
resubmits the involved tasks to the same or a different Task-
Tracker. In this sense, Hadoop decouples the MapReduce
programming model and the associated resource management.
YARN delivers the former services. Its internal architecture is
based on three main components:
• The first component is the global per-cluster Resource-

Manager process, which accepts job submissions and
allocates resources for the application. It is responsible
for scheduling the application in the available resources.

• The second component is the NodeManager, a per-node
process. It is responsible of the execution of the tasks
assigned to its node.

• Finally, the ApplicationMaster is a per-application pro-
cess that monitors the application necessities and their
status along their lifecycle, negotiating resources with the
ResourceManager.

The Hadoop framework has been enhanced with multiple
tools and services forming the so-called Hadoop Ecosystem,
which has been exploited in a variety of remote sensing
applications (see section III). It includes relational databases
managers (as Hive), NoSQL databases (as HBase, a column-
oriented distributed database running on top of HDFS), dis-
tributed ML/DL and linear algebra solvers (as Mahout), real-
time facilities (Storm), efficient alternatives to the MapReduce
programming model and utilities for the orchestration of the
services and components (ZooKeeper).

3) Apache Spark: Originally developed at UC Berkeley,
Apache Spark [116], [130] was designed to gain velocity in
the processing of big data. Although the MapReduce model
adequately adapts to a large number of applications as highly
parallel batch jobs, it incurs in significant latency in both
interactive applications and in those with an iterative pattern of
execution, in which the same data sets need to be continuously
reloaded from the file system.

In this respect, one of the most relevant features of Spark
is its ability to support persistent data in memory, which
greatly benefits performance. This feature is implemented in
the run-time system of Spark, known as Spark Core Engine.
In addition to this module, the Spark ecosystem includes a set
of utilities, as Spark SQL, that allows to manage structured
and semi-structured data organized in columns, known as
DataFrames, the Spark Streaming module for performing real-
time processing on data streams (ideal for remote sensing
applications with real-time constraints, as described in section
III), and the MLlib library that includes distributed ML and
DL algorithms.

Spark follows a master-worker execution model, with a
driver node acting as the master and a set of worker nodes.
The execution model is shown in Fig. 9. An application
submitted to Spark starts its execution in the context of the
driver node. The application creates a SparkContext object
that transforms the sequence of operations described in the
main program into an execution plan. The execution plan
is represented as a directed acyclic graph (DAG), in which
nodes are data elements and edges are operations on such
data. SparkContext splits up the DAG in stages to be executed
by tasks. Then, SparkContext negotiates the acquisition of

14

Fig. 9. Apache Spark execution model in a cloud computing platform.

resources with the Cluster Manager. While the normal form of
executing a Spark application is to use its own native cluster
manager, Spark is able to run on Hadoop clusters on top of the
YARN resource manager. In any case, after the resources have
been obtained, SparkContext launches an Executor process in
each worker node. Based on the execution plan, SparkContext
schedules tasks to worker nodes and coordinates its execution.
Conversely, Executors are in charge of effectively executing
tasks assigned to its worker nodes and providing access to
data.

The Resilient Distributed Dataset (RDD) [117] is the main
abstraction supporting the Spark model. An RDD is a read-
only collection of objects partitioned and distributed across
the worker nodes. The assignment of tasks to worker nodes
considers data-locality, that is, the availability (or closeness)
of the data to be processed by the task in the RDD partition
assigned to the work node. An important feature of RDDs is
that the data can be cached in memory, and hence reused in
recurrent parallel operations with minimum overheads. Fur-
ther, the RDD is a fault-tolerant data structure. In this sense,
any operation on an RDD object is logged in such a way that,
in case of node failure, the RDD can be reconstructed using
the operation lineage. Because lineage dependencies become
large and their management is time-consuming, users may
decide to establish checkpoints in the execution. Additionally,
the immutable nature of the RDD objects benefits another
fault-tolerance mechanism, the execution of backup copies
(duplicates) of running tasks if failed or straggler tasks are
detected.

RDDs can be created from data structures in memory or
in the file system, and also using data obtained from any
Hadoop service, including the HDFS or databases as HBase. In
addition to the mechanisms for creating RDDs, Spark includes
a set of coarse-grained operations to process RDD data sets.
These operations are structured in two types:
• The first type is given by transformation operations,

which apply a function to a RDD and generate a trans-
formed RDD data set as a result. In turn, transformations
are classified into narrow, that involve data located in
the worker node where the task executes the operation,
and wide, that involve data across multiple worker nodes,
and therefore, the required data are copied from other

partitions. Movement of data is coordinated by the driver.
Examples of transformation operations defined in the API
are map, filter, groupbykey and reducebykey.

• The second type of operations are called Actions. Actions
are operations that retrieve non-RDD values (as statistical
or processed values) from RDDs, and their value is
returned to the driver program. Examples of actions are
count, collect, reduce and foreach. Some of them take as
an input parameter a function to be applied to the data.

Transformations are lazily executed, in the sense that a
sequence of transformations are effectively executed when an
action is performed on the transformed RDD. This mechanism
improves performance in cases in which only final results (and
not intermediate results of the sequence of transformations)
are transferred to the driver program. Nevertheless, by default,
each transformed RDD is recomputed each time an action is
executed on it. The persistence mechanism of Spark allows
to keep in memory the data, improving the performance of
recurrent operations on the RDD (this is particularly beneficial
for image processing operations involving sliding windows
or kernels, which are very popular in many remote sensing
applications).

Moreover, wide transformations are inefficient operations
in the Spark model, consisting of independent tasks operating
on their own assigned RDD partitions, because such oper-
ations require data movement. Every time a task executes
an operation on remote data, SparkContext coordinates the
disk input/output (I/O) and network transmissions between the
involved nodes. This costly procedure is called shuffle. The
persistence capability highly improves the performance of the
shuffle operations by caching in memory the RDD data that
are going to be reused in wide transformations, which is also
popular in multi-scale image processing operations adopted in
many remote sensing applications (see section III).

Finally, Spark includes two additional mechanisms to avoid
recurrent copies of shared data between the worker nodes,
called shared variables. The first one is called broadcast, and
it allows to diffuse a set of values to worker nodes, that will
hold a read-only copy of the data. The second one allows
to maintain simple (associative) accumulators shared across
worker nodes.

D. Cloud computing for scientific applications

Scientific applications (including remote sensing ones) ex-
ploit the low latency and dedicated resources of clusters to
obtain high performance. On the contrary, cloud computing
offers elastic multi-tenancy (resource time sharing) and non-
predictable and unstable network facilities. Nevertheless, there
is a great interest in evaluating if cost-efficient and flexible
cloud platforms can execute scientific HPC applications at a
reasonable level of efficiency.

The paper [131] proposes AzureMapReduce, a decentral-
ized MapReduce implementation for Microsoft Azure cloud
infrastructures, and evaluates its (weak-scale) scalability and
performance with a remote sensing application. Authors claim
that MapReduce applications in cloud infrastructures exhibit
comparable performance to MapReduce applications executed

15

on traditional clusters. On the contrary, work [132] analyzes
the performance of the HPC Challenge (HPCC) benchmark
[133] on Amazon EC2 cloud platform, and concludes that
the performance of general scientific applications on cloud
infrastructures is at least one order of magnitude lower than
that on clusters and supercomputers. Moreover, work [134] an-
alyzes the performance of loosely coupled many-task scientific
computing applications on four commercial cloud computing
provider platforms with the same aforementioned conclusion.

The thorough study in [135] presents a run-time perfor-
mance comparison of the characteristics of the Amazon EC2
cluster computing instances and a supercomputer. The paper
evaluates latency and bandwidth micro-benchmarks, HPCC
matrix multiplication kernels, NAS Parallel Benchmarks (NPB
[136]) and four full-scale remote sensing applications used
at NASA. The results show that, in one node, performances
are equivalent while, in several nodes, the network overheads
of the cloud computing infrastructure have a huge impact in
performance.

The paper [125] evaluates Amazon IaaS services at differ-
ent levels. Authors execute micro-benchmarks to extract raw
performance of latency, bandwidth, memory and processing
services. Furthermore, they execute the parallel High Perfor-
mance Linpack (HPL) [137] benchmark to compare cluster
and cloud environments. The goal was to identify advantages
and limitations of cloud platforms. They conclude that I/O
and network performance differences are the main factors
impacting the applications performance. One of the main
drawbacks detected in the cloud is the network infrastructure
based on Ethernet, that is often not suitable for the necessities
of HPC applications (including remote sensing ones). Paper
[123] proposes the HPC2 model, that bridges the gap between
cluster and cloud platforms with a set of proposals, including
using Infiniband as network technology (as it is commonly
the case in current remote sensing applications implemented
in cloud environments).

There is a consensus in that the performance differences
between platforms come from the inherent overheads in virtu-
alization, memory, storage and I/O, and latency of the network
infrastructure [138], [139]. Further, work [140] offers an
extensive study of the performance of several cloud providers
of public IaaS services: Amazon Elastic Computing Cloud
(EC2), Microsoft Azure, Google Compute Engine (GCE) and
IBM SoftLayer (SL), and it concludes that, indeed, there are
substantial differences between the performance of infrastruc-
tures of different cloud providers.

To overcome the differences between cluster and cloud
platforms, several works maintain that it is not enough to
straightforwardly run cluster applications on cloud platforms.
This is in contrast with many cloud implementations of remote
sensing algorithms described in section III, which simply
run available cluster-based codes in cloud environments. For
instance, paper [141] proposes to slightly transform HPC
applications as representative HPC kernel solvers by opti-
mizing computational granularity, which has a high impact
in scheduling and communication/computation overlapping.
Additionally, they propose to transform cloud facilities to use
thin virtual machines and CPU affinity mechanisms. They

conclude that, by transforming HPC applications (such as
remote sensing ones) to be run in a cloud, and making clouds
HPC-aware, the impact of the latency and multi-tenancy is
significantly reduced. In this sense, paper [142] proposes to
use the MapReduce with Access Patterns (MRAP) model,
that extends MapReduce with usual HPC application data
access pattern semantics (non-contiguous and fine grained),
while taking advantage of the inherent scalability and fault-
tolerance features of MapReduce. This is a promising solution
to increase the performance of the MapReduce-based remote
sensing implementations described in section III.

V. MACHINE AND DEEP LEARNING LIBRARIES AND
FRAMEWORKS IN CLOUD COMPUTING ENVIRONMENTS

Numerous efforts have been devoted to the development
and efficient execution of ML and DL applications on cloud
computing infrastructures, not only as optimized libraries
and services, but also as applications on top of the Spark
and MapReduce programming models. In this respect, cloud
providers offer several facilities for this challenging task.
Among them, Amazon AWS promotes a ML platform called
SageMaker32 to build and train different models, with support
for TensorFlow and Spark. IBM provides tools for different
frameworks, including TensorFlow and Keras33. GCE also
supports the use of TensorFlow and provides an infrastructure
based on GPU computational devices. Microsoft Azure, on the
other hand, bases its services on Kubernetes and allows to use
accelerators for its ML/DL resources.

Nevertheless, the iterative execution pattern of ML/DL
learning applications (in which the same data are recur-
rently operated, as in many remote sensing data processing
algorithms) does not naturally adapt to established cloud
computing programming models. Virtualization and network
overheads are key factors impacting the efficiency of ML/DL
learning applications, which are usually supported on highly
optimized computing linear algebra libraries such as BLAS
(Basic Linear Algebra Subprograms) [143] and high per-
formance networks and communications based on Message
Passing Interface (MPI) [144] to achieve high performance.

Additionally, ML and DL models have dramatically grown
in terms of structural complexity and depth. Training models
on huge data sets (such as those involved in remote sensing
applications) has become a computationally very intensive
(as well as a memory-consuming) task, that usually requires
several days even using specialized hardware such as GPUs.
To overcome this limitation, several methods for parallel
training of ML and DL models have been developed. The
parallelization schemes can be structured in three main groups
[145], [146]:
• The first type is the data-parallelism scheme, in which

several replicas of a model are simultaneously trained in
different computational devices on disjoints partitions of
the remote sensing data set.

• The second type is called model-parallelism, and it is
used when a model overcomes the memory capacity of

32https://aws.amazon.com/sagemaker/
33https://keras.io/

16

one computational device, and then it has to be partitioned
and deployed on several devices.

• Finally, the last type is the hybrid-parallelism scheme,
that merges data and model-based approaches.

These parallelization schemes can be implemented as mul-
tiple distributed computing approaches. Table III summarizes
the different characteristics of each scheme for cloud and
cluster/grid computing approaches.

TABLE III
SUMMARY OF PARALLELIZATION SCHEMES FOR DISTRIBUTED

COMPUTING APPROACHES.

Scheme Cloud computing Cluster/Grid computing
Data-parallelism • Master node holds the data. • Data are partitioned over executors.

• Data/computation are split. • Model is replicated over executors.
• Model is replicated. • Executors share intermediate results.
• Workers sends results to the master.

Model-parallelism • Master node holds the data. • Data are replicated over executors.
• Data are not partitioned. • Model/computation is partitioned.
• Model/computation is split. • Executors share layer outputs
• Workers sends results to the master. and results.

Hybrid-parallelism • Master node holds the data. • Data are split over executors.
• Data are partitioned. • Model is partitioned over executors.
• Model is split over workers. • Computation depends on data and
• Computation depends on data model workload.

and model workload. • Executors share intermediate results
• Workers sends results to the master. and outputs.

The rest of the section outlines the main frameworks and
libraries offered by cloud providers to face the challenge of
efficient training of ML and DL models when processing
remotely sensed data on cloud computing infrastructures.

a) Parameter server approach b) AllReduce-Ring BigDL approach.

Fig. 10. Cloud computing training pipeline in the three discussed DL
frameworks (TensorFlowOnSpark, SparkTorch and BigDL).

A. Libraries

This subsection provides an overview of some well-known
ML and DL libraries that are used in cloud computing en-
vironments to build models efficiently. These libraries have
been used in the past to process and accelerate remote sensing
applications.

1) Weka: The Weka34 library was developed at the Uni-
versity of Waikato [147]. It is a Java-based, open-source
library that allows to build ML and DL models for several
types of algorithms, including classification, clustering, data
mining, etc. A relevant feature of the library is that it is
multi-platform, and even runs on lightweight devices on top
of the Android operating system [148]. It supports multiple
programming languages with different packages and plugins,

34https://weka.sourceforge.io/

as the DeepLearning4J35, the RPlugin36 or several Python37

DL libraries. Weka was initially developed to offer a simple
and easy to use interface. Currently, it provides a distributed
version [149] implemented on top of Spark and RDDs.

2) MLlib: The MLlib38 is a distributed ML/DL library
which provides model training based on the data parallelism
scheme [118]. It was developed in the Scala39 programming
language, and supports Java, Scala and Python programming
languages. Its main features are scalability and fast imple-
mentation of numerous ML/DL algorithms, as well as linear
algebra, statistics and optimization primitives. It is built on
Spark, and implements efficient communication primitives for
data transmissions performed by a large amount of processes,
training large models using the data-parallelism scheme. Some
communication primitives of special interest are the broadcast,
that efficiently distributes data over processes training the
model, and the tree-structured aggregation primitive, which
collects processed data avoiding possible bottlenecks. MLlib
was initially designed to efficiently operate on fully distributed
environments, which entails a significant performance advan-
tage with respect to Weka [150].

The execution model of MLlib is based on the master-
worker paradigm, where the master process acts as a param-
eter server, and maintains a centralized copy of the global
parameters of the model. It combines values received from
the worker tasks after each training iteration. Tasks deployed
on the computational resources of the platform process their
assigned data set partitions and communicate results to the
parameter server. The data partitions assigned to each task
are processed in batches, being the size of each batch a key
optimization parameter which directly affects the resulting
accuracy of the model and the efficiency of the training [151],
[152].

B. Frameworks

This subsection discusses different frameworks to develop
ML/DL applications on cloud environments.

1) TensorFlowOnSpark: This framework combines salient
features of the TensorFlow DL library with Spark and Hadoop
to provide with a scalable ML/DL development and train-
ing platform [153]. It supports all TensorFlow functionali-
ties, including asynchronous and synchronous training, data
and model-based parallelism schemes, and monitoring with
TensorBoard40. It also enables distributed TensorFlow-based
training on cloud computing clusters, with the additional goal
of minimizing the amount of code refactoring required to run
existing TensorFlow applications. In summary, TensorFlowOn-
Spark deploys a Spark cluster on a cloud infrastructure and
provides facilities for injecting both RDD and HDFS data in
the TensorFlow models executed by the tasks scheduled in the
worker nodes.

35https://deeplearning4j.org/
36https://weka.sourceforge.io/packageMetaData/RPlugin/
37https://www.python.org/
38https://spark.apache.org/mllib/
39https://www.scala-lang.org/
40https://www.tensorflow.org/tensorboard

17

2) SparkTorch: This framework is intended to execute code
based on the PyTorch library [154] across nodes in a Spark
cluster. The distributed training works under a data-parallel
paradigm, and uses both tree reductions and parameter server
mechanisms to combine partial results from tasks deployed
on the cloud platform. There are two main training modes
available in SparkTorch:

• The first one is the asynchronous training mode, which
ensures that the replicated models deployed in nodes are
synchronized through each training iteration.

• The second training mode, called the Hogwild approach
[155], allows lock-free task accessing to shared memory
in order to update parameter values. This mode eliminates
the overheads associated with locking. However, in this
mode, a task could overwrite the progress of another
tasks, a risk that the developers claim that could be
assumed when the data to be accessed is sparse.

3) BigDL: This framework is also implemented on top of
Apache Spark to run DL applications as standard Spark pro-
grams [156]. It offers support for large-scale distributed appli-
cations and provides efficient processing for data-analysis, data
injection to neural network models, and distributed training
or inference, using an unified pipeline. Before training, the
model and RDDs are partitioned and cached in memory across
the cloud resources. BigDL supports two parameter synchro-
nization mechanisms. The first one maintains a centralized
parameter server, and the second one uses collective operations
as AllReduce to combine the parameters computed by tasks.
Despite the fact that collective message passing primitives are
not particularly suitable for the execution model of a Spark
cluster, BigDL implements an efficient AllReduce algorithm
using Spark primitives, allowing for the integration of DL
algorithms in cloud computing environments.

It is important to note that the three aforementioned frame-
works can use two different communication approaches:

• The parameter server approach, illustrated in Fig. 10(a)
[157], consists of a centralized architecture where the
computational nodes are partitioned into masters and
workers. The workers maintain a workload and data
partition, while the master maintains the global shared
parameters. The workers communicate with the master
to share the weights generated at each iteration of the
model. The master is responsible for the aggregation of
the global weights. In cloud computing environments,
additional workers may be added or removed from the
execution. This must be handled by the system, so as
to switch on any new workers and send to them the
appropriate computations and data partitions.

• The AllReduce-Ring BigDL approach, shown in
Fig. 10(b), consists of a decentralized architecture where
each Spark task computes its local gradients, dividing
the local gradients into N partitions. Each task manages
its corresponding parameter partition, which is shuffled
to the corresponding task to aggregate gradients and
then update the corresponding weights. Then, each task
launches a Spark broadcast operation with the updated
weights, so that these are read before the next step.

A discussion between the aforementioned frameworks and
their pros and cons in cloud environments is needed at this
point:
• In terms of applications, all of them provide full inte-

gration with Spark ML/DL algorithms. While Tensor-
FlowOnSpark provides a large amount of algorithms and
applications, BigDL includes extensive DL functionali-
ties.

• The ease of use differs among different frameworks.
While the TensorFlowOnSpark interface is clear and easy
to use, the documentation for BigDL is intuitive and
provides a comprehensive support for ML/DL algorithms.

• Attending to the distributed training, SparkTorch provides
asynchronous and synchronous schemes, since Tensor-
FlowOnSpark asynchronous parameter server is highly
efficient. We also note that SparkTorch is in a premature
developing phase compared to the TensorFlowOnSpark
and BigDL implementations. Thus, the latter frameworks
still offer notable advantages. An important aspect of
TensorFlowOnSpark is the creation of checkpoints to
recover from failures. These checkpoints are stored in
the HDFS by TensorFlow. A similar point between these
two last frameworks can be found in the monitoring.

• In terms of scaling and performance, BigDL takes a step
forward the other frameworks. This is due to multiple fac-
tors. First, it provides extensive documentation to deploy
ML/DL algorithms in different providers as EC2. Also,
attending to the execution, it provides a synchronous
SGD and an optimized AllReduce in the communication
step. Another interesting point is that it can be used
only for prediction and, hence, it can load models from
different ML/DL frameworks. Finally, the aforementioned
frameworks execute powerful long-running tasks, while
BigDL uses short-running, non-blocking tasks for the
model computation.

VI. CASE STUDY

This section presents a case study in which a deep neural
network (implemented on the cloud) is used to process a
large hyperspectral remote sensing image. As noted before,
hyperspectral data cubes comprise a significant amount of
information, which allows us to model the physical charac-
teristics of the observed materials by analyzing the detailed
spectral signatures (collected on a pixel-by-pixel basis), that
provide rich information for land-cover analysis. When applied
to hyperspectral images, classification methods suffer from
important processing time and computing/storage constraints,
resulting from the extremely high dimensionality of the data.
Therefore, the implementation of such classifiers in cloud
computing architectures is an effective solution. Here, we use
a deep multi-layer perceptron (MLP) [17] as the distributed
classifier, and perform classification experiments on a bench-
mark classification data set widely used in the hyperspectral
imaging community.

The remainder of this section is organized as follows.
First, we describe our cloud implementation of the MLP
classifier. Then, we describe the hyperspectral image used

18

Fig. 11. Graphical overview of the forward and backward pipelines of our distributed MLP classifier

for validation purposes. Then, we provide the characteristics
and configuration of the cloud computing platform used for
experiments. The section ends with a detailed discussion of
our conducted experiments and with some remarks on the
practical utility of distributed DL algorithms in remote sensing
applications.

A. Distributed multi-layer perceptron (MLP) classifier

Let us denote a hyperspectral data cube as X ∈
Rh×w×nbands , where each data sample xi is of size h × w
(being h the height and w the width in pixels of the im-
age), and each pixel can be denoted by xi ∈ Rnbands =
[xi,1, xi,2, . . . , xi,nbands

]. In an MLP classifier, each layer l
performs a data transformation of the weights and the input
data (Wl and xi) as follows:

xl+1
i = H(xli ·Wl + bl) (1)

where xl+1
i is a feature representation of the input data

obtained by the neurons of that layer (l). Neurons are obtained
as the dot product between the output from the previous layer
neurons plus the bias b (shift parameter) through an activation
function such as the rectified linear unit (ReLU) or the sigmoid
function, among others [17]. Hence, the kth feature of the
x(l+1)
i sample can be obtained as:

xl+1
i,k = H(

nl−1∑
j=1

(xli,j · wl
k,j) + bl) (2)

Attending to the MLP optimization step, the optimizer tries
to obtain the set of parameters W and bias that minimize
the loss error. Hence, a back-propagation step calculates the
gradient of the error in order to minimize the final error. At
each step, the updating process is defined as follows:

Wt+1 = Wt +∇W (3)

where ∆W = µt · pt, being µ the learning rate and p the
descent direction of the gradient at time step t. To optimize this
operation, traditional methods use the information obtained
from the Hessian matrix:

Ht · pt = −∇E(X,Wt) (4a)

pt = −H−1t · ∇E(X,Wt) (4b)

Wt+1 =Wt − µt ·H−1t · ∇E(X,Wt) (4c)

where Wt are the network weights, H is the Hessian
matrix and ∇E(X,Wt) is the gradient of the error at
step t. Regarding this, as the computation requirements
are high, the optimization provided by the BFGS (Broy-
den–Fletcher–Goldfarb–Shanno) algorithm [158] is used, pro-
viding an estimation of the Hessian matrix changes:

Wt+1 =Wt − µt ·G·t∇E(X,Wt) (5)

with Gt being the inverse Hessian approximation matrix.
Since G is the inverse of the Hessian matrix H−1, and the
approximation matrix G needs to be updated in each step,
the BFGS method updates it using the following equation,
assuming that qt = H · pt and H−1 · qt = pt:

Gt+1 = Gt +
pt · pT

t

pT
t · qt

−Gt ·
qt · qT

t

qT
t ·Gt · qt

·Gt (6)

This strategy is quite appropriate for hyperspectral data sets,
because the computation is high and the processing requires to
read repetitively the original data set. In this way, a distributed
cloud computing implementation can make the MLP faster and
highly scalable.

Specifically, our distributed implementation reshapes the
hyperspectral data from X ∈ Rh×w×nbands to X ∈
Rnpixels×nbands . This way, each row or column collects the full

19

Color Land cover type Samples Color Land cover type Samples
Background 1310047 BareSoil 57
Buildings 17195 Concrete/Asphalt 69

Corn 17783 Corn? 158
Corn-EW 514 Corn-NS 2356

Corn-CleanTill 12404 Corn-CleanTill-EW 26486
Corn-CleanTill-NS 39678 Corn-CleanTill-NS-Irrigated 800

Corn-CleanTilled-NS? 1728 Corn-MinTill 1049
Corn-MinTill-EW 5629 Corn-MinTill-NS 8862

Corn-NoTill 4381 Corn-NoTill-EW 1206
Corn-NoTill-NS 5685 Fescue 114

Grass 1147 Grass/Trees 2331
Grass/Pasture-mowed 19 Grass/Pasture 73

Grass-runway 37 Hay 1128
Hay? 2185 Hay-Alfalfa 2258
Lake 224 NotCropped 1940
Oats 1742 Oats? 335

Orchard 39 Pasture 10386
pond 102 Soybeans 9391

Soybeans? 894 Soybeans-NS 1110
Soybeans-CleanTill 5074 Soybeans-CleanTill? 2726

Soybeans-CleanTill-EW 11802 Soybeans-CleanTill-NS 10387
Soybeans-CleanTill-Drilled 2242 Soybeans-CleanTill-Weedy 543

Soybeans-Drilled 15118 Soybeans-MinTill 2667
Soybeans-MinTill-EW 1832 Soybeans-MinTill-Drilled 8098
Soybeans-MinTill-NS 4953 Soybeans-NoTill 2157
Soybeans-NoTill-EW 2533 Soybeans-NoTill-NS 929

Soybeans-NoTill-Drilled 8731 Swampy Area 583
River 3110 Trees? 580
Wheat 4979 Woods 63562

Woods? 144

Total samples 1644292

Fig. 12. Available labeled samples (and their distribution) in the AVIRIS Big Indian Pines (BIP) data set considered in experiments.

representation of a pixel. The master node reads and divides
the original data set over P partitions, which are assigned to
the corresponding workers in the cluster. The data are stored
in each worker as an RDD. To take advantage of this, we
can improve the computation time of the distributed algorithm
approaches using a block size (BS) implementation. In our
implementation, each data partition (row) r(p)j is transformed
based on the minimum and maximum feature of a sample
with the minimum and maximum from the column of its data
partition as follows:

r(p)j =
r(p)j − r(p)min

r(p)max − r(p)min

· (xmax − xmin) + xmin (7)

Now, every training iteration can be performed using a
forward-backward procedure. An aggregation is done after
each step to compute and process the gradients and losses from
workers and, hence, return a single gradient and loss. In each
forward propagation, each worker forwards its corresponding
data partition X(p) through the layers. Then, gradients are
computed at the back-propagation step, obtaining for each
partition (p) the G(p)

t matrix at time step t. Gradients are
sent to the master node and then the computation of ∆Wt

takes place. Assuming that X(p) ∈ (RBS·nrows)×nbands for (p)
partitions, Eq. (1) is distributed as:

X(l+1),(p)
i = H(X(l),(p) ·W(l) + b(l)) (8)

where x(l+1),(p)
i represents the output matrix neurons of size

(RBS·nrows)×nl
neurons from layer l, x(l),(p) is the input pixel

matrix of size (BS · nrows) from the previous layer, W(l) is

the matrix of weights, which connects neurons from previous
layers with the actual one, and H is the activation function
(e.g., the ReLU).

Once the forward step is completed in every partition X(p),
the error loss is computed by every worker. The final error
is calculated by the master as the mean of all the errors
provided by the slaves. Then, the partition error is back-
propagated to calculate the G(p)

t gradient at each time step
t. The gradients of each partition are computed using a paral-
lel double-precision matrix-matrix multiplication (DGEMM),
implemented in BLAS:

C = α ∗ X(p) ∗ gL(p)
t + β ∗G(p)

t−1 (9)

where α and β are regularization parameters set to 1/nbands
and 1, respectively, gL(p)

t is a matrix representing the neuron
impact per layer L = [l1, l2, . . . , ln], and G(p)

t−1 denotes the
previous gradient matrix values. The variable p, as indicated
previously, represents the partition of the data. In the end,
all partition gradients G(p)

t are summed to obtain the global
gradient matrix Gt at the time step t.

Fig. 11 provides a graphical description of the distributed
forward and backward pipelines of our distributed MLP during
the training stage (considering iteration t). This is conducted
after unstacking the hyperspectral samples in each distributed
data partition, where each one is allocated to a different worker
node.

20

B. Hyperspectral data set

To evaluate the performance of our cloud implementation of
the MLP classifier, several experiments have been conducted
over the Big Indian Pines (BIP) data set41. It was gathered by
the AVIRIS sensor [159] during a flight campaign over the
agricultural Indian Pines test site, in north-western Indiana.
The scene was collected at the beginning of the 1992 growing
season, and comprises several regular patches of different
crops coupled with irregular forest and grass zones. The data
cube comprises 1417 × 617 pixels, with a ground sampling
distance of 20 mpp. Furthermore, each pixel comprises 220
channels recorded over a spectral range of 400-500 nm, with
nominal spectral resolution of 10 nm. However, 20 bands [0-
9, 210-219] were removed in order to avoid null, noisy and
water absorption bands, keeping the remaining 200 bands for
experimental purposes. The complexity of this challenging
image is quite remarkable, as the pixels are very mixed due
to the low spatial resolution, while the available ground-truth
is composed of 58 different and highly unbalanced land-cover
classes, covering only 20.33% of the samples. The size of the
data set exceeds 1 GB. Fig. 12 shows the available labeled
samples per class and their distribution in the scene.

C. Platform configuration

The designed experiments have been conducted over an
OpenStack-based cloud infrastructure, which has been imple-
mented onto a hardware platform composed of two × Intel®

Xeon™CPUs E5-2650v2 @2.60GHz with 8 cores (16 way
multi-task processing), 160GB RAM and 600 GB of HDD
SAS 10k. In this sense, within the cloud environment, 9
virtual machines (1 master instance and 8 slave instances) have
been launched. Each virtual machine runs Ubuntu 20.04 as
operating system, with Spark 3.0.1 and Java 9.0.4 serving as
running platforms. Furthermore, the Spark framework provides
the distributed MLlib library, which is used to support the
implementation of our cloud-based MLP classifier42.

D. Experimental discussion

During the experimentation, the computational load of a
fully connected deep network has been distributed in order
to evaluate the performance of the cloud infrastructure when
dealing with hyperspectral remote sensing image classification.
In particular, a deep MLP has been designed to explore the
impact of its computational burden over the cloud environment
by involving all model parameters with all input elements in
the computation of the matrix operations described by Eq. (1).

TABLE IV
CONFIGURATION OF THE IMPLEMENTED MLP CLASSIFIER (NUMBER OF

NEURONS PER LAYER)

Input Hidden 1 Hidden 2 Hidden 3 Output
200 144 144 144 58

41https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html
42The source code used in this experimentation is currently available on

https://github.com/mhaut/cloud-dnn-HSI

Table IV describes the architecture of the implemented
MLP, specifying the number of layers and the number of
neurons comprised by each layer. It is noteworthy that a
fully-connected neural model entails

∑
iNiNi+1 trainable

parameters (where Ni represents the number of nodes at the
ith layer with i = [1, L− 1], and L is the number of layers),
which in turn involves approximately

∑
i 2NiNi+1 floating

point operations (FLOPs). In particular, the implemented MLP
comprises 78,624 trainable parameters, which implies at least
157,248 FLOPs. Furthermore, in the calculation of FLOPs, the
number of samples processed by the model must be taken into
account.

In addition, two approaches have been followed to assess
the obtained performance in terms of runtimes and speedup.
Indeed, experiments have been conducted considering both
different numbers of workers and different amounts of training
data, where the first approach analyses the obtained runtimes
and speedup by focusing on the number of workers, while
the second approach evaluates the scalability of the cloud
environment by focusing on the amount of data. For each
experiment, we conduct 5 Monte Carlo runs and report the
average results.

1) Approach based on the cloud environment size: The first
approach distributes the MLP over the cloud infrastructure to
measure the overall performance improvement of the system
by evaluating its potential with a different number of workers.
In this regard, a cloud environment with 1, 2, 4 and 8 working
nodes has been launched. Moreover, for each configuration,
different amounts of training data have been considered.
Particularly, 10%, 35%, 50%, 65% and 90% of the available
labeled data have been randomly selected from the BIP dataset
to learn the 78,624 trainable parameters comprised by the
MLP.

Fig. 13(a) provides a graphical representation of the ob-
tained results in terms of runtime. As we can observe, for each
configuration of the cloud infrastructure, five measurements
have been collected, which correspond to the number of train-
ing samples. In this regard, focusing on each configuration, the
obtained runtimes increase as more data are included during
the training stage. This is a reasonable and expected behaviour
since, with the same resources, an increase of the problem size
brings an according increase in the runtime. However, compar-
ing the runtimes among the different configurations, with only
one worker the execution time soars, easily exceeding 20,000
seconds with 90% of training samples (purple bar). On the
contrary, as the number of workers increases, the observed
runtimes decrease significantly. In particular, with 8 workers,
the highest runtime with 90% of the training samples never
exceeds 4000 seconds.

These results have a clear impact on the speedup of the
MLP model, which is increased as more workers are launched
into the cloud environment. Fig. 13(b) provides a graphical
description of the obtained speedups. Once more, for each
configuration, five measurements are depicted corresponding
with different training percentages. In this regard, the cloud
infrastructure with 1 worker node has been considered as
the baseline configuration, which exhibits a speedup of 1 for
all training sizes. Therefore, the speedups of the following

21

(a) Runtimes as the number of workers increases (b) Speedups as the number of workers increases

(c) Runtimes as the problem size increases (d) Speedups as the problem size increases

Fig. 13. Distributed MLP performance. (a) and (b) provide the runtimes and speedups as the number of workers increases, considering different amounts of
training samples for each one. (c) and (d) provide the obtained runtimes and speedups as the problem size increases, evaluating the theoretical and obtained
behaviour for a different number of workers. The different problem sizes result from the selection of different amounts of training data. Depicted lines provide
theoretical speedups and expected runtime measurements, while bars provide the actual values obtained.

configurations have been consequently obtained. It should be
noted that the improvement in speedup is not exactly the same
as the theoretical speedup marked by the red line in Fig. 13(b),
as communication and scheduling times inevitably affect the
system performance. However, the data volume is high enough
to take full advantage of the cloud environment, without
the communication bottleneck preventing a good performance
result in terms of runtimes. This is clearly evident in every
configuration of the cloud environment. For instance, focusing
on configurations with 2 and 4 workers, the speedups obtained
with different training percentages are quite similar, suggesting
that already with 10-50% of training data, computational
resources are being optimally exploited. However, with 8
working nodes, the speedup is significantly higher when more
data are processed, as computational resources are much
larger, thus providing more room to exploit a bigger amount

of data (i.e., to process larger datasets).

2) Approach based on problem size: As mentioned above,
the second approach evaluates the behaviour of the imple-
mented cloud solution by placing the focus on the problem
size, i.e., by considering different training set sizes. In this
regard, the experiment attempts to measure the scalability of
each of the cloud environment configurations adopted to solve
the problem (with 1, 2, 4 and 8 nodes) when different amounts
of labeled samples are considered at the training stage. As in
the previous experiment, 10%, 35%, 50%, 65% and 90% of
the available labeled samples have been randomly selected to
comprise the training sets, resulting in different data sizes (in
MBs), which are indicated on the x-axis of the plots reported
in Figs. 13(c) and 13(d).

Fig. 13(c) provides the obtained results in terms of runtimes.
Following the previous results, for each amount of training

22

TABLE V
OVERALL ACCURACY COMPARISON

Nodes 10% 35% 50% 65% 90%
1 63.65±0.36 77.57±0.62 81.27±0.29 83.04±0.21 85.16±0.34
2 63.50±0.28 77.67±0.63 80.99±0.14 83.25±0.26 85.39±0.08
4 63.62±0.48 77.56±0.12 81.15±0.38 83.22±0.33 85.80±0.09
8 63.24±0.51 77.76±0.34 81.25±0.18 83.44±0.11 85.40±0.36

Parallel (PyTorch) 61.05 ±1.81 77.45 ±0.49 80.50 ±0.34 82.24 ±0.38 84.37 ±0.33

(a) Runtimes with 4 workers (b) Runtimes with 8 workers
Fig. 14. Runtime details of the distributed MLP as the problem size grows,
with 4 (a) and 8 (b) working nodes. The different problem sizes result from
the selection of different amounts of training data. Red lines provide expected
measurements while blue bars provide the actual measured values.

(a) Ground truth (b) Predicted labels
Fig. 15. Classification map obtained by the cloud-based MLP for the BIP
dataset using 50% of the available labeled data for training.

data, runtimes decrease as more workers are launched into the
cloud environment. In this sense, the 1-worker configuration is
the slowest one, with runtimes that are more than seven times
longer than the ones obtained by the 8-workers configuration
for the case with the most training data. In this sense, if we
connect the top of each bar, it is particularly interesting to
observe the slope of the line, where the one corresponding

to the 1-worker configuration is the steepest. It even exceeds
the theoretical line, which makes it the worst configuration.
On the contrary, the 4-workers and 8-workers configurations
scale remarkably well. Moreover, they even give better times
than theoretically expected. Figs. 14(a) and 14(b) provide
the runtime details for these configurations. As it can be
observed in Fig. 14(a), although the runtime increases (as
expected), the curve is not entirely linear, which implies that
the distribution model is more optimal when there are more
data to distribute. Moreover, the distance between the obtained
runtimes and the theoretical ones (which are highlighted as a
red line) increases as more data are processed. Particularly,
the theoretical runtimes times are 1.18 times higher than the
obtained ones. This proves that the model scales appropriately
with the size of the problem. This is clearly visible in Fig.
14(b), where theoretical runtimes are 1.59 times higher than
those currently obtained.

Finally, Fig. 13(d) provides the obtained speedups regarding
the problem size. Once more, the 1-worker configuration has
been considered as the baseline where, for each size of the
training set, its speedup is set to 1. Therefore, the speedups of
the 2, 4 and 8-workers configurations have been consequently
obtained. As in the previous plots, the theoretical speedups
have been marked as dotted lines for each configuration. In this
sense, the speedup exhibited by the 2-workers configuration
is quite close to the theoretical one, while for the 4 and 8-
workers configurations, their speedups improve as the size of
the processed data grows. This is particularly evident when 8
working nodes are launched into the cloud environment. These
results indicate that the computational resources provided by
the 8-workers configuration exhibit great scalability, with a
great potential to process bigger remote sensing datasets in
order to optimise the use of the cloud environment capacities.

3) Accuracy evaluation: Finally, the reliability of the classi-
fication results has been measured in terms of overall accuracy
(OA). In this sense, Table V provides the OAs, which have
been obtained after training the deep MLP with 10%, 35%,
50%, 65% and 90% of randomly selected samples. Further-
more, for the cloud distributed MLP, configurations with 1, 2,
4 and 8 working nodes have been considered. These results
have been compared with a parallel implementation based on
the PyTorch framework. As we can observe, the obtained OAs
improve as the MLP network is trained with more samples.
Moreover, after comparing the different implementations, we
can see that the obtained results are quite similar. Fig. 15
provides a classification map that has been obtained by training
the cloud-based MLP with 50% of the available labeled
samples. In this regard, the cloud solution not only provides an

23

efficient way to distribute the storage and computation load,
but also reaches good performance in terms of accuracy.

To conclude this section, we emphasize that the results that
have been obtained with the MLP are perfectly extrapolable
to other deep networks such as CNNs. Indeed, the cloud
environment can run both architectures in a distributed manner
(as it is not a specialized hardware), reaching impressive
performance in image analysis with CNNs as well [160].

VII. CONCLUSIONS AND FUTURE LINES

In this paper, we have presented a comprehensive review of
recent efforts in parallel and distributed processing of remotely
sensed images, with particular emphasis on DL-based ap-
proaches and their cloud implementation. Our review reflects
the growing importance of using cloud computing techniques
for distributed processing of remote sensing images, which is
of great importance due to the current availability of open big
remote sensing data repositories. Our review also summarized
the processing tools and techniques that have been used in
different remote sensing applications, which is believed to
provide a useful guideline for new users that wish to develop
computationally efficient techniques in this field.

We provide a case study illustrating the results obtained
by a DL algorithm (implemented in the cloud) when process-
ing a big hyperspectral image. Since hyperspectral data are
characterized by their large size and complex processing and
storage requirements, we believe that the results provided in
our case study offer a good perspective on the possibilities of
implementing DL algorithms in the cloud for addressing the
processing challenges involved in the extraction of information
from remotely sensed images. In the future, we will expand our
study by considering the inclusion and optimization of specific
accelerators (such as GPUs) in the cloud environment for DL-
based remote sensing data processing and interpretation.

REFERENCES

[1] B. Zhang, Z. Chen, D. Peng, J. A. Benediktsson, B. Liu, L. Zou,
J. Li, and A. Plaza, “Remotely sensed big data: evolution in model
development for information extraction [point of view],” Proceedings
of the IEEE, vol. 107, no. 12, pp. 2294–2301, 2019.

[2] J. Li, J. A. Benediktsson, B. Zhang, T. Yang, and A. Plaza, “Spatial
technology and social media in remote sensing: A survey,” Proceedings
of the IEEE, vol. 105, no. 10, pp. 1855–1864, 2017.

[3] C.-I. Chang, Hyperspectral imaging: Techniques for spectral detection
and classification. Kluwer Academic/Plenum Publishers: New York.,
2003.

[4] A. Plaza, J. Plaza, A. Paz, and S. Sanchez, “Parallel Hyperspectral
Image and Signal Processing,” IEEE Signal Processing Magazine,
vol. 28, pp. 196–218, 2011.

[5] R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Arons-
son, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis
et al., “Imaging spectroscopy and the airborne visible/infrared imaging
spectrometer (aviris),” Remote sensing of environment, vol. 65, no. 3,
pp. 227–248, 1998.

[6] M. Chi, A. Plaza, J. A. Benediktsson, Z. Sun, J. Shen, and Y. Zhu, “Big
data for remote sensing: Challenges and opportunities,” Proceedings of
the IEEE, vol. 104, no. 11, pp. 2207–2219, 2016.

[7] Y. M. L. Wang, J. Yang, Cloud computing in remote sensing. CRC
Press., 2019.

[8] C.-I. C. A. Plaza, High Performance computing in remote sensing.
CRC Press., 2006.

[9] J. Behnke, T. H. Watts, B. Kobler, D. Lowe, S. Fox, and R. Meyer,
“Eosdis petabyte archives: tenth anniversary,” in 22nd IEEE/13th
NASA Goddard Conference on Mass Storage Systems and Technologies
(MSST’05). IEEE, 2005, pp. 81–93.

[10] B. Ryan and D. Cripe, “The Group on Earth Observations (GEO)
through 2025,” in 40th COSPAR Scientific Assembly, vol. 40, Jan. 2014,
pp. A0.1–1–14.

[11] P. M. Mell and T. Grance, “Sp 800-145. the nist definition of cloud
computing,” National Institute of Standards and Technology, Gaithers-
burg, MD, USA, Tech. Rep., 2011.

[12] J. Plaza, R. Pérez, A. Plaza, P. Martı́nez, and D. Valencia, “Parallel
morphological/neural processing of hyperspectral images using het-
erogeneous and homogeneous platforms,” Cluster Computing, vol. 11,
no. 1, pp. 17–32, 2008.

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[14] L. Zhang, L. Zhang, and B. Du, “Deep learning for remote sensing
data: A technical tutorial on the state of the art,” IEEE Geoscience and
Remote Sensing Magazine, vol. 4, no. 2, pp. 22–40, 2016.

[15] L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin, and B. A. Johnson, “Deep
learning in remote sensing applications: A meta-analysis and review,”
ISPRS Journal of Photogrammetry and Remote Sensing, vol. 152, pp.
166 – 177, 2019.

[16] X. X. Zhu, D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu, and
F. Fraundorfer, “Deep learning in remote sensing: A comprehensive
review and list of resources,” IEEE Geoscience and Remote Sensing
Magazine, vol. 5, no. 4, pp. 8–36, 2017.

[17] M. Paoletti, J. Haut, J. Plaza, and A. Plaza, “Deep learning classifiers
for hyperspectral imaging: A review,” ISPRS Journal of Photogram-
metry and Remote Sensing, vol. 158, pp. 279 – 317, 2019.

[18] A. Plaza, Q. Du, Y.-L. Chang, and R. L. King, “High performance
computing for hyperspectral remote sensing,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 4,
no. 3, pp. 528–544, 2011.

[19] C. A. Lee, S. D. Gasster, A. Plaza, C. Chang, and B. Huang, “Recent
developments in high performance computing for remote sensing: A re-
view,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 4, no. 3, pp. 508–527, 2011.

[20] A. F. Goetz, “Three decades of hyperspectral remote sensing of the
earth: A personal view,” Remote Sensing of Environment, vol. 113, pp.
S5–S16, 2009.

[21] N. Yokoya, C. Grohnfeldt, and J. Chanussot, “Hyperspectral and mul-
tispectral data fusion: A comparative review of the recent literature,”
IEEE Geoscience and Remote Sensing Magazine, vol. 5, no. 2, pp.
29–56, 2017.

[22] C. Liu, J. Shang, P. W. Vachon, and H. McNairn, “Multiyear crop
monitoring using polarimetric radarsat-2 data,” IEEE Transactions on
Geoscience and Remote sensing, vol. 51, no. 4, pp. 2227–2240, 2012.

[23] A. Rosenqvist, M. Shimada, N. Ito, and M. Watanabe, “Alos palsar:
A pathfinder mission for global-scale monitoring of the environment,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 11,
pp. 3307–3316, 2007.

[24] M. Moghaddam, D. Entekhabi, P. R. Moorcroft, Y. Lou, E. Chapin,
S. S. Saatchi, R. H. Reichle, W. T. Crow, R. H. Cuenca,
A. Tabatabaeenejad et al., “Airborne microwave observatory of sub-
canopy and subsurface (airmoss) earth venture suborbital mission
overview,” AGUFM, vol. 2015, pp. B53A–0537, 2015.

[25] W. Pitz and D. Miller, “The terrasar-x satellite,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 48, no. 2, pp. 615–622, 2010.

[26] D. Geudtner, R. Torres, P. Snoeij, M. Davidson, and B. Rommen,
“Sentinel-1 system capabilities and applications,” in 2014 IEEE Geo-
science and Remote Sensing Symposium. IEEE, 2014, pp. 1457–1460.

[27] D. Yi, J. P. Harbeck, S. S. Manizade, N. T. Kurtz, M. Studinger,
and M. Hofton, “Arctic sea ice freeboard retrieval with waveform
characteristics for nasa’s airborne topographic mapper (atm) and land,
vegetation, and ice sensor (lvis),” IEEE Transactions on Geoscience
and Remote Sensing, vol. 53, no. 3, pp. 1403–1410, 2014.

[28] N. Levin, K. Johansen, J. M. Hacker, and S. Phinn, “A new source
for high spatial resolution night time images—the eros-b commercial
satellite,” Remote Sensing of Environment, vol. 149, pp. 1–12, 2014.

[29] Y. Chen, R. Fan, M. Bilal, X. Yang, J. Wang, and W. Li, “Multilevel
cloud detection for high-resolution remote sensing imagery using
multiple convolutional neural networks,” ISPRS International Journal
of Geo-Information, vol. 7, no. 5, p. 181, 2018.

[30] G. Dial, H. Bowen, F. Gerlach, J. Grodecki, and R. Oleszczuk, “Ikonos
satellite, imagery, and products,” Remote sensing of Environment,
vol. 88, no. 1-2, pp. 23–36, 2003.

[31] M. Gašparović, L. Rumora, M. Miler, and D. Medak, “Effect of fusing
sentinel-2 and worldview-4 imagery on the various vegetation indices,”
Journal of Applied Remote Sensing, vol. 13, no. 3, p. 036503, 2019.

24

TABLE VI
LIST OF ACRONYMS USED IN THIS PAPER

Acronym Full name Acronym Full name
EO Earth Observation MTFC Multi-GPU Training Framework
GPUs Graphics Processing Units PNPE Parallel Neighbor Pixel Extractor
CPUs Central Processing Units G-POD Grid Processing on Demand
AVIRIS Airbone Visible/Infrared Imaging Spectrometer GENESI-DR Ground European Network for Earth Science Interoperations and Digital Repositories
AVIRIS-NG Airbone Visible/Infrared Imaging Spectrometer New Generation GiSHEO Grid Services for training and High Education in Earth Observation
NASA National Aeronautics and Space Administration CEOS Committee on Earth Observation Satellites
TBs Terabytes DGGS Discrete Global Grid Systems
GBs Gigabytes CBIR Content-based Image Retrieval
PBs Petabytes ICP InterIMAGE cloud Platform
mpp Meters Per Pixel HDFS Hadoop File System
EnMAP Environmental Mapping and Analysis Program YARN Yet Another Resource Negotiator
EOSDIS Earth Observing System Data and Information System RDDs Resilient Distributed Datasets
NSMC China National Satellite Meteorological Center VMs Virtual Machine
CCRSDA China Center for Resources Satellite Data and Application SaaS Software as a Service
ESA European Space Agency PaaS Platform as a Service
GEO Group on Earth Observations IaaS Infrastructure as a Service
HPC High-Performance Computing API Application Programming Interface
SAR Synthetic Aperture Radar SDNs Software Defined Networks
LIDAR Light Detection and Ranging DNs Domain Name Servers
OLI Operational Land Imager GFS Google File System
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer DAG Directed Acyclic Graph
VNIR Visible and Near-Infrared I/O Input/Output
TIR Thermal Infrared HPCC High Performance Computing Challenger
SWIR Shortwave Infrared AWS Amazon Web Services
GSD Ground Sample Distance HPL High Performance Linpack
PAN Panchromatic EC2 Elastic Computing Cloud
MSI Multi-spectral Images GCE Google Compute Engine
HSI Hyper-spectral Images SL IBM SoftLayer
PCA Principal Component Analysis MRAP MapReduce with Access Patterns
TCT Tasseled Cap Transformation MPI Message Passing Interface
WT Wavelet Transform BLAS Basic Linear Algebra Subprograms
KNN K-nearest Neighbors ML Machine Learning
DTs Decision Trees DL Deep Learning
RFs Random Forests OS Operating System
MLR Multinomial Logistic Regression MAP Maximum A Posteriori
GMMs Gaussian Mixture Models BS Block Size
NB Naive Bayes-based approaches MLP Multi-Layer Perceptron
HMMs Hidden Markov models ReLU Rectified Linear Units
SVMs Support Vector Machines BFGS Broyden–Fletcher–Goldfarb–Shanno
ANNs Artificial Neural Networks DGEMM Double-precision Matrix-Matrix Multiplication
SAEs Stacked AutoEnconders TF TensorFlow
DBNs Deep Belief Networks PS Parameter Server
RNNs Recurrent Neuronal Networks IP Indian Pines
CNNs Convolutional Neural Networks BIP Big Indian Pines
DNNs Deep Neural Networks HDD Hard Disk Drive
RBMs Restricted Boltzmann Machines RAM Random Access Memory
LSTM Long Short Term Memory FLOPs Floating Point Operations
RESFlow Remote Sensing data Flow PRACE Partnership for Advanced Computing in Europe
InSPIRE Integrated Sustainable Pan-European Infrastructure for Researchers in Europe UCI Unified Cloud Interface
XSEDE Extreme Science and Engineering Discovery Environment

[32] M. Drusch, U. Del Bello, S. Carlier, O. Colin, V. Fernandez, F. Gascon,
B. Hoersch, C. Isola, P. Laberinti, P. Martimort et al., “Sentinel-2: Esa’s
optical high-resolution mission for gmes operational services,” Remote
sensing of Environment, vol. 120, pp. 25–36, 2012.

[33] C. Donlon, B. Berruti, A. Buongiorno, M.-H. Ferreira, P. Féménias,
J. Frerick, P. Goryl, U. Klein, H. Laur, C. Mavrocordatos et al.,
“The global monitoring for environment and security (gmes) sentinel-3
mission,” Remote Sensing of Environment, vol. 120, pp. 37–57, 2012.

[34] D. P. Roy, M. A. Wulder, T. R. Loveland, C. E. Woodcock, R. G. Allen,
M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy
et al., “Landsat-8: Science and product vision for terrestrial global
change research,” Remote sensing of Environment, vol. 145, pp. 154–
172, 2014.

[35] A. Savtchenko, D. Ouzounov, S. Ahmad, J. Acker, G. Leptoukh,
J. Koziana, and D. Nickless, “Terra and aqua modis products available
from nasa ges daac,” Advances in Space Research, vol. 34, no. 4, pp.
710–714, 2004.

[36] M. A. Cutter, D. R. Lobb, and R. A. Cockshott, “Compact high
resolution imaging spectrometer (chris),” Acta Astronautica, vol. 46,
no. 2-6, pp. 263–268, 2000.

[37] J. W. Chapman, D. R. Thompson, M. C. Helmlinger, B. D. Bue, R. O.
Green, M. L. Eastwood, S. Geier, W. Olson-Duvall, and S. R. Lundeen,
“Spectral and radiometric calibration of the next generation airborne
visible infrared spectrometer (aviris-ng),” Remote Sensing, vol. 11,
no. 18, p. 2129, 2019.

[38] B. Kunkel, F. Blechinger, R. Lutz, R. Doerffer, H. van der Piepen, and
M. Schroder, “ROSIS (Reflective Optics System Imaging Spectrometer)
- A candidate instrument for polar platform missions,” in Proc. SPIE
0868 Optoelectronic technologies for remote sensing from space,
J. Seeley and S. Bowyer, Eds., 1988, p. 8.

[39] S. Babey and C. Anger, “A compact airborne spectrographic imager
(casi),” in Quantitative Remote Sensing: An Economic Tool for the
Nineties, Volume 1, 1989, pp. 1028–1031.

[40] L. J. Rickard, R. W. Basedow, E. F. Zalewski, P. R. Silverglate, and

M. Landers, “Hydice: An airborne system for hyperspectral imaging,”
in Imaging Spectrometry of the Terrestrial Environment, vol. 1937.
International Society for Optics and Photonics, 1993, pp. 173–180.

[41] T. Cocks, R. Jenssen, A. Stewart, I. Wilson, and T. Shields, “The
hymaptm airborne hyperspectral sensor: the system, calibration and
performance,” in Proceedings of the 1st EARSeL workshop on Imaging
Spectroscopy. EARSeL, 1998, pp. 37–42.

[42] P. Mouroulis, B. Van Gorp, R. O. Green, H. Dierssen, D. W. Wilson,
M. Eastwood, J. Boardman, B.-C. Gao, D. Cohen, B. Franklin et al.,
“Portable remote imaging spectrometer coastal ocean sensor: design,
characteristics, and first flight results,” Applied optics, vol. 53, no. 7,
pp. 1363–1380, 2014.

[43] L. Guanter, H. Kaufmann, K. Segl, S. Foerster, C. Rogass, S. Chabrillat,
T. Kuester, A. Hollstein, G. Rossner, C. Chlebek et al., “The enmap
spaceborne imaging spectroscopy mission for earth observation,” Re-
mote Sensing, vol. 7, no. 7, pp. 8830–8857, 2015.

[44] N. Yokoya and A. Iwasaki, “Hyperspectral and multispectral data
fusion mission on hyperspectral imager suite (hisui),” in 2013 IEEE
International Geoscience and Remote Sensing Symposium-IGARSS.
IEEE, 2013, pp. 4086–4089.

[45] A. Eckardt, J. Horack, F. Lehmann, D. Krutz, J. Drescher, M. Whorton,
and M. Soutullo, “Desis (dlr earth sensing imaging spectrometer for
the iss-muses platform),” in 2015 IEEE international geoscience and
remote sensing symposium (IGARSS). IEEE, 2015, pp. 1457–1459.

[46] J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and
S. L. Carman, “Hyperion, a space-based imaging spectrometer,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 41, no. 6, pp.
1160–1173, 2003.

[47] C. Galeazzi, A. Sacchetti, A. Cisbani, and G. Babini, “The prisma pro-
gram,” in Geoscience and Remote Sensing Symposium, 2008. IGARSS
2008. IEEE International, vol. 4. IEEE, 2008, pp. IV–105.

[48] T. Feingersh and E. B. Dor, “Shalom–a commercial hyperspectral space
mission,” Optical payloads for space missions, pp. 247–263, 2015.

[49] G. A. Swayze, R. N. Clark, A. F. Goetz, T. G. Chrien, and N. S.

25

Gorelick, “Effects of spectrometer band pass, sampling, and signal-to-
noise ratio on spectral identification using the tetracorder algorithm,”
Journal of Geophysical Research: Planets, vol. 108, no. E9, pp. 5105–
5135, 2003.

[50] A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging
spectrometry for earth remote sensing,” Science, vol. 228, no. 4704,
pp. 1147–1153, 1985.

[51] S. K. Seelan, S. Laguette, G. M. Casady, and G. A. Seielstad, “Remote
sensing applications for precision agriculture: A learning community
approach,” Remote sensing of environment, vol. 88, no. 1-2, pp. 157–
169, 2003.

[52] H. M. Pham, Y. Yamaguchi, and T. Q. Bui, “A case study on the
relation between city planning and urban growth using remote sensing
and spatial metrics,” Landscape and Urban Planning, vol. 100, no. 3,
pp. 223–230, 2011.

[53] S. A. Azzouzi, A. Vidal-Pantaleoni, and H. A. Bentounes, “Desertifi-
cation monitoring in biskra, algeria, with landsat imagery by means of
supervised classification and change detection methods,” IEEE Access,
vol. 5, pp. 9065–9072, 2017.

[54] X. Ceamanos and S. Valero, “Processing hyperspectral images,” in
Optical Remote Sensing of Land Surface. Elsevier, 2016, pp. 163–200.

[55] A. Maffei, J. M. Haut, M. E. Paoletti, J. Plaza, L. Bruzzone, and
A. Plaza, “A single model cnn for hyperspectral image denoising,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 4,
pp. 2516–2529, 2019.

[56] G. Cheng, X. Xie, J. Han, L. Guo, and G.-S. Xia, “Remote sensing
image scene classification meets deep learning: Challenges, meth-
ods, benchmarks, and opportunities,” arXiv preprint arXiv:2005.01094,
2020.

[57] M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, “A new deep con-
volutional neural network for fast hyperspectral image classification,”
ISPRS journal of photogrammetry and remote sensing, vol. 145, pp.
120–147, 2018.

[58] V. Walter, “Object-based classification of remote sensing data for
change detection,” ISPRS Journal of photogrammetry and remote
sensing, vol. 58, no. 3-4, pp. 225–238, 2004.

[59] K. Nogueira, O. A. Penatti, and J. A. Dos Santos, “Towards better
exploiting convolutional neural networks for remote sensing scene
classification,” Pattern Recognition, vol. 61, pp. 539–556, 2017.

[60] J. Plaza, A. Plaza, R. Perez, and P. Martinez, “On the Use of Small
Training Sets for Neural Network-Based Characterization of Mixed
Pixels in Remotely Sensed Hyperspectral Images,” Pattern Recognition,
vol. 42, pp. 3032–3045, 2009.

[61] J. A. G. Jaramago, M. E. Paoletti, J. M. Haut, R. Fernandez-Beltran,
A. Plaza, and J. Plaza, “Gpu parallel implementation of dual-depth
sparse probabilistic latent semantic analysis for hyperspectral unmix-
ing,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 12, no. 9, pp. 3156–3167, 2019.

[62] G. Camps-Valls, “Machine learning in remote sensing data processing,”
in 2009 IEEE international workshop on machine learning for signal
processing. IEEE, 2009, pp. 1–6.

[63] D. J. Lary, A. H. Alavi, A. H. Gandomi, and A. L. Walker, “Machine
learning in geosciences and remote sensing,” Geoscience Frontiers,
vol. 7, no. 1, pp. 3–10, 2016.

[64] J. M. Haut, R. Fernandez-Beltran, M. E. Paoletti, J. Plaza, A. Plaza, and
F. Pla, “A new deep generative network for unsupervised remote sens-
ing single-image super-resolution,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 56, no. 11, pp. 6792–6810, 2018.

[65] D. Tuia and G. Camps-Valls, “Semisupervised remote sensing image
classification with cluster kernels,” IEEE Geoscience and Remote
Sensing Letters, vol. 6, no. 2, pp. 224–228, 2009.

[66] D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Munoz-Mari, “A sur-
vey of active learning algorithms for supervised remote sensing image
classification,” IEEE Journal of Selected Topics in Signal Processing,
vol. 5, no. 3, pp. 606–617, 2011.

[67] Y. Li, K. Fu, H. Sun, and X. Sun, “An aircraft detection framework
based on reinforcement learning and convolutional neural networks in
remote sensing images,” Remote Sensing, vol. 10, no. 2, p. 243, 2018.

[68] J. M. Haut, M. Paoletti, J. Plaza, and A. Plaza, “Cloud implementation
of the k-means algorithm for hyperspectral image analysis,” The
Journal of Supercomputing, vol. 73, no. 1, pp. 514–529, 2017.

[69] E. Blanzieri and F. Melgani, “Nearest neighbor classification of remote
sensing images with the maximal margin principle,” IEEE Transactions
on geoscience and remote sensing, vol. 46, no. 6, pp. 1804–1811, 2008.

[70] S. Delalieux, B. Somers, B. Haest, T. Spanhove, J. V. Borre, and
C. Mücher, “Heathland conservation status mapping through integration

of hyperspectral mixture analysis and decision tree classifiers,” Remote
sensing of environment, vol. 126, pp. 222–231, 2012.

[71] K. Y. Peerbhay, O. Mutanga, and R. Ismail, “Random forests unsuper-
vised classification: the detection and mapping of solanum mauritianum
infestations in plantation forestry using hyperspectral data,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 8, no. 6, pp. 3107–3122, 2015.

[72] J. M. Haut and M. E. Paoletti, “Cloud implementation of multinomial
logistic regression for uav hyperspectral images,” IEEE Journal on
Miniaturization for Air and Space Systems, vol. 1, no. 3, pp. 163–171,
2020.

[73] J. Ju, E. D. Kolaczyk, and S. Gopal, “Gaussian mixture discriminant
analysis and sub-pixel land cover characterization in remote sensing,”
Remote Sensing of Environment, vol. 84, no. 4, pp. 550–560, 2003.

[74] J. Yang, Z. Ye, X. Zhang, W. Liu, and H. Jin, “Attribute weighted naive
bayes for remote sensing image classification based on cuckoo search
algorithm,” in 2017 International Conference on Security, Pattern
Analysis, and Cybernetics (SPAC). IEEE, 2017, pp. 169–174.

[75] P. B. C. Leite, R. Q. Feitosa, A. R. Formaggio, G. A. O. P. da Costa,
K. Pakzad, and I. D. Sanches, “Hidden markov models for crop
recognition in remote sensing image sequences,” Pattern Recognition
Letters, vol. 32, no. 1, pp. 19–26, 2011.

[76] M. E. Paoletti, J. M. Haut, X. Tao, J. P. Miguel, and A. Plaza, “A new
gpu implementation of support vector machines for fast hyperspectral
image classification,” Remote Sensing, vol. 12, no. 8, p. 1257, 2020.

[77] S. Yang, Q. Feng, T. Liang, B. Liu, W. Zhang, and H. Xie, “Modeling
grassland above-ground biomass based on artificial neural network and
remote sensing in the three-river headwaters region,” Remote Sensing
of Environment, vol. 204, pp. 448–455, 2018.

[78] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-based
classification of hyperspectral data,” IEEE Journal of Selected topics
in applied earth observations and remote sensing, vol. 7, no. 6, pp.
2094–2107, 2014.

[79] M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, “Scalable recurrent
neural network for hyperspectral image classification,” The Journal of
Supercomputing, pp. 1–17, 2020.

[80] M. E. Paoletti, J. M. Haut, R. Fernandez-Beltran, J. Plaza, A. J. Plaza,
and F. Pla, “Deep pyramidal residual networks for spectral–spatial
hyperspectral image classification,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 57, no. 2, pp. 740–754, 2018.

[81] M. E. Paoletti, J. M. Haut, R. Fernandez-Beltran, J. Plaza, A. Plaza,
J. Li, and F. Pla, “Capsule networks for hyperspectral image classifica-
tion,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57,
no. 4, pp. 2145–2160, 2018.

[82] D. Lunga, J. Gerrand, L. Yang, C. Layton, and R. Stewart, “Apache
spark accelerated deep learning inference for large scale satellite
image analytics,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 13, pp. 271–283, 2020.

[83] M. Ma, H. Pouransari, D. Chao, S. Adya, S. Serrano, Y. Qin,
D. Gimnicher, and D. Walsh, “Democratizing production-scale dis-
tributed deep learning,” ArXiv, vol. abs/1811.00143, 2018.

[84] R. Sedona, G. Cavallaro, J. Jitsev, A. Strube, M. Riedel, and J. A.
Benediktsson, “Remote sensing big data classification with high
performance distributed deep learning,” Remote Sensing, vol. 11,
no. 24, 2019. [Online]. Available: https://www.mdpi.com/2072-4292/
11/24/3056

[85] Y. Lu, K. Xie, G. Xu, H. Dong, C. Li, and T. Li, “Mtfc: A multi-gpu
training framework for cube-cnn-based hyperspectral image classifica-
tion,” IEEE Transactions on Emerging Topics in Computing, pp. 1–1,
2020.

[86] M. Aspri, G. Tsagkatakis, and P. Tsakalides, “Distributed training
and inference of deep learning models for multi-modal land cover
classification,” Remote Sensing, vol. 12, no. 17, 2020. [Online].
Available: https://www.mdpi.com/2072-4292/12/17/2670

[87] Z. Wu, Y. Li, A. Plaza, J. Li, F. Xiao, and Z. Wei, “Fast principal com-
ponent analysis for hyperspectral imaging based on cloud computing,”
in IEEE International Geoscience and Remote Sensing Symposium
(IEEE IGARSS 2015), Milan, Italy, 2015.

[88] ——, “Parallel and Distributed Dimensionality Reduction of Hyper-
spectral Data on Cloud Computing Architectures,” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing,
vol. PP, no. 99, pp. 1–9, 2016.

[89] J. Gu, Z. Wu, Y. Li, Y. Chen, Z. Wei, and W. Wang,
“Parallel Optimization of Pixel Purity Index Algorithm for
Hyperspectral Unmixing Based on Spark,” 2015 Third International
Conference on Advanced Cloud and Big Data, pp. 159–166, 2015.

26

[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=7435468

[90] C. Bielski, S. Gentilini, and M. Pappalardo, “Post-disaster image
processing for damage analysis using genesi-dr, wps and grid
computing,” Remote Sensing, vol. 3, no. 6, pp. 1234–1250, 2011.
[Online]. Available: https://www.mdpi.com/2072-4292/3/6/1234

[91] J. M. Haut, J. A. Gallardo, M. E. Paoletti, G. Cavallaro, J. Plaza,
A. Plaza, and M. Riedel, “Cloud deep networks for hyperspectral image
analysis,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 57, no. 12, pp. 9832–9848, 2019.

[92] Z. Wu, J. Sun, Y. Zhang, Y. Zhu, J. Li, A. Plaza, J. A. Benediktsson,
and Z. Wei, “Scheduling-guided automatic processing of massive
hyperspectral image classification on cloud computing architectures,”
IEEE Transactions on Cybernetics, pp. 1–14, 2020.

[93] L. Parente, E. Taquary, A. P. Silva, C. Souza, and L. Ferreira, “Next
generation mapping: Combining deep learning, cloud computing, and
big remote sensing data,” Remote Sensing, vol. 11, no. 23, 2019.
[Online]. Available: https://www.mdpi.com/2072-4292/11/23/2881

[94] X. Yao, G. Li, J. Xia, J. Ben, Q. Cao, L. Zhao, Y. Ma,
L. Zhang, and D. Zhu, “Enabling the big earth observation data
via cloud computing and dggs: Opportunities and challenges,”
Remote Sensing, vol. 12, no. 1, 2020. [Online]. Available: https:
//www.mdpi.com/2072-4292/12/1/62

[95] P. Zheng, Z. Wu, J. Sun, Y. Zhang, Y. Zhu, Y. Shen, J. Yang, Z. Wei,
and A. Plaza, “A parallel unmixing-based content retrieval system
for distributed hyperspectral imagery repository on cloud computing
platforms,” Remote Sensing, vol. 13, no. 2, 2021. [Online]. Available:
https://www.mdpi.com/2072-4292/13/2/176

[96] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du,
P. Gader, and J. Chanussot, “Hyperspectral unmixing overview: Ge-
ometrical, statistical and sparse regression-based approaches,” {IEEE}
J. Sel. Topics Appl. Earth Observations Remote Sens., vol. 5, no. 2,
pp. 354–379, 2012.

[97] W. Huang, L. Meng, D. Zhang, and W. Zhang, “In-memory parallel
processing of massive remotely sensed data using an apache spark on
hadoop yarn model,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 10, no. 1, pp. 3–19, 2017.

[98] V. A. Ayma, R. S. Ferreira, P. N. Happ, D. A. B. Oliveira, G. A. O. P.
Costa, R. Q. Feitosa, A. Plaza, and P. Gamba, “On the architecture
of a big data classification tool based on a map reduce approach for
hyperspectral image analysis,” in 2015 IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), 2015, pp. 1508–1511.

[99] P. Bajcsy, P. Nguyen, A. Vandecreme, and M. Brady, “Spatial compu-
tations over terabyte-sized images on hadoop platforms,” Proceedings
- 2014 IEEE International Conference on Big Data, IEEE Big Data
2014, pp. 816–824, 2015.

[100] Happ, P. N., R. S. Ferreira, G. A. O. P. Costa, R. Q.
Feitosa, C. Bentes, and P. Gamba, “Towards distributed region
growing image segmentation based on MapReduce,” Geoscience and
Remote Sensing Symposium (IGARSS), no. July, pp. 4352–4355,
2015. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs{\ }all.
jsp?arnumber=7326790

[101] J. Xing and R. Sieber, “Sampling based image splitting in
large scale distributed computing of earth observation data,” 2014
IEEE Geoscience and Remote Sensing Symposium, pp. 1409–1412,
2014. [Online]. Available: http://www.scopus.com/inward/record.url?
eid=2-s2.0-84911366834{\&}partnerID=tZOtx3y1

[102] X. Pan and S. Zhang, “A remote sensing image cloud processing
system based on Hadoop,” Proceedings - 2012 IEEE 2nd International
Conference on Cloud Computing and Intelligence Systems, IEEE CCIS
2012, vol. 1, pp. 492–494, 2013.

[103] Y. Liu, B. Chen, W. He, and Y. Fang, “Massive image data management
using HBase and MapReduce,” International Conference on Geoinfor-
matics, no. 2011, 2013.

[104] R. Rajak, D. Raveendran, M. C. Bh, and S. S. Medasani, “High
Resolution Satellite Image Processing Using Hadoop Framework,”
2015 IEEE International Conference on Cloud Computing in Emerging
Markets (CCEM), pp. 16–21, 2015. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7436925

[105] M. M. Rathore, A. Ahmad, A. Paul, and A. Daniel, “Hadoop based
real-Time Big Data Architecture for remote sensing Earth Observatory
System,” 6th International Conference on Computing, Communications
and Networking Technologies, ICCCNT 2015, vol. i, 2016.

[106] W. Nina, R. Cruz, J. Serrano, J. Cuba, Y. Huaynacho, A. Mamani-
Aliaga, Y. Yari, and P. Yanyachi, “A new approach to the massive
processing of satellite images,” Proceedings - 2015 41st Latin American
Computing Conference, CLEI 2015, 2015.

[107] Y. Zhong, J. Fang, and X. Zhao, “VegaIndexer: A Distributed com-
posite index scheme for big spatio-temporal sensor data on cloud,”
International Geoscience and Remote Sensing Symposium (IGARSS),
pp. 1713–1716, 2013.

[108] R. Kune, P. Konugurthi, A. Agarwal, R. R. Chillarige, and R. Buyya,
“Xhami – extended hdfs and mapreduce interface for image process-
ing applications,” in 2015 IEEE International Conference on Cloud
Computing in Emerging Markets (CCEM), 2015, pp. 43–51.

[109] M. T. Patterson, N. Anderson, C. Bennett, J. Bruggemann, R. L.
Grossman, M. Handy, V. Ly, D. J. Mandl, S. Pederson, J. Pivarski,
R. Powell, J. Spring, W. Wells, and J. Xia, “The matsu wheel: A
cloud-based framework for efficient analysis and reanalysis of earth
satellite imagery,” in 2016 IEEE Second International Conference on
Big Data Computing Service and Applications (BigDataService), 2016,
pp. 156–165.

[110] A. Plaza, D. Valencia, J. Plaza, and P. Martinez, “Commodity cluster-
based parallel processing of hyper spectral imagery,” Journal of Par-
allel and Distributed Computing, vol. 66, no. 3, pp. 345–358, 2006.

[111] G. Aloisio and M. Cafaro, “A dynamic earth observation system,”
Parallel Computing, vol. 29, no. 10, pp. 1357–1362, 2003.

[112] D. Gorgan, V. Bacu, T. Stefanut, D. Rodila, and D. Mihon, “Grid based
satellite image processing platform for earth observation application
development,” in 2009 IEEE International Workshop on Intelligent
Data Acquisition and Advanced Computing Systems: Technology and
Applications, 2009, pp. 247–252.

[113] Z. Chen, N. Chen, C. Yang, and L. Di, “Cloud computing enabled
web processing service for earth observation data processing,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 5, no. 6, pp. 1637–1649, 2012.

[114] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies, MSST2010, pp. 1–10, 2010.

[115] V. Kumar Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
B. Saha, C. Curino, O. O ’malley, S. Radia, B. Reed, and
E. Baldeschwieler, “Apache Hadoop YARN: Yet Another Resource
Negotiator,” SOCC ’13 Proceedings of the 4th annual Symposium
on Cloud Computing, vol. 13, pp. 1–3, 2013. [Online]. Available:
http://dx.doi.org/10.1145/2523616.2523633

[116] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Spark : Cluster Computing with Working Sets,” HotCloud’10
Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing, p. 10, 2010.

[117] M. Zaharia, M. Chowdhury, T. Das, and A. Dave, “Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing,” NSDI’12 Proceedings of the 9th USENIX conference
on Networked Systems Design and Implementation, pp. 2–2, 2012.
[Online]. Available: https://www.usenix.org/system/files/conference/
nsdi12/nsdi12-final138.pdf

[118] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J.
Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar, “MLlib: Machine
Learning in Apache Spark,” CoRR, vol. 17, pp. 1–7, 2015. [Online].
Available: http://arxiv.org/abs/1505.06807

[119] D. Marinescu, Cloud Computing: Theory and Practice. Elsevier
Science, 2017. [Online]. Available: https://books.google.es/books?id=
O9smDwAAQBAJ

[120] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view
of cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr.
2010. [Online]. Available: https://doi.org/10.1145/1721654.1721672

[121] J. Smith and R. Nair, “The architecture of virtual machines,” Computer,
vol. 38, pp. 32–38, 2005.

[122] M. Pearce, S. Zeadally, and R. Hunt, “Virtualization: Issues, security
threats, and solutions,” ACM Comput. Surv., vol. 45, no. 2, Mar. 2013.
[Online]. Available: https://doi.org/10.1145/2431211.2431216

[123] V. Mauch, M. Kunze, and M. Hillenbrand, “High performance cloud
computing,” Future Generation Computer Systems, vol. 29, no. 6, pp.
1408 – 1416, 2013, including Special sections: High Performance
Computing in the Cloud & Resource Discovery Mechanisms for P2P
Systems. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0167739X12000647

[124] (2009) Security guidance for critical areas of focus in cloud computing
v2.1. [Online]. Available: https://cloudsecurityalliance.org/csaguide.pdf

[125] I. Sadooghi, J. H. Martin, T. Li, K. Brandstatter, K. Maheshwari, T. P. P.
de Lacerda Ruivo, G. Garzoglio, S. Timm, Y. Zhao, and I. Raicu,
“Understanding the performance and potential of cloud computing for

27

scientific applications,” IEEE Transactions on Cloud Computing, vol. 5,
no. 2, pp. 358–371, 2017.

[126] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in Proceedings of the 6th Conference on Symposium on
Operating Systems Design Implementation - Volume 6, ser. OSDI’04.
USA: USENIX Association, 2004, p. 10.

[127] ——, “Mapreduce: Simplified data processing on large clusters,”
Commun. ACM, vol. 51, no. 1, p. 107–113, Jan. 2008. [Online].
Available: https://doi.org/10.1145/1327452.1327492

[128] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, p. 29–43, Oct. 2003. [Online].
Available: https://doi.org/10.1145/1165389.945450

[129] J. Ekanayake, S. Pallickara, and G. Fox, “Mapreduce for data intensive
scientific analyses,” in 2008 IEEE Fourth International Conference on
eScience, 2008, pp. 277–284.

[130] M. Zaharia, An Architecture for Fast and General Data Processing on
Large Clusters. Association for Computing Machinery and Morgan
Claypool, 2016.

[131] T. Gunarathne, T. Wu, J. Qiu, and G. Fox, “Mapreduce in the clouds
for science,” in 2010 IEEE Second International Conference on Cloud
Computing Technology and Science, 2010, pp. 565–572.

[132] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “A performance analysis of ec2 cloud computing services
for scientific computing,” in Cloud Computing, D. R. Avresky, M. Diaz,
A. Bode, B. Ciciani, and E. Dekel, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 115–131.

[133] J. Dongarra and P. Luszczek, HPC Challenge Benchmark. Boston,
MA: Springer US, 2011, pp. 844–850. [Online]. Available: https:
//doi.org/10.1007/978-0-387-09766-4 156

[134] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema, “Performance analysis of cloud computing services for
many-tasks scientific computing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 22, no. 6, pp. 931–945, 2011.

[135] P. Mehrotra, J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff,
S. Saini, and R. Biswas, “Performance evaluation of amazon ec2
for nasa hpc applications,” in Proceedings of the 3rd Workshop
on Scientific Cloud Computing, ser. ScienceCloud ’12. New York,
NY, USA: Association for Computing Machinery, 2012, pp. 41–50.
[Online]. Available: https://doi.org/10.1145/2287036.2287045

[136] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum,
R. Fatoohi, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,
V. Venkatakrishnan, and S. Weeratunga, “The nas parallel benchmarks,”
Int. J. High Perform. Comput. Appl., vol. 5, no. 3, pp. 63–73, Sep. 1991.
[Online]. Available: https://doi.org/10.1177/109434209100500306

[137] A. Petitet, R. Whaley, J. Dongarra, and A. Cleary. (2018, Dec.)
Hpl – a portable implementation of the high-performance linpack
benchmark for distributed-memory computers. [Online]. Available:
http://www.netlib.org/benchmark/hpl/

[138] G. Wang and T. S. E. Ng, “The impact of virtualization on network
performance of amazon ec2 data center,” in 2010 Proceedings IEEE
INFOCOM, 2010, pp. 1–9.

[139] J. R. Lange, K. Pedretti, P. Dinda, P. G. Bridges, C. Bae,
P. Soltero, and A. Merritt, “Minimal-overhead virtualization of
a large scale supercomputer,” in Proceedings of the 7th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, ser. VEE ’11. New York, NY, USA: Association
for Computing Machinery, 2011, pp. 169–180. [Online]. Available:
https://doi.org/10.1145/1952682.1952705

[140] P. Leitner and J. Cito, “Patterns in the chaos—a study of performance
variation and predictability in public iaas clouds,” ACM Trans.
Internet Technol., vol. 16, no. 3, Apr. 2016. [Online]. Available:
https://doi.org/10.1145/2885497

[141] A. Gupta, P. Faraboschi, F. Gioachin, L. V. Kale, R. Kaufmann, B. Lee,
V. March, D. Milojicic, and C. H. Suen, “Evaluating and improving
the performance and scheduling of hpc applications in cloud,” IEEE
Transactions on Cloud Computing, vol. 4, no. 3, pp. 307–321, 2016.

[142] S. Sehrish, G. Mackey, P. Shang, J. Wang, and J. Bent, “Supporting hpc
analytics applications with access patterns using data restructuring and
data-centric scheduling techniques in mapreduce,” IEEE Transactions
on Parallel and Distributed Systems, vol. 24, no. 1, pp. 158–169, 2013.

[143] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley,
J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry et al.,
“An updated set of basic linear algebra subprograms (blas),” ACM
Transactions on Mathematical Software, vol. 28, no. 2, pp. 135–151,
2002.

[144] M. P. Forum, “Mpi: A message-passing interface standard,” University
of Tennessee, USA, Tech. Rep. CS-94-230, 1994.

[145] A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” CoRR, vol. abs/1404.5997, 2014.

[146] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis,” CoRR, vol.
abs/1802.09941, 2018.

[147] E. Frank, M. A. Hall, G. Holmes, R. Kirkby, B. Pfahringer,
and I. H. Witten, Weka: A machine learning workbench for data
mining. Berlin: Springer, 2005, pp. 1305–1314. [Online]. Available:
http://researchcommons.waikato.ac.nz/handle/10289/1497

[148] T. Guo, “Cloud-based or on-device: An empirical study of mobile deep
inference,” 2018.

[149] A. Koliopoulos, P. Yiapanis, F. Tekiner, G. Nenadic, and J. Keane, “A
parallel distributed weka framework for big data mining using spark,”
in 2015 IEEE International Congress on Big Data, 2015, pp. 9–16.

[150] M. Assefi, E. Behravesh, G. Liu, and A. P. Tafti, “Big data machine
learning using apache spark mllib,” in 2017 IEEE International Con-
ference on Big Data (Big Data), 2017, pp. 3492–3498.

[151] Y. You, I. Gitman, and B. Ginsburg, “Large batch training
of convolutional networks,” 2017, cite arxiv:1708.03888. [Online].
Available: http://arxiv.org/abs/1708.03888

[152] S. L. Smith, P.-J. Kindermans, and Q. V. Le, “Don’t decay
the learning rate, increase the batch size,” in International
Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=B1Yy1BxCZ

[153] J. Dowling, “Distributed deep learning with apache spark and tensor-
flow,” in Europe Spark+AI Summit, 2018, pp. 0–48.

[154] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[155] F. Niu, B. Recht, C. Ré, and S. Wright, “Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent,” NIPS, vol. 24,
06 2011.

[156] J. J. Dai, Y. Wang, X. Qiu, D. Ding, Y. Zhang, Y. Wang, X. Jia, L. C.
Zhang, Y. Wan, Z. Li, J. Wang, S. Huang, Z. Wu, Y. Wang, Y. Yang,
B. She, D. Shi, Q. Lu, K. Huang, and G. Song, “Bigdl: A distributed
deep learning framework for big data,” in Proceedings of the
ACM Symposium on Cloud Computing, ser. SoCC’19. Association
for Computing Machinery, 2019, pp. 50–60. [Online]. Available:
https://arxiv.org/pdf/1804.05839.pdf

[157] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josi-
fovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed
machine learning with the parameter server,” in Proceedings of the
11th USENIX Conference on Operating Systems Design and Implemen-
tation, ser. OSDI’14. USA: USENIX Association, 2014, p. 583–598.

[158] N. M. Nawi, M. R. Ransing, and R. S. Ransing, “An improved learning
algorithm based on the broyden-fletcher-goldfarb-shanno (bfgs) method
for back propagation neural networks,” in Sixth International Confer-
ence on Intelligent Systems Design and Applications, vol. 1, 2006, pp.
152–157.

[159] R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien,
M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit,
M. Solis, M. R. Olah, and O. Williams, “Imaging Spectroscopy
and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),”
Remote Sensing of Environment, vol. 65, no. 3, pp. 227–248, 9 1998.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0034425798000649

[160] S. Moreno-Álvarez, J. M. Haut, M. E. Paoletti, J. A. Rico-Gallego,
J. C. Dı́az-Martı́n, and J. Plaza, “Training deep neural networks:
a static load balancing approach,” The Journal of Supercomputing,
vol. 76, no. 12, pp. 9739–9754, 2020. [Online]. Available:
https://doi.org/10.1007/s11227-020-03200-6

28

Juan M. Haut (S’17-M’19-SM’20) is an Associated
Professor with the Department of Communication
and Control Systems at the National Distance Ed-
ucation University, Madrid, Spain. Also, he was a
member of the Hyperspectral Computing Laboratory
(HyperComp) at the Department of Technology of
Computers and Communications, University of Ex-
tremadura, where he received the B.Sc and M.Sc.
degrees in computer engineering in 2011 and 2014,
respectively, and the Ph.D. degree in Information
Technology in 2019 supported by an University

Teacher Training Programme from the Spanish Ministry of Education.
Dr. Haut was a recipient of the Outstanding Ph.D. Award at the University

of Extremadura in 2019. His research interests include remote sensing data
processing and high dimensional data analysis, applying machine (deep)
learning and cloud computing approaches. In this sense, he has authored/co-
authored more than 30 JCR journal articles (more than 20 in IEEE journals)
and 20 peer-reviewed conference proceeding papers. Some of his contributions
have been recognized as hot-topic publications for their impact on the
scientific community.

Also, he was a recipient of the Outstanding Paper Award in the 2019
IEEE WHISPERS conference. From his experience as a reviewer, it is worth
mentioning his active collaboration in more than 10 scientific journals, such
as the IEEE Transactions on Geoscience and Remote Sensing, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, and
IEEE Geoscience and Remote Sensing Letters, being awarded with the Best
Reviewer recognition of the IEEE Geoscience and Remote Sensing Letters in
2018. Furthermore, he has guest-edited three special issues on hyperspectral
remote sensing for different journals. He is also an Associate Editor of
the IEEE Gesocience and Remote Sensing Letters and IEEE Journal on
Miniaturization for Air and Space Systems.

Mercedes E. Paoletti (S’17-M’20-SM’20) received
the B.Sc and M.Sc. degrees in computer engineer-
ing from the University of Extremadura, Cáceres,
Spain, in 2014 and 2016, respectively. Also, she
obtained her PhD degree in 2020 supported by an
University Teacher Training Programme from the
Spanish Ministry of Education, as a member of the
Hyperspectral Computing Laboratory (HyperComp)
at the Department of Technology of Computers
and Communications, University of Extremadura.
She is currently a researcher at the Department of

Computer Architecture, University of Málaga. Her research interests include
remote sensing and analysis of very high spectral resolution with the current
focus on DL and high performance computing.

She has served as a reviewer for the IEEE Transactions on Geoscience and
Remote Sensing and IEEE Geoscience and Remote Sensing Letters, in which
she was recognized as a best reviewer in 2019. She was also a recipient of
the 2019 Outstanding Paper Award recognition in the IEEE WHISPERS 2019
conference, and a recipient of the Outstanding Ph.D. Award at the University
of Extremadura in 2020.

Sergio Moreno Alvarez completed the B.Sc and
M.sc. Degree in Computer Engineering at the Uni-
versity of Extremadura in 2017 and 2019, respec-
tively. Currently, since October 2019 he is com-
pleting his Ph.D in the Department of Computer
Systems Engineering and Telematics. As research
experience, he has participated regional projects.
His main interests are high performance comput-
ing, neural networks and DL. He is currently a
Researcher in the School of Technology (University
of Extremadura). He has published 4 JCR papers

in international journals and 3 presentations at international and national
conferences.

Javier Plaza (M’09-SM’15) is a member of the Hy-
perspectral Computing Laboratory at the Department
of Technology of Computers and Communications,
University of Extremadura, where he received the
M.Sc. degree in 2004 and the PhD degree in 2008,
both in Computer Engineering. He was the recipient
of the Outstanding Ph.D. Dissertation Award at the
University of Extremadura in 2008. His main re-
search interests comprise hyperspectral data process-
ing and parallel computing of remote sensing data.
He has authored more than 200 publications, includ-

ing over 80 JCR journal papers, 10 book chapters, and 100 peer-reviewed
conference proceeding papers. He has guest edited 4 special issues on
hyperspectral remote sensing for different journals. Prof. Plaza is an Associate
Editor for IEEE Geoscience and Remote Sensing Letters and an Associate
Editor of the IEEE Remote Sensing Code Library. He is a recipient of the
Best Column Award of the IEEE Signal Processing Magazine in 2015 and the
most highly cited paper (2005-2010) in the Journal of Parallel and Distributed
Computing. He received best paper awards at the IEEE International Confer-
ence on Space Technology and the IEEE Symposium on Signal Processing
and Information Technology. http://www.umbc.edu/rssipl/people/jplaza

Juan-Antonio Rico-Gallego received the Computer
Science Engineering degree and the PhD degree
on Computer Science from the University of Ex-
tremadura in 2002 and 2016 respectively. Formerly
a software consultant, he is an associate professor
at the Dept. of Computer Systems Engineering of
the University of Extremadura (Spain). His research
interests are in analytical performance models on
heterogeneous platforms and the usage of deep and
reinforcement learning techniques to HPC platforms
problems, including scheduling, process deployment

and mapping, load balancing and communication modeling. Other research
interest include current MPI implementations and applications. He codevelops
AzequiaMPI, an efficient thread-based full MPI 1.3 standard implementation.

29

Antonio Plaza (M’05-SM’07-F’15) is the Head
of the Hyperspectral Computing Laboratory at the
Department of Technology of Computers and Com-
munications, University of Extremadura, where he
received the M.Sc. degree in 1999 and the PhD
degree in 2002, both in Computer Engineering. His
main research interests comprise hyperspectral data
processing and parallel computing of remote sensing
data. He has authored more than 600 publications,
including over 300 JCR journal papers (over 220
in IEEE journals), 23 book chapters, and around

300 peer-reviewed conference proceeding papers. He has guest edited 10
special issues on hyperspectral remote sensing for different journals. Prof.
Plaza is a Fellow of IEEE “for contributions to hyperspectral data processing
and parallel computing of Earth observation data.” He is a recipient of the
recognition of Best Reviewers of the IEEE Geoscience and Remote Sensing
Letters (in 2009) and a recipient of the recognition of Best Reviewers of the
IEEE Transactions on Geoscience and Remote Sensing (in 2010), for which
he served as Associate Editor in 2007-2012. He is also an Associate Editor
for IEEE Access (receiving a recognition as outstanding Associate Editor
of the journal in 2017). He was also a member of the steering committee
of the IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing (JSTARS). He is a recipient of the Best Column Award of
the IEEE Signal Processing Magazine in 2015, the 2013 Best Paper Award
of the JSTARS journal, and the most highly cited paper (2005-2010) in the
Journal of Parallel and Distributed Computing. He received best paper awards
at the IEEE International Conference on Space Technology and the IEEE
Symposium on Signal Processing and Information Technology. He served as
the Director of Education Activities for the IEEE Geoscience and Remote
Sensing Society (GRSS) in 2011-2012, and as President of the Spanish
Chapter of IEEE GRSS in 2012-2016. He has reviewed more than 500
manuscripts for over 50 different journals. He served as Editor-in-Chief of the
IEEE Transactions on Geoscience and Remote Sensing from 2013 to 2017,
and is currently the Editor-in-Chief of the IEEE Journal on Miniaturization
for Air and Space Systems (J-MASS). He has been distinguished as a Highly
Cited researcher by Clarivate Analytics in 2018, 2019 and 2020. Additional
information: http://www.umbc.edu/rssipl/people/aplaza

