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ABSTRACT 

 

Introduction. Primary progressive aphasia (PPA) is a clinical syndrome of 

neurodegenerative origin with 3 main variants: non-fluent, semantic, and 

logopenic. However, there is some controversy about the existence of additional 

subtypes. Our aim was to study the language and cognitive features associated 

with a new proposed classification for PPA. 

  

Material and methods. Sixty-eight patients with PPA in early stages of the disease 

and 20 healthy controls were assessed with a comprehensive language and 

cognitive protocol. They were also evaluated with 18F-FDG PET. Patients were 

classified according to FDG PET regional metabolism, using our previously 

developed algorithm based on a hierarchical agglomerative cluster analysis with 

Ward’s linkage method. Five variants were found, with both the non-fluent and 

logopenic variants being split into 2 subtypes. Machine learning techniques were 

used to predict each variant according to language assessment results. 

  

Results. Non-fluent type 1 was associated with poorer performance in repetition 

of sentences and reading of irregular words than non-fluent type 2. Conversely, the 

second group showed a higher degree of apraxia of speech. Patients with logopenic 

variant type 1 performed more poorly on action naming than patients with 

logopenic type 2. Language assessments were predictive of PET-based subtypes in 

86%-89% of cases using clustering analysis and principal components analysis. 

  

Conclusions. Our study supports the existence of 5 variants of PPA. These variants 

show some differences in language and FDG PET imaging characteristics. Machine 

learning algorithms using language test data were able to predict each of the 5 PPA 

variants with a relatively high degree of accuracy, and enable the possibility of 

automated, machine-aided diagnosis of PPA variants.  

 

 

Keywords: primary progressive aphasia; apraxia of speech; positron emission 

tomography; neuropsychological assessment.  
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1. INTRODUCTION 

 

Primary progressive aphasia (PPA) is a clinical syndrome that can present as the 

initial manifestation of several neurodegenerative disorders, mainly tauopathies, 

TDP-43 proteinopathies, and Alzheimer disease (Matias-Guiu & García-Ramos 

2013; Marshall et al. 2018). The classification of distinct variants of PPA has 

evolved in recent years. In 1998, Neary et al. distinguished “progressive non-fluent 

aphasia” from “semantic dementia with associative agnosia” in fronto-temporal 

degeneration criteria (Neary et al., 1998). Similarly, Mesulam (2001) classified PPA 

as being “with agrammatism” or “with comprehension deficits.” However, a major 

breakthrough was made in 2011 with the publication of the current consensus 

criteria by Gorno-Tempini et al. (2011). PPA was categorised into 3 clinical 

variants, the non-fluent, semantic, and logopenic subtypes, with each variant 

defined according to certain language and neuroimaging features.  

 

Application of these criteria has shown a high degree of correlation between 

clinical diagnosis and neuroimaging findings (Matias-Guiu et al., 2014; Leyton et 

al., 2011) and, most importantly, improved the ability to predict the underlying 

pathology. However, several issues in PPA classification have been emphasised 

since the publication of the consensus criteria. In this regard, some groups have 

observed that a large proportion of patients remain unclassifiable (Sajjadi et al., 

2012; Wicklund et al., 2014), or have experienced various difficulties in differential 

diagnosis between variants, especially regarding the logopenic subtype (Sajjadi et 

al., 2014; Hoffman et al., 2017). Furthermore, controversy exists as to whether the 

non-fluent and logopenic subtypes are unitary disorders (Leyton et al., 2015). In 

this regard, Botha et al. (2015) suggest separating the non-fluent variant into 

agrammatic PPA and apraxia of speech; this could be especially relevant given the 

specificity of apraxia of speech to tau pathology (Josephs et al., 2012), while non-

fluent PPA as a whole group has also been associated with TDP-43 

proteinopathies. Similarly, an amyloid-negative group has been detected within 

the logopenic variant, which has been linked to TDP-43 proteinopathies (Matias-
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Guiu et al., 2015; Josephs et al., 2014; Rohrer et al., 2010). Heterogeneous clinical 

and neuroimaging findings have even been described within amyloid-positive 

logopenic aphasia (Krishnan et al., 2017). Furthermore, prediction of underlying 

pathology is still incomplete, as there are more pathological entities than the 3 

main clinical syndromes recognised (Spinelli et al., 2017; Harris et al., 2013). 

 

In a previous study, we used an unsupervised clustering algorithm to examine 

alternative classification of PPA based on the analysis of regional brain metabolism 

in a large cohort of patients with PPA. The use of FDG PET favoured the 

classification of PPA patients into 6 subtypes, rather than 3. The expansion from 3 

to 6 variants arose from splitting non-fluent PPA into 3 variants (denominated 

non-fluent type 1A, k0; type 1B, k5; and type 2, k2), and the logopenic variant into 

2 subtypes (logopenic type 1, k1; and type 2, k4). Conversely, the semantic variant 

(k3) remained unchanged. Interestingly, the new grouping was more predictive of 

clinical course and amyloid imaging results (Matias-Guiu et al., 2018). This new 

classification system supports the current consensus criteria, because 3 main 

variants were respected, but it does suggest that classification may be improved. 

 

In the present study, we aimed to define the clinical, language, and cognitive 

features associated with each of the variants previously identified through analysis 

of brain metabolism. We also sought to develop a machine-learning algorithm to 

predict the anatomical subtype of PPA based on the results of language and 

cognitive testing.  

 

2. MATERIAL AND METHODS 

 

2.1. Study population 

 

From June 2014 to July 2018, we prospectively evaluated a large cohort of patients 

with PPA with a common protocol including a comprehensive battery of 

neuropsychological and language tests. All patients met the current diagnostic 

consensus criteria for PPA (Gorno-Tempini et al., 2011).  
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For this study, we selected only those patients in early or mild stages, defined as: 

1) independent in the activities of daily living (Functional Activities Questionnaire 

score < 7), and 2) scoring 3-5 on the Boston Aphasia Severity Rating Scale. Healthy 

controls were recruited from among the spouses of patients from our centre’s 

Department of Neurology, and volunteers. In all subjects in the study, Spanish was 

their mother tongue.  We report how we determined our sample size, all data 

exclusions, all inclusion/exclusion criteria, whether inclusion/exclusion criteria 

were established prior to data analysis, all manipulations, and all measures in the 

study. All inclusion and exclusion criteria were determined prior to the analysis.  

 

A total of 68 patients with PPA and 20 healthy controls were included in this study. 

Fifty-six participants were also included in a previous study (Matias-Guiu et al., 

2018), and 32 were new (18 patients and 14 healthy controls). Patients were 

classified as having non-fluent (n = 23), semantic (n = 9), and logopenic (n = 36) 

PPA, according to the consensus criteria. Mean age in the PPA group was 

72.62 ± 8.00 years; 39 patients (57.40%) were women. Our sample had received a 

mean of 11.84 ± 4.85 years of formal education. This sample size is considered 

appropriate for machine learning algorithms.  

  

2.2. FDG PET image acquisition and metabolism-based classification 

 

FDG PET images were acquired following the European guidelines (Varrone et al. 

2009), according to the procedure described elsewhere (Matias-Guiu et al., 2018). 

Images were pre-processed using the Statistical Parametric Mapping software, 

version 8 (http://www.fil.ion.ucl.ac.uk/spm/), and normalised to a specific FDG 

PET template for cognitive neurodegenerative disorders (della Rosa et al., 2014). 

The MarsBaR toolbox was used to conduct a region of interest analysis over the 

116 areas of the Automated Anatomical Labeling atlas.  

The automated classification methodology was generated by applying machine 

learning techniques to the dataset acquired. The WeKa framework was used to 

evaluate the performance of several classification techniques, listed in Table 1.   

We chose several classifiers, which implement different classification methods as 

Figure 1 shows, in order to find those that perform best. All classifiers used the 
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previous model as training set and the new dataset as test. For each algorithm, a 

brief methodological explanation is given below. 

BayesNet and Naives were chosen from the Bayesian network algorithms. 

Bayesian networks consist of 2 stages, the first stage learns the structure of the 

network,  the second one learns the probability tables.  Bayes Network algorithm is 

customized with K2 as the local search algorithm.  

Naive Bayes uses the Bayes Theorem for predicting the class a data point belongs 

to. A new data point is more likely to be assigned to a class with the highest 

probability. 

  

LBK, Kstar and LWL classifiers are under the lazy algorithms. They apply k-nearest 

neighbour algorithm to find out values closest to a new data point to make the 

prediction. 

LBK classifier uses the Euclidean distance for classifying a training set. Kstar 

distributes N data point into k clusters according to the closest mean . The entropy 

distance is applied for placing new data point to the nearest class. LWL  assigns a 

weighting factor to each data point to indicate the influence on the new data point.  

Data points nearest the new one obtain higher weights. LinearNN with Euclidean 

distance is used as the nearest neighbour search algorithm   

  

Decision Table, OneR and Part belong to the rules algorithms. Decision Table 

shapes decision trees as an  ordered and understandable set of If-Then rules to 

give the prediction. The result is a simpler and less computing-intensive algorithm. 

OneR  is a simple and effective classification algorithm. Each attribute is evaluated 

and a new branch for each different value is created. Every value generates a new 

rule. Part algorithm generates a decision list applying separate-and-conquer. A 

partial C4.5 decision tree is build and for each iteration the best leaf is become into 

a rule. 

  

Regarding trees algorithms, we chose DecisionStump, J48 and Reptree. 

DecisionStump is one level decision tree and it applies entropy for classification 

and the mean-squared error for regression. J48 is an open source implementation 

of the C4.5 algorithm.  J48 builds the tree and places the data points into those 
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values below a threshold and those above it. Reptree is based on C4.5 algorithm 

and uses gain and variance information for building regression and decision trees, 

respectively. 

 

As a first step, we evaluated the capability of the model generated in our previous 

study (Matias-Guiu et al., 2018) to classify the new patients. Next, we used the set 

of 32 new participants as the test set and evaluated the classification performance 

of several classifiers. The best performance was achieved by LBK, with a true 

positive rate of 0.931, and those based on rules, such as PART, or decision trees, 

such as RepTree and J48, which exhibit high accuracy, with a true positive rate of 

0.920. Results of the classification are shown in Figure 2. Not all algorithms were 

tested (only those with better performance were chosen); however, classification 

results for ZeroR, considered as a baseline, were worse with only 24 instances 

correctly classified. 

 

2.3. Cognitive and language assessment 

 

All participants were assessed with the same protocol. Language assessment 

comprised the following tests: Cookie Theft picture description from the Boston 

Diagnostic Aphasia Examination; picture naming task; action naming task; initial 

phoneme deletion; word spelling; digit span forward and backward; semantic 

association task; word-picture matching; verb-action picture matching; synonyms 

judgements; reading of regular words; reading of foreign words; reading of words 

without stress marks; reading of non-words; verbal repetition (syllables, pairs of 

syllables, words, pairs of words, non-words, and sentences); category fluency 

(animals in one minute); action fluency; and letter verbal fluency (words beginning 

with “p”). Severity of apraxia of speech was graded according to the Apraxia of 

Speech Severity Rating Scale (Strand et al., 2014). Buccofacial apraxia was also 

assessed. Some of these tasks were developed by our group (Matias-Guiu et al., 

2017), and the other tests came mainly from Boston Diagnostic Aphasia 

Examination and Test Barcelona (Quintana et al., 2011).  
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General neuropsychological assessment was performed using the following tests: 

Mini–Mental State Examination; Addenbrooke’s Cognitive Examination (Matias-

Guiu et al., 2016); Corsi block-tapping test; Trail Making Test parts A and B; 

Symbol Digit Modalities Test (SDMT); Rey-Osterrieth Complex Figure Test (copy 

and recall at 3 and 30 minutes); Visual Object and Space Perception Battery (object 

decision, progressive silhouettes, position discrimination, and number location 

subtests), Stroop Color-Word Interference test, and Tower of London (Drexel 

version). These tests mainly belong to the NEURONORMA battery, the main study 

providing normative data for neuropsychological assessment in Spain (Peña-

Casanova et al., 2009).  

  

 

2.4. Data analysis 

 

Statistical analysis was performed using the IBM® SPSS Statistics software, version 

20.0. Descriptive results are shown as mean ± standard deviation or median 

(interquartile range). The Kruskall-Wallis test with subsequent pairwise 

comparison was used to evaluate differences between groups. Groups k6 and k7 

(female and male controls, respectively) were combined for statistical analysis. A 

p-value < 0.05 was considered statistically significant. Pairwise comparisons were 

considered statistically significant after adjusting for multiple comparisons using 

the false-discovery rate. 

 

Our automated classification methodology was extended to support classification 

based on cognitive and language assessments. The analysis of new patients 

included the application of hierarchical clustering with Ward’s method as the 

clustering algorithm (Everitt et al., 2011). The working dataset contains 2 well 

defined sets of features. The first set is composed of patients’ responses in the 

cognitive and language tests, while the second includes the PET images. We 

applied the 8 clusters considered the gold standard in our previous work with the 

Davies-Bouldin index (Davies et al., 1979), and performed a series of tests, detailed 

below.  
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We applied hierarchical clustering to the features belonging to language function, 

and analysed how instances were assigned to each cluster. Age, years of education, 

and sex were also included in the analyses. Nevertheless, the number of features in 

each group in our dataset is high, and not all provide relevant information. We 

addressed this by applying principal components analysis (PCA) (Jolliffe et al., 

2016) to reduce the high dimensionality and extract the set of the most relevant 

features with minimal loss of accuracy. PCA is a powerful mathematical algorithm 

for data analysis, and is able to identify patterns in data based on their similarities 

and differences. Thus, PCA returns a set of principal components as a linear 

combination of features ranked by relevance. 

  

In this study, PCA was applied to extract the most relevant features in the dataset 

resulting from the language assessment. Once PCA was performed, we selected the 

first 5 principal components, which accounted for 66% of the cumulative value. 

The features selected were saved and used as a new dataset to perform clustering 

and to compare results with those obtained previously. Figure 3 shows the 

clustering results for all features related with language function, and the results 

obtained after extracting the most relevant features with PCA. 

 

 

2.5. Brain metabolism analysis 

 

The Statistical Parametric Mapping software was used to conduct a two-sample T-

test to compare brain metabolism between each patient group and a group of 40 

age- and sex-matched healthy controls. Images were previously normalised to the 

Montreal Neurological Institute space and smoothed at 12 mm full width at half 

maximum. Age and sex were added as covariates to the statistical model. A family-

wise error–corrected p-value of < 0.05 was used as threshold. Only clusters with at 

least 50 voxels were considered statistically significant.  

 

2.6. Standard protocol approvals, registrations, and patient consents 
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The study was conducted with the approval of our hospital’s Ethics Committee and 

all participants (or their legally authorized representative) gave written informed 

consent. . The conditions of our ethics approval do not permit public archiving of 

anonymized study data. Readers seeking access to the data should contact the 

corresponding author or the local ethics committee of Hospital Clinico San Carlos, 

Madrid. Access can be granted only to named individuals in accordance with 

ethical procedures governing the reuse of sensitive clinical data. No part of the 

study procedures or analyses was pre-registered in a time-stamped, institutional 

registry prior to the research being conducted, although decisions regarding 

design and analysis were decided a priori. The machine learning algorithms used 

to process the data and obtain the presented conclusions have been obtained from 

the framework WeKa. This framework can be downloaded 

from https://www.cs.waikato.ac.nz/ml/weka/ and, after proper configuration, 

used to execute the mentioned algorithms that included in the tool. 

 

 

 

3. RESULTS 

 

3.1. Demographic characteristics according to each subtype 

 

According to the FDG PET cluster-based classification, participants were 

categorised as: 9 k0 (non-fluent PPA type 1A), 24 k1 (logopenic PPA type 1), 15 k2 

(non-fluent PPA type 2), 9 k3 (semantic PPA), 11 k4 (logopenic PPA type 2), and 20 

k6/k7 (controls). No patient was classified within the k5 group (non-fluent PPA 

type 1B). There were no differences between groups regarding age or schooling. 

The percentage of women was particularly high in the logopenic type 1 group (k1), 

with a greater proportion of men in the non-fluent type 1 (k0) and logopenic type 

2 (k4) groups (Table 2). 

 

3.2. Language assessment 
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Language and speech assessment results are shown in Table S1 (Supplementary 

Material). Table S1 and Figure 3 summarise the specific tests showing 

statistically significant differences in each variant of PPA in comparison to healthy 

controls. The decision tree for classification based on the J48 algorithm is shown in 

Figure 4, which includes Information Gain for each non-terminal node. 

 

Patients with non-fluent PPA type 1 (k0) showed greater impairment in sentence 

repetition and reading of irregular words in comparison to non-fluent type 2 (k2). 

Conversely, the latter group showed a higher degree of apraxia of speech. Features 

of apraxia of speech (Apraxia of Speech Rating Scale score ≥ 1) were present in 6 of 

the 15 patients (40%) with type 2 (k2). Non-fluent type 1 (k0) differed from both 

logopenic subtypes only in buccofacial apraxia, which was more severe in non-

fluent type 1 (k0).  

 

Patients with logopenic variant type 1 (k1) performed more poorly on action 

naming than those with logopenic type 2 (k4). A comparison of non-fluent type 1 

(k0) and the logopenic variants showed poorer performance on picture naming 

and sentence repetition in both logopenic subtypes, and also on action naming in 

logopenic type 1 (k1). Apraxia of speech was present in non-fluent type 2 (k2), but 

not in the logopenic subtypes.  

 

The comparison between the semantic and other PPA variants identified different 

behaviour in several tests: results for initial phoneme deletion, word spelling, digit 

span backward, repetition of pairs of syllables and non-words, and buccofacial 

apraxia were poorer in non-fluent type 1 (k0); apraxia of speech was more severe 

and reading of non-words was poorer in non-fluent type 2 (k2), while picture and 

action naming results were poorer in the semantic variant; in comparison to 

logopenic type 1 (k1), significant differences were observed in picture naming, 

word-picture matching, reading of irregular words, repetition of pairs of syllables 

and sentences, and reading of non-words, all of which were more impaired in the 

semantic variant. In comparison to logopenic variant type 2 (k4), significant 

differences were present in picture and action naming, word-picture matching, 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

synonyms judgement, and reading of irregular words (all more impaired in the 

semantic variant).  

 

3.3. General cognitive assessment 

 

Results of neuropsychological testing are shown in Table S2 (Supplementary 

Material); Figure 5 summarises the statistically significant differences between 

each variant and the healthy control group. Few tests showed differences between 

each variant of PPA (Figure 5). In this regard, patients with logopenic variant type 

1 (k1) showed poorer Mini–Mental State Examination and Rey-Osterrieth Complex 

Figure scores than those with non-fluent type 2 (k2). No other differences were 

observed between the non-fluent and logopenic subtypes. 

Non-fluent type 1 (k0) was associated with poorer scores on the SDMT and the 

Visual Object and Space Perception battery (object decision) in comparison to the 

semantic variant, which scored lower in Stroop Color-Word Interference parts A 

and B. Patients with non-fluent PPA type 2 (k2) scored worse in SDMT and Stroop 

Color-Word interference part A but better in Addenbrooke’s Cognitive 

Examination than those with the semantic variant. 

 

Patients with logopenic variant type 2 (k4) showed greater impairment in Trail-

Making Test parts A and B, SDMT, and Rey-Osterrieth Complex Figure (copy and 

recall) in comparison to the semantic variant. In contrast, those with logopenic 

variant type 2 only scored worse in Trail-Making Test part A and SDMT in 

comparison to semantic PPA. 

  

3.4. Hierarchical clustering analysis of language assessments 

 

A percentage of agreement of 86.36% was found between language-based and 

metabolism-based clustering, with a kappa index of 0.832 (95% CI, 0.744-0.920). 

The percentage of agreement broken down by subtype was: 44% for k0, 92% for 

k1, 50% for k2, 66.7% for k3, 91% for k4, and 100% for k6/k7. Misclassifications 

were mainly associated with group k0 (non-fluent type 1). Eight of the 9 patients 

classified as non-fluent type 2 (k2) and all 6 classified as semantic (k3) according 
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to language-based clustering were also categorised as such according to FDG PET 

findings. However, 6 of the patients classified as non-fluent type 2 (k2) and 3 of 

those classified as semantic (k3) according to brain metabolism findings were 

classified as k0 with language-based clustering. 

 

3.5. Principal components analysis 

 

PCA of language task data obtained 5 components with the following tests: 

component 1 included initial phoneme deletion, word spelling, category fluency, 

non-word repetition, and action fluency; component 2 comprised word-picture 

matching, verb-action picture matching, the semantic association task, synonyms 

judgement, and word repetition; component 3 included the picture naming task, 

Apraxia of Speech Rating Scale score, action naming task, reading of non-words 

(time), and buccofacial apraxia; component 4 contained sex, reading of words 

without stress marks (time), reading of words (accuracy and time), and dysarthria; 

and component 5 consisted of repetition of pairs of words, repetition of non-

words, repetition of pairs of syllables, letter verbal fluency, and animals fluency 

(Table 3). 

 

Using this classification model, the kappa index with hierarchical clustering 

analysis of language tests was 0.958. In comparison to FDG PET–based 

classification, kappa index was 0.874 (95% CI, 0.79-0.95), with a percentage of 

agreement of 89.77%. Broken down by PPA subtype, the percentage of agreement 

was: 53.33% for non-fluent type 1 (k0), 92% for logopenic type 1 (k1), 50% for 

non-fluent type 2 (k2), 100% for semantic (k3), 91.67% for logopenic type 2 (k4), 

and 100% for controls (k6/k7). Eight of the 9 patients classified as non-fluent type 

2 (k2) according to PCA for language tests were also classified as k2 according 

brain metabolism findings.  

 

3.6. Brain metabolism 

 

In comparison to the healthy control group, patients with non-fluent PPA type 1 

(k0) showed lower metabolism in 3 clusters: a first cluster, with a peak of 
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significance in the left inferior frontal gyrus with extension to the left superior 

frontal gyrus, insula, and anterior cingulate; a second cluster of voxels in the left 

caudate; and a third cluster involving the left middle and medial frontal gyri. Non-

fluent PPA type 2 (k2) displayed lower metabolism in a cluster of voxels involving 

the left superior, middle, medial, and inferior frontal gyri, as well as the left 

precentral and right superior frontal gyri (Figure 6). Logopenic type 1 (k1) 

showed lower metabolism in the left parieto-temporal lobe, extending to the left 

frontal lobe and anterior temporal lobe. In turn, logopenic type 2 (k4) showed 

lower metabolism in the left parieto-temporal lobe extending to the right angular 

and middle temporal gyri (Figure 7). Finally, the semantic variant showed lower 

metabolism in the anterior temporal lobe bilaterally, especially in the left 

hemisphere, and some small clusters including the gyrus rectus and anterior 

cingulate gyrus (Figure 6). Specific statistics regarding voxel-based brain mapping 

analysis are shown in Table S3 (Supplementary Material). 

 

4. DISCUSSION 

 

Our study demonstrates the existence of 5 subtypes of PPA in early stages, as we 

observed in a previous study analysing only neuroimaging data. These variants 

may be detected in patients in early stages of the disease using an automated 

algorithm based on regional brain metabolism. These subtypes result from 

splitting the non-fluent and logopenic variants into 2 additional subtypes, which 

may be associated with improved prediction of outcome and amyloid biomarkers 

(Matias-Guiu et al., 2018). Furthermore, from a conceptual perspective, the 

definition of PPA subtypes according to regional metabolism is supported by the 

tendency of each neurodegenerative disorder to affect different brain regions and 

networks (Fu et al., 2018). 

 

One of the most striking results of our research is the separation of 2 clusters 

within the non-fluent variant. Non-fluent PPA may be diagnosed if patients have 

agrammatism and/or apraxia of speech. The convenience of dividing the non-

fluent variant into 2 subtypes (agrammatic PPA vs apraxia of speech) is an open 

question in the literature (Josephs et al., 2013; Botha et al., 2015). Our data suggest 
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that 2 variants can be differentiated according to FDG PET imaging findings. The 

first variant (k0) showed involvement of the left frontal lobe (Broca’s area, but also 

the anterior cingulate and superior and middle frontal gyri), extending to other 

regions of the left hemisphere; in contrast, the second variant (k2) also involved 

the inferior frontal gyrus but tended to affect more medial regions, as well as the 

right frontal lobe (Matias-Guiu et al., 2018). In this study, however, there was 

considerable overlap in the brain regions associated with each subtype in 

comparison to healthy controls. Apraxia of speech was present only in the second 

type, but affected only 40% of patients. Differences were also observed in 

performance in sentence repetition and reading of irregular words, which were 

poorer in non-fluent type 1. Overall, language distinction between these 2 

subtypes was incomplete, probably because of substantial overlap between both 

variants in the impaired brain regions. This supports the need to incorporate 

neuroimaging biomarkers (such as FDG PET, among others) in this differential 

diagnosis. No patient was classified as non-fluent type 1B (k5), which is a subtype 

probably associated with more advanced stages of the disease. 

 

Furthermore, non-fluent type 1 showed some similarities to logopenic subtypes in 

language impairment. On the one hand, this is consistent with previous research 

showing some difficulties in discriminating between logopenic variant and other 

variants of PPA (Sajjadi et al., 2012). On the other hand, a mixed non-

fluent/logopenic aphasia phenotype has been associated with progranulin 

mutations (Rohrer et al., 2012); this fact, as well as the trend toward left 

hemisphere involvement, suggests that this variant could be associated with TDP-

43 proteinopathies. In contrast, non-fluent type 2, in which apraxia of speech is 

often present and which tends to involve the medial frontal lobes bilaterally, could 

more probably be associated with tau deposition. Buccofacial apraxia was more 

frequent in non-fluent type 1 (k0) than in logopenic variants, representing one of 

the distinctive characteristics of the former. This is consistent with the reported 

association between buccofacial apraxia and atrophy of the prefrontal cortex 

(Botha et al., 2014). 
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The logopenic variant was separated into 2 subtypes, with each displaying clear 

differences in sex distribution: almost all patients with logopenic type 1 (k1) were 

women, while all patients with logopenic type 2 (k4) were men. Both types involve 

the left parieto-temporal junction, but type 1 tends to extend to the left frontal 

lobe, whereas type 2 involves a more posterior region and the right parieto-

temporal lobe (Matias-Guiu et al., 2018). There were no differences in language 

characteristics, except for action fluency, which was more impaired in type 1; this 

task has been associated with left frontal lobe function (Beber and Chaves, 2014). 

The existence of some differences in regional metabolism and the differing 

representation of each sex by subtype contributes to our understanding of 

differences between men and women in regional and genetic vulnerability to 

Alzheimer pathology, as has recently been suggested (Liesinger et al., 2018; 

Deming et al., 2018).  

 

Interestingly, language tests were able to predict with a relatively high degree of 

accuracy the FDG PET–based variant of PPA, according to the different algorithms 

used in this study. This is especially relevant given the challenge of differentiating 

between PPA variants in previous studies (Sajjadi et al., 2012; Harris et al., 2018). 

We obtained 5 language test components using PCA analysis. Component 1 

included several tests mainly associated with phonology; component 2 was 

particularly related to semantics; component 3 to various tasks (including picture 

naming, apraxia of speech, action fluency, reading of non-words [time], and 

buccofacial praxis); component 4 to several reading tasks; and component 5 

comprised several repetition and fluency tasks. These results suggest that 

language performance in PPA is described by multiple components, including 

phonology, semantics, motor production, reading, repetition, and verbal fluency. 

Thus, language assessment needs to be comprehensive, and machine learning 

approaches are probably necessary for optimised classification of patients. 

Conversely, differences between subtypes according to cognitive tests examining 

other neuropsychological functions were minimal, which may be explained by the 

fact that we only included patients in early stages of the disease. 
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Our study does have some limitations. Firstly, our results are based on the battery 

of language and cognitive assessments used in this study. Although we included a 

comprehensive battery analysing the main aspects of language and general 

cognition needed for PPA diagnosis, we cannot discount the possibility that a 

deeper study of some aspects (for instance, grammar or social cognition) might 

improve the discrimination between each subtype. Similarly, connected speech 

was not included in the analysis, which could have improved the classification of 

patients with PPA (Boschi et al. 2017; Fraser et al. 2014). Second, our study was 

performed in Spanish speakers. Spanish is less complex than English in such 

aspects as motor speech (with fewer consonants, vowels, and consonant clusters, 

and a majority of words consisting of 2 syllables) and reading (Matias-Guiu et al., 

2017). This may hypothetically produce some differences in language 

characteristics, which may be less evident in language examination. However, we 

used specific tasks developed in Spanish to reduce the effect of this limitation. 

Third, our study is based on the existence of several separated variants of PPA in 

the early stages. Because of the probable existence of some cases overlapping two 

or more variants (clinically or regarding regions of brain atrophy or 

hypometabolism), a multi-functional linguistic classification could be of interest in 

future works. This may be especially interesting when considering cases with PPA 

in more advanced stages, where overlapping in language features of some variants 

is more frequent.    

 

5. CONCLUSIONS 

In conclusion, our study supports the existence of 5 variants of PPA based on 

regional metabolism. These variants show some differences in terms of language 

characteristics. The application of machine learning algorithms to language tests 

enabled relatively accurate prediction of each of the 5 PPA variants; this gives rise 

to the possibility of automated, machine-aided diagnosis of PPA variants. 

Longitudinal data and pathological confirmation are necessary to further validate 

this categorisation of PPA.  
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Figure and Table legends. 

Figure 1. Classification methods used. 

Figure 2. Accuracy of each classifier. PET features – classification. Previous model 

as training set and new set as test. 

Figure 3. Language tasks showing statistically significant differences between PPA 

subtypes. Specific tests showing differences between two subtypes are shown over 

the line connecting those subtypes. For instance, between K0 (non-fluent type 1) 

and K2 (non-fluent type 2): repetition of sentences, reading irregular words, and 

apraxia of speech; or between K0 (non-fluent type 1) and k4 (logopenic type 2): 

buccofacial apraxia (in orange, as the line connecting K0 and K4).  

Figure 4. J48 decision tree algorithm for classifying PPA subtypes using language 

tasks. 

Figure 5. Cognitive tests showing statistically significant differences between PPA 

subtypes. Specific tests showing differences between two subtypes are shown over 

the line connecting those subtypes. For instance, between K0 (non-fluent type 1) 

and k4 (logopenic type 2): TMT-A, TMT-B, SDMT, ROCF, and ROCF memory (in 

orange, as the line connecting K0 and K4). 

Figure 6. Statistical parametric map overlaid onto an MRI template (axial view), 

showing the brain regions with lower metabolism in non-fluent PPA type 1 (k0, in 

red), non-fluent PPA type 2 (k2, in yellow), and semantic PPA (k3, in cyan). 

Figure 7. Statistical parametric map overlaid onto an MRI template (axial view), 

showing the brain regions with lower metabolism in logopenic PPA type 1 (k1, in 

blue) and logopenic PPA type 2 (k4, in green). 

Table 1. Machine learning classification techniques. 
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Table 2. Demographic characteristics between groups. 

Table 3. PCA analysis. 

 

Supplementary Material 

Table S1. Language assessments between groups.  

Table S2. General neuropsychological assessment between groups. 

Table S3. Voxel-based brain mapping analysis results. Two-sample t test 

comparing each PPA group and healthy controls. 
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Table 1. Machine learning classification techniques. 

Bayes Lazy Rules Trees 

BayesNet LBK OneR J48 (pruned, 

unpruned) 

NaiveBayes Kstar PART Reptree 

 LWL DecisionTable DecisionStump 
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Table 2.  

Demographic characteristics between groups. 

NF-1: non-fluent type 1 

L-1: logopenic type 1 

NF: non-fluent type 2 

S: semantic 

L-2: logopenic type 2 

HC: healthy controls.   

Groups K0 

(NF-1) 

K1 

(L-1) 

K2 

(NF-2) 

K3 

(S) 

K4 

(L-2) 

K6/K7 

(HC) 

p-value 

Number of 

patients 

9 24 15 9 11 20 - 

Age 73.11±8

.55 

73.79±6.

87 

70.53±7.

67 

68.44±11.

60 

75.82±6.

33 

68.05±6.

75 

0.112 

Gender 

(females) n 

(%) 

1 

(11.1%) 

23 

(95.8%) 

9 (60%) 6 (66.7%) 0 (0%) 16 

(80%) 

0.000 

Years of 

education 

8.89±4.

22 

11.38±4.

81 

11.87±5.

50 

12.44±3.7

4 

14.73±4.

33 

13.00±4.

60 

0.146 

FAQ 3.67±2.

59 

1.46±2.2

8 

1.80±2.8

5 

4.0±2.78 2.18±3.1

5 

0±0  
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Table 3. PCA analysis.  

Component 1 –0.242 initial phoneme deletion 

–0.226 word spelling 

–0.222 category fluency 

–0.217 non-words repetition 

–0.213 action fluency 

Component 2 –0.458 word-picture matching 

–0.396 verb-action picture matching 

–0.386 semantic association task 

–0.313 synonyms judgement 

–0.304 word repetition 

Component 3 –0.371 picture naming task 

–0.341 Apraxia of Speech Rating Scale 

score 

–0.334 action naming task 

–0.307 reading of non-words (time) 

+0.273 buccofacial apraxia 

Component 4 +0.342 sex (women = 2) 

+0.291 reading of words without stress 

mark (time) 

–0.271 reading of words (accuracy) 

+0.267 reading of words (time) 

–0.22 dysarthria 

Component 5 –0.371 repetition of pairs of words 

–0.31 repetition of non-words 

–0.307 repetition of pairs of syllables 

+0.278 letter verbal fluency 

+0.267 animals fluency 
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K0 (non-fluent type 1)

K3 (semantic)
K2

(non-fluent

type 2)

K1 

(logopenic type 1)

K4 (logopenic type 2)

Repetition sentences

Reading irregular words

Apraxia of speech

Picture naming

Action naming

Repetition sentences

Apraxia of speech

Letter/semantic fluency

Action/semantic fluency

Initial phoneme deletion

Word spelling

Digit span backward

Repetition pairs syllables and nonwords

Buccofacial apraxia

Letter/semantic fluency

Action naming

Picture naming

Action naming

Word-picture matching

Synonyms judgement

Reading irregular words

Buccofacial apraxia

Letter+Action fluency

Letter/semantic fluency

Buccofacial apraxia

Picture naming

Apraxia of speech

Repetition sentences

Picture naming

Word-picture matching

Repetition pairs syllables and sentences

Reading non-words and irregular words

Reading nonwords

Apraxia of speech

Picture and action naming

Letter/semantic fluency

Action/semantic fluency
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K0 (non-fluent type 1)

K3 (semantic)
K2

(non-fluent

type 2)

K1

(logopenic type 1)

K4 logopenic type 2)

None

MMSE

ROCF memory

SDMT

VOSP-object decision

Stroop A and B

None

TMT-A

SDMT

None

TMT-A, TMT-B, SDMT

ROCF, ROCF memory
None

None

ACE

SDMT

Stroop A
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