
1

Active Learning with Convolutional Neural
Networks for Hyperspectral Image Classification

using a new Bayesian Approach
Juan M. Haut, Student Member, IEEE, Mercedes E. Paoletti, Student Member, IEEE,

Javier Plaza, Senior Member, IEEE, Jun Li, Senior Member, IEEE, and Antonio Plaza, Fellow, IEEE

Abstract—Hyperspectral imaging is a widely used technique
in remote sensing in which an imaging spectrometer collects
hundreds of images (at different wavelength channels) for the
same area on the surface of the Earth. In the last two decades,
several methods (unsupervised, supervised and semi-supervised)
have been proposed to deal with the hyperspectral image clas-
sification problem. Supervised techniques have been generally
more popular, despite the fact that it is difficult to collect
labeled samples in real scenarios. In particular, deep neural
networks (DNNs) such as convolutional neural networks (CNNs)
have recently shown a great potential to yield high performance
in hyperspectral image classification. However, these techniques
require sufficient labeled samples in order to perform properly
and generalize well. Obtaining labeled data is expensive and time
consuming, and the high dimensionality of hyperspectral data
makes it difficult to design classifiers based on limited samples
(for instance, CNNs overfit quickly with small training sets).
Active learning (AL) can deal with this problem by training
the model with a small set of labeled samples that is reinforced
by the acquisition of new unlabeled samples. In this paper, we
develop a new AL-guided classification model that exploits both
the spectral information and the spatial-contextual information
in the hyperspectral data. The proposed model makes use
of recently developed Bayesian CNNs. Our newly developed
technique provides robust classification results when compared
with other state-of-the-art techniques for hyperspectral image
classification.

Index Terms—Bayesian Convolutional Neural Network, Active
learning, hyperspectral remote sensing image classification

I. INTRODUCTION

This paper was supported by Ministerio de Educación (Resolución de 26
de diciembre de 2014 y de 19 de noviembre de 2015, de la Secretarı́a de
Estado de Educación, Formación Profesional y Universidades, por la que
se convocan ayudas para la formación de profesorado universitario, de los
subprogramas de Formación y de Movilidad incluidos en el Programa Estatal
de Promoción del Talento y su Empleabilidad, en el marco del Plan Estatal de
Investigación Cientı́fica y Técnica y de Innovación 2013-2016. This work has
also been supported by Junta de Extremadura (decreto 297/2014, ayudas para
la realización de actividades de investigación y desarrollo tecnológico, de di-
vulgación y de transferencia de conocimiento por los Grupos de Investigación
de Extremadura, Ref. GR15005).

J. M. Haut, M. E. Paoletti, J. Plaza and A. Plaza are with the Hyperspectral
Computing Laboratory, Department of Technology of Computers and Commu-
nications, Escuela Politécnica, University of Extremadura, PC-10003 Cáceres,
Spain.(e-mail:juanmariohaut@unex.es;mpaoletti@unex.es;jplaza@unex.es;
aplaza@unex.es).

Jun Li is with the Guangdong Provincial Key Laboratory of Urbanization
and Geosimulation, Center of Integrated Geographic Information Analysis,
School of Geography and Planning, Sun Yat-sen University, Guangzhou
510275, China(e-mail:lijun48@mail.sysu.edu.cn).

TABLE I
LIST OF ACRONYMS USED IN THIS PAPER

AE Auto-encoder
AL Active Learning

ANN Artificial Neural Network
AVIRIS Airborne Visible InfraRed Imaging Spectrometer

BALD Bayesian Active Learning by Disagreement
B-CNN Bayesian Convolutional Neural Networks

BNN Bayesian Neural Networks
CASI Compact Airborne Spectrographic Imager
CNN Convolutional Neural Network

CONV layer Convolution layer
CRNN Convolutional Recurrent Neural Network

DBN Deep Belief Network
DL Deep Learning

DNN Deep Neural Network
Dpool Pool set

Dtrain Trainning set
EnMAP Environmental Mapping and Analysis Program

EO-1 Earth Observing-1
FTHSI Fourier Transform HyperSpectral Imager

GPU Graphics Processing Unit
HSI Hyperspectral Imaging

HyperCam HSI for Ubiquitous Computing Applications
Hymap Hyperspectral Mapper

HyspIRI Hyperspectral Infrared Imager
MAXPOOL layer Pooling layer

MC-dropout Monte-Carlo dropout
ML Machine Learning

MLP Multilayer Perceptron
MLR Multinomial Logistic Regression
PCA Principal Component Analysis

PRISMA Precursore IperSpettrale della Missione Applicativa
ReLU Rectified Linear Unit

RELU layer Non linearity layer with ReLU
SAE Stacked Auto-encoder

SSAE Stacked Sparse Auto-encoder
SVM Support Vector Machine

RF Random Forest
ROSIS Reflective Optics System Imaging Spectrometer

RNN Recurrent Neural Network
SNR Signal to Noise Ratio

HYPERSPECTRAL imaging (or imaging spectroscopy)
[1] is based on the acquisition, measurement, analysis

and interpretation of spectra captured at different wavelength
channels (throughout the visible and solar-reflected infrared
spectrum) over an extensive observation area on the surface
of the Earth. A variety of imaging spectrometers are cur-
rently available, including airborne (e.g. the Airborne Visible
InfraRed Imaging Spectrometer -AVIRIS-, the Compact Air-
borne Spectrographic Imager -CASI-, the Reflective Optics



2

System Imaging Spectrometer -ROSIS-, the Hymap or the
new hyperspectral missions based on HyperCAM technology
[2], [3] [4]–[9]) and spaceborne (e.g. the Earth Observing-
1 Hyperion or the Fourier Transform HyperSpectral Imager
-FTHSI- on MightySat II [10], [11], [12]). Imaging spectrom-
eters are also available on ground-based (stationary or hand-
held) platforms. These instruments allow for the acquisition of
the solar-reflected spectrum in a large number of narrow and
contiguous spectral bands (normally several hundreds) [13],
creating data cubes in which each pixel contains a detailed
contiguous spectral signature that can be used to characterize
the objects in the scene with great precision and detail.

Several imaging spectrometers are currently operational,
providing a large volume of hyperspectral data that can be
used for a wide variety of applications, such as forestry,
geology, precision agriculture, hydrology, ecological moni-
toring, scene recognition, military applications and disaster
monitoring [14]–[16], [17]. For instance, we highlight the
following spectrometers: AVIRIS [4], which measures the
solar reflected spectrum from 0.4µm to 2.5µm at intervals
of 0.01µm creating hyperspectral images with 224 bands;
EO-1 Hyperion, which also collects 242 bands in the range
of 0.4µm to 2.5µm [16], [18], and ROSIS, which collects
images with a spectral range from 0.43µm to 0.96µm [7],
among others. Also, several new satellite mission will be soon
operative and ready to collect data in a very similar spectral
range. For instance, the imaging spectrometer included in
the NASA Hyperspectral Infrared Imager (HyspIRI) [19] is
expected to measure the visible to short wave infrared in
the range 0.38µm to 2.5µm, or the German Environmental
Mapping and Analysis Program (EnMAP [20]) that is expected
to collect data in the range 0.42µm to 2.45µm, as well as
the Italian Precursore IperSpettrale della Missione Applicativa
(PRISMA) program [21].

The great amount of information that these spectrometers
collect is very useful in pattern recognition, which has led
to the development of multiple methods for advanced clas-
sification of hyperspectral images [22], [23]. This includes
unsupervised techniques (often called clustering methods)
[24]–[28]. However, supervised classifiers are often preferred,
due to their capacity to provide high classification accuracy
by considering class-specific information provided by labeled
training samples [14].

In this sense, since their successful application in the field
of pattern recognition in the 90s [29], [30], artificial neural
networks (ANNs) have attracted the attention of a large
number of researchers in the area of hyperspectral image
classification [31], [32]. Their ability to learn by examples and
to generalize, together with the following properties: 1) ANNs
are non-parametric (i.e. they do not need prior knowledge
of the statistical distribution of the classes), and 2) they
offer multiple training techniques to deal with linearly non-
separable data [33], have made ANNs widely attractive for
supervised classification of hyperspectral images as compared
to probabilistic methods.

In particular, deep neural networks (DNNs) [34], [35] have
recently shown a great potential to yield high performance
in image classification tasks [36], [37], [38]. DNNs are deep

architectures (multilayer stack of simple modules) that have
the capacity to learn more complex models than shallow
ones [39], learning features at various levels of abstraction,
i.e. the multi-layer non-linear transformations applied over
DNNs architecture can adaptively extract more meaningful
and discriminative features [40]. To date, four DNN models
have been the mainstream deep learning (DL) architectures
for the analysis of hyperspectral remote sensing images: deep
belief networks (DBNs), auto-encoders (AEs), recurrent neural
networks (RNNs), and convolutional neural networks (CNNs).

DL emerged in part with DBN models [41], [42]. In [43]
three DBNs to extract high-level features from hyperspectral
data using spectral, spatial and spectral-spatial information are
introduced. In a similar way, [44] implements a DBN for
feature extraction and classification, stacking spectral-spatial
characteristics, while [45] investigates the hyper-parameters
used by the spectral and spectral-spatial DBNs of [43].
Another example is [46] in which a DBN is implemented
introducing diversity promoting priors into the pre-training and
fine-tuning phases, in order to avoid the co-adaptation of latent
factors.

On the other hand, the AE has been traditionally used as
unsupervised pixel-based method to learn useful features from
data and perform dimensionality reduction. In the literature,
we can find deep AE architectures, also called stacked AEs
(SAEs), for hyperspectral image classification, such as the
SAE proposed by [47] that performs a two-step training
strategy based on pixel-spectrum, with an unsupervised rep-
resentation learning and a supervised fine-tuning, before a
final supervised classification step conducted by a logistic
regression layer. In [48], a SAE is pre-trained in unsupervised
fashion with spectral data, and the features are extracted by a
PCA+3D Gabor Wavelet filter. In [49], three SAEs are intro-
duced to generate high-level features from hyperspectral data
using spectral, spatial and spectral-spatial information, with a
logistic regression method performing the final classification.
Following [49], in [50] two stacked sparse AEs (SSAEs)
are proposed to extract spectral and spatial features that are
stacked and embed into a support vector machine (SVM) for
classification.

SAEs and DBNs are successful DL methods for hyper-
spectral classification, improving their performance with the
incorporation of spatial information in addition to the spec-
trum. However, both SAE and DBN models need to flatten
the spectral-spatial features in 1D-vectors to satisfy their input
requirements, losing to a certain point the effectiveness of the
spatial information [51] for characterization purposes.

Regarding RNN, it is a kind of network with loops in
connections where node-activations at each step depend on
those of the previous step [52]. With the traditional pixel-based
approach, the RNN exploits each hyperspectral pixel in band-
to-band fashion [52]. On the other hand, several CNN-based
approaches (called Convolutional RNN -CRNN- [53]) have
been implemented for hyperspectral classification. In [54],
a 1D-CRNN is implemented, where spatial constraints are
integrated by linear opinion pools. A similar model is used in
[55] where a 1D-CRNN is trained in semi-supervised fashion
with labeled and unlabeled data (pixels) using pseudo labels.



3

Again, RNNs and CRNNs can present the same problem as
SAEs and DBNs: they need to adapt the spatial information
in order to exploit it.

In this sense we highlight CNNs [35] as a powerful tool
for hyperspectral image classification [14] able to exploit
both spectral and spatial information in an easy and natural
way. CNNs successively apply convolution filters and pooling
operations to the raw input data (which can be 1D, 2D
or 3D), creating a hierarchy of layers whose outputs are
increasingly complex feature vectors from the input data.
In the literature we can find multiple adaptations of these
networks to hyperspectral analysis. Following an 1D approach,
[56] presents a 5-layers 1D-CNN that receives n × 1 input
vectors, where n is the number of spectral bands, to classify
hyperspectral images directly in spectral domain. On the other
hand, 2D-CNNs exploit the information from neighboring
pixels in order to extract spatial features, whose input data is a
patch of d×d neighboring pixels [57], normally after applying
principal component analysis (PCA) to extract the spectral
features [58], [59]. Also, several approaches mix both 1D and
2D-CNNs to extract spectral-space information, respectively
[60], [61]. In contrast to these methods, several 3D-CNN
models have been proposed that can learn both spatial and
spectral features, taking as input data 3D patches from the
original hyperspectral data, processing each pixel by means
of a 3D convolution kernel in association with its spatial
neighborhood and the corresponding spectral information [37],
[62]–[64]. However, the application of CNNs to hyperspectral
classification presents some issues, as they require a great
amount of labeled data for fine-tuning the large number of
training parameters that affect their generalization power, such
as the number of hidden layers and their kernel size (which
involves the number of weights, their biases and the obtained
feature maps), the pooling, padding and stride sizes, the
selected optimizer and its learning rate, the batch size, etc.
These aspects make this kind of networks quickly overfit
with small training sets which may lead to poor classification
accuracy in the testing phase.

In general, the quality of ANN-based classification methods
is strongly related to the quality and number of training
samples available in advance [65]. In order to effectively learn
the parameters of the classifier and to create a more robust
and generalist model, a sufficient number of labeled samples
is often required. However, in order to make the model as
efficient as possible, the training set should be kept small
and focused on the pixel samples that really help to improve
the performance of the model. Moreover, labeled samples
are very difficult, expensive and time consuming to collect
in practice [66] and often only a few labeled samples are
available in advance. This issue is particularly problematic
in hyperspectral image classification, since there is often an
unbalance between the high dimensionality of the data and the
limited number of training samples available [67], known as
the curse of dimensionality or the Hughes effect [68]. As result,
the ANN model may overfit the training data, which reduces
its generalization capacity [69]. Some methods address this
problem by using data augmentation techniques to generate
additional training samples, performing basic transformations

in the initial dataset. In [17] authors provide a method which
offers robustness and flexibility in modeling scene images and
report the improvements of the accuracy in scene recognition,
constructing multi-resolution features and modeling Sparse
Features Selection Based Manifold Regularization (SFSMR).
In contrast active learning (AL) [70] has been used to facilitate
the classification of hyperspectral image data sets, by including
intelligently selected unlabeled samples from the original
dataset, i.e. the most informative samples, to the training set.
This reduces the cost of acquiring large labeled training sets
and the number of needed training samples [71]–[75].

However, the combination of AL with deep architectures
such CNNs has been more difficult. This is because the goal
of AL is to create a model composed by a predictor trained on
a small set of well-chosen examples that can perform as effi-
ciently as a predictor trained on a larger number of examples
randomly chosen, while being computationally tractable, but
CNNs often require large amounts of training data for training
and are highly prone to overfitting when they are trained with
small datasets. Also, similar to multinomial logistic regression,
AL techniques rely on probabilistic functions, which indicate
the probability of a sample to belong to the different existing
categories, in order to create a model uncertainty but deep
architectures normally do not represent model uncertainty,
obtaining as final output the predicted class label instead the
probability of each class. Moreover, conventional ANNs in
general (and CNNs in particular) are based on the minimiza-
tion of an error function [76], typically the least squared-
error function between the desired class label and the obtained
one in classification, and they cannot determine the level of
uncertainty of their output results. In fact, the proposed model
must be able to extract an output probability matrix from
input data in order to apply the AL probabilistic function
(called ranking function) and to extract those samples with
more uncertainty, which will provide more information to the
model.

To address this issue, in this paper we consider Bayesian
neural networks (BNNs) [77], [78], a special kind of ANN
that are robust to overfitting, and are able to offer uncertainty
estimates and a probabilistic interpretation of deep learning
models by inferring distributions over the models’ weights,
being able to learn from small datasets [79] and avoiding
the tendency of conventional ANNs to make overconfident
predictions in sparse data regions. In fact, we can consider
BNNs as an extension of standard ANNs with posterior
inference, adding a probability distribution on its weights [78],
[80]. Recent works have showed that the Bayesian approach
to CNNs (called hereinafter B-CNNs) can offer robustness to
overfitting on small datasets and improve their generalization
capacity adding dropout at every weight layer (also called con-
volutional layer) of the CNNs, as a Bayesian approximation of
the probabilistic model defined by the Gaussian process [81],
[82], [83], which allows to represent the model uncertainty
without introducing major changes to the network architecture.
By taking advantage of BNNs (that offer good uncertainty
estimates and are robust to overfitting), and following the
methodology of [83], we propose for the first time in the
literature an AL model with B-CNNs for spectral-spatial



4

Fig. 1. Comparison between a conventional DNN (a multilayer perceptron or MLP) with 3 hidden fully connected layers and a CNN, also with 3 hidden
convolution layers or kernels. The neurons in the CNN create 3-dimensional blocks with sparse connectivity.

classification of hyperspectral remotely sensed data. The main
innovative contributions of this paper can be summarized as
follows:
• The development (for the first time in the literature) of

a dropout-based method (called B-CNN) to extract prob-
abilistic information from 1D, 2D and 3D-CNN mod-
els, with the aim of performing accurate spectral-spatial
feature-based classification of hyperspectral images using
limited training data with different CNN architectures.

• The development of a three-step based training phase to
perform AL over the proposed B-CNN for the first time
in the hyperspectral image classification literature.

• The exhaustive analysis and comparison of different
acquisition function to perform AL over the implemented
B-CNN model, and a detailed comparison between the
implemented B-CNNs and the standard 1D, 2D and 3D-
CNN classifiers for hyperspectral data, in addition to
other traditional hyperspectral data classifiers such as
random forest (RF), multilayer perceptron, support vector
machine and multinomial logistic regression (MLR).

The remainder of the paper is organized as follows. Sec-
tion II provides an overview of related works and presents
the newly developed classifier model. Section III validates
the proposed approach using three well-known hyperspectral
datasets, highlighting the advantages of the newly proposed
classifier. Finally, section IV concludes the paper with some
remarks and hints at plausible future research lines.

II. METHODOLOGY

A. Active Learning (AL)

AL has been adopted in remote sensing as an effective
strategy to reduce the cost of acquiring large labeled training
sets [75] and it is based on tree main aspects: 1) the availability
of an initial training set, 2) the availability of a pool set,
and 3) the use of an acquisition function. Let us denote by
Dtrain = [X,Y ] = {xi, yi}li=1 a training set made up of
l labeled samples (where xi ∈ Rd= [xi,1, xi,2, ..., xi,3] is
the input data, in our case a hyperspectral pixel vector, and
yi = {1, 2, ..., C} is the corresponding label, being C the
number of different categories or classes) and by Dpool =
[X] = {xi}l+ui=l+1 ∈ Rd the pool of candidates, i.e. a set of u

unlabeled samples (u >> l). The AL model is generally com-
posed by a learner (trained with a few labeled samples, Dtrain)
that iteratively selects new training examples from the pool of
candidates (Dpool) that provide maximal information about the
unlabeled dataset and improve the model performance [74].
Algorithm 1 provides a general approximation of how AL
works. As a result of the process illustrated in Algorithm 1,

Algorithm 1 Active Learning (general algorithm)
1: procedure AL(Dεtrain, Dεpool, N) .

Dεtrain = {xi, yi}li=1 ∈ Rd, ε = 1 → initial training set,
Dεpool = {xi}

l+u
i=l+1 ∈ Rd, ε = 1 → pool of candidates

(pool set), N → number of pixel samples to add at each
iteration (until reaching a final batch of selected pixels,
Dselected)

2: repeat
3: Train the model with the current training set Dεtrain
4: for xi ∈ Dεpool do
5: Evaluate a user-defined heuristic
6: end for
7: Rank the candidates xi in Dεpool according to the

heuristic score
8: Dεselected = {xk}Nk=1 → select the N pixels with

higher score
9: Dεselected = {xk, yk}Nk=1 → assign label to the N

selected pixels.
10: Dε+1

train = Dεtrain
⋃
Dεselected → add the batch

11: Dε+1
pool = Dεpool − Dεselected → remove batch from

pool
12: ε = ε+ 1→ update index iteration
13: until Classification result is acceptable
14: end procedure

the classification accuracy given by the final selected training
set is expected to be higher than the one obtained by using
randomly selected labeled samples. The acquisition function,
in particular the user-defined heuristic, is a crucial point in AL.
In [74], the authors make a compilation of several heuristic
methods, proposing a taxonomy of AL techniques. Here,
we rely on posterior probability-based AL methods. These
methods use the estimation of posterior probabilities of class
membership, p(y|x), to rank the candidates in Dpool. This



5

kind of probability gives us an idea of the confidence of the
class assignment, i.e. how good the classification is. However,
DNNs in general and CNNs in particular normally do not
calculate an uncertainty model which is needed for these AL
methods. In subsection B we summarize how this problem is
solved in [83].

B. Bayesian Convolutional Neural Networks (B-CNNs)
In contrast to conventional ANNs, the blocks or layers of

neurons in CNNs operate like kernels which are connected and
applied over one region of the input image (also referred to as
input volume hereinafter), i.e. layers are not fully connected to
all neurons of the previous layer as in the standard multi-layer
perceptron or MLP (see Fig. 1). Each layer actually composes
a feature extraction stage that can be of three kinds [64], [84]:

1) Convolution layer (CONV layer): a layer where each
node is in charge of computing the dot product (·)
between its own weights and a predefined region of
the provided input volume to which it is connected.
Actually, these layers work as kernels or filters where
nodes share the same weights and bias, connecting the
input volume to the output volume. Let us suppose a
CONV layer that receives as input volume the data
cube X ∈ Rd×d×n, where d represents the height and
width and n the deep of the cube (also, spectral bands).
Each neuron in one filter that composes the CONV layer
(being k the number of filters) will operate with a chunk
of X , in particular, with a l × l × q chunk (called filter
bank, W c). We can calculate the output of the neuron
(i, j, t) in the k-th filter of the CONV layer as:

zi,j,t = (X ·W c)i,j,t =

l−1∑
î=0

l−1∑
ĵ=0

q−1∑
t̂=0

x(i·s+î),(j·s+ĵ),(t·s+t̂) · wî,ĵ,t̂ + b
(1)

where zi,j,t is the element (i, j, t) in the k-th feature
map, xi,j,t is an element of input data X , wî,ĵ,t̂ is a
weight of the cube of weights W , b is the bias and s is
the stride of the CONV layer. In fact, we can observe
each filter as a window that moves itself on X in chunks
of size l× l× q, with a displacement dictated by s. As
result an output volume Z is obtained, which will be
an array composed by k 1, 2 or 3-dimensional feature
maps, depending on the kernel’s dimension.

2) Nonlinearity layer: this layer is used to implement a
nonlinear function (such as the sigmoid function or the
rectified linear unit or ReLU [85]–[87]) which is then
applied to each component of the obtained feature map
to learn nonlinear representations: A = f (Z).

3) Pooling layer: pooling layers are used to resume the
output Z of several nodes in convolution layers using a
pooling function. In addition, they also provide location
invariant features. Normally, this layer executes a max
operation (MAXPOOL layer) within a small region R
defined by a kernel l × l × q over the resulting volume
A after the nonlinearity layer, i.e. A is divided into sev-
eral non-overlapping maps, whose maximum values are
mapped into the final output volume P = maxi∈RAi.

Two characteristics make CNNs an ideal model for processing
and classifying hyperspectral images: the sparse connectivity
and shared weights. These features allow us to reduce the
number of parameters to be learned by the network ensuring
some degree of shift, scale, and distortion invariance. However,
CNNs require huge amounts of data for regularization due to
their model’s complexity and to the fact that they quickly
overfit with small training sets. Such overfitting problem
makes CNNs exhibit poor predictive performance in the testing
phase. To avoid this problem, we adopt BNNs due to their
robustness to overfitting and to their capacity to learn from
small training sets.

Specifically we use B-CNNs, that combine the features
of BNNs with the classification potential of CNNs. Another
advantage of B-CNNs in our context is that they provide
the uncertainty model that we need to apply AL techniques.
Given a training dataset Dtrain = [X,Y ] composed by inputs
X = {x1, ..., xl} (where each xi ∈ Rn = [xi,1, xi,2, ..., xi,n])
and their corresponding outputs Y = {y1, ..., yl} (where each
yi = {1, 2, ..., c}), the model posterior’ goal is to estimate a
function yi = f(xi) as close as possible to the original func-
tion that has generated the outputs Y . The Bayesian approach
proposes to put some prior distribution over the space of
functions p(f), so we can define a probability or likelihood on
the output Y given the input X and a function f , p(Y |X, f).
So, the posterior distribution will be p(f |X,Y ) = p(f |Dtrain)
that captures the most likely functions given the observed data.
In this way, the output y∗ of a new input x∗ can be predicted
as the marginal likelihood:

p(y∗|x∗,Dtrain) =
∫
p(y∗|f∗)p(f∗|x∗,Dtrain)df∗. (2)

As Eq. (2) is normally intractable, we can approximate it
adding a finite set of random variables ω as follows:

p(y∗|x∗,Dtrain) =
∫
p(y∗|f∗)p(f∗|x∗, ω)p(ω|Dtrain)df∗dω.

(3)
In a BNN with weights Wi of size Ki×Ki−1 for each layer i,
the set of finite variables or parameters will be ω = {Wi}Li=1

(where L is the number of layers), and the posterior over ω
given X and Y will be p(ω|Dtrain). However, the probability
distribution p(ω|Dtrain) is not tractable for a BNN. To infer
the model posterior in a simple way, [83] proposes the use
of variational inference as an approach based on Bernoulli
approximation variational distributions (and relating this to
dropout training) with the aim of not increasing the number of
parameters to be trained, as in other types of approaches such
as the variational inference with Gaussian [88]. The first step
is to define the approximating variational distribution q(Wi)
for each BNN’s layer i (i = 1, ..., L) as:

Wi =Mi · diag([zi,j ]Ki
j=1),

i = 1, ..., L,

j = 1, ...,K,i−1

where diag is the diagonal matrix with elements zi,j that are
Bernoulli distributed random variables with probabilities pi,
and Mi are variational parameters to be optimized. Predictions



6

follow Eq. (3). The change resides in replacing the intractable
probability distribution p(ω|Dtrain) by the approximate distri-
bution q(ω) that belongs to a tractable family which minimises
the Kullback-Leibler divergence, DKL(q(ω)||p(ω|Dtrain)) =
0, a measure that returns the similarity between both distribu-
tions:

q(y∗|x∗) =
∫
p(y∗|f∗)p(f∗|x∗, ω)q(ω)df∗d. (4)

Using Monte Carlo integration, we can approximate the inte-
gral so that we can predict the probability that the output y∗

corresponds to label c as follows:

p(y∗ = c|x∗,Dtrain) =
∫
p(y∗ = c|x∗, ω)p(ω|Dtrain)dω,

≈
∫
p(y∗ = c|x∗, ω)q(ω)dω,

≈ 1

T

T∑
t=1

p(y∗ = c|x∗, ω̂t),

being ω̂t ∼ q(ω) called Monte Carlo dropout or MC-dropout,
while T are the stochastic forward passes. This Bernoulli
approximation variational inference in BNNs can be imple-
mented by adding dropout layers after certain weight layers
in a network [83]. In the B-CNN model, this is the same
than adding dropout to all convolution layers as well as inner-
product layers.

C. AL Acquisition Function

The AL acquisition function a(x,M) of a model M with
pool data Dpool and inputs x ∈ Dpool∈ Rd decides which data
points x will be queried by an external oracle, which could
be a human expert that performs the work of classifying the
unlabeled data to be added to the training set Dtrain:

S = argmaxx∈Dpool
a(x,M)

The paper [89] makes a review and a comparison between
different acquisition functions. This work performs a com-
parison with six different acquisition methods, which have
been adapted to AL methodology, taking into account different
measurements, such as the entropy value and distances of the
samples, among the random selection of samples:
• Random acquisition or baseline: it chooses a point xi

following a uniformly random distribution from Dpool ⇒
a(xi) = unif() where unif() returns a draw from a
uniform distribution over the interval [0, 1].

• Mean standard deviation [90]: for each xi, it calculates
the σ(xi) = 1

C

∑
c σc, where C is the number of classes,

c are the classes that xi can take, and

σc =
√

Eq(ω)[p(yi = c|xi, ω)2]− Eq(ω)[p(yi = c|xi, ω)]2

• Maximum entropy [91]: it chooses the xi ∈ Dpool with
the highest classification uncertainty, i.e. the xi that
maximize the predictive entropy

H[yi|xi,Dtrain] :=

−
∑
c

p(yi = c|xi,Dtrain) log p(yi = c|xi,Dtrain)

• Bayesian active learning by disagreement (BALD) [92]:
this method chooses the xi ∈ Dpool that are expected to
maximize the mutual information between the predictions
and the model posterior

I[yi, ω|xi,Dtrain] :=
H[yi|xi,Dtrain]− Ep(ω|Dtrain)[H[yi|xi, ω]]

where H[yi|xi,Dtrain] is the entropy [91]. The selected
points exhibit high variance in the input to the soft-max
layer.

• Breaking ties criterion (BT-criterion) [93], [94]: this
method focuses on the boundary region between two
classes, with the aim of obtaining more diversity in the
composition of the training set Dtrain. Sample xBT is
selected from Dpool by:

xBT = arg min
xi∈Dpool{

max
c∈C

p(yi = c|xi, ω)− max
c∈C\{c+}

p(yi = c|xi, ω)
}

where c+ = argmaxc∈C p(yi = c|xi, ω) is the most
probable label class for sample xi

• Mutual Information criterion [94], [95]: it measures
the mutual dependence between samples. In fact, this
function selects the sample xMI maximizing the mutual
information (MI) between the obtained results and the
class labels:

xMI = arg max
xi∈Dpool

I (ω; yi|xi)

where I (ω; yi|xi) = 1
2 log

(
|HMI |
H

)
represents the MI

between the obtained results and the class label yi, being
H the posterior precision matrix and HMI the posterior
precision matrix after including the new sample xi.

In order to compare these acquisition functions, they have been
adapted to be executed with AL methodology. For example,
BALD method has been approximated with q(ω), as described
by [89]:

I[yi, ω|xi,Dtrain] := H[yi|xi,Dtrain]− Ep(ω|Dtrain)[H[yi|xi, ω]]

= −
∑
c

p(yi = c|xi,Dtrain) log p(yi = c|xi,Dtrain)

+Ep(ω|Dtrain)[
∑
c

p(yi = c|xi, ω) log p(yi = c|xi, ω)]

If we consider the BALD equation the identity p(yi =
c|xi,Dtrain) =

∫
p(yi = c|xi, ω)p(ω|Dtrain)dω, we have:

I[yi, ω|xi,Dtrain] := −
∑
c

∫
p(yi = c|xi, ω)p(ω|Dtrain)dω

· log
∫
p(yi = c|xi, ω)p(ω|Dtrain)dω

+Ep(ω|Dtrain)[
∑
c

p(yi = c|xi, ω) log p(yi = c|xi, ω)]



7

Now we can apply Monte Carlo integration as follows:

I[yi, ω|xi,Dtrain] := −
∑
c

∫
p(yi = c|xi, ω)q(ω)dω

· log
∫
p(yi = c|xi, ω)q(ω)dω

+Eq(ω)[
∑
c

p(yi = c|xi, ω) log p(yi = c|xi, ω)]

≈ −
∑
c

(
1

T

T∑
t=1

p̂tc

)
log

(
1

T

T∑
t=1

p̂tc

)
+

1

T

∑
c,t

p̂tc log p̂
t
c

D. Proposed B-CNN Architecture for Active Learning

Finally, we present the new B-CNN architecture developed
in this work. It should be noted that the literature on CNNs
applied to hyperspectral image classification shows different
points of view on how the spatial and the spectral information
in the original hyperspectral image can be used:

1) Extracting only spectral information implementing a 1D-
CNN architecture [14], [37], [56].

2) Extracting only spatial information implementing a 2D-
CNN architecture [57], [96]–[98].

3) Extracting spectral-spatial information implementing a
3D-CNN architecture [37], [99].

In this regard, we emphasize that our B-CNN approach can
be applied to 1D, 2D and 3D-CNN architectures. This work
investigates the effects of applying the proposed Bayesian
network to CNN models with the aim of performing hyper-
spectral classification based on spectral, spatial and spectral-
spatial features. In this sense, three B-CNN models have been
implemented: 1D, 2D B-CNN and 3D B-CNN.

1) Spectral B-CNN Architecture: This model takes advan-
tage of only the spectral information contained in the input
hyperspectral image by developing an 1D-CNN architecture
and performing a traditional pixel-wise-based learning. Given
the hyperspectral image X ∈ Rh×w×n, where h and w are
the height and width, respectively, and n is the number of
spectral bands, the 1D B-CNN model will take as input data
pixel vectors of the hyperspectral scene X , xi ∈ Rn =
[xi,1, xi,2, ..., xi,n], where i = 1, 2, ..., (h · w). In this case,
each input pixel vector xi is transformed through the net into
feature maps, capturing the spectral information contained in
xi. Eq. (1) can be re-written as:

zt = (x ·W c)t =

q−1∑
t̂=0

x(t·s+t̂) · wt̂ + b (5)

where q is the depth of the kernel, zt is the t-th neuron’s output
in the k-th filter, xt is one spectral band of the CONV layer’s
input x, W c is the filter bank of the layer, characterized by
k kernels of size 1× q, wt̂ is a weight of vector W , b is the
bias of the layer and s is the stride.

In order to compare the implemented 1D B-CNN model
with the 1D CNN baseline, the model’s architecture has been
inspired by work [56]. As we can see in Fig. 2, the proposed

Fig. 2. Proposed spectral Bayesian-Convolutional Neural Network (1D B-
CNN) architecture

1D B-CNN model is composed by one input layer that receives
the pixel vector with all its spectral bands. This input feeds
one convolution layer, c1, with kc1 kernels of size 1 × qc1,
followed by the ReLU activation function and one maxpool
layer, mp1, whose kernel size is lmp1. The output of mp1 is
reshaped into a vector in order to feed two fully connected
layers at the end of the network. After the maxpool and first
fully connected layers, dropout is implemented in order to
perform the Monte-Carlo dropout. Table II shows the details
of the 1D B-CNN implementation.

TABLE II
CONFIGURATION OF OUR THREE B-CNN ARCHITECTURES. C INDICATES
THE NUMBER OF CLASSES CONTAINED IN THE HYPERSPECTRAL DATASET.

1D B-CNN

Convolution layers
Kernel Activation Pooling Dropout

kc × 1 × qc Function 1 × qmp (%)
20× 1× 24 ReLU 1× 5 5%

Fully connected layers
Neurons Activation Dropout
lfc Function (%)
100 ReLU 1%
C Softmax -

2D B-CNN

Convolution layers
Kernel Activation Pooling Dropout

kc × lc × lc Function lmp × lmp (%)
50× 3× 3 ReLU - 25%
100× 5× 5 ReLU 2× 2 25%
200× 5× 5 ReLU 2× 2 25%
400× 2× 2 ReLU 1× 1 25%

Fully connected layers
Neurons Activation Dropout
lfc Function (%)
300 ReLU 50%
C Softmax -

3D B-CNN

Convolution layers
Kernel Activation Pooling Dropout

kc × lc × lc × qc Function lmp × lmp × qmp (%)
500× 3× 3× n ReLU 2× 2× 1 10%
100× 5× 5× 500 ReLU 2× 2× 1 10%

Fully connected layers
Neurons Activation Dropout
lfc Function (%)
300 ReLU 5%
C Softmax -

2) Spatial B-CNN Architecture: This model takes advan-
tage of only the spatial information contained in the input
image, reducing the number of spectral bands n to 1 by
applying PCA over original hyperspectral datasets. As result,
a 2D-CNN architecture has been implemented, whose input
is composed by patches of size d× d× 1 extracted from the



8

Fig. 3. Proposed spatial Bayesian-Convolutional Neural Network (2D B-CNN) architecture

hyperspectral scene. Normally, CNNs in general (and B-CNNs
in particular) receive a completely normalized image prior to
classification, i.e. a 3D input array. However, in hyperspectral
images the classes are often mixed, so we feed the pixel
(vectors of 1 × n) one by one to the B-CNN. This allows
us to exploit the rich spectral information contained in the
hyperspectral data in the case of the 1D B-CNN, but we also
need an additional mechanism in order to include also the
spatial information in the 2D model. In this case, we feed
the network with the pixels that belong into a neighborhood
window centered around each pixel under consideration. In
this way, the input layer of 2D model accepts volumes of
d× d× 1 [64], after processing the original scene with PCA.
This requires a pre-processing stage in order to create patches
of d × d × 1 for each pixel, where the desired label to be
reached by the network will be the one owned by the central
pixel of the patch [d/2 + 1, d/2 + 1, n]. In this case, Eq. (1)
can be re-written as:

zi,j = (X ·W c)i,j =

l−1∑
î=0

l−1∑
ĵ=0

x(i·s+î),(j·s+ĵ) · wî,ĵ + b (6)

where l is the height and width of the kernel, zi,j is the output
of the neuron (i, j) in the k-th filter, xi,j is one pixel of the
input patch X ∈ Rd×d×1, W c is the filter bank of the layer,
characterized by k kernels of size l × l, wî,ĵ is a weight of
matrix W , b the bias of the layer and s the stride.

Fig. 3 shows the implemented 2D B-CNN model. In this
case a deeper architecture has been selected. As we can
observe, the input layer receives hyperspectral patches of size
d × d × 1, which feeds the first CONV layer c1. After that,
three pairs of CONV+maxpool layers are implemented, c2 and
mp1, c3 and mp2, and finally c4 and mp3. The network ends
with two fully connected layers fc1 and fc2, where the last
one performs the final classification. Dropout have been added
at the end of certain layers in order to model the uncertainty
of the network. Table II shows the details of the 2D B-CNN
implementation.

3) Spectral-spatial B-CNN Architecture: This model takes
advantage of both the spectral and the spatial information in

the input hyperspectral image by developing a 3D architecture
that receives as input data patches of size d× d× n, being n
the number of spectral bands. As in 2D B-CNN model, a pre-
processing stage is required in order to create the input patches
for each pixel [64], where the desired label to be reached
by the network will be the central pixel of the patch [d/2 +
1, d/2 + 1, n]. In this case, each CONV layer performs Eq.
(1).

As we can see in Fig. 4, the proposed spectral-spatial
B-CNN consists of an input layer that receives the input
patches, two convolution layers, c1 and c2 (with ReLU as
nonlinear activation function), two maxpool layers at the end
of each convolution layer, mp1 and mp2, and two fully-
connected layers, fc1 and fc2. The last one is the output layer,
which obtains the desired label for the input data. After each
maxpool layer a dropout layer is inserted in order to model the
probability of the proposed network that will allow to obtain
the uncertainty estimation. Table II provides additional details
about the considered spectral-spatial B-CNN architecture.

The parameters of the considered 1D, 2D and 3D archi-
tectures, including the number and type of layers or kernel
sizes, are one of the design choices of the proposed spectral,
spatial, spectral-spatial B-CNN models. In this sense, the
architectures have been selected and defined in a way that
is as general as possible to adapt them to different hyperspec-
tral images [64]. In addition, our decision to use the same
architectures for different data sets further illustrates that the
proposed method can achieve good classification results on
very different images, extracting the samples that maximize
the information gained about the model, improving the training
and showing its robustness, regardless of the fact that non-
optimal or customized topologies are adopted.

Also, we must remark that the proposed 1D, 2D and 3D
B-CNN models have been developed as a computation graph
using the library for machine intelligence Keras with Tensor-
Flow backend over CUDA toolkit and the library of primitives
for deep neural networks cuDNN. This computation graph is
composed by connected nodes that represents operations (also
called units of computation), while connections (or edges)



9

Fig. 4. Proposed spectral-spatial Bayesian-Convolutional Neural Network (3D B-CNN) architecture

represent the data consumed (input connections) and produced
(output connections) in the unit. These connections allow
us to represent the existing dependencies between different
operations, making it possible to identify those operations that
can be executed in parallel in an easy way.

The process of our 1D, 2D and 3D B-CNNs follows two
main steps. In a first step, the hyperspectral image is first
loaded and a band-mean normalized version is calculated so
that the values of the image are in the range [0, 1]. Then,
the hyperspectral image’s ground-truth is divided into two
datasets: two randomly selected samples per class, 2 ·C, will
compose the initial training set, D0

train and the remaining
samples will compose the working set. From the working set,
50% of random selected pixels will compose the initial pool
set, D0

pool and the remaining 50% will be divided into testing
samples (testing set, with the 95% of samples) and validation
samples (validation test with 5% of samples).

The next step is given by Algorithm 1. At this point, and
with the aim of reducing the use of storage by the algorithm,
the hyperspectral data is pre-processed in order to create the
input samples that will feed the model (i.e. pixels vectors 1×n,
or patches d×d×1 or d×d×n). In this sense, Algorithm 1 has
been adapted to perform, for the first time in the literature, AL
over the new B-CNN models for spectral, spatial and spectral-
spatial classification of hyperspectral data in an efficient way,
both computationally and in terms of memory management.
In ε = 0, the training set D0

train and the pool set D0
pool are

created as sets of 1×n pixel arrays. Then, the B-CNN models
are trained by a three-step process:

1) If we are working with 2D or 3D models, for each pixel
xi ∈ D0

train, we create a patch of size d × d × 1 or
d×d×n, depending on the model’s dimension, centered
on the pixel xi, and assign the pixel’s label, yi, to the
patch. Once we have created the patches, these are sent
to the network and the model is trained with MC-dropout
in order to extract the labels y′i, optimizing the cross-

entropy function:

Hy(y
′) =

∑
i

yi log(y
′
i),

where yi is the original label of the i-th sample and y′i
is the predicted label obtained by the model.

2) Once a certain number of epochs have been executed
and the weights and biases of the model have been
adjusted, D0

pool is sent as test data to the network.
MC-dropout is used to capture the confidence of the
model in its predictions, calculating the probability of
the output y′i for each xi in D0

pool, p(y
′
i|xi,Dtrain).

From an implementation point of view, D0
pool passes

through the network T times, being T the number
of stochastic forward passes. As a result, T different
outputs y′i have been obtained for each xi in D0

pool. To
obtain the final probability, the average between all the
outputs is calculated y′i =

1
T

∑T
t=1 y

′(t)
i , being y′(t)i the

output of the model for xi in the t-th stochastic forward
pass [81].

3) The uncertainty over the model predictions, represented
by the T predicted probabilities, is used in the AL
acquisition function in order to rank the unlabeled
samples in D0

pool according to their uncertainty. Then,
those samples with higher score are selected, creating
the D0

selected set. With this process, those samples that
provide more information and diversity to the network
are considered to improve the final performance. To
assign the corresponding labels, each xi ∈ D0

selected

is paired with its corresponding label yi. Finally, the
selected pixels in D0

selected are inserted into the training
set as patches, each one with 1×n, d×d×1 or d×d×n,
depending on the model’s dimension, creating the next
D1
train. Also, the selected pixels in D0

selected are deleted
from the pool set, creating D1

pool.
After validating the model, the training process is repeated
successively with each Dεtrain until a satisfactory result is



10

TABLE III
NUMBER OF SAMPLES OF THE INDIAN PINES (IP), SALINAS VALLEY (SV) AND KENNEDY S.C. (KSC) HSI DATASETS.

Indian Pines (IP) Salinas Valley (SV) Kennedy Space Center (KSC)

Color Land-cover type Samples Color Land-cover type Samples Color Land-cover type Samples
Background 10776 Background 56975 Background 309157

Alfalfa 46 Brocoli-green-weeds-1 2009 Scrub 761
Corn-notill 1428 Brocoli-green-weeds-2 3726 Willow-swamp 243
Corn-min 830 Fallow 1976 CP-hammock 256

Corn 237 Fallow-rough-plow 1394 Slash-pine 252
Grass/Pasture 483 Fallow-smooth 2678 Oak/Broadleaf 161
Grass/Trees 730 Stubble 3959 Hardwood 229

Grass/pasture-mowed 28 Celery 3579 Swap 105
Hay-windrowed 478 Grapes-untrained 11271 Graminoid-marsh 431

Oats 20 Soil-vinyard-develop 6203 Spartina-marsh 520
Soybeans-notill 972 Corn-senesced-green-weeds 3278 Cattail-marsh 404
Soybeans-min 2455 Lettuce-romaine-4wk 1068 Salt-marsh 419
Soybean-clean 593 Lettuce-romaine-5wk 1927 Mud-flats 503

Wheat 205 Lettuce-romaine-6wk 916 Water 927
Woods 1265 Lettuce-romaine-7wk 1070

Bldg-Grass-Tree-Drives 386 Vinyard-untrained 7268
Stone-steel towers 93 Vinyard-vertical-trellis 1807

Total samples 21025 Total samples 111104 Total samples 314368

achieved. We note that the aforementioned procedure allows
us to avoid the calculation of the corresponding patch for all
the pixels of the image, reducing the computation time and
memory requirements of the algorithm.

III. EXPERIMENTS AND RESULTS

A. Experimental Configuration

In order to evaluate the performance of our newly developed
approach, we use a hardware environment composed by a
6th Generation Intel R© CoreTMi7-6700K processor with 8M of
Cache and up to 4.20GHz (4 cores/8 way multitask process-
ing), 40GB of DDR4 RAM with a serial speed of 2400MHz, a
graphical processing unit (GPU) NVIDIA GeForce GTX 1080
with 8GB GDDR5X of video memory and 10Gbps of memory
frequency, a Toshiba DT01ACA HDD with 7200RPM and
2TB of capacity, and an ASUS Z170 pro-gaming motherboard.

On the other hand, the used software environment is composed
by Ubuntu 16.04.4 x64 as operating system, CUDA 8 and
cuDNN 5.1.5, Python 2.7 as programming languages.

B. Hyperspectral Datasets

In our experiments, three hyperspectral data sets have been
used:
• The first one is the well-known Indian Pines (IP) dataset

(Table III). This dataset was gathered by AVIRIS [4]
in 1992, over a set of agricultural fields with regular
geometry and with a multiple crops and irregular patches
of forest in Northwestern Indiana. The IP scene has
145 × 145 pixels with 224 spectral bands in the range
from 400 to 2500nm, with 10nm of spectral resolution,
20m spatial resolution and 16 bits radiometric resolution.
After an initial analysis, 4 zero bands and another 20



11

Fig. 5. AL-based performance obtained by the MLR for different acquisition functions with different sizes of Dtrain. First column: results for the IP dataset.
Second column: results for the SV dataset. Third column: results for the KSC dataset.

bands with lower signal-to-noise ratio (SNR) because
of atmospheric absorption have been removed, retaining
only 200 spectral channels. Moreover, about half of
the pixels in the hyperspectral image (10249 of 21025)
contain ground-truth information, which comes in the
form of a single label assignment having a total of 16
ground-truth classes.

• The second hyperspectral dataset used in experiments was
also collected by the AVIRIS instrument, in this case over
Salinas Valley (SV), California (Table III). The covered
area has 512× 217 samples and the spatial resolution is
3.7m per pixel. 204 out of the 224 bands are kept after
20 water absorption bands are removed. The ground-truth
is composed of 54129 pixels and 16 land-cover classes,
including vegetables, bare soils, and vineyard fields.

• The third dataset used in experiments is the Kennedy
Space Center (KSC) (Table III), also collected by the
AVIRIS instrument over Florida in 1996. Once noisy
bands have been removed, the resulting image contains
176 bands with a 512 × 614 size, ranging from 400 to
2500nm and with 20m spatial resolution. A total of 5122
pixels labeled in 13 classes, representing different land
cover types, are considered for classification purposes.

C. Performance Evaluation

In order to test the proposed method, five different exper-
iments have been carried out. In the first, second, third and
fourth experiments, the AL acquisition functions presented in
subsection II.C are tested considering an MLR classifier and
the proposed 1D, 2D and 3D B-CNN models, respectively,
with the aim of comparing the performance of each function
over different classifiers, based on statistical or neural models,
and using spectral, spatial and spectral-spatial information.

The fifth experiment makes a comparison between the AL
methods (MLR, 1D, 2D and 3D B-CNN models adapted to
AL) and the original ones (baseline MLR, 1D, 2D and 3D-
CNN models), with the aim of studying the impact of Dtrain
on the performance of both AL and traditional methods.

Also, we remark that each experiment uses the three con-
sidered hyperspectral datasets, running each model (with each
acquisition function) over each scene 5 times, creating batches
of 100 pixels and working with the limited-memory Broyden-
Fletcher-Goldfarb-Shanno (LBFGS) optimizer [100], [101] in
the case of the MLR, with L2 as penalty and tolerance value
fixed to 1e-18, being 1000 the number of maximum iterations,
and with the Adam optimizer [102] for the 1D, 2D and 3D
B-CNN models, with a learning rate of 0.001 and 100 epochs.
Spatial and spectral-spatial patches have been created using a
size of d = 23, for spatial patches, and d = 19, for spectral-
spatial patches, with the aim of extracting enough spatial
information from neighboring pixels. We have empirically
observed that the value of d should be large enough to
characterize the spatial-contextual information around each
pixel [64]. In this regard, d = 23 and d = 19 provides
an appropriate compromise for the considered images (the
selection of other close values of d did not have a significant
impact on the final classification results). Finally, for each ε,
10 unlabeled pixels have been chosen.

1) Experiment 1: Performance of different acquisition func-
tions with the MLR: This experiment implements an AL-based
MLR classifier. The output of the classifier gives directly the
probability of each sample xi belongs to the class c, i.e.
p (yi = c|xi,Dtrain). This means that, to obtain the probabili-
ties of Dpool, only one forward pass is needed, T = 1. Before
running each implementation of AL-MLR, the testing set and
the validation set are created. In this sense, D0

train starts with



12

TABLE IV
AL-BASED CLASSIFICATION RESULTS OBTAINED BY THE MLR FOR

DIFFERENT ACQUISITION FUNCTIONS AFTER 80 ITERATIONS AND 10
ACQUISITIONS PER ITERATION.

Indian Pines
Class id. RANDOM BALD MAXENT BT MI MEANSTD

0 23.48 (9.47) 39.57 (13.07) 36.09 (11.30) 31.74 (19.18) 47.39 (19.99) 42.17 (11.88)
1 74.22 (2.45) 76.90 (2.30) 75.28 (3.57) 78.14 (2.12) 77.28 (4.17) 69.75 (1.89)
2 52.94 (1.61) 57.93 (3.83) 57.95 (3.24) 61.25 (4.22) 62.43 (3.85) 56.36 (4.61)
3 41.94 (8.88) 56.88 (9.84) 64.14 (6.30) 47.17 (9.11) 46.58 (7.97) 37.38 (9.04)
4 74.95 (6.43) 66.54 (20.30) 52.59 (22.19) 85.09 (2.58) 51.51 (17.19) 79.71 (4.62)
5 93.78 (1.12) 87.62 (9.74) 94.30 (1.39) 94.79 (1.64) 93.12 (2.78) 94.41 (1.70)
6 60.71 (9.85) 76.43 (12.49) 75.71 (8.57) 65.00 (17.11) 84.29 (2.86) 50.71 (20.13)
7 97.07 (1.08) 91.34 (2.23) 89.79 (3.25) 96.99 (1.06) 90.46 (10.56) 94.31 (2.82)
8 41.00 (17.72) 72.00 (6.78) 74.00 (9.70) 63.00 (4.00) 57.00 (17.20) 51.00 (23.11)
9 64.77 (4.35) 60.78 (4.08) 54.86 (3.97) 68.79 (4.12) 64.24 (6.67) 64.01 (1.86)

10 73.49 (1.93) 78.48 (2.78) 81.65 (2.19) 79.23 (2.20) 80.63 (2.73) 74.02 (3.36)
11 54.03 (2.28) 63.58 (5.48) 63.74 (3.46) 65.87 (3.26) 60.57 (2.70) 57.44 (4.76)
12 98.54 (0.31) 92.78 (5.11) 96.29 (3.50) 98.73 (0.66) 97.46 (1.81) 98.24 (0.66)
13 92.14 (1.18) 84.38 (5.73) 88.70 (6.00) 93.88 (1.92) 83.72 (10.80) 93.04 (0.96)
14 65.85 (6.89) 66.11 (6.20) 72.59 (7.57) 66.99 (4.98) 73.63 (4.45) 56.37 (5.52)
15 85.16 (1.85) 82.37 (2.77) 80.65 (8.27) 79.57 (9.40) 85.59 (6.33) 82.15 (5.71)
OA 74.16 (0.91) 74.64 (0.88) 75.35 (1.12) 78.79 (0.53) 75.48 (1.45) 73.90 (0.92)
AA 68.38 (1.64) 72.11 (1.67) 72.40 (1.00) 73.52 (2.12) 72.24 (1.05) 68.82 (1.78)
K 74.16 (1.08) 74.64 (0.96) 75.35 (1.32) 78.79 (0.58) 75.48 (1.58) 73.90 (1.06)

Time (seconds) 124.39 (3.84) 160.69 (3.17) 161.48 (6.08) 148.59 (4.71) 166.72 (16.54) 133.83 (8.96)
Salinas Valley

Class id. RANDOM BALD MAXENT BT MI MEANSTD
0 98.26 (0.61) 99.27 (0.79) 99.54 (0.25) 99.52 (0.21) 99.27 (0.62) 97.57 (0.73)
1 99.78 (0.07) 97.80 (1.82) 98.92 (1.48) 99.79 (0.09) 99.88 (0.10) 99.73 (0.09)
2 94.94 (1.82) 99.27 (0.39) 99.49 (0.51) 98.93 (0.58) 99.66 (0.19) 94.26 (2.60)
3 99.24 (0.38) 99.64 (0.06) 99.70 (0.18) 99.40 (0.30) 99.68 (0.06) 99.37 (0.11)
4 97.36 (1.21) 99.65 (0.03) 99.67 (0.05) 99.29 (0.31) 99.51 (0.09) 96.65 (2.98)
5 99.57 (0.18) 99.77 (0.29) 99.85 (0.07) 99.67 (0.22) 99.77 (0.18) 99.72 (0.07)
6 99.66 (0.16) 98.93 (0.65) 99.03 (1.48) 99.74 (0.08) 99.92 (0.02) 99.66 (0.06)
7 81.89 (3.01) 92.97 (3.40) 99.39 (0.24) 86.43 (0.66) 89.70 (1.86) 80.42 (1.58)
8 99.86 (0.07) 99.99 (0.01) 99.99 (0.01) 99.87 (0.07) 99.95 (0.04) 99.78 (0.09)
9 88.50 (2.12) 97.71 (0.22) 97.60 (0.22) 95.33 (1.14) 97.36 (0.58) 89.07 (1.27)

10 91.95 (3.05) 98.35 (0.45) 98.88 (1.04) 95.30 (0.91) 99.25 (0.43) 89.64 (4.28)
11 99.03 (0.73) 99.92 (0.07) 99.94 (0.08) 99.47 (0.11) 99.79 (0.14) 99.25 (0.54)
12 94.39 (8.09) 99.28 (0.25) 99.43 (0.14) 98.41 (0.95) 99.50 (0.32) 97.62 (1.68)
13 92.26 (1.34) 98.64 (0.23) 98.39 (0.27) 96.06 (0.69) 98.06 (0.48) 93.23 (1.08)
14 60.89 (3.55) 14.46 (8.07) 1.83 (0.51) 65.39 (1.02) 53.00 (3.64) 59.31 (6.16)
15 95.29 (2.48) 99.35 (0.15) 99.42 (0.10) 98.48 (0.58) 99.32 (0.25) 96.58 (1.34)
OA 89.20 (0.30) 86.49 (0.42) 86.25 (0.22) 91.80 (0.08) 91.19 (0.22) 88.71 (0.77)
AA 93.30 (0.59) 93.44 (0.35) 93.19 (0.20) 95.69 (0.11) 95.85 (0.12) 93.24 (0.61)
K 89.20 (0.33) 86.49 (0.49) 86.25 (0.25) 91.80 (0.09) 91.19 (0.25) 88.71 (0.87)

Time (seconds) 56.07 (4.55) 78.33 (0.45) 79.86 (1.78) 92.55 (3.16) 95.20 (3.22) 64.29 (2.00)
Kennedy Space Center

Class id. RANDOM BALD MAXENT BT MI MEANSTD
0 95.90 (0.87) 70.80 (8.57) 78.29 (4.19) 97.98 (0.68) 88.09 (5.47) 95.48 (1.21)
1 88.81 (1.75) 92.43 (3.31) 90.53 (3.40) 89.55 (2.04) 90.37 (3.43) 91.11 (2.20)
2 87.97 (4.75) 75.23 (6.78) 76.02 (9.98) 93.20 (0.72) 79.30 (3.41) 91.72 (1.51)
3 67.70 (11.40) 79.37 (3.08) 75.32 (8.02) 88.41 (1.53) 86.98 (1.21) 62.94 (9.38)
4 62.11 (8.24) 65.71 (4.67) 65.09 (9.94) 77.76 (3.88) 71.55 (1.27) 65.71 (7.69)
5 71.35 (4.48) 84.80 (2.61) 83.06 (1.31) 83.32 (4.00) 83.49 (2.02) 66.90 (4.84)
6 84.19 (5.51) 63.43 (14.39) 70.86 (16.03) 95.24 (0.85) 71.81 (12.51) 77.52 (4.92)
7 90.35 (1.26) 82.83 (13.54) 89.14 (6.23) 97.54 (0.78) 78.70 (9.77) 91.28 (1.82)
8 96.81 (0.63) 86.08 (3.88) 85.12 (4.86) 98.38 (0.58) 90.19 (2.58) 95.38 (2.65)
9 94.90 (2.79) 84.70 (3.83) 88.27 (3.88) 97.23 (0.79) 90.59 (4.65) 95.69 (1.06)

10 96.95 (0.71) 84.77 (12.51) 91.89 (7.27) 98.23 (0.63) 89.79 (14.23) 95.99 (1.04)
11 92.41 (1.19) 91.81 (1.62) 91.81 (2.29) 94.99 (0.66) 93.68 (1.60) 94.12 (1.30)
12 100.00 (0.00) 98.12 (2.78) 98.10 (1.30) 99.74 (0.13) 93.85 (8.57) 100.00 (0.00)
OA 91.49 (0.43) 84.36 (2.36) 86.53 (1.21) 95.56 (0.28) 88.00 (1.45) 91.35 (0.54)
AA 86.88 (0.60) 81.55 (2.08) 83.35 (1.47) 93.20 (0.30) 85.26 (0.88) 86.45 (0.67)
K 91.49 (0.47) 84.36 (2.61) 86.53 (1.33) 95.56 (0.31) 88.00 (1.61) 91.35 (0.60)

Time (seconds) 105.23 (5.12) 119.99 (4.06) 113.51 (2.36) 147.96 (4.54) 143.32 (2.12) 122.74 (3.16)

2 · C labeled samples. This means that IP and SV start with
32 labeled pixels and KSC starts with 26, while 50% of the
remaining ground-truth samples is used to initialize the pool
set D0

pool, i.e., IP’s D0
pool starts with 5109 unlabeled pixels

and SV with 27049. With the KSC dataset, the percentage
has been changed in order to reserve more data for the pool
set, so that 85% of the remaining ground-truth samples have
been selected to form D0

pool with 4407 samples, instead of
2592. After D0

train and D0
pool are created, 5% of the remaining

ground-truth data is used for validation and the remaining 95%
for testing.

Table IV shows the accuracy results of each acquisition
function after 80 iterations, i.e. ε = 80, with 10 acquisitions at
each iteration. Focusing on the IP dataset, the AL-MLR clas-
sifier with BT-criterion obtains the best overall accuracy (OA)
when compared with the other functions, reaching 78.79%
with only 8.12% of the ground-truth, while the lowest OA
is reached by the mean standard deviation (mean STD), with
73.90%. We can observe this behavior at different Dtrain sizes
in Fig. 5, which shows the evolution of the AL-MLR accuracy

TABLE V
AL-BASED CLASSIFICATION RESULTS OBTAINED BY THE 1D B-CNN FOR

DIFFERENT ACQUISITION FUNCTIONS AFTER 80 ITERATIONS AND 10
ACQUISITIONS PER ITERATION.

Indian Pines
Class id. RANDOM BALD MAXENT BT MI MEANSTD

0 55.80 (6.72) 89.13 (4.70) 63.77 (9.78) 71.74 (15.17) 50.00 (32.54) 71.74 (15.47)
1 82.05 (1.63) 76.61 (3.32) 76.98 (1.50) 82.12 (4.13) 79.06 (3.89) 80.58 (2.80)
2 61.77 (4.61) 71.49 (4.85) 69.72 (0.93) 72.97 (3.73) 71.85 (2.14) 63.25 (5.48)
3 63.01 (8.78) 82.98 (4.38) 79.47 (4.68) 83.12 (3.10) 84.67 (7.11) 70.46 (1.79)
4 90.82 (1.67) 95.65 (0.45) 89.99 (3.83) 94.13 (1.98) 77.78 (25.00) 91.24 (0.43)
5 98.31 (0.74) 95.75 (1.84) 98.90 (0.19) 98.26 (0.26) 97.95 (1.17) 97.58 (0.81)
6 77.38 (8.42) 94.05 (1.68) 89.29 (2.92) 82.14 (10.51) 91.67 (4.45) 63.10 (10.24)
7 98.68 (0.71) 96.51 (1.37) 97.77 (1.29) 97.42 (1.73) 95.47 (5.00) 98.61 (1.24)
8 66.67 (10.27) 93.33 (6.24) 96.67 (2.36) 86.67 (10.27) 96.67 (4.71) 53.33 (20.95)
9 84.43 (3.88) 67.28 (12.64) 71.40 (4.80) 86.01 (3.99) 78.84 (4.23) 76.30 (5.75)
10 76.78 (1.82) 81.60 (5.70) 85.36 (1.44) 83.54 (6.24) 85.99 (1.63) 84.15 (3.50)
11 78.98 (4.03) 80.94 (7.36) 78.98 (7.34) 86.90 (3.10) 89.60 (1.95) 76.50 (3.90)
12 98.21 (1.15) 97.40 (2.04) 98.37 (1.61) 94.47 (4.53) 98.05 (1.83) 96.42 (3.68)
13 94.60 (2.28) 95.86 (0.32) 96.73 (0.94) 95.34 (2.97) 94.52 (3.97) 96.63 (1.45)
14 53.89 (1.68) 69.43 (4.88) 67.53 (3.25) 65.72 (7.32) 65.63 (1.82) 53.89 (4.48)
15 90.32 (2.63) 97.49 (0.51) 92.11 (1.01) 92.47 (2.32) 95.70 (0.88) 89.25 (1.76)
OA 81.83 (0.78) 82.94 (1.08) 83.85 (0.41) 86.14 (0.47) 84.78 (1.62) 82.94 (0.20)
AA 79.48 (0.03) 86.60 (0.97) 84.57 (0.69) 85.81 (0.07) 84.59 (0.46) 78.94 (1.01)
K 81.83 (0.91) 82.94 (1.25) 83.85 (0.50) 86.14 (0.50) 84.78 (1.86) 82.94 (0.17)

Time (seconds) 496.82 (1.27) 620.43 (3.09) 608.47 (3.11) 612.55 (4.08) 609.77 (6.13) 663.72 (5.10)
Salinas Valley

Class id. RANDOM BALD MAXENT BT MI MEANSTD
0 99.00 (0.42) 99.98 (0.02) 99.40 (0.84) 97.05 (1.92) 99.80 (0.22) 99.75 (0.04)
1 99.95 (0.00) 99.98 (0.03) 99.97 (0.02) 99.91 (0.05) 99.97 (0.02) 99.78 (0.24)
2 97.79 (0.56) 96.54 (4.05) 98.52 (1.66) 98.82 (1.02) 99.68 (0.21) 98.46 (0.42)
3 98.76 (0.96) 99.47 (0.07) 99.69 (0.12) 99.59 (0.12) 99.71 (0.10) 99.45 (0.09)
4 96.98 (1.18) 99.56 (0.02) 99.64 (0.06) 99.10 (0.21) 98.51 (1.51) 97.82 (0.64)
5 99.80 (0.13) 99.97 (0.02) 100.00 (0.00) 99.93 (0.03) 99.97 (0.00) 99.88 (0.07)
6 99.68 (0.09) 100.00 (0.00) 100.00 (0.00) 99.87 (0.07) 99.97 (0.00) 99.83 (0.18)
7 83.43 (3.15) 87.47 (8.97) 78.67 (4.87) 79.67 (7.92) 86.61 (5.95) 74.61 (6.37)
8 99.26 (0.43) 99.95 (0.04) 99.99 (0.02) 99.91 (0.08) 99.96 (0.01) 99.63 (0.24)
9 93.49 (2.15) 98.98 (0.25) 98.75 (0.32) 98.08 (0.78) 98.59 (0.48) 95.90 (1.68)
10 94.48 (1.99) 99.47 (0.16) 99.81 (0.15) 98.91 (0.50) 98.94 (0.94) 96.60 (0.42)
11 99.97 (0.05) 99.88 (0.05) 99.88 (0.09) 99.65 (0.23) 99.48 (0.26) 99.81 (0.02)
12 98.25 (0.62) 94.54 (0.09) 98.36 (1.01) 97.63 (2.04) 99.49 (0.19) 97.78 (0.95)
13 91.03 (1.75) 96.60 (1.00) 98.63 (0.97) 97.60 (1.13) 99.19 (0.23) 94.92 (1.96)
14 66.41 (7.54) 59.81 (26.88) 76.45 (3.55) 83.63 (6.10) 74.95 (9.27) 74.98 (7.19)
15 98.34 (0.57) 99.76 (0.09) 99.89 (0.08) 98.97 (0.79) 99.56 (0.24) 97.14 (1.00)
OA 90.85 (0.77) 91.58 (2.24) 92.15 (0.60) 93.06 (0.89) 93.57 (0.29) 90.53 (0.63)
AA 94.79 (0.64) 95.75 (1.51) 96.73 (0.16) 96.77 (0.30) 97.15 (0.33) 95.40 (0.23)
K 90.85 (0.87) 91.58 (2.55) 92.15 (0.66) 93.06 (0.97) 93.57 (0.32) 90.53 (0.68)

Time (seconds) 484.01 (1.91) 607.08 (4.15) 597.70 (4.37) 597.47 (5.31) 600.83 (3.40) 644.05 (4.00)
Kennedy Space Center

Class id. RANDOM BALD MAXENT BT MI MEANSTD
0 97.33 (0.16) 97.33 (0.78) 98.73 (1.00) 98.64 (1.19) 98.69 (0.77) 96.01 (2.29)
1 93.42 (1.16) 93.28 (1.85) 95.06 (0.89) 91.22 (2.74) 95.61 (3.03) 90.81 (4.90)
2 86.85 (8.15) 96.22 (1.61) 98.05 (0.64) 81.77 (23.02) 91.67 (7.13) 93.88 (1.29)
3 83.86 (9.71) 85.71 (4.57) 86.64 (8.28) 93.65 (1.97) 92.20 (1.90) 87.70 (1.68)
4 70.60 (6.92) 89.65 (4.43) 86.34 (5.85) 90.89 (6.75) 90.89 (1.28) 69.36 (6.85)
5 83.11 (2.09) 94.18 (2.99) 87.19 (8.30) 80.79 (10.88) 89.96 (5.57) 85.88 (4.79)
6 92.38 (6.07) 96.51 (1.19) 90.16 (4.56) 98.10 (1.56) 87.30 (11.33) 92.70 (6.47)
7 95.13 (1.00) 95.20 (1.04) 88.94 (10.09) 95.36 (2.73) 98.14 (2.30) 96.52 (1.31)
8 98.65 (0.16) 99.29 (0.48) 99.23 (0.68) 99.49 (0.18) 99.62 (0.42) 98.59 (0.09)
9 97.69 (1.69) 99.92 (0.12) 99.83 (0.12) 99.59 (0.12) 99.17 (0.51) 98.68 (0.31)
10 98.65 (0.92) 99.60 (0.41) 98.65 (0.68) 98.73 (0.63) 99.05 (0.78) 97.53 (0.79)
11 96.69 (1.53) 99.67 (0.25) 99.80 (0.16) 99.01 (0.00) 97.55 (3.47) 99.14 (0.50)
12 99.50 (0.64) 100.00 (0.00) 100.00 (0.00) 99.96 (0.05) 100.00 (0.00) 99.96 (0.05)
OA 94.84 (0.21) 97.24 (0.31) 96.53 (1.25) 96.35 (1.35) 97.27 (0.49) 95.56 (0.43)
AA 91.83 (0.29) 95.89 (0.58) 94.51 (1.39) 94.40 (2.30) 95.37 (1.06) 92.83 (0.65)
K 94.84 (0.24) 97.24 (0.35) 96.53 (1.39) 96.35 (1.50) 97.27 (0.55) 95.56 (0.47)

Time (seconds) 472.18 (4.84) 586.22 (3.32) 576.89 (2.85) 581.55 (3.29) 580.83 (4.11) 626.63 (3.84)

and execution times for each acquisition function. On the
one hand, when more samples are added to Dtrain, higher
accuracies are obtained until reaching a point in which adding
more samples does not improve the classification acuracy,
i.e. adding more samples does not add more information to
the model. On the other hand, as more samples are added
to Dtrain, higher execution times are needed by the model.
Focusing on IP, BT-criterion’s accuracy stands out with 200
training samples, reaching the best classification results in less
time than MI, BALD and max-entropy. It is interesting to
focus on the classification of Oats class (class 8), with only
20 pixels. We can observe how entropy-based methods, i.e.
BALD and max-entropy, are able to reach better classification
results for this particular class than distance-based methods,
BT-criterion and MI, while in classes with more samples (e.g.
class 10, Soybeans-min) these methods reach very similar
results. Also, MI, BALD and max-entropy present very similar
results in terms of both computation time and accuracy, being
the random and mean STD the fastest methods but with the
lowest accuracy results. In particular we can observe that,



13

although the random function reaches better OA than the mean
STD, its average accuracy (AA) is slightly worse, i.e. the mean
STD generalizes better than the random function, as it can be
observed with Oats and Alfalfa (class 0, with 46 pixels), where
mean STD reaches better accuracy than the random function
when less pixels are available.

A similar behavior can be observed for the SV dataset,
where distance-based methods reach better OA than random
and entropy-based ones. In particular the BT-criterion is
able to reach 91.80% accuracy with only 1.53% of the SV
ground-truth, being max-entropy the function with lowest OA,
86.25%. In general, entropy-based methods reach poorer OAs
with SV dataset than the random function, due to the spectral
characteristics of the image and the number of pixels per
class, which is quite balanced, being Lettuce-romaine-6wk,
class 12 the one with less pixels, 916, where max-entropy and
BALD reach the best OA with lower standard deviation than
MI. Moreover, although BALD reaches a lower OA than the
random function, it obtains better AA, so it can generalize
better. Looking at Fig. 5, the second column shows the OAs
and execution times of SV at different Dtrain sizes. BT-
criterion and MI stand out with 100 training samples, being
the slowest methods, where random and max-entropy are the
fastest acquisition functions.

Finally, in KSC scene the BT-criterion reaches the best
OA with good generalization power, achieving 95.56% and
93.20%, respectively, with 15.85% of the ground-truth as
training pixels and standing out with less than 100 training
samples. On the other part, the slowest functions are those
based on distances, i.e. the BT-criterion and MI, while random
and mean STD are the fastest ones.

2) Experiment 2: Performance of different acquisition func-
tions with the 1D B-CNN: Our second experiment performs
a comparison between all the acquisition functions for the
proposed 1D B-CNN model, whose architecture is described in
Table II. In this case, 300 Monte-Carlo iterations (T = 300)
have been implemented, while D0

train and D0
pool follow the

same initialization described in MLR experiment.
Table V shows the obtained results in the 80-th iteration

of the model (ε = 80), with 10 acquisitions at each iteration.
Focusing on the IP scene, we can observe that the distance-
based BT-criterion reaches the highest OA value, 86.14% with
8.12% of the ground-truth (i.e. 832 training samples), followed
by the MI function, while the random function achieves the
lower results with 81.83% of accuracy. As in the AL-MLR
case, BALD and max-entropy reach very similar results, with
BALD exhibiting better generalization performance than the
other tested acquisition functions. In Fig. 6 we can observe
the performance of the proposed model. In the IP plot,
the acquisition functions are very close one to each other
at different Dtrain sizes in terms of both OA values and
execution times. In this case, the mean STD is the slowest
method and the random function is the fastest one, while BT-
criterion, MI, BALD and max-entropy provide very similar
performance.

For the SV dataset, the MI method reaches the best accuracy
result, 97.27% with 1.54% of the ground-truth (i.e. 832
training samples), demonstrating a high generalization power,

TABLE VI
AL-BASED CLASSIFICATION RESULTS OBTAINED BY THE 2D B-CNN FOR

DIFFERENT ACQUISITION FUNCTIONS AFTER 80 ITERATIONS AND 10
ACQUISITIONS PER ITERATION.

Indian Pines
Class id. RANDOM BALD MAXENT BT MI MEANSTD

0 93.48 (6.52) 98.91 (1.09) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 97.83 (0.00)
1 94.40 (0.63) 99.86 (0.07) 99.72 (0.28) 99.86 (0.14) 100.00 (0.00) 96.81 (1.79)
2 92.17 (0.84) 98.19 (1.20) 99.76 (0.12) 99.64 (0.24) 99.82 (0.18) 88.55 (4.70)
3 97.47 (1.69) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 99.58 (0.42) 91.56 (0.00)
4 90.79 (1.14) 99.38 (0.62) 75.36 (11.59) 99.69 (0.31) 98.55 (1.45) 89.23 (0.41)
5 95.27 (0.48) 99.04 (0.41) 100.00 (0.00) 99.93 (0.07) 99.79 (0.21) 97.53 (1.92)
6 96.43 (3.57) 100.00 (0.00) 100.00 (0.00) 91.07 (8.93) 100.00 (0.00) 96.43 (3.57)
7 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 99.79 (0.21)
8 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 97.50 (2.50)
9 89.87 (1.08) 94.29 (3.55) 98.61 (1.08) 99.49 (0.51) 99.54 (0.05) 89.92 (1.75)
10 97.13 (0.61) 95.97 (1.71) 99.39 (0.37) 98.98 (0.86) 99.98 (0.02) 96.37 (1.75)
11 95.03 (0.76) 99.92 (0.08) 99.75 (0.08) 98.65 (0.51) 99.33 (0.67) 92.16 (1.94)
12 99.76 (0.24) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 98.54 (0.49)
13 99.29 (0.71) 97.91 (2.09) 99.96 (0.04) 100.00 (0.00) 99.01 (0.99) 97.91 (0.36)
14 98.45 (0.51) 100.00 (0.00) 100.00 (0.00) 98.45 (1.55) 100.00 (0.00) 97.02 (0.39)
15 94.09 (4.84) 100.00 (0.00) 97.85 (1.08) 98.39 (1.61) 99.46 (0.54) 95.16 (2.69)
OA 95.58 (0.41) 97.96 (0.35) 98.46 (0.39) 99.46 (0.36) 99.68 (0.18) 94.99 (0.76)
AA 95.85 (0.19) 98.97 (0.45) 98.15 (0.58) 99.01 (0.68) 99.69 (0.17) 95.14 (0.14)
K 95.58 (0.47) 97.96 (0.40) 98.46 (0.44) 99.46 (0.41) 99.68 (0.20) 94.99 (0.86)

Time (seconds) 1434.98 (24.12) 2731.62 (48.75) 2077.61 (37.93) 2051.92 (26.48) 2065.19 (26.50) 2080.78 (24.13)
Salinas Valley

Class id. RANDOM BALD MAXENT BT MI MEANSTD
0 99.85 (0.15) 100.00 (0.00) 99.95 (0.05) 99.55 (0.45) 99.10 (0.90) 97.49 (0.27)
1 94.15 (1.45) 96.01 (2.51) 99.95 (0.05) 99.72 (0.28) 96.14 (1.18) 90.77 (0.19)
2 99.62 (0.03) 95.32 (4.68) 99.95 (0.05) 100.00 (0.00) 100.00 (0.00) 98.36 (0.38)
3 99.86 (0.14) 99.96 (0.04) 100.00 (0.00) 99.89 (0.11) 99.78 (0.22) 100.00 (0.00)
4 99.79 (0.06) 99.98 (0.02) 100.00 (0.00) 100.00 (0.00) 99.93 (0.04) 99.07 (0.78)
5 99.73 (0.21) 100.00 (0.00) 99.95 (0.05) 100.00 (0.00) 100.00 (0.00) 99.44 (0.33)
6 99.09 (0.15) 98.39 (0.68) 100.00 (0.00) 100.00 (0.00) 99.94 (0.03) 97.54 (2.46)
7 92.31 (1.01) 98.10 (1.39) 99.25 (0.51) 99.97 (0.03) 99.53 (0.38) 88.20 (0.69)
8 99.84 (0.06) 99.66 (0.34) 99.95 (0.05) 100.00 (0.00) 100.00 (0.00) 97.85 (1.39)
9 96.19 (2.81) 100.00 (0.00) 100.00 (0.00) 99.82 (0.18) 100.00 (0.00) 96.92 (1.83)
10 96.82 (0.84) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 99.91 (0.09) 96.96 (0.80)
11 99.82 (0.18) 99.97 (0.03) 99.84 (0.16) 99.92 (0.08) 99.87 (0.13) 98.75 (0.99)
12 98.42 (1.15) 100.00 (0.00) 99.95 (0.05) 100.00 (0.00) 100.00 (0.00) 98.69 (1.31)
13 96.82 (0.00) 100.00 (0.00) 100.00 (0.00) 99.63 (0.09) 100.00 (0.00) 95.33 (3.18)
14 84.74 (1.35) 96.35 (3.61) 94.50 (1.33) 99.64 (0.30) 97.61 (2.25) 90.54 (1.33)
15 85.78 (0.39) 98.01 (0.94) 99.64 (0.36) 99.81 (0.19) 100.00 (0.00) 93.05 (1.74)
OA 94.95 (0.07) 98.45 (0.52) 99.07 (0.05) 99.88 (0.08) 99.26 (0.16) 94.35 (0.30)
AA 96.43 (0.23) 98.86 (0.56) 99.56 (0.03) 99.87 (0.07) 99.49 (0.07) 96.18 (0.05)
K 94.95 (0.08) 98.45 (0.58) 99.07 (0.06) 99.88 (0.09) 99.26 (0.18) 94.35 (0.33)

Time (seconds) 2312.63 (17.19) 3625.83 (64.68) 2963.12 (23.25) 2956.60 (18.43) 3071.39 (28.29) 2986.14 (24.65)
Kennedy Space Center

Class id. RANDOM BALD MAXENT BT MI MEANSTD
0 95.93 (0.53) 98.55 (0.13) 99.21 (0.66) 99.80 (0.20) 99.47 (0.39) 96.98 (1.05)
1 87.65 (0.82) 100.00 (0.00) 99.79 (0.21) 99.38 (0.62) 99.38 (0.62) 87.65 (0.41)
2 86.72 (0.00) 100.00 (0.00) 98.44 (1.56) 99.80 (0.20) 99.61 (0.39) 92.19 (3.91)
3 89.29 (0.40) 100.00 (0.00) 99.80 (0.20) 99.40 (0.60) 100.00 (0.00) 93.85 (1.79)
4 97.83 (2.17) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
5 94.10 (3.28) 100.00 (0.00) 99.56 (0.44) 100.00 (0.00) 100.00 (0.00) 91.70 (2.62)
6 78.57 (0.48) 99.52 (0.48) 99.05 (0.00) 99.05 (0.00) 97.14 (0.95) 70.95 (17.62)
7 89.41 (1.04) 100.00 (0.00) 99.88 (0.12) 99.54 (0.00) 99.77 (0.23) 90.26 (5.57)
8 96.54 (0.38) 97.69 (0.19) 99.23 (0.58) 100.00 (0.00) 99.62 (0.38) 97.02 (0.48)
9 96.91 (1.86) 100.00 (0.00) 100.00 (0.00) 99.88 (0.12) 99.88 (0.12) 95.54 (1.24)
10 98.21 (0.12) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 98.81 (1.19)
11 94.73 (3.28) 99.90 (0.10) 100.00 (0.00) 99.60 (0.20) 100.00 (0.00) 98.71 (0.89)
12 99.68 (0.32) 100.00 (0.00) 99.89 (0.11) 100.00 (0.00) 98.98 (1.02) 99.73 (0.27)
OA 94.77 (0.47) 99.54 (0.02) 99.64 (0.14) 99.80 (0.01) 99.57 (0.01) 95.63 (0.51)
AA 92.77 (0.41) 99.67 (0.04) 99.60 (0.16) 99.73 (0.06) 99.53 (0.16) 93.34 (1.66)
K 94.77 (0.52) 99.54 (0.02) 99.64 (0.16) 99.80 (0.01) 99.57 (0.01) 95.63 (0.57)

Time (seconds) 2273.24 (13.11) 3520.89 (20.20) 2910.52 (27.14) 2901.06 (20.47) 2913.41 (27.04) 2932.83 (23.41)

which is overcome only by the BALD function. Observing
Fig. 6, we can see that the BT-criterion has good OA between
100 and 300 training samples, being outperformed by MI with
some variability. Again, the execution times are very similar
for different functions, being mean STD the slowest one and
random the fastest one, while BT-criterion, MI, BALD and
max-entropy are quite similar.

The results for the KSC are similar to those with the SV
scene, with distance-based methods reaching the highest OA
values, being the MI the best one: 93.57% OA with 15.85%
of the ground-truth. Also, the execution times are very similar
with regards to those obtained for the SV dataset.

With these datasets we also can observe how 1D B-CNN
is able to scale logarithmically, rather than linearly, as in the
case of the MLR. Also we can see how the max-entropy and
BALD functions suffer when few samples are used. In this
case, the model is not able to obtain good uncertainty values
for these acquisition functions due a poor dropout. To address
this issue, we can add more uncertainty and variability to the
model increasing the dropout values at the CONV and fully
connected layers.

3) Experiment 3: Performance of different acquisition func-
tions with the 2D B-CNN: The third experiment performs a



14

Fig. 6. AL-based performance obtained by the 1D B-CNN for different acquisition functions with different sizes of Dtrain. First column: results for the IP
dataset. Second column: results for the SV dataset. Third column: results for the KSC dataset.

Fig. 7. AL-based performance obtained by the 2D B-CNN for different acquisition functions with different sizes of Dtrain. First column: results for the IP
dataset. Second column: results for the SV dataset. Third column: results for the KSC dataset.

comparison of different acquisition function with the proposed
2D B-CNN model, whose architecture is described in Table
II. The parameter T has been set to 300, and the initialization
of Dtrain, Dpool, test and validation sets are the same as in
our experiments with the 1D B-CNN and MLR.

Table VI shows the obtained results over the three consid-
ered hyperspectral datasets at iteration ε = 80. Focusing on
the IP dataset, we can observe that distance-based methods
are able to reach classification results over 99% accuracy,
followed by entropy-based methods, with an OA around 98%.



15

Fig. 7 shows the performance of proposed spatial model with
different Dtrain sizes. MI and BT-criterion provide similar
OA values from 600 to 800 training samples, while BALD
remains close to max-entropy. On the other hand, although
the random function is the fastest one, it reaches the lowest
OA value, being BALD the slowest one, while BT-criterion,
MI and max-entropy exhibit similar execution times.

SV dataset provides very similar results, being the BT-
criterion and MI the acquisition functions with better OA,
followed quite closely by max-entropy. Again, in Fig. 7 we
can observe how the BT-criterion and MI present very similar
results, while max-entropy and BALD stay close one to each
other, being mean STD and random the methods with lowest
OA results. The execution times are rather similar to IP dataset,
being the processing of SV slowest than IP. Again, BALD is
the slowest method and random the fastest one, being BT-
criterion, max-entropy and MI very similar.

Finally, for the KSC dataset the best OA is reached with BT-
criterion as acquisition function, with distance-based methods
and entropy-based functions providing the highest overall
values. Looking at Fig. 7 we can see in this case how BALD
performs even worst than the random function until 600
training samples are reached. This is because the network has
not achieved a sufficiently adjusted accuracy in the training
phase, resulting from the great variability in the dropout. The
execution times, on the other hand, are very similar to those
achieved in the experiments with the SV dataset.

4) Experiment 4: Performance of different acquisition func-
tions with the 3D B-CNN: Our fourth experiment implements
the proposed spectral-spatial BCNN classifier using the six
considered acquisition functions. Table VII and Fig. 8 show
the obtained results.

With the IP dataset, the best OA is reached by the BALD
acquisition function, while max-entropy exhibits the best gen-
eralization power. Entropy-based methods are closely followed
by distance-based methods, being random and mean STD the
functions with lowest OA. In Fig. 8 we can observe how the
BT-criterion stands out with 100 training samples, achieving
good results with very few samples, while BALD stands out
with 600 training samples. However BALD is the slowest
method, being the random function the fastest one, while max-
entropy, MI and BT-criterion exhibit similar execution times.

Focusing on SV, the best OA is reached by max-entropy,
followed by MI and BALD. As we can see in Fig. 8, BALD
stands out with 100 training samples, until it is reached by MI
and max-entropy. Again, BALD is the slowest method and
random the fastest, while MI, max-entropy and mean STD
share the same computation time.

In the case of the KSC scene, all acquisition functions
provide excellent classification performance, being random
and mean STD the functions with lowest OA (98.99% and
98.56%, respectively). In Fig. 8 we can observe that the BT-
criterion is able to reach high OA with few training samples.
Also, the BT-criterion, max-entropy and MI exhibit similar
execution times, being BALD and random the slowest and
fastest acquisition functions, respectively.

5) Experiment 5: Comparison with other traditional clas-
sifiers: The fifth and final experiment performs a comparison

TABLE VII
AL-BASED CLASSIFICATION RESULTS OBTAINED BY THE 3D B-CNN FOR

DIFFERENT ACQUISITION FUNCTIONS AFTER 80 ITERATIONS AND 10
ACQUISITIONS PER ITERATION.

Indian Pines
Class id. RANDOM BALD MAXENT BT MI MEANSTD

0 97.83 (2.17) 98.91 (1.09) 100.00 (0.00) 100.00 (0.00) 98.91 (1.09) 96.74 (1.09)
1 96.29 (1.33) 99.51 (0.21) 99.93 (0.07) 99.09 (0.77) 97.72 (1.51) 98.49 (0.18)
2 99.82 (0.06) 99.76 (0.24) 99.28 (0.72) 99.64 (0.36) 99.94 (0.06) 96.14 (3.86)
3 99.16 (0.84) 100.00 (0.00) 100.00 (0.00) 99.79 (0.21) 99.79 (0.21) 98.31 (1.27)
4 96.17 (1.76) 100.00 (0.00) 99.79 (0.21) 99.59 (0.41) 100.00 (0.00) 96.69 (1.66)
5 99.59 (0.41) 99.73 (0.27) 99.93 (0.07) 100.00 (0.00) 99.93 (0.07) 99.59 (0.14)
6 91.07 (8.93) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 98.21 (1.79) 100.00 (0.00)
7 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
8 85.00 (15.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 97.50 (2.50)
9 96.60 (1.34) 99.69 (0.31) 99.95 (0.05) 99.90 (0.10) 99.69 (0.31) 96.66 (0.46)
10 98.90 (0.16) 99.98 (0.02) 98.90 (0.98) 100.00 (0.00) 99.86 (0.06) 98.31 (0.75)
11 96.12 (0.51) 99.92 (0.08) 99.83 (0.17) 99.83 (0.17) 99.92 (0.08) 97.72 (1.26)
12 99.51 (0.49) 100.00 (0.00) 100.00 (0.00) 98.78 (1.22) 100.00 (0.00) 98.29 (1.71)
13 99.80 (0.04) 99.64 (0.36) 100.00 (0.00) 99.96 (0.04) 100.00 (0.00) 99.25 (0.75)
14 95.73 (4.27) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 99.87 (0.13) 94.17 (4.27)
15 96.77 (0.00) 97.31 (1.61) 98.92 (0.00) 95.16 (2.69) 95.70 (1.08) 73.12 (26.88)
OA 98.14 (0.00) 99.78 (0.07) 99.63 (0.29) 99.73 (0.06) 99.55 (0.18) 97.79 (0.41)
AA 96.77 (1.68) 99.65 (0.20) 99.78 (0.11) 99.48 (0.10) 99.35 (0.30) 96.31 (0.68)
K 98.14 (0.01) 99.78 (0.08) 99.63 (0.33) 99.73 (0.07) 99.55 (0.21) 97.79 (0.47)

Time (seconds) 1265.17 (8.06) 4497.65 (15.16) 3328.13 (25.08) 3331.44 (28.67) 3304.41 (10.91) 3325.62 (10.61)
Salinas Valley

Class id. RANDOM BALD MAXENT BT MI MEANSTD
0 99.98 (0.02) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
1 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
2 100.00 (0.00) 99.90 (0.10) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 99.97 (0.03)
3 97.49 (2.22) 99.89 (0.04) 99.96 (0.04) 99.61 (0.18) 99.89 (0.04) 99.32 (0.61)
4 99.07 (0.93) 99.96 (0.00) 99.91 (0.02) 99.91 (0.06) 99.93 (0.04) 99.51 (0.15)
5 99.55 (0.45) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 98.28 (1.72)
6 99.90 (0.10) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
7 91.98 (6.45) 100.00 (0.00) 100.00 (0.00) 99.88 (0.12) 100.00 (0.00) 99.37 (0.44)
8 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 99.98 (0.02) 100.00 (0.00)
9 99.44 (0.50) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 99.79 (0.21) 99.27 (0.34)
10 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 99.95 (0.05)
11 99.87 (0.03) 99.51 (0.49) 100.00 (0.00) 99.97 (0.03) 100.00 (0.00) 100.00 (0.00)
12 99.51 (0.49) 100.00 (0.00) 100.00 (0.00) 99.95 (0.05) 100.00 (0.00) 99.84 (0.05)
13 94.07 (5.84) 99.95 (0.05) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 97.62 (2.01)
14 94.50 (4.60) 99.99 (0.00) 99.99 (0.01) 99.66 (0.34) 100.00 (0.00) 93.95 (0.59)
15 99.11 (0.89) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 99.06 (0.22)
OA 97.25 (0.90) 99.97 (0.02) 99.99 (0.00) 99.91 (0.08) 99.98 (0.01) 98.76 (0.22)
AA 98.40 (0.66) 99.95 (0.04) 99.99 (0.00) 99.94 (0.05) 99.97 (0.01) 99.13 (0.02)
K 97.25 (0.99) 99.97 (0.03) 99.99 (0.00) 99.91 (0.09) 99.98 (0.02) 98.76 (0.25)

Time 1405.82 (10.05) 4662.36 (55.90) 3465.04 (15.60) 3444.14 (20.19) 3445.91 (15.95) 3467.78 (20.80)
Kennedy Space Center

Class id. RANDOM BALD MAXENT BT MI MEANSTD
0 98.49 (0.72) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 99.41 (0.20)
1 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 97.53 (0.82)
2 94.53 (2.34) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 93.75 (0.78)
3 95.63 (3.97) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 93.65 (0.40)
4 99.69 (0.31) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 95.03 (1.86)
5 96.94 (0.87) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 92.79 (1.09)
6 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
7 99.65 (0.35) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
8 99.81 (0.19) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 98.65 (0.19)
9 98.64 (1.36) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
10 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
11 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 99.80 (0.20)
12 99.95 (0.05) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
OA 98.99 (0.47) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 98.56 (0.06)
AA 98.72 (0.55) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 97.74 (0.15)
K 98.99 (0.52) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 98.56 (0.06)

Time (seconds) 1273.81 (7.18) 4533.24 (14.71) 3327.97 (11.50) 3325.30 (11.48) 3327.47 (11.27) 3348.26 (9.04)

between the AL implementations described in previous subsec-
tions, with the best OA values for each hyperspectral dataset,
with traditional classifiers. For the IP dataset, the AL-MLR
and the 1D B-CNN with BT-criterion, 2D B-CNN with MI
criterion and 3D B-CNN with BALD criterion have been se-
lected to be compared with the traditional random forest (RF),
multilayer perceptron (MLP), support vector machine (SVM)
and MLR classifiers, and also with the standard 1D-CNN, 2D-
CNN and 3D-CNN baselines, which have been implemented
with the same parameters and architectures than the proposed
AL approaches. In order to train the RF, MLP, SVM and MLR,
1D-CNN, 2D-CNN and 3D-CNN baselines, only two pixels
per class have been selected, while the remaining 800 pixels
(the selected maximum size of Dtrain) have been randomly
selected. This process has been repeated with the SV dataset,
selecting the AL-MLR and 2D B-CNN with BT-criterion, 1D
B-CNN with MI and 3D B-CNN with max-entropy, and with
the KSC dataset, selecting AL-MLR, 2D and 3D B-CNN with
BT-criterion and 1D B-CNN with MI.

Focusing on the IP dataset, we can observe the performance
of pixel-wise classifiers, being RF and the baseline MLR the
classifiers that provide lower OA. We can observe how AL-
MLR is better than the baseline MLR, but worse than SVM,



16

Fig. 8. AL-based performance obtained by the 3D B-CNN for different acquisition functions with different sizes of Dtrain. First column: results for the IP
dataset. Second column: results for the SV dataset. Third column: results for the KSC dataset.

a) GT b) RF (74.06%) c) MLP (79.73%) e) SVM (81.33%) f ) MLR (74.16%) g) CNN1D (81.83%)

h) CNN2D (95.58%) i) CNN3D (98.14%) j) AL-MLR (79.79%) k) B-CNN1D (86.14%) l) B-CNN2D (99.68%) m) B-CNN3D (99.78%)

Fig. 9. Classification maps for the Indian Pines (IP) dataset. The first image (a) contains the ground-truth classification map. Finally, images from (b) to (m)
provide the classification maps corresponding to Table VIII. Note that the overall classification accuracies are shown in brackets.

while the spectral B-CNN model improves the classification
results over the baseline 1D-CNN and the other pixel-wise
methods. Looking at spatial classifiers, the 2D B-CNN is able
to outperform the 2D-CNN results in 6.11 percentage points,
improving also the generalization power. We can also ob-
serve this behavior with spectral-spatial classifiers, where the
proposed B-CNN model outperforms the 3D-CNN baseline.
Moreover we can observe that, after adding spectral-spatial
information, the classifier is able to improve its accuracy
results. Fig. 9 presents these results in a graphical form,
showing the classification maps obtained for each classifier.
In Fig. 12 we can observe the performance of AL-MLR, 1D
B-CNN, 2D B-CNN and 3D B-CNN with BT-criterion for

the IP dataset. We can see that the spectral-spatial B-CNN is
able to reach good classification accuracy with fewer training
samples than the other AL-based classifiers, although it is the
slowest method. Moreover, in Table IX we can observe the
number of training samples that each classifier needs to reach
the accuracy percentage, being spectral-spatial B-CNN the one
that needs less training data, only 402 samples (i.e. the 3.92%
of the ground-truth) to reach 99% OA.

The results for the SV dataset are similar. In Table VIII
we can see that the pixel-wise classifiers based on AL outper-
form their baseline methods, being the AL-MLR better than
MLR while the spectral B-CNN is also better than the 1D-
CNN baseline. Also spatial B-CNN outperforms the 2D-CNN



17

TABLE VIII
CLASSIFICATION RESULTS OBTAINED BY AL-BASED PRESENTED METHODOLOGIES IN COMPARISON WITH THOSE OBTAINED WITH TRADITIONAL

HYPERSPECTRAL DATA CLASSIFIERS AFTER 80 ITERATIONS AND 10 ACQUISITIONS PER ITERATION.

Indian Pines
Class RF MLP SVM MLR 1D-CNN 2D-CNN 3D-CNN AL-MLR 1D B-CNN 2D B-CNN 3D B-CNN

0 25.43 (17.39) 56.52 (13.40) 57.17 (19.20) 23.48 (9.47) 55.8 (6.72) 93.48 (6.52) 97.83 (2.17) 31.74 (19.18) 71.74 (15.17) 100 (0.00) 98.91 (1.09)
1 62.67 (4.59) 76.27 (2.04) 76.90 (2.61) 74.22 (2.45) 82.05 (1.63) 94.40 (0.63) 96.29 (1.33) 78.14 (2.12) 82.12 (4.13) 100 (0.00) 99.51 (0.21)
2 47.75 (4.95) 62.36 (4.00) 64.41 (5.23) 52.94 (1.61) 61.77 (4.61) 92.17 (0.84) 99.82 (0.06) 61.25 (4.22) 72.97 (3.73) 99.82 (0.18) 99.76 (0.24)
3 34.09 (11.38) 57.85 (5.36) 65.82 (11.92) 41.94 (8.88) 63.01 (8.78) 97.47 (0.69) 99.16 (0.84) 47.17 (9.11) 83.12 (3.1) 99.58 (0.42) 100 (0.00)
4 81.04 (4.48) 83.79 (4.17) 89.01 (2.62) 74.95 (6.43) 90.82 (1.67) 90.79 (1.14) 96.17 (1.76) 85.09 (2.58) 94.13 (1.98) 98.55 (1.45) 100 (0.00)
5 94.88 (2.75) 94.47 (1.32) 95.70 (1.14) 93.78 (1.12) 98.31 (0.74) 95.27 (0.48) 99.59 (0.41) 94.79 (1.64) 98.26 (0.26) 99.79 (0.21) 99.73 (0.27)
6 31.07 (18.28) 72.14 (15.55) 81.07 (15.65) 60.71 (9.85) 77.38 (8.42) 96.43 (3.57) 91.07 (8.93) 65 (17.11) 82.14 (10.51) 100 (0.00) 100 (0.00)
7 96.82 (3.23) 96.92 (1.22) 97.80 (1.40) 97.07 (1.08) 98.68 (0.71) 100 (0.00) 100 (0.00) 96.99 (1.06) 97.42 (1.73) 100 (0.00) 100 (0.00)
8 28.00 (11.00) 66.00 (17.44) 70.00 (16.73) 41.00 (17.72) 66.67 (10.27) 100 (0.00) 85 (15) 63 (4) 86.67 (10.27) 100 (0.00) 100 (0.00)
9 66.01 (6.94) 74.50 (2.25) 73.30 (4.96) 64.77 (4.35) 84.43 (3.88) 89.87 (1.08) 96.6 (1.34) 68.79 (4.12) 86.01 (3.99) 99.54 (0.05) 99.69 (0.31)

10 85.56 (4.35) 81.35 (1.81) 83.00 (2.79) 73.49 (1.93) 76.78 (1.82) 97.13 (0.61) 98.9 (0.16) 79.23 (2.2) 83.54 (6.24) 99.98 (0.02) 99.98 (0.02)
11 44.23 (7.74) 63.27 (6.48) 76.51 (5.96) 54.03 (2.28) 78.98 (4.03) 95.03 (0.76) 96.12 (0.51) 65.87 (3.26) 86.9 (3.1) 99.33 (0.67) 99.92 (0.08)
12 92.20 (3.69) 97.56 (2.08) 96.83 (1.76) 98.54 (0.31) 98.21 (1.15) 99.76 (0.24) 99.51 (0.49) 98.73 (0.66) 94.47 (4.53) 100 (0.00) 100 (0.00)
13 96.03 (0.92) 94.06 (1.60) 94.22 (1.86) 92.14 (1.18) 94.6 (2.28) 99.29 (0.71) 99.8 (0.04) 93.88 (1.92) 95.34 (2.97) 99.01 (0.99) 99.64 (0.36)
14 41.50 (7.21) 63.34 (5.28) 54.27 (7.11) 65.85 (6.89) 53.89 (1.68) 98.45 (0.51) 95.73 (4.27) 66.99 (4.98) 65.72 (7.32) 100 (0.00) 100 (0.00)
15 83.55 (3.85) 86.24 (7.48) 90.00 (3.85) 85.16 (1.85) 90.32 (2.63) 94.09 (4.84) 96.77 (0.00) 79.57 (9.4) 92.47 (2.32) 1.61 (99.46) 97.31 (1.61)
OA 74.06 (0.70) 79.73 (0.79) 81.33 (0.55) 74.16 (0.91) 81.83 (0.78) 95.58 (0.41) 98.14 (0.00) 79.79 (0.53) 86.14 (0.47) 99.68 (0.18) 99.78 (0.07)
AA 63.18 (1.59) 76.66 (2.03) 79.13 (2.32) 68.38 (1.64) 79.48 (0.03) 95.85 (0.19) 96.77 (1.68) 73.52 (2.12) 85.81 (0.07) 99.69 (0.17) 99.65 (0.2)
K 70.00 (0.89) 76.80 (0.92) 78.64 (0.62) 74.16 (1.08) 81.83 (0.91) 95.58 (0.47) 98.14 (0.01) 78.79 (0.58) 86.14 (0.5) 99.68 (0.2) 98.78 (0.08)

Salinas Valley
Class RF MLP SVM MLR 1D-CNN 2D-CNN 3D-CNN AL-MLR 1D B-CNN 2D B-CNN 3D B-CNN

0 97.71 (1.94) 98.16 (0.96) 97.59 (1.31) 98.26 (0.61) 99 (0.42) 99.85 (0.15) 99.98 (0.02) 99.52 (0.21) 99.8 (0.22) 99.55 (0.45) 100 (0)
1 99.83 (0.07) 99.48 (0.40) 99.35 (0.45) 99.78 (0.07) 99.95 (0) 94.15 (1.45) 100 (0) 99.79 (0.09) 99.97 (0.02) 99.72 (0.28) 100 (0)
2 93.74 (3.59) 96.89 (1.76) 96.88 (2.08) 94.94 (1.82) 97.79 (0.56) 99.62 (0.03) 100 (0) 98.93 (0.58) 99.68 (0.21) 100 (0) 100 (0)
3 97.06 (3.00) 99.44 (0.31) 98.98 (0.61) 99.24 (0.38) 98.76 (0.96) 99.86 (0.14) 97.49 (2.22) 99.4 (0.3) 99.71 (0.1) 99.89 (0.11) 99.61 (0.18)
4 96.25 (0.99) 97.50 (1.15) 97.87 (0.72) 97.36 (1.21) 96.98 (1.18) 99.79 (0.06) 99.07 (0.93) 99.29 (0.31) 98.51 (1.51) 100 (0) 99.91 (0.06)
5 98.73 (0.99) 99.52 (0.22) 99.43 (0.40) 99.57 (0.18) 99.8 (0.13) 99.73 (0.21) 99.55 (0.45) 99.67 (0.22) 99.97 (0) 100 (0) 100 (0)
6 99.09 (0.41) 99.27 (0.33) 99.44 (0.21) 99.66 (0.16) 99.68 (0.09) 99.09 (0.15) 99.9 (0.1) 99.74 (0.08) 99.97 (0) 100 (0) 100 (0)
7 81.85 (2.60) 81.16 (5.33) 87.53 (1.78) 81.89 (3.01) 83.43 (3.15) 92.31 (1.01) 91.98 (6.45) 86.43 (0.66) 86.61 (5.95) 99.97 (0.03) 99.88 (0.12)
8 98.90 (0.44) 99.34 (0.43) 99.39 (0.52) 99.86 (0.07) 99.26 (0.43) 99.84 (0.06) 100 (0) 99.87 (0.07) 99.96 (0.01) 100 (0) 100 (0)
9 85.53 (1.96) 89.33 (2.19) 91.13 (1.74) 88.5 (2.12) 93.49 (2.15) 96.19 (2.81) 99.44 (0.5) 95.33 (1.14) 98.59 (0.48) 99.82 (0.18) 100 (0)

10 88.16 (4.53) 90.02 (3.76) 93.93 (1.83) 91.95 (3.05) 94.48 (1.99) 96.82 (0.84) 100 (0) 95.3 (0.91) 98.94 (0.94) 100 (0) 100 (0)
11 97.19 (1.37) 97.21 (2.40) 99.14 (0.56) 99.03 (0.73) 99.97 (0.05) 99.82 (0.18) 99.87 (0.03) 99.47 (0.11) 99.48 (0.26) 99.92 (0.08) 99.97 (0.03)
12 97.79 (0.74) 97.66 (1.32) 97.39 (2.38) 94.39 (8.09) 98.25 (0.62) 98.42 (1.15) 99.51 (0.49) 98.41 (0.95) 99.49 (0.19) 100 (0) 99.95 (0.05)
13 90.88 (3.21) 91.38 (2.33) 91.92 (3.07) 92.26 (1.34) 91.03 (1.75) 96.82 (0) 94.07 (5.84) 96.06 (0.69) 99.19 (0.23) 99.63 (0.09) 100 (0)
14 59.21 (4.36) 64.87 (8.76) 64.20 (2.91) 60.89 (3.55) 66.41 (7.54) 84.74 (1.35) 94.5 (4.6) 65.39 (1.02) 74.95 (9.27) 99.64 (0.3) 99.66 (0.34)
15 92.92 (2.26) 96.36 (1.20) 96.70 (1.84) 95.29 (2.48) 98.34 (0.57) 85.78 (0.39) 99.11 (0.89) 98.48 (0.58) 99.56 (0.24) 99.81 (0.19) 100 (0)
OA 88.22 (0.29) 89.57 (0.41) 91.07 (0.37) 89.2 (0.3) 90.85 (0.77) 94.95 (0.07) 97.25 (0.9) 91.8 (0.08) 93.57 (0.29) 99.88 (0.08) 99.91 (0.08)
AA 92.18 (0.28) 93.60 (0.56) 94.43 (0.38) 93.3 (0.59) 94.79 (0.64) 96.43 (0.23) 98.4 (0.66) 95.69 (0.11) 97.15 (0.33) 99.87 (0.07) 99.94 (0.05)
K 86.86 (0.33) 88.38 (0.47) 90.03 (0.41) 89.2 (0.33) 90.85 (0.87) 94.95 (0.08) 97.25 (0.99) 91.8 (0.09) 93.57 (0.32) 99.88 (0.09) 99.91 (0.09)

Kennedy Space Center
Class RF MLP SVM MLR 1D-CNN 2D-CNN 3D-CNN AL-MLR 1D B-CNN 2D B-CNN 3D B-CNN

0 94.95 (1.39) 96.35 (0.79) 95.32 (1.44) 95.9 (0.87) 97.33 (0.16) 95.93 (0.53) 98.49 (0.72) 97.98 (0.68) 98.69 (0.77) 99.8 (0.2) 100 (0.00)
1 87.94 (1.68) 89.63 (4.04) 94.49 (3.20) 88.81 (1.75) 93.42 (1.16) 87.65 (0.82) 100 (0.00) 89.55 (2.04) 95.61 (3.03) 99.38 (0.62) 100 (0.00)
2 89.49 (2.29) 91.52 (2.46) 91.88 (1.47) 87.97 (4.75) 86.85 (8.15) 86.72 (0.00) 94.53 (2.34) 93.2 (0.72) 91.67 (7.13) 99.8 (0.2) 100 (0.00)
3 75.60 (2.71) 75.32 (6.34) 78.25 (4.55) 67.7 (11.4) 83.86 (9.71) 89.29 (0.4) 95.63 (3.97) 88.41 (1.53) 92.2 (1.9) 99.4 (0.6) 100 (0.00)
4 59.25 (6.92) 66.58 (7.63) 75.03 (4.73) 62.11 (8.24) 70.6 (6.92) 97.83 (2.17) 99.69 (0.31) 77.76 (3.88) 90.89 (1.28) 100 (0.00) 100 (0.00)
5 58.12 (6.80) 69.74 (4.59) 80.39 (5.88) 71.35 (4.48) 83.11 (2.09) 94.1 (3.28) 96.94 (0.87) 83.32 (4) 89.96 (5.57) 100 (0.00) 100 (0.00)
6 85.90 (4.74) 87.81 (5.32) 88.19 (5.04) 84.19 (5.51) 92.38 (6.07) 78.57 (0.48) 100 (0.00) 95.24 (0.85) 87.3 (11.33) 99.5 (0.00) 100 (0.00)
7 87.24 (2.12) 93.76 (1.81) 94.99 (3.25) 90.35 (1.26) 95.13 (1) 89.91 (1.04) 99.65 (0.35) 97.54 (0.78) 98.14 (2.3) 99.54 (0.00) 100 (0.00)
8 93.65 (3.03) 97.58 (0.89) 97.58 (0.93) 96.81 (0.63) 98.65 (0.16) 96.54 (0.38) 99.81 (0.19) 98.38 (0.58) 99.62 (0.42) 100 (0.00) 100 (0.00)
9 89.60 (2.53) 97.45 (1.72) 98.42 (0.72) 94.9 (2.79) 97.69 (1.69) 96.91 (1.86) 98.64 (1.36) 97.23 (0.79) 99.17 (0.51) 99.88 (0.12) 100 (0.00)

10 97.42 (0.97) 98.07 (1.23) 98.00 (0.99) 96.95 (0.71) 98.65 (0.92) 98.21 (0.12) 100 (0.00) 98.23 (0.63) 99.05 (0.78) 100 (0.00) 100 (0.00)
11 90.97 (1.98) 94.63 (1.16) 95.84 (1.40) 92.41 (1.19) 96.69 (1.53) 94.73 (3.28) 100 (0.00) 94.99 (0.66) 97.55 (3.47) 99.62 (0.2) 100 (0.00)
12 99.69 (0.13) 100.00 (0.00) 100.00 (0.00) 100 (0.00) 99.5 (0.64) 99.68 (0.32) 99.95 (0.05) 99.74 (0.13) 100.00 (0.00) 100 (0.00) 100 (0.00)
OA 89.99 (0.28) 93.14 (0.49) 94.40 (0.50) 91.49 (0.43) 94.84 (0.21) 94.77 (0.47) 98.99 (0.47) 95.56 (0.28) 97.27 (0.49) 99.8 (0.01) 100 (0.00)
AA 85.37 (0.72) 89.11 (0.74) 91.41 (0.92) 86.88 (0.6) 91.83 (0.29) 92.77 (0.41) 98.72 (0.55) 93.2 (0.3) 95.37 (1.06) 99.73 (0.06) 100 (0.00)
K 88.85 (0.31) 92.35 (0.55) 93.76 (0.56) 91.49 (0.47) 94.84 (0.24) 94.77 (0.52) 98.99 (0.52) 95.56 (0.31) 97.27 (0.55) 99.8 (0.01) 100 (0.00)

baseline, being around 4.93 perceptual points better. Finally,
spectral-spatial B-CNN classifier is much better than 3D-CNN
baseline, with 2.66 perceptual points better. Fig. 10 shows the
classification maps obtained by each classifier. Also, in Fig.
12 we can observe how B-CNNs are able to outperform the
results of AL-MLR, standing out 150 training samples in the
case of the 2D B-CNN. In table IX we can see that spectral-
spatial B-CNN needs less training data than the other classifier
in order to reach the 99% of accuracy.

The results obtained for the KSC dataset are also quite sim-
ilar to those obtained for the SV dataset. In Table VIII we can
see that the pixel-wise classifiers based on AL outperform their
respective baseline methods, as well as the RF, SVM and MLP
methods. Also, the spatial B-CNN model obtains better results

than the baseline 2D-CNN, while the spectral-spatial B-CNN
also outperforms the 3D-CNN baseline. These classification
results can be observed in graphical form in Fig. 11. In Fig.
12 we can observe in the third column the implemented AL-
based methods with BT-criterion as acquisition function over
the KSC dataset. As we can see, the spectral-spatial B-CNN
is able to reach good values with few training samples, in fact
this model can reach 99% accuracy with only 276 samples
(i.e. 5.30% of the KSC’s ground-truth) as shown in Table IX.

IV. CONCLUSIONS AND FUTURE LINES

In this paper, we have developed a new active learning
model with Bayesian convolutional neural networks for hy-
perspectral image classification using spectral, spatial and



18

a) GT b) RF (88.22%) c) MLP (89.57%) e) SVM (91.07%) f ) MLR (89.2%) g) CNN1D (90.85%)

h) CNN2D (94.95%) i) CNN3D (97.25%) j) AL-MLR (91.8%) k) B-CNN1D (93.57%) l) B-CNN2D (99.88%) m) B-CNN3D (99.91%)
Fig. 10. Classification maps for the Salinas Valley (SV) dataset. The first image contains the ground-truth classification map. Finally, images from (b) to (m)
provide the classification maps corresponding to Table VIII. Note that the overall classification accuracies are shown in brackets.

a) GT b) RF (89.99%) c) MLP (93.14%) e) SVM (94.40%) f ) MLR (91.49%) g) CNN1D (94.84%)

h) CNN2D (94.77%) i) CNN3D (98.99%) j) AL-MLR (95.56%) k) B-CNN1D (97.27%) l) B-CNN2D (99.8%) m) B-CNN3D (100.00%)

Fig. 11. Classification maps for the Kennedy Space Center (KSC) dataset. The first image (a) represents the ground-truth classification map. Finally, images
from (b) to (m) provide the classification maps corresponding to Table VIII. Note that the overall classification accuracies are shown in brackets.

spectral-spatial features. The proposed approach offers ro-
bustness to overfitting on small labeled sets and improves
the generalization capacity by including intelligently selected
unlabeled training samples, integrating the spatial and the
spectral information contained in the original hyperspectral
image. To the best of our knowledge, this is the first time in the
literature that active learning is combined with convolutional
neural networks (via Bayesian neural networks) to perform
robust hyperspectral image classification with very limited
training sets. In our work, we report very high classification
accuracies using very limited labeled samples, avoiding the
curse of dimensionality and the overfitting problems intro-
duced by these kind of networks. Our results also indicate
that, by a proper selection of the acquisition function, active
learning offers a very good solution to avoid the aforemen-
tioned problems of overfitting with supervised deep networks.
Future work will focus on improving the results obtained
from the viewpoint of computational complexity, drawing
additional comparisons with other established methods for

spatial-spectral classification of remotely sensed hyperspectral
and also validating the proposed techniques using multispectral
data [103]. Finally, the inclusion of post-processing methods,
such as conditional random field (CRF) [104], will be also
studied in future developments as a way to improve and
smooth the classification maps obtained by the different tested
methods.

REFERENCES

[1] A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging
Spectrometry for Earth Remote Sensing,” Science, vol. 228, no. 4704,
pp. 1147–1153, 1985.

[2] R. Lucas, A. Rowlands, O. Niemann, and R. Merton, Advanced
Image Processing Techniques for Remotely Sensed Hyperspectral Data.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

[3] G. Vane, D. L. Evans, and A. B. Kahle, “Recent Advances In Airborne
Terrestrial Remote Sensing With The Nasa Airborne Visible/infrared
Imaging Spectrometer (aviris), Airborne Synthetic Aperture Radar
(sar), And Thermal Infrared Multispectral Scanner (tims),” in 12th
Canadian Symposium on Remote Sensing Geoscience and Remote
Sensing Symposium, 1989, pp. 942–943.



19

Fig. 12. Comparison of the BT-criterion over spectral active learning multinomial logistic regression and spectral, spatial, spectral-spatial bayesian convolutional
neural networks with the IP (first column), SV (second column) and KSC (third column) hyperspectral datasets.

TABLE IX
NUMBER OF SAMPLES THAT EACH MODEL IN FIG. 12 NEEDS TO REACH A

GIVEN % OF ACCURACY.

Indian Pines
Algorithm Accuracy

70% 75% 80% 85% 90% 95% 99%
AL-MLR 342 522 − − − − −

AL-CNN1D 252 352 502 662 − − −
AL-CNN2D 222 252 292 352 402 512 662
AL-CNN3D 72 82 112 152 172 232 402

Salinas Valley
Algorithm 70 75 80 85 90 95 99

MLR 32 32 52 132 412 − −
AL-CNN1D 32 32 42 62 232 − −
AL-CNN2D 72 92 122 162 272 412 622
AL-CNN3D 32 32 32 52 72 112 292

Kennedy Space Center
Algorithm Accuracy

70% 75% 80% 85% 90% 95% 99%
AL-MLR 26 36 66 116 216 616 −

AL-CNN1D 26 36 56 76 156 386 −
AL-CNN2D 226 246 286 306 366 496 666
AL-CNN3D 56 86 96 126 166 206 276

[4] R. O. Green, M. L. Eastwood, C. M. Sarture, T. G.
Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust,
B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and
O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS),” Remote Sensing of Environment,
vol. 65, no. 3, pp. 227–248, 1998. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0034425798000649

[5] X. She, L. Zhang, C. Huang, and S. Wang, “Comparison of hyper-
spectral vegetation indices based on casi airborne data,” in 2016 IEEE
International Geoscience and Remote Sensing Symposium (IGARSS),
July 2016, pp. 4532–4534.

[6] J. Chen, S. Leblanc, J. Miller, J. Freemantle, S. E. Loechel, C. Walthall,

K. Innanen, and H. White, “Compact airborne spectrographic imager
(casi) used for mapping biophysical parameters of boreal forests,”
Journal of Geophysical Research, V, vol. 104, pp. 27,94527,958, 11
1999.

[7] B. Kunkel, F. Blechinger, R. Lutz, R. Doerffer, H. van der Piepen, and
M. Schroder, “ROSIS (Reflective Optics System Imaging Spectrometer)
- A candidate instrument for polar platform missions,” in Proc. SPIE
0868 Optoelectronic technologies for remote sensing from space,
J. Seeley and S. Bowyer, Eds., 1988, p. 8.

[8] E. Bedini, F. van der Meer, and F. van Ruitenbeek, “Use of hymap
imaging spectrometer data to map mineralogy in the rodalquilar
caldera, southeast spain,” International Journal of Remote Sensing,
vol. 30, no. 2, pp. 327–348, 2009.

[9] E. Puckrin, C. S. Turcotte, M.-A. Gagnon, J. Bastedo, V. Farley, and
M. Chamberland, “Airborne Infrared Hyperspectral Imager for Intel-
ligence, Surveillance and Reconnaissance Applications,” in Proc.SPIE
8360 Airborne Intelligence, Surveillance, Reconnaissance (ISR) Sys-
tems and Applications IX, 2012, p. 10.

[10] I. Vorovencii, “The Hyperspectral Sensors used in Satellite and Aerial
Remote Sensing,” Bulletin of the Transilvania University of Braşov,
vol. 2, no. 51, 2009.

[11] R. C. Olsen, Remote sensing from air and space. Bellingham,
Washington USA: SPIE press, 2007.

[12] S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold,
R. Quarles, J. Russell, L. J. Otten, B. A. Jones, A. Edwards, J. Lane,
A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat
II.1 hyperspectral imager: summary of on-orbit performance7510 a
currently with Ball Aerospace and Technology Corporation2649 b
currently with Rio Grande Medical Technologies,” in Proc.SPIE 4480,
Imaging Spectrometry VII, 2002, p. 12.

[13] C.-I. Chang, Hyperspectral Imaging: Techniques for Spectral Detection
and Classification. Springer US, 2003.

[14] P. Ghamisi, J. Plaza, Y. Chen, J. Li, and A. Plaza, “Advanced Spectral
Classifiers for Hyperspectral Images: A Review,” IEEE Geoscience and
Remote Sensing Magazine, vol. 5, no. 1, pp. 8–32, 2017.

[15] M. Teke, H. S. Deveci, O. Haliloğlu, S. Zübeyde Gürbüz, and
U. Sakarya, “A Short Survey of Hyperspectral Remote Sensing Ap-
plications in Agriculture,” in Recent Advances in Space Technologies
(RAST), 2013.

[16] A. Plaza, J. Plaza, A. Paz, and S. Sanchez, “Parallel Hyperspectral
Image and Signal Processing,” IEEE Signal Processing Magazine,
vol. 28, no. 3, pp. 119–126, 2011.



20

[17] X. Lu, X. Li, and L. Mou, “Semi-supervised multitask learning for
scene recognition,” IEEE Transactions on Cybernetics, vol. 45, no. 9,
pp. 1967–1976, Sept 2015.

[18] A. B. Pour and M. Hashim, “ASTER, ALI and Hyperion sensors data
for lithological mapping and ore minerals exploration,” SpringerPlus,
vol. 3, no. 1, p. 130, 2014.

[19] M. J. Abrams and S. J. Hook, NASA’s Hyperspectral Infrared Imager
(HyspIRI). Dordrecht: Springer Netherlands, 2013, pp. 117–130.

[20] H. Kaufmann, L. Guanter, K. Segl, S. Hofer, K.-P. Foerster, T. Stuffler,
A. Mueller, R. Richter, H. Bach, and P. Hostert, “Environmental
Mapping and Analysis Program (EnMAP) Recent Advances and
Status,” IEEE International Geoscience & Remote Sensing Symposium,
IGARSS, vol. 4, pp. 109–112, 2008.

[21] C. Galeazzi, A. Sacchetti, A. Cisbani, and G. Babini, “The PRISMA
Program,” in IGARSS 2008 - 2008 IEEE International Geoscience and
Remote Sensing Symposium, 2008, pp. IV – 105–IV – 108.

[22] A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile,
L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba,
A. Gualtieri, M. Marconcini, J. C. Tilton, and G. Trianni,
“Recent advances in techniques for hyperspectral image processing,”
Remote Sensing of Environment, vol. 113, pp. S110 – S122,
2009, imaging Spectroscopy Special Issue. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0034425709000807

[23] D. Chutia, D. K. Bhattacharyya, K. K. Sarma, R. Kalita, and S. Sud-
hakar, “Hyperspectral Remote Sensing Classifications: A Perspective
Survey,” Transactions in GIS, vol. 20, no. 4, pp. 463–490, 2016.

[24] J. Macqueen, “Some methods for classification and analysis of mul-
tivariate observations,” in 5-th Berkeley Symposium on Mathematical
Statistics and Probability, 1967, pp. 281–297.

[25] J. Haut, M. Paoletti, J. Plaza, and A. Plaza, “Cloud implementation of
the K-means algorithm for hyperspectral image analysis,” Journal of
Supercomputing, vol. 73, no. 1, 2017.

[26] Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, “SpectralSpatial
Classification of Hyperspectral Imagery Based on Partitional
Clustering Techniques,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 47, no. 8, pp. 2973–2987, 2009. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4840429

[27] G. H. Ball and D. J. Hall, ISODATA: A novel method of data analysis
and classification,. Stanford Research Institute, 1965.

[28] M. Paoletti, J. Haut, J. Plaza, and A. Plaza, “Yinyang K-means
clustering for hyperspectral image analysis,” in Proceedings of the
17th International Conference on Computational and Mathematical
Methods in Science and Engineering, J. Vigo-Aguiar, Ed., Rota, 2017,
pp. 1625–1636.

[29] C. M. Bishop, Neural Networks for Pattern Recognition. Clarendon
Press, 1995. [Online]. Available: https://books.google.es/books?id=-
aAwQO -rXwC

[30] P. M. Atkinson and A. R. L. Tatnall, “Introduction Neural
networks in remote sensing,” International Journal of Remote
Sensing, vol. 18, no. 4, pp. 699–709, 1997. [Online]. Available:
http://dx.doi.org/10.1080/014311697218700

[31] J. A. Benediktsson, P. H. Swain, and O. K. Ersoy, “Conjugate
gradient neural networks in classification of very high dimensional
remote sensing data,” International Journal of Remote Sensing,
vol. 14, no. 15, pp. 2883–2903, 1993. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1080/01431169308904316

[32] H. Yang, “A back-propagation neural network for mineralogical
mapping from AVIRIS data,” International Journal of Remote
Sensing, vol. 20, no. 1, pp. 97–110, 1999. [Online]. Available:
http://dx.doi.org/10.1080/014311699213622

[33] J. A. Benediktsson and P. H. Swain, “Statistical Methods and Neural
Network Approaches for Classification of Data from Multiple Sources,”
Ph.D. dissertation, PhD thesis, Purdue Univ., School of Elect. Eng.
West Lafayette, IN, 1990.

[34] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016.

[35] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol.
521, p. 436444, 2015.

[36] L. Deng and D. Yu, “Deep Learning: Methods and Applications,”
Foundations and Trends R© in Signal Processing, vol. 7, no. 34, pp.
197–387, 2014.

[37] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep Feature
Extraction and Classification of Hyperspectral Images Based on
Convolutional Neural Networks,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 54, no. 10, pp. 6232–6251, 2016. [Online].
Available: http://ieeexplore.ieee.org/document/7514991/

[38] K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, “Deep
supervised learning for hyperspectral data classification through con-
volutional neural networks,” in 2015 IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), 2015, pp. 4959–4962.

[39] Y. Bengio, “Learning Deep Architectures for AI,” Machine Learning,
vol. 2, no. 1, pp. 1–127, 2009.

[40] Y. Feng, Y. Yuan, and X. Lu, “Learning deep event models for crowd
anomaly detection,” Neurocomputing, vol. 219, pp. 548 – 556, 2017.

[41] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554,
2006.

[42] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, pp. 504–507, 2006.

[43] Y. Chen, X. Zhao, and X. Jia, “Spectral-Spatial Classification of
Hyperspectral Data Based on Deep Belief Network,” IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 8, no. 6, pp. 2381–2392, 2015.

[44] T. Li, J. Zhang, and Y. Zhang, “Classification of hyperspectral image
based on deep belief networks,” in Proc. IEEE Int. Conf. Image Proces.,
2014, pp. 5132–5136.

[45] J. H. Le, A. P. Yazdanpanah, E. E. Regentova, and V. Muthukumar,
“A deep belief network for classifying remotely-sensed hyperspectral
data,” in Advances in Visual Computing, G. Bebis, R. Boyle, B. Parvin,
D. Koracin, I. Pavlidis, R. Feris, T. McGraw, M. Elendt, R. Kopper,
E. Ragan, Z. Ye, and G. Weber, Eds. Cham: Springer International
Publishing, 2015, pp. 682–692.

[46] P. Zhong, Z. Gong, S. Li, and C. B. Schnlieb, “Learning to diversify
deep belief networks for hyperspectral image classification,” IEEE
Trans Geosci. Remote Sens., vol. 55, no. 6, pp. 3516–3530, Jun. 2017.

[47] A. Okan, B. Özdemir, B. E. Gedik, C. Yasemin, and Y. Çetin,
“Hyperspectral classification using stacked autoencoders with deep
learning,” in 2014 6th Workshop on Hyperspectral Image and Signal
Processing: Evolution in Remote Sensing (WHISPERS), 2014, pp. 1–4.

[48] J. Li, L. Bruzzone, and S. Liu, “Deep feature representation for hyper-
spectral image classification,” in 2015 IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), 2015, pp. 4951–4954.

[49] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep Learning-Based
Classification of Hyperspectral Data,” IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, vol. 7, no. 6, pp.
2094–2107, 2014.

[50] C. Tao, H. Pan, Y. Li, and Z. Zou, “Unsupervised Spectral-Spatial
Feature Learning With Stacked Sparse Autoencoder for Hyperspectral
Imagery Classification,” IEEE Geoscience and Remote Sensing Letters,
vol. 12, no. 12, pp. 2438–2442, 2015.

[51] X. Chen, S. Xiang, C.-L. Liu, and C.-H. Pan, “Vehicle Detection in
Satellite Images by Hybrid Deep Convolutional Neural Networks,”
IEEE Geoscience and Remote Sensing Letters, vol. 11, no. 10, pp.
1797–1801, 2014.

[52] L. Mou, P. Ghamisi, and X. X. Zhu, “Deep recurrent neural networks
for hyperspectral image classification,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 55, no. 7, pp. 3639–3655, 2017.

[53] Z. Zuo, B. Shuai, G. Wang, X. Liu, X. Wang, B. Wang, and Y. Chen,
“Convolutional recurrent neural networks: Learning spatial dependen-
cies for image representation,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), June 2015, pp.
18–26.

[54] H. Wu and S. Prasad, “Convolutional Recurrent Neural Networks
forHyperspectral Data Classification,” Remote Sensing, vol. 9, no. 3,
p. 298, 2017.

[55] ——, “Semi-supervised deep learning using pseudo labels for hyper-
spectral image classification,” IEEE Transactions on Image Processing,
vol. 27, no. 3, pp. 1259–1270, March 2018.

[56] W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, “Deep convolutional
neural networks for hyperspectral image classification,” Journal of
Sensors, 2015.

[57] S. Yu, S. Jia, and C. Xu, “Convolutional neural
networks for hyperspectral image classification,” Neurocomput-
ing, vol. 219, pp. 88–98, 1 2017. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0925231216310104

[58] Z. Zheng, Y. Zhang, L. Li, M. Zhu, Y. He, M. Li, Z. Guo, Y. He, Z. Yu,
X. Yang, X. Liu, J. Luo, T. Yang, Y. Liu, and J. Li, “Classification based
on deep convolutional neural networks with hyperspectral image,” in
Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 2017, pp. 1828–1831.

[59] H. Liang and Q. Li, “Hyperspectral imagery classification using sparse
representations of convolutional neural network features,” Remote
Sens., vol. 8, no. 2, p. 99, 2016.



21

[60] J. Yang, Y. Zhao, J. C. W. Chan, and C. Yi, “Hyperspectral image
classification using two-channel deep convolutional neural network,”
in IEEE Int. Geosci. Remote Sens. Symp., 2016, pp. 5079–5082.

[61] H. Zhang, Y. Li, Y. Zhang, and Q. Shen, “Spectral-spatial classification
of hyperspectral imagery using a dual-channel convolutional neural
network,” Remote Sens. Lett., vol. 8, no. 5, pp. 438–447, Jan. 2017.

[62] Z. Zhong, J. Li, Z. Luo, and M. Chapman, “Spectral-Spatial Residual
Network for Hyperspectral Image Classification: A 3-D Deep Learning
Framework,” IEEE Transactions on Geoscience and Remote Sensing,
vol. PP, no. 99, pp. 1–12, 2017.

[63] Y. Li, H. Zhang, and Q. Shen, “Spectralspatial classification of hyper-
spectral imagery with 3d convolutional neural network,” Remote Sens.,
vol. 9, Jan. 2017.

[64] M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, “A new deep con-
volutional neural network for fast hyperspectral image classification,”
ISPRS Journal of Photogrammetry and Remote Sensing, 2017.

[65] L. Breiman, “Heuristics of instability and stabilization in model selec-
tion,” Annals of Statistics, vol. 24, no. 6, 1996.

[66] G. M. Foody and A. Mathur, “The use of small training sets containing
mixed pixels for accurate hard image classification: Training on mixed
spectral responses for classification by a SVM,” Remote Sensing of
Environment, vol. 103, no. 2, pp. 179 – 189, 2006.

[67] M. Khodadadzadeh, J. Li, A. Plaza, H. Ghassemian, J. M. Bioucas-
Dias, and X. Li, “SpectralSpatial Classification of Hyperspectral Data
Using Local and Global Probabilities for Mixed Pixel Characteriza-
tion,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52,
no. 10, pp. 6298–6314, 2014.

[68] G. Hughes, “On the mean accuracy of statistical pattern recognizers,”
IEEE Transactions on Information Theory, vol. 14, no. 1, pp. 55–63,
January 1968.

[69] C.-I. Chang, Hyperspectral data exploitation : theory and applications,
C.-I. Chang, Ed. Wiley-Interscience, 2007.

[70] D. J. MacKay, “Information-Based Objective Functions for Active Data
Selection,” Neural Computation, vol. 4, no. 4, pp. 590–604, 1992.

[71] D. Tuia, F. Ratle, F. Pacifici, M. F. Kanevski, and W. J. Emery, “Active
Learning Methods for Remote Sensing Image Classification,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 47, no. 7, pp.
2218–2232, 2009.

[72] S. Rajan, J. Ghosh, and M. M. Crawford, “An Active Learning
Approach to Hyperspectral Data Classification,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 46, no. 4, pp. 1231–1242, 2008.

[73] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Semisupervised Hyperspectral
Image Segmentation Using Multinomial Logistic Regression With Ac-
tive Learning,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 48, no. 11, pp. 4085–4098, 2010.

[74] D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Munoz-Mari, “A
Survey of Active Learning Algorithms for Supervised Remote Sensing
Image Classification,” IEEE Journal of Selected Topics in Signal
Processing, vol. 5, no. 3, pp. 606–617, 2011.

[75] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Spectral-Spatial Classification
of Hyperspectral Data Using Loopy Belief Propagation and Active
Learning,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 51, no. 2, pp. 844–856, 2013.

[76] C. M. Bishop, “Bayesian neural networks,” Journal of the Brazilian
Computer Society, vol. 4, no. 1, 1997.

[77] D. J. C. MacKay, “A Practical Bayesian Framework for Backpropa-
gation Networks,” Neural Computation, vol. 4, no. 3, pp. 448–472,
1992.

[78] R. M. Neal, Bayesian Learning for Neural Networks. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 1996.

[79] Y. Gal, “Uncertainty in Deep Learning,” Ph.D. dissertation, University
of Cambridge, 2016.

[80] J. S. Denker and Y. leCun, “Transforming neural-net output levels to
probability distributions,” in Proceedings of the 1990 Conference on
Advances in Neural Information Processing Systems 3, ser. NIPS-3.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990,
pp. 853–859.

[81] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning,” CoRR, 2015.

[82] R. Islam, “Active Learning for High Dimensional Inputs using Bayesian
Convolutional Neural Networks,” Ph.D. dissertation, University of
Cambridge, 2016.

[83] Y. Gal and Z. Ghahramani, “Bayesian Convolutional Neural Net-
works with Bernoulli Approximate Variational Inference,” CoRR, vol.
abs/1506.02158, 2015.

[84] L. Zhang, L. Zhang, and B. Du, “Deep Learning for Remote
Sensing Data Advances in Machine Learning for Remote
Sensing and Geosciences,” IEEE Geoscience and Remote Sensing
Magazine, vol. 4, no. 2, pp. 22–40, 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7486259/

[85] K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. Lecun, “What is
the Best Multi-Stage Architecture for Object Recognition?” in ICCV.
IEEE, 2009, pp. 2146–2153.

[86] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted
Boltzmann Machines,” in Proceedings of the 27th International Con-
ference on Machine Learning (ICML-10), Johannes Fürnkranz and
Thorsten Joachims, Ed. Omnipress, 2010, pp. 807–814.

[87] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural
Networks,” in Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics (AISTATS-11), Geoffrey J.
Gordon and David B. Dunson, Ed. Journal of Machine Learning
Research - Workshop and Conference Proceedings, 2011, pp. 315–323.

[88] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
Uncertainty in Neural Networks,” in Proceedings of the 32Nd Interna-
tional Conference on International Conference on Machine Learning,
vol. 37. Lille, France: JMLR.org, 2015, pp. 1613–1622.

[89] Y. Gal, R. Islam, and Z. Ghahramani, “Deep bayesian active learning
with image data,” CoRR, vol. abs/1703.02910, 2017.

[90] M. Kampffmeyer, A.-B. Salberg, and R. Jenssen, “Semantic Seg-
mentation of Small Objects and Modeling of Uncertainty in Urban
Remote Sensing Images Using Deep Convolutional Neural Networks,”
in 2016 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 2016, pp. 680–688.

[91] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell
System Technical Journal, vol. 26, no. 4, pp. 623–656, 1948.

[92] N. Houlsby, F. Huszár, and Z. Ghahramani, “Bayesian Active Learning
for Classification and Preference Learning,” ArXiv e-prints, 2011.

[93] T. Luo, K. Kramer, S. Samson, A. Remsen, D. B. Goldgof, L. O.
Hall, and T. Hopkins, “Active learning to recognize multiple types
of plankton,” in Proceedings of the 17th International Conference on
Pattern Recognition, 2004. ICPR 2004., vol. 3, Aug 2004, pp. 478–481
Vol.3.

[94] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Hyperspectral Image Segmen-
tation Using a New Bayesian Approach With Active Learning,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 49, no. 10, pp.
3947–3960, 2011.

[95] D. J. C. MacKay, “Information-based objective functions for active data
selection,” Neural Computation, vol. 4, no. 4, pp. 590–604, July 1992.

[96] Q. Liu, R. Hang, H. Song, F. Zhu, J. Plaza, and A. Plaza,
“Adaptive Deep Pyramid Matching for Remote Sensing Scene
Classification,” CoRR, vol. abs/1611.03589, 2016. [Online]. Available:
http://arxiv.org/abs/1611.03589

[97] W. Zhao and S. Du, “Learning multiscale and deep representations for
classifying remotely sensed imagery,” ISPRS Journal of Photogram-
metry and Remote Sensing, vol. 128, pp. 223 – 239, 2016.

[98] P. Zhang, M. Gong, L. Su, J. Liu, and Z. Li, “Change detection
based on deep feature representation and mapping transformation
for multi-spatial-resolution remote sensing images,” ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 116, pp. 24–41, 2016.

[99] Y. Li, H. Zhang, and Q. Shen, “SpectralSpatial Classification of Hy-
perspectral Imagery with 3D Convolutional Neural Network,” Remote
Sensing, vol. 9, no. 1, p. 67, 2017.

[100] J. Nocedal, “Updating Quasi-Newton Matrices With Limited Storage,”
Math. of Computation, vol. 35, no. 151, pp. 773–782, 1980.

[101] J. Haut, M. Paoletti, A. Paz-Gallardo, J. Plaza, and A. Plaza, “Cloud
implementation of logistic regression for hyperspectral image clas-
sification,” in Proceedings of the 17th International Conference on
Computational and Mathematical Methods in Science and Engineering,
CMMSE 2017, J. Vigo-Aguiar, Ed., Costa Ballena (Rota), Cádiz, Spain,
2017, pp. 1063–2321.

[102] D. P. Kingma and J. L. Ba, “ADAM: {A} method
for stochastic optimization,” CoRR, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[103] M. Volpi and V. Ferrari, “Semantic segmentation of urban scenes
by learning local class interactions,” in 2015 IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), June
2015, pp. 1–9.

[104] X. Wei, Y. Guo, X. Gao, M. Yan, and X. Sun, “A new semantic segmen-
tation model for remote sensing images,” in 2017 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), July 2017, pp.
1776–1779.


