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Abstract—Denoising is a common pre-processing step prior to
the analysis and interpretation of hyperspectral images (HSIs).
However, the vast majority of methods typically adopted for HSI
denoising exploit architectures originally developed for grayscale
or RGB images, exhibiting limitations when processing high-
dimensional HSI data cubes. In particular, traditional methods
do not take into account the high spectral correlation between
adjacent bands in HSIs, which leads to unsatisfactory denoising
performance as the rich spectral information present in HSIs
is not fully exploited. To overcome this limitation, this paper
considers deep learning models –such as convolutional neural
networks (CNNs)– to perform spectral-spatial HSI denoising.
The proposed model, called HSI single denosising CNN (HSI-
SDeCNN), efficiently takes into consideration both the spatial
and spectral information contained in HSIs. Experimental results
on both synthetic and real data demonstrate that the proposed
HSI-SDeCNN outperforms other state-of-the-art HSI denoising
methods. Source code: https://github.com/mhaut/HSI-SDeCNN

Index Terms—Hyperspectral images (HSIs), denoising, convo-
lutional neural networks (CNNs), spatial-spectral information.

I. INTRODUCTION

HYPERSPECTRAL sensors (also called imaging spec-
trometers) collect the information across the electromag-

netic spectrum in several contiguous and narrow bands, pro-
ducing high-dimensional hyperspectral images (HSIs) (or data
cubes) with hundreds of spectral bands [1], [2]. Compared to
other kind of remotely sensed images, HSIs are characterized
by the rich spectral information that they convey. Rather than
focusing on spatial variations, the analysis of HSIs mainly
focuses on spectral variations. In fact, the main idea behind
HSIs is to enlarge the spectral dimension of a pixel so that it
contains a unique and characteristic spectral signature for the
underlying objects on the surface of the Earth. In this context,
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each pixel in a HSI is given by a B-dimensional vector, where
B is the number of spectral channels or bands [3].

Although hyperspectral satellites are still poorly represented
in space-borne missions, HSIs allow for better class discrim-
ination than multispectral images [4], fostering their use in
a wide range of application domains, including classification
[5], spectral unmixing [6] and target detection [7], among
many others. The quality of spectral signatures becomes
crucial for the correct interpretation of HSIs. However the
acquisition process introduces a significant amount of noise in
the data, which leads to intra-class variability and inter-class
similarity [8]. This noise degradation is mainly due to two
factors: instrumental acquisition limitations and atmospheric
distortions [9].

In order to overcome these issues, image denoising is
typically adopted as a pre-processing step for noise removal
prior to HSI data analysis [10]. This is crucial for obtaining
accurate results in tasks such as classification, unmixing and
target detection. However, many techniques adopted for HSI
denoising are based on approaches that were originally de-
veloped for grayscale or RGB images, disregarding the rich
spectral information contained in each HSI pixel. Moreover,
standard methods adopted for HSI denoising process the data
in a band-by-band fashion, applying traditional 1D or 2D
convolution kernels. Thus, they take into account only the
spatial information and disregard the information across the
bands, which is crucial for the analysis of spectral signatures.
For instance, available models such as block matching and 3D
filtering (BM3D) [11], or weighted nuclear norm minimization
(WNNM) [12] have been applied to HSI images by consid-
ering each band as a 2D image, which leads to large spectral
distortions.

Another widely used strategy to denoise HSIs is to take
into account groups of three adjacent bands at a time as in the
case of the 3D denoising convolutional neural network (3D-
DnCNN) [13]. This strategy, which is adapted from techniques
for RGB image denoising, often provides better performance
due to the fact that it considers the spectral correlation between
adjacent bands. However, given the large amount of spectral
bands contained in HSIs, considering groups of three channels
only represents a significant limitation. In the literature HSI
denoising techniques have evolved to incorporate spectral
information. Available methods can be divided into two main
classes [14]: spatial filtering methods and transform-domain
filtering methods:

• Spatial filtering methods include the algorithm proposed
by Othman et al. [15], a hybrid spatial-spectral noise
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reduction (HSSNR) scheme that operates almost inde-
pendently in the spatial and spectral domains, trying to
accommodate the dissimilarity between the spatial and
the spectral dimensions. In this scheme, noise is first
removed from the spatial domain, where the signal is
relatively regular. Then, additional noise (as well as those
artifacts that may have been introduced during the spatial
denoising) are removed in the spectral domain. Letexier
et al. [16] adapted a generalized multidimensional Wiener
filter (MWF) to HSIs. The main disadvantage of spatial
filtering methods such as those mentioned above is that
they are quite sensitive to the transform domain, and
cannot consider the differences in terms of geometrical
characteristics of HSIs. As a result, they are not widely
used for HSI data denoising.

• Transform-domain filtering methods include the approach
by Yuan et al. [17], a spectral-spatial adaptive total
variation model (SSAHTV) in which the spectral noise
differences and the spatial information differences are
both considered in the process of noise reduction. Chen
et al. [18] proposed an extension of the BM4D algorithm
[19], which exploits the principal component analysis
(PCA) to perform HSI denoising. The method by Lu et
al. [20] is based on the spatial-spectral adaptive sparse
representation (SSASR), while Zhao et al. [21] fuse a
sparse coding approach together with a low-rank method
by exploiting the fact that HSIs are characterized by
global and local redundancy, and correlation in the spatial
and spectral domains. Zhang et al. proposed a method
called low-rank matrix recovery (LRMR) [22], in which
the low-rank property of HSIs is exploited, suggesting
that a clean HSI patch can be regarded as a low-rank
matrix. A subsequent method by He et al. [23], called
spatial-spectral total variation regularized local low-rank
matrix recovery (LLRSSTV), adopts a global total vari-
ation strategy to reconstruct the clean patches. Finally,
the low-rank tensor approximation (LRTA) method by
Chane et al. [24] preserves the global structure of HSIs
and simultaneously removes outliers and different types
of noise.

The major drawback of the aforementioned spatial-domain
and transform-domain methods is that, to achieve good per-
formance, they need to fine-tune the hyperparameters for
each HSI. This process is expensive from the viewpoint
of computational time and resources, and often requires an
external operator (i.e., a human expert) to correctly tune such
parameters for different HSIs.

In the last few years, deep learning [25] in general and
convolutional neural networks (CNNs) [26] in particular, have
been successfully used for automatic processing of image data
[27], with outstanding results in tasks such as classification
and object detection [28], [29]. This is mainly due to the
following reasons: (i) the availability of very large training
sets, with millions of labeled examples; (ii) the possibility to
use powerful graphics processing unit (GPU)-based implemen-
tations that make it possible the efficient training of very large
models in practice, and (iii) the definition of accurate model

regularization strategies, such as dropout [30]. In this sense,
the application of deep learning architectures [31], [32] and
CNN models resulted in powerful HSI data analysis techniques
[33]–[36], including denoising methods too. However, many
CNN-based denoising approaches are developed for grayscale
or RGB images, and cannot fully exploit the rich spectral
information contained in HSIs. Yuan et al. [37] proposed a
residual CNN learning-based (HSID-CNN) method for HSI
denoising, taking into consideration both the spatial and the
spectral information and without the need to manually tune
the hyperparameters for different HSI. This offers versatility,
scalability and generalization properties when dealing with
HSI denoising tasks. Indeed, this method achieved the best
HSI denoising performance among all the available methods
in literature. However, it requires to train different models for
each level of noise present in the data, which does not provide
a global solution to the denoising problem.

In this paper, an improved CNN architecture is developed to
efficiently perform HSI denoising. The proposed architecture,
inspired by a network typically used for grayscale and RGB
images (named FFDNet [38]), is called HSI single-denoising
CNN (HSI-SDeCNN). Instead of considering only the spatial
information contained in the scene, our newly developed
approach is able to jointly consider both the spatial and the
spectral correlation, outperforming previously available tech-
niques used in HSI denoising. The proposed HSI-SDeCNN
model takes as input a 3-dimensional HSI scene, ie. a h× w
data cube (being h the height and w the width) and whose
spectral information is composed by a single band, together
with its adjacent K bands (coupled with a noise-level map).
Then it returns, as output, a single denoised image for each
considered band. In practice,takes as input a volume of K+ 1
bands (stacked together with a noise-level map), and returns
the central noise-free band. Thus, our method performs the
denoising of the central band, taking as input its previous
and subsequent K/2 bands, resulting in a spectral-spatial
integration when denoising the HSI data.

The main advantages of the proposed HSI-SDeCNN with
respect to previous models can be enumerated as follows:

1) It provides a fast solution to the HSI denoising problem,
exploiting a down-sampling kernel that allows the net-
work to perform very fast without losing performance.

2) It takes as input a noise-level map, i.e., an estimation
of the noise-level present in the volume to be denoised,
which allows us to control the trade-off between de-
noising performance and detail preservation. This makes
our network flexible and adaptive to multi-level noise,
without the need to train different models for different
noise levels as it is for example the case in [37].

3) In our experimental analysis, it provided excellent re-
sults on both synthetic images corrupted by additive
white gaussian noise (AWGN) [9] and real HSI images,
demonstrating its full potential for practical HSI denois-
ing applications.

The remainder of the paper is organized as follows. Section
II describes the proposed method and the adopted network
architecture. Section III illustrates datasets, implementation
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Fig. 1. Graphical illustration of the proposed methodology, composed by three main parts: (i) a pre-processing step, (ii) a deep non-linear mapping and
(iii) a post-processing step. First, a three-step pre-processing method is applied where K/2 adjacent bands from the original HSI scene are stacked at the
beginning and at the end of the cube X̃ in order to consider all the B spectral bands, including spectral-spatial information, to perform the denoising task.
Then, for the n-th band (with n = {1, · · · , B}), the data cube X̃n is extracted considering the K/2 adjacent front and back bands. The obtained data cube
is reorganized in order to introduce the spatial-downsampled data representation X̂n. This X̂n is sent to the CNN model, obtaining (at the end) a noise-free
data representation Yn, which is upscaled to obtain a clean representation of the original n-th spectral band Ỹn. Finally, the clean bands are concatenated
together to recover a noise-free HSI scene X.

details and considered metrics. Further section IV and section
V present respectively the experimental results obtained on
simulated and real data, together with a comparison with state-
of-the-art methods. Finally, section VI concludes the paper
with some remarks and hints for plausible future research
lines.

II. METHODOLOGY

In this section we describe the proposed HSI-SDeCNN
model and how it can be applied to HSI denoising tasks,
which can be processed by spectral, spatial or spectral-
spatial models [9]. In this sense, the HSI scene can be
considered as a 3D data structure, i.e., a volume denoted
by X ∈ Rh×w×B , where h × w indicates the number of
spectral samples (pixels), being each one a B-dimensional
spectral vector xi,j ∈ RB = [xi,j,1, · · · , xi,j,B ]. On the one
hand, standard spectral-based models consider the pixel xi,j
as an independent element, processing the spectral information
in an isolated way and disregarding the spatial information
that surrounds it. On the other hand, the spatial models only
consider the spatial information extracted from a neighborhood
window, disregarding the spectral correlation between bands.

In this context, the proposed deep learning inspired model
attempts to overcome these limitations by considering spatial-
spectral patches. Consequently, the proposed model can be
regarded as a spatial-spectral one.

The denoising process has been carried out under the
assumption of additive white Gaussian noise (AWGN). In
particular, from the original noise-free version of the HSI
scene X, a noisy representation X̃ is obtained by introducing
an additive white Gaussian noise denoted as N = N (0, σ),
which is based on a normal distribution with zero-mean and
variance σ to easily control the noise level. This allows
to obtain an independent and identically distributed noise,
introducing a controlled noise intensity and simulating the
effect of many random and uncontrolled processes that occur
in real scenarios, such as the remote sensing data acquisition:

X̃ = X +N (1)

In this sense, the goal of the proposed HSI-SDeCNN model
is to accurately recover from the corrupted data cube X̃ a
noise-free image, X, cleaning the data band by band and
incorporating spatial-spectral information. Fig. 1 provides a
graphical illustration of the proposed method. As we can
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observe, the overall structure of the proposed method can be
divided into three main parts: (i) a pre-processing stage, where
the HSI data is prepared to be given as input to the neural
model, performing a spectral-elongation of the data coupled
with downsampling and noise-level map concatenation steps;
(ii) the path through the neural model, which extracts more
abstract representations of the data, performing a non-linear
mapping to obtain a noise-free output, and (iii) a post-
processing stage to recover the full HSI scene without noise,
which includes an upsampling of the network’s output and the
concatenation of the denoised spectral bands. In the following,
these stages will be describe in detail.

A. Spectral elongation of the HSI cube

The adopted strategy scans the spectral dimension in a raster
way and performs denoising one band at a time. That is, the
proposed HSI-SDeCNN model performs the denoising task
band by band, including the spatial information contained into
a neighborhood region h × w and the spectral correlation
between the target band and the K adjacent bands. The
motivation for this choice is that neighboring bands exhibit
high correlation, which decreases for bands that are further
away in terms of wavelength [39].

Based on this insight, for the n-th band with spatial size
h × w, a data cube of size h × w × (K + 1) is considered,
where K is the number of adjacent bands with respect to the
central one, at position K/2+1. This data cube is obtained by
taking into account the front and back adjacent (K/2)-bands,
i.e. from the n− (K/2)-th band to the n+ (K/2)-th spectral
band. For example, if we consider K = 24, the input volume
fed to the HSI-SDeCNN model will be of size h × w × 25,
and the output denoised band will be the one at position 13
(i.e., the central one). In this way, the proposed model exploits
the spatial-spectral correlation between the central band and
the K adjacent bands to provide a noise-free version of the
central band.

In this sense, in order to perform the denoising process on
the B available bands, the original HSI scene of size h×w×B
must be spectrally elongated so that further contiguous bands
are concatenated to the data cube at the beginning and at the
end, generating a volume of size h×w× (B+K). The bands
are stacked in reverse order, as depicted in Fig. 1. In this
way, we can perform the denoising of all the B bands in
the original HSI cube, scanning for bands in a raster way. In
order to follow a simple mathematical notation, we will denote
the elongated and noisy data cube as X̃ ∈ Rh×w×(B+K) and
the input data cube obtained from the n-th spectral band as
X̃n ∈ Rh×w×(K+1).

B. Downsampling

This operation is performed by a downsampling kernel that
reshapes the input HSI volume X̃n ∈ Rh×w×(K+1) into
several downsampled sub-cubes in order to reduce the spatial
dimension of the cube without losing information. Indeed,
the applied downsampling operation is a way of doubling the
receptive field, which sensibly reduces runtimes and memory
requirements while maintaining the denoising performance.

The scale-factor is set to 2. In practice, this operation takes
the t-th band of X̃n (i.e., t works as an index of the (K + 1)
spectral bands of X̃n, being t = {n −K/2, · · · , n + K/2})
and reorganizes the h × w pixels contained in it into 4 sub-
cubes, each one with size w/2×h/2, rearranging the pixels in
the different channels of the output image according to [40]:

X̂n(i, j, t) = X̃n

(
2i+ (t mod 2), 2j +

⌊
t

2

⌋
,

⌊
t

4

⌋ )
, (2)

where (i, j) indicates the spatial position of the resulting
pixel at band t, while “mod” and b c denote the magnitude
and the “floor” operations, respectively. Moreover, X̃n is the
input image extracted from X̃, and X̂n is the output of the
downsampling operation. In fact, this X̂n will be the input of
the CNN model, whose goal is to recover a noise-free image
of the n-th band.

Further details about the downsampling layer employed in
the proposed method can be found in [40], [41]. This process is
applied to all the spectral channels, and the obtained sub-cubes
are concatenated along the spectral dimension, generating the
output volume X̂n ∈ Rh/2×w/2×4(K+1). This operation allows
the network to be fast, without losing information, which at
the end improves the denoising performance.

C. Noise-level map concatenation

In order to complete the information contained into the
network’s input data X̂n, as a previous step a noise-level map
M ∈ Rh/2×w/2 is concatenated to the generated sub-cubes,
obtaining a volume of size h/2 × w/2 × (4(K + 1) + 1).
The noise-level map gives an estimation of the level of noise
σ present in the image. It is inserted as a map having the
same spatial dimension as the sub-cubes, in order to avoid
any mismatch in terms of dimensionality [38].

In this way, the network exploits this prior information
to control the trade-off between denoising performance and
detail preservation. This is because, as opposed to common
residual learning methods, adding a noise-level map makes
the model parameters (i.e. weights and biases) invariant to the
noise level of the input image. Thus, with this approach, it
is possible to handle both different noise levels and spatially-
variant noise, with a single network architecture. Most model-
based denoising methods aim to solve the following problem:

arg min
X

1

σ2

∥∥∥X̃−X
∥∥∥2 + λΦ(X), (3)

where 1
σ2

∥∥∥X̃−X
∥∥∥2 is the discrepancy between the noise-free

data X and the noisy data X̃ (with noise level σ) and Φ(X) is
a regularization term associated with the image prior. In this
regard, the noise map M plays the role of λ in controlling
the trade-off between detail preservation and denoising perfor-
mance [38]. This improves the network’s flexibility, which can
handle images with various noise levels by simply specifying
the associated noise level map. M in our case is a uniform
matrix in which all elements are σ. Notice that the value of
the noise level map (we refer to this as input noise level) can
differ from the noise level effectively present in the image (we
refer to this as ground-truth noise level). For this reason in the
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following we denote the input noise level as σ̂. In the testing
phase, we obtain the best results when the input noise level
map matches the noise level of the input image (σ̂ = σ). The
results are degraded when there is a mismatch in the values.
Further analyses are presented in section V.

D. Non-linear mapping

At this point, the obtained volume X̂n is fed to a standard
CNN. This model is composed by a stack of convolutional
and non-linear activation layers. In this sense, the convolu-
tional (Conv) layer performs the basic feature extraction task
of the model, obtaining at each time a deep and abstract
representation of the input data. In particular, the proposed
model exploits Conv layers defined by 2D-kernels of size
K × k× k, where the l-th layer (denoted as C(l)), receives as
input the feature data X(l−1) obtained by the previous layer.
Thus, K filters of size k × k are overlapped over X(l−1),
sliding across the width and height with a particular stride s,
as Eq. 4 indicates:

Y(l) =
(
W(l) ∗k×k X(l−1)

)
+ b(l)

y
(l)z
i,j =

k∑
î=1

k∑
ĵ=1

(
x
(l−1)

(i·s+î),(j·s+ĵ) · w
(l)z

î,ĵ

)
+ b(l)

(4)

In this sense, the output data Y(l) is obtained by overlapping
the layer’s weights W(l) to the input volume data X(l−1). In
fact, this operation performs a linear dot product between the
(̂i, ĵ)-th weight of the z-th filter that compose the Conv layer,
w

(l)z

î,ĵ
(with z = {1, · · · ,K}), and the corresponding (i, j)-

th element of the input data, x(l−1)
i,j . Finally, the bias of the

layer b(l) is added to the dot product, obtaining as a result, the
(i, j)-th element of the z-th filter of the output volume, y(l)zi,j .

With the exception of the last layer, each Conv layer is
followed by a non-linear activation layer, which is introduced
in order to extract the activation maps from the convolutional
output volume Y(l). In particular, this layer performs a func-
tion H(·) to obtain the non-linear relationships between the
data:

X(l) = H
(
Y(l)

)
(5)

H(·) can be implemented by many activation functions, such
as the tanh, sigmoid or rectified linear unit (ReLU) [42]. In
the proposed model, the ReLU function has been selected,
which allows a faster training of the model due to its high
computational efficiency. The resulting output volume X(l) is
then sent as input to the next pair of Conv-ReLU layers.

Focusing on the proposed HSI-SDeCNN model, the im-
plemented CNN aims to learn a non-linear mapping function
being able to recover the noise-free image from the noisy one.
It takes as input the data X̂n of size h/2×w/2×(4(K+1)+1),
obtaining as output the data Yn of size h/2× w/2× 4. The
output volume Yn represents the four downsampled noise-
free sub-cubes. For this reason, the last layer does not have
any activation function in order to keep the extracted features.
We have set the kernel size of each layer to 3 × 3, while
zero padding is employed to maintain the original size of the

feature maps. The number of layers in the CNN is fixed to 14,
while the number of channels for each convolutional layer is
set to 128, except for the last one, where we use 4. The main
reason why we use a larger number of channels with respect
to the standard FFDNet is the fact that our network takes
more channels as input, and hence more features are required.
As mentioned before, the noise-level map controls the trade-
off between denoising performance and detail preservation.
Furthermore, when the noise-level map given as input to the
network contains too high values compared to the noise level
of the input image, the obtained denoised image is corrupted
by artifacts [38]. For this reason, the proposed HSI-SDeCNN
model initializes the parameters of each Conv layer using the
orthogonal initialization method, making the network more
robust to changes in the noise level.

E. Upsampling and concatenation
The final layer of our HSI-SDeCNN method is an upsam-

pling kernel that performs the inverse function of downscaling,
taking as input the four downsampled, noise-free images that
compose the CNN output volume Yn and provides as output
a noise-reduced single band Ỹn of size h×w×1. The reason
for which the number of channels of the last CNN layer is
set to 4 is that we only expect one denoised band as output,
in particular the denoised version of the n-th original band
selected as input of the model. Thus, with an upsampling
factor of 2 this layer takes as input 4 sub-images and provides
a single noise-free band.

Finally, once the B spectral bands have been processed,
their corresponding denoised version are stacked together in
order to compose the noise-free HSI scene X with size h×w×
B. A graphical representation of the overall process is shown
in Fig. 1, while Table I provides the details of the implemented
HSI-SDeCNN topology.

TABLE I
DATA VOLUMES AND CONVOLUTIONAL NEURAL NETWORK TOPOLOGY

Down-sampling
Layer ID Input data size Output data size

DS X̃n ∈ Rh×w×(K+1) X̂n ∈ R
h
2
×w

2
×4(K+1)

Noisy-map Concatenation
Layer ID Input data size Output data size

CN X̂n ∈ R
h
2
×w

2
×4(K+1) X̂n ∈ R

h
2
×w

2
×(4(K+1)+1)

Non-linear mapping
Layer ID Kernel size Number of kernels Stride Activation function
C(input) 3× 3 128 1 ReLU
C(1) 3× 3 128 1 ReLU
C(2) 3× 3 128 1 ReLU
C(3) 3× 3 128 1 ReLU
C(4) 3× 3 128 1 ReLU
C(5) 3× 3 128 1 ReLU
C(6) 3× 3 128 1 ReLU
C(7) 3× 3 128 1 ReLU
C(8) 3× 3 128 1 ReLU
C(9) 3× 3 128 1 ReLU
C(10) 3× 3 128 1 ReLU
C(11) 3× 3 128 1 ReLU
C(12) 3× 3 128 1 ReLU

C(output) 3× 3 4 1
Up-sampling

Layer ID Input data size Output data size

US Yn ∈ R
h
2
×w

2
×4 Ỹn ∈ Rh×w×1

The methodology used in the proposed HSI-SDeCNNN
allows us to achieve better performance than the standard
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network when performing HSI data denoising tasks. Two main
improvements can be highlighted in comparison with other
denoising models. First and foremost, our method takes as
input a significantly larger number of bands, which allows the
network to exploit the spectral correlation between channels
(which is very high in HSIs). Second, since our network
considers an overlapping volume of bands, it can learn from
a larger amount of data, resulting in much better denoising
performance. In fact, the proposed method exhibits better
performance (both in terms of denoising and computational
time) when compared to other learning-based methods. This
is mainly due to (i) the downsampling layer, which allows us
to make the network faster without degrading performance,
and (ii) the input noise-level map, which is used as prior
information in order to achieve better denoising performance.

III. DESIGN OF EXPERIMENTS

We have evaluated the proposed HSI-SDeCNN method
using both synthetic and real HSIs. First, the effectiveness of
the method has been validated using simulated data. Then, the
method has been applied to real noisy images and the results
compared with those of the current mainstream approaches
typically adopted in HSI denoising: hybrid spatial-spectral
noise reduction (HSSNR) [15], low-rank tensor approximation
(LRTA) [24], block matching and 4-D algorithm (BM4D) [18],
low-rank matrix recovery (LRMR) [22] and HSI denoising
exploiting a spatial-spectral deep residual CNN (HSID-CNN)
[37]. A quantitative and qualitative analysis has been con-
ducted for both simulated and real data. Several quantitative
metrics have been adopted, together with qualitative interpre-
tation of false-color and gray-scale images.

A. Datasets

In order to assess the effectiveness of the proposed method,
three HSIs have been considered: one of them is employed to
train the network and to conduct experiments by introducing
simulated noise, while the other two are used to evaluate the
proposed approach in real scenarios.

1) Training Dataset: In order to train the proposed model,
we have selected a part of the Washington DC Mall image
acquired by the Hyperspectral Digital Imagery Collection
Experiment (HYDICE) airborne sensor. This sensor records
210 spectral bands in the 0.4 to 2.4 µm region of the visible
and infrared spectrum. Bands in the 0.9 and 1.4 µm region (in
which atmospheric interferers are present) have been removed
from the data set, resulting in a total of 191 bands. The size of
the Washington DC Mall image is therefore 1208×307×191.
The image has been divided into two parts: one is used for
training the proposed network and the other is used for testing
purposes. For the testing part, we have cropped a region of size
200× 200× 191 from the full image (the remaining parts are
used for training).

2) Testing Datasets: In order to evaluate the effectiveness
of the proposed method in real scenarios, experiments have
been conducted on the following datasets:

• Washington DC Mall. A cropped part of the entire image
(with size 200 × 200 × 191) has been employed for

experiments on simulated data in which synthetic noise
is added to the original image.

• Indian Pines. This dataset, acquired by the Airborne
Visible Infra-Red Imaging Spectrometer (AVIRIS), con-
sists of 145 × 145 pixels and 224 spectral bands. After
removing the water absorption bands (150 − 163), the
remaining 206 bands are retained for experiments.

• University of Pavia. This dataset, acquired by the Re-
flective Optics Spectrographic Imaging System (ROSIS),
consists of 610× 610 pixels and 103 spectral bands. For
testing purposes, only a cropped part of size 200×200×
103 has been employed for experiments.

(a) (b) (c)

Fig. 2. Images used in the experiments: (a) Washington DC Mall, (b) Indian
Pines, (c) University of Pavia.

Fig. 2 shows a false-color composition of the three images
used in the experiments (we emphasize that the Washington
DC Mall and University of Pavia are cropped versions of the
original images).

B. Accuracy Metrics

In order to evaluate the performance of the proposed ap-
proach on the simulated data, three commonly employed met-
rics have been adopted: MPSNR (mean peak signal-to-noise-
ratio), MSSIM (mean structural similarity index), and MSA
(mean spectral angle). These metrics calculate respectively the
average of the PSNR (peak signal-to-noise-ratio), the SSIM
(structural similarity index) [43] and the SA (spectral angle)
[44] [45] in the spectral domain.

For the real data experiments, since we do not have a
reference clean image, the performance of the method was
evaluated by conducting classification tasks. First, we apply
the denoising method to the real data, and then we conduct
classification (before and after the denoising process). As a re-
sult, in the real data experiments the quality metrics employed
are the overall accuracy (OA) and the kappa coefficient of the
resulting classification maps. Fig. 3 shows the ground-truth
images of the Indian Pines and University of Pavia datasets
used in this work to evaluate the accuracy of the classification
task.

C. Implementation Details

In the following we describe some implementation details
regarding the experiments. Before the denoising process, each
band of the considered HSIs has been scaled between [0,1].
In order to make a proper comparison with the HSID-CNN
network in [37], the number of adjacent spectral bands K
given as input to the network has been fixed to K = 24. The
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Fig. 3. Ground-Truth maps and related number of training samples of the
AVIRIS Indian Pines and ROSIS University of Pavia Scenes.

denoising task is performed for one band at time, meaning
that for denoising a single band, the network takes as input
a volume of size h × w ×K + 1. All the bands are scanned
in a raster way. In order to perform the denoising process
on the first and last K/2 bands, further adjacent bands
are concatenated to the full image of size h × w × B, at
the beginning and at the end, generating a volume of size
h × w × B + K, as described in Section II. The proposed
model was trained with the Adam [46] optimizer, adopted to
minimize the following loss function:

L(Θ) =
1

2N

N∑
i=1

∥∥∥xdenoisedi − xnoise−freei

∥∥∥2 (6)

where N is the number of batches, xdenoised is the output of
the network (i.e., the denoised batch), and xnoise−free is the
label batch. We set the patch size to 20, with stride equal to 20,
and we used rotation and flip-based data augmentation during
the training process, in which the noisy patches are generated
by adding different levels of AWGN noise (σ = [0, 100])
to the clean patches. Note that the network has been trained
following the model proposed in Eq. (1). However, rather than
adding noise to the entire clean HSI, noise has been inserted
in a patch-wise manner, with different noise configurations at
each epoch. In this way the network is able to learn different
noise configurations avoiding the problem of the redundancy
of the data in the training process.

Regarding the noise-level map M , it is given as input at
the same time as the specific noisy patch. For example, let
us assume that for one specific patch AWGN noise with level
σ = 25 is inserted. Then, the noise-level map M will be a

(a) Noisy (b) Ground-truth (c) HSSNR

(d) LRTA (e) BM4D (f) LRMR

(g) HSID-CNN (h) Proposed

Fig. 4. Denoising results on the Washington DC Mall image (experiments
on simulated data, with σn = 100). Bands 57, 27 and 17 are selected to
generate false-color images.

uniform matrix of size w/2×h/2×1 in which all elements are
equal to σ̂ = 25. This allows the network to handle different
levels of noise without changing the model, only by simply
changing the input noise-level map. We set the mini-batch size
to 128.

The proposed HSI-SDeCNN has been trained with patches
extracted from the Washington DC Mall image. The total
number of patches extracted was 162350 and, after data aug-
mentation, we obtained a total number of patches npatches =
324864. We employed the MatConvNet [47] framework to
train the proposed HSI-SDeCNN on a PC having a sixth
Generation Intel Core i7-6700K processor with 8 M of Cache
and up to 4.20 GHz (4 cores/8-way multitask processing), 40
GB of DDR4 RAM with a serial speed of 2400 MHz, an
NVIDIA GeForce GTX 1080 GPU with 8-GB GDDR5X of
video memory and 10 Gb/s of memory frequency, a Toshiba
DT01ACA HDD with 7200 rpm and 2 TB of capacity,
and an ASUS Z170 pro-gaming motherboard. The software
environment is composed of Ubuntu 16.04.4 x64 as the
operating system, Matlab R2018b, and the compute device
unified architecture (CUDA) 9 for GPU functionality. The
training process is performed using 200 epochs.

IV. EXPERIMENTAL RESULTS: SIMULATED DATA

In this section we present the results obtained on simulated
data related to the Washington DC Mall dataset (test image).
In order to perform the experiments, AWGN noise has been
added to the noise-free HSI. We considered the same maxi-
mum level of noise for each band, where σn = [5, 100]. Here,
n indicates a generic band with n ∈ [1, B].
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A. Results

Table II shows the results obtained for different noise levels
by the proposed method and the other mainstream techniques
used for comparison. The best metric values are presented in
bold. The reported values (mean and standard deviation) are
obtained by averaging the results on ten runs with different
noise configurations. The results of the last column (in blue)
were obtained after an ensemble of ten different runs for each
noise level and are displayed only for illustrative purposes
(they are not intended to make a comparison with the other
methods). As shown in Table II, our method provided the best
results for high noise levels. For low noise levels (such as
σn = 5), it exhibited performances comparable to those of the
others methods but using only one model.

For visual comparison purposes, we have selected bands 57,
27 and 17 to generate false-color images. Fig. 4 displays the
results obtained with σn = 100. Specifically, Fig. 4(a) shows
the noisy image before the denoising process, while Fig. 4(b)
shows the ground-truth image. Fig. 4(c-h) show the resulting
images obtained after applying different denoising methods.
We can see that the HSID-CNN and the proposed method
outperform all other methods. In particular, the denoised
images provided by HSSNR and LRMR present significant
residual noise, while the images produced by BM4D and
LRTA contain artifacts. Instead, HSID-CNN and the proposed
HSI-SDeCNN generate denoised images that are very similar
to the ground-truth one. Further Fig. 5 shows the PSNR and
SSIM for each band. We can see that, in band 57, the proposed
method obtains lower performance with regards to HSID-
CNN. This is the reason why there is no visual improvement
in the reported bands.

A more detailed assessment is presented in Fig. 6, which
displays two zoomed regions of the Washington DC Mall test
image. It is possible to notice that the proposed and the HSID-
CNN methods obtain apparently similar results from a visual
point of view, but a quantitative analysis demonstrates that
our method performs better: HSID-CNN obtains a MPSNR of
25.29±0.0043, while the proposed method obtains a MPSNR
of 25.75±0.0121. If we compare the denoised images in Fig.
6(g) and in Fig. 6(b-e) it is clear that the one obtained by
the proposed method presents lower residual noise than those
produced by the other techniques, without introducing as much
blurring as the BM4D. This due to the fact that our method
exploits the prior information given from the input noise-
level map, allowing the network to maintain a good trade-off
between denoising performance and detail preservation.

It is important to emphasize that the quality of spectral
signatures is crucial for HSI interpretation, due to the fact that
they allow the discrimination of the physical properties of dif-
ferent ground objects. In order to further provide information
about the effectiveness of the proposed method versus HSID-
CNN, Fig. 7 reports an analysis of the spectral signature of a
pixel. We can see that the spectral signature obtained with the
proposed method for the analysed pixel is the most spectrally
similar to the corresponding spectral signature in the original
image.

B. Sensitivity to Parameter Tuning

In all our simulated experiments, we have set the input
noise-level map M to the same level of the noise added to
the image (i.e., ground-truth noise). Lower performances are
obtained when the input noise-level map differs from the actual
noise level present in the image. Roughly speaking, on the
one hand when we set the input noise level to be higher
than the ground-truth noise (i.e., σ̂ > σ), this means that
we perform too much denoising, smoothing out some image
details. On the other hand, if the input noise-level is lower than
the ground-truth one (i.e., σ̂ < σ), less denoising is performed,
leaving some residual noise in the output image. Thus, a
correct setting of the noise-level map (i.e., of the input noise-
level) is important to obtain optimal performance as displayed
in Fig. 8, where different experiments are presented setting
different noise level maps. Specifically, denoising is performed
by using the same model employed in the other experiments,
but changing the input noise-level from σ̂ = 5 to σ̂ = 100 with
an interval of 5. The ground-truth noise in the image is fixed to
σn = 50 for all the bands, and for the evaluation the MPSNR
is chosen as metric. Notice that we achieve the best results
when the input noise-level map is set to the same level of the
ground-truth noise (i.e., σ̂ = 50) However, after analysing the
plot, one can see that it is not necessary to perfectly adjust
the input noise-level to achieve good performance. Indeed, our
method outperforms the HSID-CNN even if we set the input
noise-level to a value that does not perfectly match the ground-
truth noise. In this regard, as shown in Fig. 8, it is important to
notice that, for the considered dataset, setting a higher value of
the input noise-level map is better than setting a lower value
of the map (with respect to the ground-truth noise).

We emphasize that the input noise level is the only param-
eter that needs to be tuned: it allow us to perform denoising
at multiple noise levels. In fact, all the results that we have
obtained with HSI-SDeCNN are extracted with only one
model, trained with different levels of noise from 0 to 100.

Thus, from both the qualitative and quantitative comparisons
using simulated data, we can conclude that our method out-
performs all the other considered methods. In the next section
we discuss real HSI experiments to verify the effectiveness of
our method in real scenarios, in which the noise level differs
from one band to another.

C. Training Evolution

To conclude this section, we show the training evolution
over 200 epochs. The validation phase of the network has
been carried out at each epoch, with input noise-level (i.e.,
the noise-level map) and ground-truth noise-level both equal
to 100. Fig. 9 displays the training evolution versus the number
of epochs for the loss function [see Fig. 9(a)], the MPSNR [see
Fig. 9(b)], and the MSSIM [see Fig. 9(c)].

V. EXPERIMENTAL RESULTS: REAL DATA

In this section we present the results obtained on the AVIRIS
Indian Pines and ROSIS University of Pavia real HSIs. We
emphasize that also in this case the results have been extracted
with the model trained only on the Washigton DC Mall image.
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TABLE II
QUANTITATIVE EVALUATION OF THE PROPOSED METHOD AGAINST THE MAINSTREAM METHODS FOR HSI DENOISING (SIMULATED DATASET).

Noise Level Index HSSNR LRTA BM4D LRMR HSID-CNN HSI-SDeCNN Ensemble

σn = 5

MPSNR 39.890± 0.0023 39.009± 0.0034 41.188± 0.0023 40.878± 0.0036 41.684± 0.0025 39.989± 0.0032 41.4990± 0.0025
MSSIM 0.9946± 0.0001 0.9926± 0.0002 0.9962± 0.0001 0.9952± 0.0001 0.9966± 0.0001 0.9954± 0.0000 0.9965± 0.0000

MSA 2.3552± 0.0013 2.7008± 0.0015 1.9326± 0.0008 2.2760± 0.0011 1.8318± 0.0012 2.2356± 0.0019 1.9845± 0.0005

σn = 25

MPSNR 28.018± 0.0024 30.672± 0.0033 31.136± 0.0025 33.029± 0.0023 33.050± 0.0028 33.444± 0.0080 36.7429± 0.0039
MSSIM 0.9361± 0.0001 0.9629± 0.0002 0.9685± 0.0002 0.9809± 0.0001 0.9813± 0.0001 0.9822± 0.0000 0.9901± 0.0000

MSA 8.1332± 0.0034 5.7962± 0.0056 5.0514± 0.0048 4.6097± 0.0028 4.2641± 0.0026 3.9129± 0.0080 2.8833± 0.0030

σn = 50

MPSNR 22.232± 0.0036 26.832± 0.0052 26.752± 0.0034 28.806± 0.0043 28.968± 0.0039 29.612± 0.0111 33.0088± 0.0096
MSSIM 0.8233± 0.0001 0.9246± 0.0001 0.9208± 0.0002 0.9952± 0.0001 0.9532± 0.0001 0.9608± 0.0001 0.9787± 0.0001

MSA 14.413± 0.0048 7.4996± 0.0054 7.1405± 0.0056 6.8008± 0.0034 6.2197± 0.0045 5.3806± 0.0137 3.6854± 0.0041

σn = 75

MPSNR 18.780± 0.0047 24.682± 0.0054 24.261± 0.0035 26.306± 0.0046 26.753± 0.0039 27.351± 0.0119 30.6889± 0.0070
MSSIM 0.7082± 0.0002 0.8866± 0.0001 0.8670± 0.0001 0.9192± 0.0001 0.9273± 0.0001 0.9371± 0.0002 0.9648± 0.0001

MSA 19.904± 0.0053 8.4426± 0.0057 8.6010± 0.0064 8.5644± 0.0067 7.5246± 0.0052 6.4767± 0.0159 4.2273± 0.0067

σn = 100

MPSNR 16.314± 0.0065 23.175± 0.0048 22.577± 0.0054 24.310± 0.0047 25.296± 0.0043 25.753± 0.0121 28.9791± 0.0104
MSSIM 0.6049± 0.0001 0.8494± 0.0003 0.8119± 0.0002 0.8799± 0.0002 0.9014± 0.0001 0.9121± 0.0002 0.9487± 0.0001

MSA 24.732± 0.0065 9.1219± 0.0072 9.7611± 0.0068 10.468± 0.0074 8.4061± 0.0063 7.3951± 0.0182 4.7012± 0.0074

(a) (b)

Fig. 5. Values of the different denoising methods in each band of the simulated dataset with noise level σn = 100 (a) PSNR. (b) SSIM

(a) Ground-truth (b) HSSNR (c) LRTA (d) BM4D (e) LRMR (f) HSID-CNN (g) Proposed

Fig. 6. Zoomed denoising results on the Washington DC Mall image (experiments on simulated data, with σn = 100). Bands 57, 27 and 17 are selected to
generate false-color images.

In order to assess the effectiveness of the proposed method
with these HSIs, classification experiments are conducted (a
ground-truth noise-free image is not available for these data).
The quality of the denoising is measured by analyzing the
classification accuracy before and after the denoising process.
The metrics adopted are the overall accuracy (OA) and the
kappa coefficient. A support vector machine (SVM) with
linear kernel has been employed as a simple classifier. For
the training of the classifier, we randomly selected 10% of
the available labeled samples from each class, and used the
remaining labeled samples for testing purposes.

Since the noise level is unknown in real HSIs, the proposed
denoising algorithm has been applied by empirically setting
the input noise level-map to the one that shows the best

performance among the following input noise levels: σ̂ =
5, 25, 50, 75, 100. For both the Indian Pines and University
of Pavia datasets, this resulted in the selection of σ̂ = 50.

A. Indian Pines dataset

The Indian Pines dataset is seriously degraded by Gaussian
noise and impulse noise. For visual assessment purposes,
we use band 2 for grayscale visualization. Fig. 10 shows
the grayscale images obtained after applying the different
methods.

By analysing the figure, it is possible to see that the HSSNR
method leaves significant residual noise in the image, in
particular dense noise and stripes. BM4D and LRMR methods,
instead, exhibit superior denoising performance, but they still
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TABLE III
CLASSIFICATION RESULTS OBTAINED AFTER DENOISING THE INDIAN PINES IMAGE USING DIFFERENT METHODS

Original HSSNR LRTA BM4D LRMR HSID-CNN HSI-SDeCNN
OA 75.96% 78.78% 77.49% 83.97% 79.44% 85.65% 95.58%

Kappa 0.7220 0.7437 0.7387 0.8162 0.7641 0.8338 0.9497

Fig. 7. Analysis of the quality of the restoration of the spectral signature
at pixel (83, 175) in the original image: noisy version (green color), original
signature (black color), signature obtained after applying HSID-CNN (red),
signature obtained after applying the proposed method (blue). The vertical
axis (digital number) is scaled in the range [0, 1].

Fig. 8. MPSNR versus different input noise-levels. The blue plot represents
the performance of our method against different input noise-levels, while the
orange plot represents the results obtained with the HSID-CNN algorithm
(simulated dataset).

leave residual noise in the image (the BM4D output presents
heavy strip noise, while the LRMR algorithm shows higher
ability in the task of reducing this kind of noise, but still
presents dense residual noise). In turn, HSID-CNN and the
proposed HSI-SDeCNN exhibit much better performance, as
it can be observed in the magnified region shown in Fig. 10.
Indeed, both methods remove dense and strip noise without
introducing any significant blur. From a visual point of view,
the two methods perform similarly. However, we can notice
that the denoising performance of the proposed method varies
from one band to another, depending of the noise-level present
in the specific band. Indeed, we have obtained better perfor-
mance for the specific bands when the ground-truth noise level
matches the input noise level map (M is fixed at noise level
σ = 50 for all the bands).

In order to conduct the quantitative analysis, classification is
performed on the Indian Pines dataset: 16 ground-truth classes
were used for testing the classification results obtained after
applying the different denoising methods. The obtained results
are shown in Table III. In the second column we report the
OA and kappa scores obtained with the original noisy image,
and in the subsequent columns we show the OA and kappa
obtained for the HSI denoised with different methods.

On this dataset, both the BM4D and the HSID-CNN al-
gorithms obtain good performance, with an OA of 83.97%
and 85.65%, respectively. Among all compared methods,
the proposed HSI-SDeCNN obtains the highest improvement,
going from an OA of 75.96 (original noisy image) to an OA
of 95.58% (denoised image). As a result, from a quantitative
point of view, our method exhibits superior performance to
those obtained by the other methods on the Indian Pines
dataset. This can be also appreciated in Fig. 11. In particular,
Fig. 11(a) shows the ground-truth, while Fig. 11(b) shows
the classification map obtained with the original noisy image.
The subsequent maps are the results of the different methods.
It can be seen that our method produces a map that is less
fragmented and contains many correctly classified regions
that are misclassified with the images denoised by the other
methods.

B. University of Pavia dataset

In the University of Pavia dataset, the noise is mainly
present in the first bands. Fig. 12 shows the denoised
(grayscale) results after applying different methods to band
2. On the one hand, it is possible to see that the outputs
of the LRMR and HSSNR methods contain a large amount
of residual noise. On the other hand, LRTA and BM4D
present better denoising performance but introduce significant
blurring. HSID-CNN and the proposed HSI-SDeCNN provide
good results, confirming superior denoising performance. We
emphasize that, for the Pavia dataset, M is fixed at a noise
level of σ = 50 for all the bands. To provide a quantitative
analysis on this dataset, classification experiments have also
been conducted. The classification task is performed on 9
classes, before and after denoising. Since the noise is mainly
present in the first bands, the classification task has been
performed only using the first 20 spectral channels. The
obtained results are shown in Table IV. It is possible to see
that the proposed method outperforms all the other meth-
ods. Specifically, the OA accuracy obtained with the original
image is 70.09%, while the OA obtained with the image
after denoising using the proposed HSI-SDeCNN is 91.74%.
Furthermore, our method exhibits superior performance in
term of OA and kappa accuracy when compared to the other
considered methods. Notice that the improvements obtained in
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(a) (b) (c)

Fig. 9. Training evolution after each epoch: (a) loss, (b) MPSNR, (c) MSSIM. The validation process has been carried out by setting both the input noise-level
and the ground-truth noise to 100.

TABLE IV
CLASSIFICATION RESULTS OBTAINED AFTER DENOISING THE UNIVERSITY OF PAVIA IMAGE USING DIFFERENT METHODS

Original HSSNR LRTA BM4D LRMR HSID-CNN HSI-SDeCNN
OA 70.09% 71.66% 72.56% 78.88% 83.95% 86.99% 91.74%

Kappa 0.6157 0.6373 0.6467 0.7302 0.8148 0.8319 0.8972

(a) Noisy image (b) HSSNR (c) LRTA

(d) BM4D (e) LRMR (f) HSID-CNN

(g) Proposed

Fig. 10. Results obtained by different methods on the Indian Pines dataset
(grayscale visualization using band 2).

this experiment are less significant than those obtained for the
Indian Pines dataset. This is mainly due to the fact that we are
using only 20 bands from the 103 present in the University
of Pavia dataset. The effectiveness of our HSI-SDeCNN can
be better appreciated in the classification maps shown in Fig.
13, where one can see that the proposed method obtains the
most similar results to the ground-truth classification map in
Fig. 13(a).

(a) GT (b) Original (c) HSSNR

(d) LRTA (e) BM4D (f) LRMR

(g) HSID-CNN (h) Proposed

Fig. 11. Classification maps obtained on the Indian Pines scene after applying
different denoising methods.

C. Computational Efficiency

In order to evaluate the computational efficiency of the
proposed denoising algorithm, we compare the running time
of the proposed HSI-SDeCNN with that of the HSID-CNN,
which obtained the best results (in term of running time)
among the state-of-the-art considered algorithms (see results
in [37]). The running time has been calculated for both exper-
iments on simulated and real data, using the same computing
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(a) Noisy (b) HSSNR (c) LRTA

(d) BM4D (e) LRMR (f) HSID-CNN

(g) Proposed

Fig. 12. Results for the University of Pavia dataset (grayscale visualization
using band 2).

(a) Ground-truth image (b) Original image (c) HSSNR

(d) LRTA (e) BM4D (f) LRMR

(g) HSID-CNN (h) Proposed

Fig. 13. Classification maps obtained by different methods for the University
of Pavia scene after applying different denoising methods.

environment with MATLAB R2018b and a Laptop with GPU
GTX1050Ti. Also in this case the results provided in Table
V have been averaged over ten runs. We can observe that our
method is more than two times faster than the HSID-CNN,
improving at the same time the denoising performance.

TABLE V
AVERAGE RUNTIME (IN SECONDS) MEASURED FOR THE HSID-CNN AND

THE PROPOSED HSI-SDECNN METHODS

Dataset Size HSID-CNN Proposed
Wash. DC Mall 200× 200× 191 7.2255± 0.0161 3.0754± 0.0238

Pavia 200× 200× 103 3.8997± 0.0184 1.5886± 0.0058

VI. CONCLUSION AND FUTURE RESEARCH

We have presented a new learning-based method for HSI
denoising, called single denoising convolutional neural net-
work (HSI-SDeCNN). This method considers the spatial-
spectral correlation present in HSIs, taking as input a full
data cube instead of a single band. The main characteristics
of this method are: a downsampling layer that allows the
network to be faster without losing denoising performance,
and a noise-level map that is used to give as input to the
network an estimation of the amount of noise. The proposed
method outperformed other mainstream methods commonly
adopted in HSI denoising on synthetic and real datasets,
with only one single trained model. In particular, it exhibits
superior performance both in terms of denoising capability
and computational efficiency. The performance of the method
depends on the input noise level map M , that is the only
hyperparameter that needs to be tuned. This parameter, as
demonstrated from the results, is flexible in handling different
levels of noise.

As with any new approach, there are still some future
research avenues that can be further explored. Specifically, the
proposed network makes the denoising at only one level for
all the bands. Such level is specified by the input noise-level
map. However, in HSIs the noise generally differs from one
band to another. For this reason, a further improvement of the
method will focus on adapting the input noise-level to each
specific band.
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