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Abstract: The lockdown adopted in Spain to combat the global pandemic due to the coronavirus
disease (COVID-19) led to a significant reduction in the emission of aerosols produced by road traffic
and industry. This study aims to detect changes in column aerosols in Spain due to the COVID-19
lockdown. High-quality AErosol RObotic NETwork (AERONET) measurements of AOD (aerosol
optical depth), AE (Ångström exponent) and SSA (single scattering albedo) over the period 2012–2020
are used for this purpose. Ten AERONET stations with available measurements during the lockdown
and post-lockdown periods with a long previous data record are selected. The stations are well
distributed throughout Spain, covering different areas and population densities. A comprehensive
set of three statistical tests are applied to assess general changes in the dataset, the central tendency
and low and high values for each parameter. The analyses are conducted for the 2020 lockdown and
post-lockdown periods by comparing daily aerosol data with the measurements recorded for the same
calendar days during the period 2012–2019. The results indicate a general increase in AOD during
the lockdown and a decrease during the post-lockdown. While AE shows no overall behaviour, SSA
is the parameter most sensitive to changes in anthropogenic contribution, with an overall significant
increase in almost all the stations during both lockdown and post-lockdown periods. The study
contributes to addressing the impact of the COVID-19 lockdown and provides methodologies to
detect its footprint.
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1. Introduction

The sudden outbreak of the 2019 coronavirus disease (COVID-19) began in Wuhan,
China, in December 2019, and has since spread around the world, resulting in more
than 764 million confirmed cases and almost 7 million deaths according to the World
Health Organisation (https://covid19.who.int/, accessed on 5 March 2023). To control
the rapid spread of the disease, many countries took drastic measures to restrict human
mobility, which led to a sharp decrease in human activities and, subsequently, to significant
reductions in gas and aerosol emissions. In particular, this situation led to a significant cut
in the emission of aerosols produced by road traffic and industry.

This unexpected situation provides unique conditions to study the human contri-
bution to the total aerosol load since, in this period, the anthropogenic component was
notably reduced and the aerosol load was almost exclusively due to natural sources. The
discrimination between anthropogenic and natural origins of aerosols is a scientific issue
of utmost importance since aerosols play a key role in climate change [1,2]. Indeed, un-
certainties in understanding the effects of aerosols in altering the radiative balance of the
Earth-atmosphere system and the hydrological cycle are currently a major limitation to
our understanding of climate change [3]. In addition to affecting climate, aerosol loading
degrades the ground-level air quality and causes detrimental effects on human health.
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Taking advantage of this unusual situation, several studies have been conducted
around the world at different spatial scales. Many of them focus on PM2.5 and PM10
(particles smaller than 2.5 and 10 microns, respectively) in situ measurements registered
near the ground and their effect on air quality, and others use radiometric measurements to
study the entire aerosol column.

Some studies have addressed the effect of the pandemic on a global scale by analysing
air quality during the COVID-19 lockdowns in several selected cities around the world [4,5].
Their results indicate a substantial reduction in primary air pollutants [6,7] and, specifically,
an overall reduction in PM2.5 in the most polluted capital cities of the world [7–9]. The
effect on the column aerosol has also been observed at the global scale by several satellites
such as MODIS and CALIOP, with wide areas of the world being covered [10–13].

Specifically, a large number of studies have been conducted in Asia, primarily in
China, as this is where the first COVID-19 cases were detected. Thus, an improvement in
air quality due to the severe two-month lockdown imposed was reported for Wuhan [14],
the Chinese city where the new coronavirus emerged. A decrease in particulate matter (PM)
was also found in other Chinese megacities, such as Xi’an [15] and Shanghai [16], which
often face air pollution problems. This change also affected the formation of secondary
particulate matter. Thus, the sharp decrease in NOx emissions from road traffic increased the
formation of ozone and nocturnal NO3 radicals, and this increase in atmospheric oxidation
capacity, in turn, favoured the formation of secondary pollution [17]. The restriction
on using private vehicles notably contributed to the reduction in PM2.5 and PM10 in
many Chinese cities [18]. However, in contrast to southern and central China, PM2.5
increased substantially in northern China, with some severe haze events occurring in
Beijing during the three weeks of the lockdown [19]. This dissimilar behaviour reveals the
spatial variability of the contribution of natural and anthropogenic sources of aerosols and
the need for local studies in different areas.

A general reduction in aerosols also occurred in other highly populated Asian cities
such as Delhi in India [20], Almaty in Kazakhstan [21], Tokyo in Japan [22], Jakarta in
Indonesia [23] and Bangkok in Thailand [24], for example.

In addition to air quality studies, a few studies have investigated the effect of lock-
downs on the column aerosol in Asia. Thus, Shukla et al. [25] analysed measurements from
the AErosol RObotic NETwork (AERONET) station at Kanpur (India) and reported de-
creases in the aerosol optical depth (AOD) and Ångström exponent (AE). On the other hand,
Shen et al. [26] studied the column aerosol in the Chinese province of Hubei using MODIS
satellite data, finding a general decrease in AOD and an increase in AE. The opposite sign
of the variation in AE between Kanpur (India) and Wuhan (China) highlights the interest
to conduct local studies, in order to account for the high variability of aerosol sources.

The impact of the COVID-19 lockdown on air quality has also been monitored in other
regions around the world: North America [27,28], Central America [29], South America [30–32]
and Australia [33], for example.

Several other studies have focused on the effects of the COVID-19 restrictions on air
quality in European countries such as Sweden [34], United Kingdom [35], Germany [36],
Poland [37], Italy [38], France [39–42] and Portugal [43,44]. A reduction in PM2.5 of 40%
in Sweden, the United Kingdom, France and Spain was reported in [34]. The largest
reductions in PM2.5 occurred at urban traffic sites, being more modest at background
locations where a large proportion of the population lives [35].

Regarding the studies of column aerosol, the AERONET measurements showed
that, while AOD decreased in Italy [45] during the lockdown, it increased in France [46].
These measurements were in line with MODIS satellite measurements, which observed
a significant reduction in AOD in Poland [47] and most areas in Europe, except for its
western part, where it increased [10,11]. The study of Sannino et al. [48] in Italy is of
particular interest since they found that the AOD for the entire aerosol column increased in
contrast to the PM10 measured near the ground, which decreased. The opposite behaviour
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between the aerosol near the ground and the entire aerosol column reported by this study
emphasises the need for studying both types of measurements.

Within Europe, the Iberian Peninsula is an area of particular interest due to its location,
as it is affected by a large variety of natural and anthropogenic sources of aerosols. Thus, it
is influenced by maritime air masses coming from the Atlantic Ocean or the Mediterranean
Sea, along with continental air masses coming from Europe, and dust intrusions originating
in the south, in the Sahara Desert. Therefore, several studies have also been conducted
on the effects of the restrictions in this area. Most of them have focused on air quality in
densely populated cities such as Barcelona [49], Madrid [50] or Valencia [51], in selected
groups of cities [41,42] or in extensive networks with a large number of stations covering
both urban and rural areas [52]. In general terms, all these in situ studies have reported a
reduction in the PM recorded at ground level.

However, little research has been conducted on the effect of the lockdown on column
aerosol measurements. In fact, apart from some above-mentioned global studies using
satellite data, to our knowledge, only Barragán et al. [53] analysed the column aerosol
over Spain using radiometric measurements from surface stations, despite the fact that the
AERONET network offers high-quality long-term data at different temporal resolutions
(from day to months) at many locations. The study of Barragán et al. [53], although
innovative and interesting, is limited to one location: Madrid. Therefore, a broader study
covering several areas is necessary to achieve general conclusions on the national scale.

In this context, the present study is conducted to detect the footprint of the 2020
COVID-19 lockdown on column-integrated aerosol parameters in several locations in Spain.
This area was selected since it was all constrained by the same restrictions, which were
prompted by scientific experts [54]. For this purpose, high-quality aerosol data from ten sta-
tions belonging to the AERONET global network were selected. The locations are spatially
distributed over peninsular Spain so as to have a dataset representative of the area of study.
The period of study covers 2012 to 2020, guaranteeing sufficient temporal representativity.
The values of the three column-integrated aerosol parameters most commonly used in
aerosol studies (AOD, AE and single scattering albedo (SSA)) during the lockdown and
post-lockdown periods are compared with typical values measured for the same calendar
months in previous years, and the significance of the differences is addressed.

The paper is organised as follows: Section 1 introduces the topic and goals of the study,
Section 2 describes the instrumentation and dataset, Section 3 presents the methodology,
Section 4 shows the results obtained, Section 5 discusses the results in a combined view
and Section 6 draws some conclusions.

2. Instrumentation and Data

This study relies on radiometric measurements of atmospheric aerosol made with
CIMEL CE-318 sunphotometers integrated into the NASA AERONET network [55]. The
CIMEL CE-318 sunphotometer measures direct sun irradiances and sky radiances at several
wavelengths between 340 and 1020 nm. For more details on this instrument, see Holben
et al. [55]. All measurements are processed according to the AERONET protocols described
by Holben et al. [55], obtaining aerosol parameters at different quality levels: Level 1.0 (un-
screened), level 1.5 (cloud-screened and quality-controlled), and level 2.0 (quality-assured).

In order to achieve a thorough characterization of the aerosol, the three parameters
most commonly used in aerosol studies have been analysed: the AOD at 440 nm, the AE
retrieved using the wavelengths 440, 500, 675 and 870 nm and the SSA at 440 nm. These
parameters give key information about the different radiative properties of the aerosol.
Thus, while AOD is a measure of the total attenuation suffered by the solar radiation due
to the aerosol load, AE is related to the size of aerosol particles, and SSA measures the
proportion of the radiation attenuated by aerosol that is due to scattering, in contrast to
that due to absorption.

The AERONET protocols guarantee the high quality of its data. Thus, the uncertainty
in the AOD as estimated by Holben et al. [55] is 0.01 for wavelengths longer than 440 nm
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and 0.02 for wavelengths shorter, with 0–0.5 being the typical range of AOD values. This
uncertainty leads to a deviation of 0.03–0.04 in the AE [56], whose typical values lie between
0 and 2.5. According to Dubovik et al. [57], the SSA uncertainty is 0.03 for water-soluble
aerosols when AOD440 is above 0.2, and also 0.03 for dust and biomass burning when
AOD440 is above 0.5. This uncertainty increases to 0.05–0.07 when AOD440 is below 0.2 for
AOD440 ≤ 0.2. Since SSA typically ranges between 0.5 and 1, its uncertainty is generally
approximately 6–7% of the value.

Daily level 1.5 data have been used in this study due to the very low number of SSA
data at level 2.0. The main reason for this scarcity is the condition to only include cases with
AOD at 440 nm greater than 0.4. These AOD values are very uncommon in peninsular Spain
and correspond almost exclusively to desert dust intrusions. Therefore, level 1.5 represents
an interesting choice that combines quality and availability of measurements.

The area of study covers peninsular Spain, where many AERONET stations provide
long-term series of high-quality measurements. Several stations must be considered if
conclusions at a national scale are to be drawn since they are affected by a large variety
of aerosol sources. Thus, Spain is located in southwestern Europe and in close proximity
to North Africa. The main natural aerosol sources are maritime air masses coming from
the Atlantic Ocean and the Mediterranean Sea, polar air masses and air masses coming
from the Sahara Desert. The Sahara Desert is an important source of mineral aerosols in the
Northern Hemisphere and especially over Spain, due to the proximity between these two
regions and the annual latitudinal shift of the general atmospheric circulation, which shows
a marked seasonal pattern. In addition to these large-scale contributions, local aerosol
sources must be considered. The anthropogenic contribution in Spain is diverse, with
densely populated and industrialised cities such as Madrid and Barcelona, and other rural
areas where activities focus more on agriculture and livestock.

The period of study was chosen, taking into account the restrictions established by
the Spanish government. Specifically, the lockdown of the population began on 14 March
2020 and ended in most regions (administratively named “autonomous communities”) on
11 May 2020. During this period, the same restrictions applied to the whole country, so it
can be assumed that the aerosol measurements at different locations were affected similarly.
This period has been called the “lockdown period”. On 11 May 2020, the de-escalation
phase began, and each region established its own restrictions. Therefore, it is interesting
to analyse the site-specific conditions of each station. This period is interesting since it
is affected by the long-term effect of the restrictions imposed during the lockdown. This
second period is called the “post-lockdown period” and runs until 31 July 2020.

As mentioned above, the study focuses on Spain to guarantee that all selected locations
were subject to the same restrictions. Two requirements were adopted for the selection
of the stations to study: (1) the availability of data for the COVID-19 lockdown and post-
lockdown periods in 2020, and (2) a minimum number of years prior to the pandemic
to ensure the statistical significance of the study. Fifteen AERONET stations fulfilled the
first criterion, i.e., they had been registering measurements during the lockdown and post-
lockdown periods. However, the number of years with data differs greatly from location
to location. Figure 1 shows the number of stations with available data per year. In 2012,
stations increased from seven to twelve, therefore the period of 2012–2020 was chosen as a
compromise between the stations and the number of records. These stations are located at
El Arenosillo, Badajoz, Barcelona, Burjassot, A Coruña, Granada, Madrid, Montsec, Murcia,
Palencia, Valladolid and Zaragoza. Finally, two of these stations, El Arenosillo and Montsec,
were excluded because their number of measurements in the calendar months of interest
(March–July) was very low.
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Figure 1. Stations with available data per year. The final selection is coloured in red.

The ten final selected stations are well-distributed throughout peninsular Spain
(Figure 2). These stations are representative of the different aerosol contributions that
affect Spain and can be grouped according to different criteria. For example, while some are
located within large cities and are affected by a highly urban environment, such as Madrid
and Barcelona, others are more rural, such as Badajoz and Palencia. Regarding the influence
of the two large bodies of water surrounding the Iberian Peninsula, the Atlantic Ocean and
the Mediterranean Sea, the stations can be broadly divided into three groups: (1) Atlantic
stations, such as A Coruña, Badajoz, Valladolid and Palencia; (2) Mediterranean stations,
such as Murcia, Burjassot and Barcelona; and (3) those stations located in the middle, such
as Granada, Madrid and Zaragoza, with a double Atlantic and Mediterranean influence
and notably influenced by the orography of their surroundings. Another important aspect
to take into account is the proximity to the sea. Thus, the sea–land breeze plays a key role
in air renewal in coastal stations such as A Coruña, Barcelona, Burjassot and Murcia. In
addition to maritime air masses, Spain is frequently affected by dust intrusions from the
Sahara Desert, which is the main source of mineral aerosols in the northern hemisphere.
These intrusions are common in southern stations such as Granada, Badajoz, Murcia and
Burjassot, being less frequent as latitude increases.

ff
ff

ff

ff

ff
ff

ff

ff

𝑥 = 𝜇 + 𝛼 + 𝛽 +∪,

Figure 2. Locations, names and abbreviations of the AERONET stations used in the study.

On the other hand, the eight years of measurements guarantee the temporal signifi-
cance of the data and favour the reliability of the conclusions. It is important to note the
large variability shown by the column aerosol in peninsular Spain, due to the effect of
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different sources of various spatial scales. Thus, the ten selected stations are a good choice
that combines a high number of stations and a large number of records.

3. Methodology

Once the period of study and the stations were selected, the corresponding time series
were analysed. The analysis relied on three different statistical tests focusing on distinct
aspects of the probability distribution of the data. It must be acknowledged that the use
of inference tests based on p-values is controversial since they can result in false positives
too often [58]. However, there is no general consensus on the alternative method to be
used [59] since they are limited to visual analysis or involve subjective assumptions that
could bias the results [60]. Therefore, p-values are presently widely accepted and used in
this field. In our study, in order to minimise the possible effect of too often false positives,
several statistical analyses focusing on distinct aspects of the probability distribution of the
data were performed, and the final conclusions are derived from the combined view of all
the results.

Firstly, a global analysis of all stations consisting of a two-factor ANOVA (ANalysis Of
VAriance) test [61,62] was used to check the effect of the location and the period on the data.
Secondly, a central tendency test was applied to detect differences in the median. Lastly,
the behaviour of the lower and upper tails of the probability distribution was analysed by
means of a proportion hypothesis test. The aim of the analyses is to detect changes in data
in the lockdown and post-lockdown periods in 2020 compared to the previous 2012–2019
time series, which acts as the reference. While the first analysis is applied jointly to all
stations, the second and third tests are applied individually to each station.

3.1. General Analysis (First Statistical Test)

The first study consisted of a global analysis including all stations at once. The
analysis was an ANOVA test with two factors: the location and the period. Two tests were
performed: one compared the lockdown period with the reference period 2012–2019, and
the other compared the post-lockdown period with the same reference period.

This test was developed by R. A. Fisher in 1930 and analyses the possible effects of
one or more factors over a variable based on the decomposition of the variance of a sample
of data. Thus, it allows us to determine whether there is a statistically significant difference
between the means of the aerosol parameters grouped by the location and by the period.
The ANOVA model assumes that:

xij = µ + αi + β j + ∪, (1)

With xij being each aerosol parameter (AOD, AE or SSA) value corresponding to the
i-th value of the factor Y (location, with i = 10 levels) and to the j-th value of the factor Z
(period, with j = 2 levels: period of study and reference period). The variable µ represents
the mean of all data, αi is the effect of the i-th level of the factor Y (i ǫ 1, . . . ,I), βj is the effect
of the j-th level of the factor Z (j ǫ 1, . . . ,J) and U represents the variability of the variable X.
By definition, the sum of the effects of each factor always equals zero, i.e., ∑

I
i=1 αi = 0 and

∑
J
j=1 β j = 0. In the case that the factor Y, for example, has no influence on the variable X,

then each αi equals zero. The same applies to factor Z.
The ANOVA test is based on the decomposition of the variance of the variable X,

as follows:

I

∑
i=1

J

∑
j=1

(

xij − x..
)2

= J
I

∑
i=1

(xi . − x..)
2 + I

J

∑
j=1

(

x . j − x..
)2

+
I

∑
i=1

J

∑
j=1

(

xij − xi . − x. j + x. .
)2, (2)

With x.. being the mean of all xij data, xi . being the mean of the data with i-th level of
factor Y and any level of factor Z and x.j being the mean of the data with any level of factor
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Y and j-th level of factor Z. Thus, the left side of Equation (2) represents the total sum of
squares (SCT); the first summand of the right side of the equation is the sum of squares
explained by factor Y (SCE(α)), the second summand is the sum of squares explained by
factor Z (SCE(β)) and the third summand is the residual sum of squares (SCR).

The test compares the sum of squares explained by one factor with the residual sum
of squares. For that aim, the following statistic is built for factor Y:

Fα =

SCE(α)
I−1
SCR

(I−1)(J−1)

. (3)

The test is applied with the null hypothesis of no influence by factor Y, i.e., α1 = α2 = . . .
= αJ = 0. The statistic Fα is calculated, and if its p-value is lower than 0.05 the null hypothesis
is rejected, concluding that there is a significant influence of the factor Y on the variable X.
The test is applied similarly for the factor Z.

Although the ANOVA test is based on the assumptions of normal populations and
equal group sample size, several studies have provided empirical evidence for the robust-
ness of F-test even when normality is violated (for example, [63–65]). Additionally, the
Monte Carlo method has also been used to test how ANOVA behaves with non-normal
data and unequal group sample sizes, finding it could be still considered a valid option [66].
In this study, the ANOVA test has been applied as the first analysis. It is followed by indi-
vidual analyses for each location and the final conclusions will be based on the combined
view of all results.

3.2. Central Tendency Analysis (Second Statistical Test)

This test is applied to determine whether there have been statistically significant
changes in the median of the aerosol parameters due to COVID-19. The test was applied
to each station comparing the lockdown and post-lockdown periods with the reference
period of 2012–2019. For that aim, the t-test or Mann–Whitney–Wilcoxon’s test can be used
provided their requirements are fulfilled. While the t-test requires the data to follow a
normal distribution, Mann–Whitney–Wilcoxon’s test has no requirements on the probability
distribution followed by the data. Thus, the first step was to test the 2012–2019 time
series of the three aerosol parameters at the ten selected stations for normal distribution
using Shapiro–Wilks’ test (1965). All the time series resulted in being non-normal at 95%
confidence and, therefore, the non-parametric Mann–Whitney–Wilcoxon’s test was chosen.

This test compares the median of two probability distributions. It is based on the
statistic U built from two samples of X of size n: x1, x2, . . . ,xn, and Y of size m: y1, y2,
. . . ,ym, as follows:

U =
n

∑
i=1

m

∑
j=1

S
(

xi , yj

)

, (4)

where S(X,Y) is defined as:

S(X, Y) =







1 i f X > Y
1
2 i f X = Y
0 i f X < Y







. (5)

For samples as large (equal o larger than 20) as ours, statistic z follows a normal
distribution N (0,1):

z =
U − nm

2
√

nm(n+m+1)
12

. (6)

The value of z is calculated, and if its p-value is lower than 0.05 the null hypothesis
is rejected, concluding that the median has significantly changed from 2012–2019 to 2020.
The test was applied to the three aerosol parameters at the ten selected locations for both
periods: lockdown and post-lockdown.
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3.3. Proportions Hypothesis Test (Third Statistical Test)

This test analyses the lower and upper tails of a probability distribution. It aims to de-
tect changes in the extreme values of the aerosol parameters measured in 2020 compared to
the 2012–2019 period. In this study, the first, Q1 (percentile 25), and third, Q3 (percentile 75)
quartiles of the distribution are chosen to represent the lower and upper tails, respectively.

For that test, a dichotomous variable is defined, which equals 1 if a value is lower (or
higher) than the Q1 (or Q3) and equals 0 otherwise. In order to compare two sets of data X
and Y (in our case, 2012–2019 and 2020 time series), two discrete Bernoulli’s probability
distributions are used with the probability of success px and py, respectively, which are also
the corresponding means of the probability distributions. The null hypothesis of the test is
that the proportions of the two populations are equal, that is, px = py. They are set to 0.25
when testing low values and 0.75 when testing high values. For samples with more than
20 data (as in our study), the probability distribution of the mean of the sample approaches
a normal distribution and a z-test can be used.

With p̂x and p̂y being the sample proportions and n and m the size of the data X and Y,
respectively, the statistic z can be built as follows:

z =
p̂x − p̂y2

√

px(1−px)
n +

py(1−py)
m

; (7)

which, under the hypothesis of equal proportions, follows a normal distribution N (0,1).
The first (or third) quartile Q1 (Q3) is calculated from the 2012–2019 reference data set and
the sample proportion of the values of the 2020 dataset, which are lower (higher) than
that Q1 (Q3) is obtained. This calculation is performed for each aerosol parameter, each
location, lower and upper thresholds and lockdown and post-lockdown periods. Then, z is
calculated, and if its corresponding p-value is lower than 0.05, the existence of a significant
difference in proportions between the two populations can be concluded.

4. Results

4.1. Preliminary Analysis

In order to have reference values to compare the lockdown and post-lockdown values
with, the daily values of the aerosol parameters during the period 2012–2019 for each calen-
dar day were averaged. The mean value and the 95% percentile interval for each calendar
day are plotted in Figures 3–5 in black and light blue colours, respectively. Superimposed
to these lines, the daily values registered during the 2020 lockdown and post-lockdown
are plotted in red and yellow, respectively. A notable variability is observed in all three
aerosol parameters, as a result of the alternation of distinct aerosol contributions driven by
different synoptic circulations.

It can be observed that, during the lockdown period, the AOD values are generally
within the confidence interval, although stations such as Barcelona, Burjassot, Murcia and
Zaragoza show episodes with values notably higher. In contrast, during the post-lockdown
period, there seems to be a general tendency for the values to be somewhat lower than
the reference.

With respect to AE, no predominant general pattern is observed in most stations
during the lockdown and post-lockdown periods (Figure 4). A notable scatter around the
reference values is shown, with a few extreme values in each location.

Figure 5 illustrates the mean annual evolution of the SSA values for the reference
period, along with the values registered during the 2020 lockdown and post-lockdown
periods. A clear pattern can be observed for this parameter, with values being higher than
the reference for most stations during both lockdown and post-lockdown periods. Only
Palencia station clearly deviates from this general behaviour.
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Figure 3. Evolution of AOD throughout the year for each selected location: mean daily values for the
reference period 2012–2019 (in black), their 95% percentile interval (in light blue), 2020 lockdown
values (in red) and 2020 post-lockdown values (in yellow). The x-axis shows the date (J = January;
M = March; M = May; J = July; S = September; N = November).
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Figure 4. Evolution of AE throughout the year for each selected location: mean daily values for the
reference period 2012–2019 (in black), their 95% percentile interval (in light blue), 2020 lockdown
values (in red) and 2020 post-lockdown values (in yellow). The x-axis shows the date (J = January;
M = March; M = May; J = July; S = September; N = November).
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Figure 5. Evolution of SSA throughout the year for each selected location: mean daily values for the
reference period 2012–2019 (in black), their 95% percentile interval (in light blue), 2020 lockdown
values (in red) and 2020 post-lockdown values (in yellow). The x-axis shows the date (J = January;
M = March; M = May; J = July; S = September; N = November).

4.2. General Analysis

This analysis examines whether the values of aerosol parameters have changed in
general terms, i.e., considering the ten stations simultaneously. For this purpose, the
ANOVA test with two factors (location and time) was applied. Two ANOVA tests were
performed: One compared the 2020 lockdown period with the same calendar days of the
years 2012–2019, and the other compared the 2020 post-lockdown period with the same
calendar days of the years 2012–2019. The results of applying these tests to each of the three
studied aerosol parameters are presented in Table 1. These results show that AOD and SSA
differ significantly as a function of both “time” and “location” factors. This means that
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AOD and SSA during the lockdown and post-lockdown differ from the values registered
during the same calendar days during the period 2012–2019. Regarding AE, there is no
significant evidence of general change between the time periods. However, significant
AE differences are found for the “location” factor, suggesting an analysis of each location
individually. The ANOVA test is also significant for SSA with both factors “location” and
“time”, confirming what was observed in the preliminary analysis.

Table 1. Results of the ANOVA test for AOD, AE and SSA during the lockdown and post-lockdown
periods. p-values < 0.05 are shown in bold. The text “<2 × 10−16” indicates that the number obtained
in the test is lower than 2 × 10−16, which is the computer precision.

AOD AE SSA

Location Time Location Time Location Time

p-Value p-Value p-Value

Lockdown <2 × 10−16 3.83 × 10−7 <2 × 10−16 0.271 <2 × 10−16 <2 × 10−16

Post-lockdown <2 × 10−16 6.67 × 10−6 <2 × 10−16 0.141 <2 × 10−16 <2 × 10−16

It is important to mention that the ANOVA test has been shown to be significant for
the “location” factor in all three aerosol parameters. This fact indicates the need to perform
a more thorough study with each location being analysed individually. Since the ANOVA
analysis performs a global examination, there may be differences at specific stations that
could be masked when all stations are considered together.

4.3. Central Tendency Analysis

After the global analysis, the next step was to determine whether there were significant
changes in the median between the 2020 lockdown and post-lockdown periods, and the
reference period 2012–2019. For this purpose, Mann–Whitney–Wilcoxon’s test was applied,
and the results are shown in Figure 6.

These results indicate that the median of the AOD during the 2020 lockdown period
was significantly higher than the median of the AOD reference values at six stations out of
the ten of the study: Barcelona, Burjassot, Murcia, Palencia, Valladolid and Zaragoza. These
AOD variations can be observed in Figure 7a, where the boxplots allow the distributions to
be compared. This behaviour reversed during the 2020 post-lockdown period, when the
median AOD was significantly lower than the median of the reference values at Barcelona,
Burjassot, A Coruña and Zaragoza (Figure 7b). It is important to mention that the three
eastern stations (Barcelona, Burjassot and Zaragoza) showed significant deviations com-
pared to the reference values, being higher during the lockdown and lower during the
post-lockdown period.

Regarding AE, less-clear results are obtained, since only two stations (Murcia and A
Coruña) show significant changes in the median between the 2020 lockdown values and
the 2012–2019 reference values (Figure 6c), and the sign of their variation differs: a decrease
at Murcia and an increase at A Coruña (Figure 8a). In the 2020 post-lockdown period,
three western stations (Badajoz, Palencia and Valladolid) showed a significant decrease
compared to the reference values (Figures 6d and 8b).

The clearest general behaviour is found in the SSA values, with all ten stations showing
a significant increase in the 2020 lockdown period (Figure 6e) compared to the reference
values and six out of ten in the 2020 post-lockdown period (Figure 6f). This increase in
SSA can be clearly observed in Figure 9. It indicates a change in the mean composition
of the aerosol load, with significantly more scattering and less absorbing aerosols than in
the reference period of 2012–2019. In principle, this result could be due to distinct reasons
such as the removal of absorbing aerosols or the addition of scattering aerosols. This fact
suggests that although the information provided by SSA is very interesting, it cannot be
interpreted alone but rather must be in combination with other aerosol parameters.
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Figure 6. Sign of the change in the median of the aerosol parameters AOD, AE and SSA during the
2020 lockdown (a,c,e) and post-lockdown (b,d,f) periods compared to the reference period 2012–2019.
An increase in the parameter is indicated by upward-pointing red triangles and a decrease is indicated
by downward-pointing blue triangles. Closed and open symbols represent statistically significant
and non-significant results, respectively, according to the central tendency test.
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Figure 7. Box and whisker plot of AOD for each station over the 2020 lockdown (a) and post-
lockdown (b) periods. The median (horizontal segment within the box), 25th and 75th percentiles
(top/bottom box limits) and data within 1.5 times the interquartile range (whiskers) are shown.



Remote Sens. 2023, 15, 3167 14 of 23

 

tt

tt

ff

ff
ff

ff

Figure 8. Box and whisker plot of AE for each station over the 2020 lockdown (a) and post-lockdown
(b) periods. The median (horizontal segment within the box), 25th and 75th percentiles (top/bottom
box limits) and data within 1.5 times the interquartile range (whiskers) are shown.
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Figure 9. Box and whisker plot of SSA for each station over the 2020 lockdown (a) and post-lockdown
(b) periods. The median (horizontal segment within the box), 25th and 75th percentiles (top/bottom
box limits) and data within 1.5 times the interquartile range (whiskers) are shown.

4.4. Proportions Analysis

The reduction of human activity may have had a greater effect on the frequency of
extreme conditions (particularly clean and turbid cases) than on the average behaviour,
so the next step was to investigate changes in the lower and upper tails of the probability
distribution, i.e., the low and high values of the population. The definition of low and high
values requires establishing a threshold in the probability distribution. However, no general
threshold can be established since the ten stations of study are located in different areas of
the Iberian Peninsula and, therefore, are not equally affected by natural aerosol sources.
Additionally, the cities where the stations are located show large differences in their degree
of industrialisation and development of agricultural and livestock activities. Thus, while
Madrid, for example, is a highly industrialised huge city with more than 7.3 million people
and very heavy traffic, the city of Palencia barely reaches 80,000 inhabitants. All these
reasons suggest considering relative thresholds based on the percentiles of each particular
dataset. Specifically, the first and third quartiles, corresponding to the 25th and 75th
percentiles of the data, respectively, were chosen. Thus, in this study, a value is considered
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“low” if it is lower than the 25th percentile and is considered “high” if it is higher than
the 75th percentile. With these definitions, the terms “low” and “high” acquire a local
meaning since they are compared with the typical values of the dataset of the same location.
Based on the distributions of the data and selected thresholds, the proportion hypothesis
test determines whether the proportion of values above and below these thresholds has
changed in the 2020 lockdown and post-lockdown periods compared to the same calendar
days of the reference period 2012–2019.

Figures 10–12 show these changes in the proportion of cases with low and high values
of AOD, AE and SSA, respectively. It is important to mention that a decrease in the
proportion of days with low values of a certain parameter can be interpreted as an increase
in the values of that parameter, similar to the case of an increase in the proportion of days
with high values.

 
Figure 10. Sign of the change in the proportion of low/high AOD cases during the 2020 lockdown
(a,c) and post-lockdown (b,d) periods compared to the 2012–2019 reference period. An increase in
the proportion of cases is indicated.

ff

tt

tt

Figure 11. Sign of the change in the proportion of low/high AE cases during the 2020 lockdown
(a,c) and post-lockdown (b,d) periods compared to the 2012–2019 reference period. An increase in
the proportion of cases is indicated by upward-pointing red triangles and a decrease is indicated by
downward-pointing blue triangles. Closed and open symbols represent statistically significant and
non-significant results, respectively, according to the proportions hypothesis test.
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Figure 12. Sign of the change in the proportion of low/high SSA cases during the 2020 lockdown
(a,c) and post-lockdown (b,d) periods compared to the 2012–2019 reference period. An increase
in the proportion is indicated by upward-pointing red triangles and a decrease is indicated by
downward-pointing blue triangles. Closed and open symbols represent statistically significant and
non-significant results, respectively, according to the proportions hypothesis test.

4.4.1. AOD

Figure 10 shows the sign and significance of the change in AOD in the 2020 lockdown
and post-lockdown periods according to the results of the proportion analysis for the clean
days (low AOD values) and the turbid days (high AOD values) for the stations of study.

During the 2020 lockdown period, nine out of the ten stations experienced a decrease
in the number of low AOD cases, with six of them being statistically significant (Figure 10a).
A consistent trend is found for the number of high AOD cases, which increases compared
to the reference period in eight stations, being statistically significant in three of them
(Figure 10c). These results indicate an increase in AOD compared to the reference period in
both low and high tails of the probability distribution.

This increase in AOD in Spain is in line with satellite measurements reported by other
authors in the framework of large-scale studies. Thus, Acharya et al. [10] studied MODIS
satellite values of AOD in south-southeast Asia, Europe and the USA during the COVID-19
pandemic and reported an increase in AOD during the period from 6 March to 30 April
2020 over Western Europe, primarily in France, Spain and Portugal. Moreover, Ibrahim
et al. [11] analysed MODIS data over Europe and confirmed a 10% increase in AOD over
Spain. This positive anomaly in AOD over Spain during March and April 2020 was also
reported in the global studies performed by Sanap [12] and Smith et al. [13] using MODIS
and CALIPSO satellites.

Several sources may have contributed to this increase in AOD such as the Saharan
events detected in Madrid [53] and Barcelona [49] during this period, advecting desert
dust and causing high AOD levels. These events can be clearly identified in Figure 3 as
very high AOD measurements measured by several stations. Additionally, some authors
bring attention to the formation of new particles. In fact, the average relative humidity over
Spain during the lockdown period was very high (65%) and the average wind speed was
less than 3 m/s [11]. According to Acharya et al. [10], the high moisture content combined
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with low wind speed acts as a catalyst for increasing optical depth through the formation
of new particles. Therefore, this high relative humidity found in Spain and combined with
the light wind may have played a role in increasing AOD.

Regarding air quality, Briz-Redón et al. [41] found a decrease in PM10 measured in
situ at the ground level in Spain during the lockdown, which seems to be in contrast to the
detected increase in column AOD mentioned above. This result highlights the frequent
discrepancies existing between the aerosol at ground level and the aerosol load of the whole
atmosphere column, with the latter being sometimes driven by air masses travelling only
at certain altitudes with no contribution to the near-the-ground aerosol.

On the other hand, in the 2020 post-lockdown period, most stations (eight out of the
ten) showed an increase in the number of low-AOD cases (very clean days) compared
to the 2012–2019 reference period, with only one of them being statistically significant
(Figure 10b). This result is in line with the behaviour of the number of high-AOD cases
(very turbid days), which decreased in eight stations with four of them being statistically
significant (Figure 10d). These results indicate a general decrease in the AOD during the
post-lockdown compared to the reference period, with more very clean days and fewer
very turbid days.

4.4.2. AE

Figure 11 shows the results of applying the proportions test to the AE values for low
and high-AE cases and for the 2020 lockdown and post-lockdown periods. No general
tendency is found for the number of low-AE cases (large particles) in the lockdown period,
with an increase at four stations and a decrease at the other six, with only one of them being
statistically significant (Figure 11a). The number of high-AE cases (small particles) increases
in eight of the ten stations but only three of them are statistically significant (Figure 11c).
These high values during the lockdown period are characteristic of anthropogenic aerosols
dominated by fine aerosols [67]. On the other hand, in the post-lockdown period, the
number of stations with low AE (large particles) increases in seven stations (Figure 11b)
and the number of those with high AE (small particles) decreases in six (Figure 11d), with
very few significant cases from a statistical point of view. This tendency of having larger
particles is in line with the expected situation caused by a reduction in anthropogenic
sources, whose aerosols tend to be smaller in size than those from natural origin.

These results indicate that the column aerosol was not significantly affected immedi-
ately after the introduction of the restrictions but rather in a later period after the removal of
the most restrictive measures in most European countries. Similar behaviour was observed
at several sites in south-eastern Italy [45] and in Paris [46]. This fact could be due to the
fact that most atmospheric particles are not directly emitted into the atmosphere, as is the
case for gaseous pollutants [68,69]. Instead, atmospheric particles can also be formed by
coagulation, mixing and secondary processes, which, in turn, depend on the residence time
of the particles in the atmosphere.

4.4.3. SSA

Figure 12 shows the results of applying the proportion hypothesis test to the SSA
values at each location for the 2020 lockdown and post-lockdown periods. A general and
significant increase in SSA is found during both the 2020 lockdown and post-lockdown
periods compared to the 2012–2019 reference period. In both the lockdown and post-
lockdown periods, the proportion analysis shows a notable decrease in the number of
low-SSA cases (more absorbing aerosols) and also a marked increase in the number of high-
SSA cases (more scattering aerosols). Thus, during the lockdown, all the stations showed a
decrease in the number of low-SSA cases and almost all of them also showed an increase in
the number of high-SSA cases, with seven and six stations that have statistically significant
results, respectively. Similarly, during the post-lockdown, the number of low-SSA cases
decreased in nine stations (being statistically significant in eight of them), and the number
of high-SSA cases increased in eight stations (being significant in five of them).
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Therefore, it can be concluded that aerosols were more scattering and less absorbing in
the 2020 lockdown and post-lockdown periods than those on the same calendar days in the
2012–2019 period. This finding is also reported by Barragán et al. [53] for the Madrid station.

Among the three aerosol parameters studied, SSA proved to be the variable most
sensitive to changes in the 2020 lockdown and post-lockdown periods compared to the
reference period.

5. Discussion

The preliminary examination of Figures 3–5 and 7–9 and the general analysis based
on ANOVA evidenced the existence of unusual values of some aerosol parameters during
the 2020 lockdown and post-lockdown compared to the values measured during the same
calendar days during the 2012–2019 reference period. These analyses were followed by
individual tests conducted over the three quartiles Q1, Q2 (the median) and Q3 for each
station and each aerosol parameter. The results revealed differences between stations,
emphasising the difficulty of discerning the effect of a specific contribution on the whole
aerosol column. It is important to note that the column aerosol load over a given location
is generally the very complex result of the mixing of aerosols of different types coming
from several sources at various spatial scales. In this mixing, local factors such as the
surrounding orography also play an important role. Furthermore, these mixing changes
with time, as predominant factors vary. Finally, this mixing changes between sites, as they
differ both in terms of relevant local factors and in the exposure of each site to air masses
from other regions.

In this complex framework where the effect of lockdown could be masked by the local
variability specific to each site, the joint analysis of the first (Q1), second (Q2, i.e., median)
and third quartiles constitutes a means of checking the reliability of the results. Thus, the
results are reaffirmed if the three quartiles show the same tendency (all increase or all
decrease). Conversely, the confidence in the results decreases if, for example, the first and
third quartiles have a certain tendency but the second quartile shows the opposite tendency.
In this sense, the statistically significant results obtained in this study for the three quartiles
show consistent tendencies in 92% of the cases, with the agreement being reduced to 84%
when the results of the tests that were not statistically significant are included. These
percentages give confidence in the test results and in the conclusions that can be drawn.

In order to find groups of stations showing a common behaviour, the changes in
the three aerosol parameters that occurred during the 2020 lockdown and post-lockdown
periods (Figures 6 and 10–12) were examined as a function of the geographical location of
the stations, their proximity to the sea, their influence by the Atlantic or Mediterranean
seas, the size of the city and the urban or rural surroundings of the station. In principle,
these factors could lead to a certain degree of consistency between similar sites. Thus,
for example, the proximity to Africa increases the possibility of desert dust intrusions,
being close to the coast favours air renewal by the daily sea breeze, and an urban or rural
environment provides a specific aerosol load.

The joint analysis of stations and quartiles shows a general increase in AOD in the
2020 lockdown and a decrease in the 2020 post-lockdown compared to the same calendar
days of the 2012–2019 reference period. This AOD pattern of variation is followed by all
stations except A Coruña and Granada, which show particular behaviours likely driven by
the large exposure of A Coruña to Atlantic winds, and the relevant role of orography in
the case of Granada. Regarding AE, no general behaviour during the lockdown and the
post-lockdown is found, and most of the test results are nonsignificant from a statistical
point of view. In contrast, SSA shows the most significant agreement between stations and
quartiles, with nearly all of the test results being significant and indicating the increase in
SSA during both the lockdown and the post-lockdown periods.

Among the eight stations that behave consistently with respect to the variation in SSA
and AOD, Palencia and Valladolid show the greatest similarity and the same tendency in
all tests. This similarity was to be expected since they are only 39 km apart. In addition
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to these two general behaviours, no other common pattern is found. Thus, neither the
more urban sites, such as Barcelona and Madrid, nor the more rural sites, such as Badajoz
and Palencia, show a greater similarity than with other stations. No particularly similar
behaviour is found for coastal versus inland sites either.

In principle, the increase found in SSA can be due to two different causes: the removal
of absorbing aerosols or the addition of predominantly scattering aerosols. This fact
suggests that, although the information provided by SSA is very interesting, it must be
interpreted in combination with other aerosol parameters. Thus, when the SSA is analysed
together with the AOD, two different situations appear: (1) the lockdown period, with high
values of AOD and SSA, and (2) the post-lockdown period, with low values of AOD and
high values of SSA.

The high values of AOD during the 2020 lockdown are in agreement with the catalogue
of aerosol events reported by the Consejo Superior de Investigaciones Científicas [70]. This
report states that the number of days affected by desert dust intrusions coming from
the Sahara was markedly high during the 2020 lockdown, with a surplus of 49% above
the median value obtained during the period of 2012–2019 for the same calendar days.
Thus, the high values of AOD and SSA during the lockdown are likely due to desert dust
intrusions that bring high loadings of scattering aerosols.

In contrast, the number of days with desert dust events during the post-lockdown is
very similar to the typical values registered during the period of 2012–2019 for the same
calendar days, with only 3% above the median frequency [70]. This fact, combined with
the low values of AOD and the high values of SSA, indicates the depletion of absorbing
aerosols. This result is in line with the reduction in traffic and industry activities, which are
responsible for most of the black-carbon emissions.

6. Conclusions

This study takes advantage of the unique situation offered by the 2020 COVID-19
lockdown to investigate the effect of reduced road traffic and human activities on column
aerosols. It aims to improve our understanding of the contribution of anthropogenic sources
to the total aerosol load.

In order to meet that aim, high-quality measurements provided by the AERONET
network have been used. In contrast to most previous papers, the present study focuses on
column aerosols, i.e., the aerosol load integrated along the entire atmospheric column. This
column aerosol is a key factor in understanding the radiation balance and climate change
and shows a specific behaviour different from that of the aerosol near the ground measured
by in situ stations.

The study proposes a comprehensive methodology based on three statistical tests that
aim to detect footprints of the COVID-19 lockdown in different characteristics of the dataset.
Thus, in addition to testing for changes in the median values of the aerosol parameters,
the increase or decrease in the number of days with low or high values of the parameters
is examined. This proposal provides suitable methodologies to detect subtle changes in
such a complex mixture of anthropogenic and natural sources. The tests have proven
to be effective in detecting changes in the aerosol parameters. The main results indicate
that AOD increased in the lockdown period and decreased in the post-lockdown period.
This result is in line with Barragán et al. [53] for the particular case of Madrid and with
satellite studies that found an increase in AOD in the southwest of Europe during the 2020
lockdown [10–13].

This increase in AOD during the lockdown period seems to be in contrast to the
PM decrease reported by other authors for different locations in Spain [34,41,49–52]. This
discrepancy emphasises the differences between the behaviour shown by the aerosol near
the ground measured by in situ techniques and the column aerosol, which is often driven
by advected air masses travelling long distances.

While AE shows no general trend, SSA shows a general and significant increase at
most sites during the 2020 lockdown and post-lockdown periods. This means that the ratio
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of absorbing aerosols to scattering aerosols decreased. The combined analysis of the AOD
and SSA indicates that, while the high SSA values during the 2020 lockdown were likely
caused by desert dust intrusions, the high values of SSA post-lockdown were also likely
related to the depletion of absorbing aerosol due to the reduction in traffic and industry
activities. This conclusion is also in line with the higher frequency of desert dust events
during the lockdown as reported by [70].

These results indicate that SSA is the most sensitive parameter to the changes in the
contribution of anthropogenic sources that occurred during the 2020 lockdown and post-
lockdown periods and is, therefore, relevant for other studies dealing with the detection
of the COVID-19 lockdown footprints in the column aerosol. Thus, SSA has been shown
to provide very interesting information that, in combination with AOD, helps to discrimi-
nate between different aerosol sources. This finding is particularly innovative since many
classifications of aerosols into different types are based exclusively on AOD and AE [71–74].

This study contributes to a better knowledge of the changes in the column aerosol due
to the 2020 COVID-19 lockdown as measured from surface stations, which has been poorly
studied in comparison to those based on satellite or in situ data. However, it should be
noted that it focuses on the detection of footprints of the 2020 COVID-19 lockdown on the
column-integrated aerosol parameters and does not quantify its specific contribution, as
other factors such as meteorology and the regional and long-term transport of aerosols may
also have their own contributions.
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34. Skirienė, A.F.; Stasiškienė, Ž. COVID-19 and Air Pollution: Measuring Pandemic Impact to Air Quality in five European Countries.

Atmosphere 2021, 12, 290. [CrossRef]
35. Jephcote, C.; Hansell, A.L.; Adams, K.; Gulliver, J. Changes in air quality during COVID-19 ‘lockdown’ in the United Kingdom.

Environ. Pollut. 2021, 272, 116011. [CrossRef]
36. Cao, X.; Liu, X.; Hadiatullah, H.; Xu, Y.; Zhang, X.; Cyrys, J.; Zimmermann, R.; Adam, T. Investigation of COVID-19-related

lockdowns on the air pollution changes in augsburg in 2020, Germany. Atmos. Pollut. Res. 2022, 13, 101536. [CrossRef]
37. Rogulski, M.; Badyda, A. Air Pollution Observations in Selected Locations in Poland during the Lockdown Related to COVID-19.

Atmosphere 2021, 12, 806. [CrossRef]
38. Donzelli, G.; Cioni, L.; Cancellieri, M.; Llopis Morales, A.; Morales Suárez-Varela, M.M. The Effect of the COVID-19 Lockdown on

Air Quality in Three Italian Medium-Sized Cities. Atmosphere 2020, 11, 1118. [CrossRef]
39. Sbai, S.E.; Mejjad, N.; Norelyaqine, A.; Bentayeb, F. Air quality change during the COVID-19 pandemic lockdown over the

Auvergne-Rhône-Alpes region, France. Air Qual. Atmos. Health 2021, 14, 617–628. [CrossRef]
40. Dahech, S.; Abdmouleh, M.A.; Lagmiri, S. Spatiotemporal Variation of Air Quality (PM and NO2) in Southern Paris during

COVID-19 Lockdown Periods. Atmosphere 2022, 13, 289. [CrossRef]
41. Briz-Redón, A.; Belenguer-Sapiña, C.; Serrano-Aroca, A. Changes in air pollution during COVID-19 lockdown in Spain: A

multi-city study. J. Environ. Sci. 2020, 101, 16–26. [CrossRef]
42. Querol, X.; Massagué, J.; Alastuey, A.; Moreno, T.; Gangoiti, G.; Mantilla, E.; Diéguez, J.J.; Escudero, M.; Monfort, E.; García-Pando,

C.P.; et al. Lessons from the COVID-19 air pollution decrease in Spain: Now what? Sci. Total Environ. 2021, 779, 146380. [CrossRef]
43. Gama, C.; Relvas, H.; Lopes, M.; Monteiro, A. The impact of COVID-19 on air quality levels in Portugal: A way to assess traffic

contribution. Environ. Res. 2021, 193, 110515. [CrossRef] [PubMed]
44. Gamelas, C.; Abecasis, L.; Canha, N.; Almeida, S.M. The Impact of COVID-19 Confinement Measures on the Air Quality in an

Urban-Industrial Area of Portugal. Atmosphere 2021, 12, 1097. [CrossRef]
45. Romano, S.; Catanzaro, V.; Paladini, F. Impacts of the COVID-19 Lockdown Measures on the 2020 Columnar and Surface Air

Pollution Parameters over South-Eastern Italy. Atmosphere 2021, 12, 1366. [CrossRef]
46. Piazzola, J.; Bruch, W.; Desnues, C.; Parent, P.; Yohia, C.; Canepa, E. Influence of Meteorological Conditions and Aerosol Properties

on the COVID-19 Contamination of the Population in Coastal and Continental Areas in France: Study of Offshore and Onshore
Winds. Atmosphere 2021, 12, 523. [CrossRef]

47. Filonchyk, M.; Hurynovich, V.; Yan, H. Impact of COVID-19 lockdown on air quality in the Poland, Eastern Europe. Environ. Res.

2021, 198, 110454. [CrossRef]
48. Sannino, A.; D’Emilio, M.; Castellano, P.; Amoruso, S.; Boselli, A. Analysis of Air Quality during the COVID-19 Pandemic

Lockdown in Naples (Italy). Aerosol Air Qual. Res. 2021, 21, 200381. [CrossRef]
49. Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during

the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726, 138540. [CrossRef]
50. Betancourt-Odio, M.A.; Martínez-de-Ibarreta, C.; Budría-Rodríguez, S.; Wirth, E. Local analysis of air quality changes in the

community of Madrid before and during the COVID-19 induced lockdown. Atmosphere 2021, 12, 659. [CrossRef]
51. Donzelli, G.; Cioni, L.; Cancellieri, M.; Llopis-Morales, A.; Morales-Suárez-Varela, M. Relations between air quality and COVID-19

lockdown measures in Valencia, Spain. Int. J. Environ. Res. Public Health 2021, 18, 2296. [CrossRef]
52. Wirth, E.; Betancourt-Odio, M.A.; Cabeza-García, M.; Zapatero-González, A. Footprints of COVID-19 on Pollution in Southern

Spain. Atmosphere 2022, 13, 1928. [CrossRef]
53. Barragán, R.; Molero, F.; Granados-Muñoz, M.J.; Salvador, P.; Pujadas, M.; Artiñano, B. Feasibility of Ceilometers Data to Estimate

Radiative Forcing Values: Application to Different Conditions around the COVID-19 Lockdown Period. Remote Sens. 2020, 12,
3699. [CrossRef]

54. Mitjà, O.; Arenas, A.; Rodó, X.; Tobías, A.; Brew, J.; Benlloch, J.M. Experts’ request to the Spanish Government: Move Spain
towards complete lockdown. Lancet 2020, 395, 1193–1194. [CrossRef]

55. Holben, B.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.; Setzer, K.; Vermote, E.; Reagan, J.; Kaufman, Y.; Nakajima, T.; et al.
AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16.
[CrossRef]

56. Schuster, G.L.; Dubovik, O.; Holben, B.N. Ångström exponent and bimodal aerosol size distributions. J. Geophys. Res. 2006, 111,
D07207. [CrossRef]

https://doi.org/10.1016/j.scitotenv.2020.139085
https://doi.org/10.1016/j.scitotenv.2020.139087
https://doi.org/10.3390/atmos11101045
https://doi.org/10.3390/ijerph18073528
https://doi.org/10.3390/atmos12030290
https://doi.org/10.1016/j.envpol.2020.116011
https://doi.org/10.1016/j.apr.2022.101536
https://doi.org/10.3390/atmos12070806
https://doi.org/10.3390/atmos11101118
https://doi.org/10.1007/s11869-020-00965-w
https://doi.org/10.3390/atmos13020289
https://doi.org/10.1016/j.jes.2020.07.029
https://doi.org/10.1016/j.scitotenv.2021.146380
https://doi.org/10.1016/j.envres.2020.110515
https://www.ncbi.nlm.nih.gov/pubmed/33242486
https://doi.org/10.3390/atmos12091097
https://doi.org/10.3390/atmos12101366
https://doi.org/10.3390/atmos12040523
https://doi.org/10.1016/j.envres.2020.110454
https://doi.org/10.4209/aaqr.2020.07.0381
https://doi.org/10.1016/j.scitotenv.2020.138540
https://doi.org/10.3390/atmos12060659
https://doi.org/10.3390/ijerph18052296
https://doi.org/10.3390/atmos13111928
https://doi.org/10.3390/rs12223699
https://doi.org/10.1016/S0140-6736(20)30753-4
https://doi.org/10.1016/S0034-4257(98)00031-5
https://doi.org/10.1029/2005JD006328


Remote Sens. 2023, 15, 3167 23 of 23

57. Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy assessments of aerosol optical
properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J. Geophys. Res. 2000, 105,
9791–9806. [CrossRef]

58. Jonhson, D.H. The Insignificance of Statistical Significance Testing. J. Wildl. Manag. 1999, 3, 763–772. [CrossRef]
59. Lakens, D. The practical alternative to the p value is the correctly used p value. Perspect Psychol Sci. 2021, 16, 639–648. [CrossRef]
60. Fricker, R.D., Jr.; Burke, K.; Han, X.; Woodall, W.H. Assessing the Statistical Analyses Used in Basic and Applied Social Psychology

after Their p-Value Ban. Am. Stat. 2019, 73, 374–384. [CrossRef]
61. Girden, E.R. ANOVA: Repeated Measures; Sage: Thousand Oaks, CA, USA, 1992.
62. Kaufmann, J.; Schering, A.G. Analysis of variance (ANOVA). In Wiley Encyclopedia of Clinical Trials; D’Agostino, R., Massaro, J.,

Sullivan, L., Eds.; Wiley: Hoboken, NJ, USA, 2007. [CrossRef]
63. Black, G.; Ard, D.; Smith, J.; Schibik, T. The impact of the Weibull distribution on the performance of the single-factor ANOVA

model. Int. J. Ind. Eng. Comput. 2010, 1, 185–198. [CrossRef]
64. Lantz, B. The impact of sample non-normality on ANOVA and alternative methods. Br. J. Math. Stat. Psychol. 2013, 66, 224–244.

[CrossRef]
65. Schmider, E.; Ziegler, M.; Danay, E.; Beyer, L.; Bühner, M. Is it really robust? Reinvestigating the robustness of ANOVA against

violations of the normal distribution assumption. Methodology 2010, 6, 147–151. [CrossRef]
66. Blanca Mena, M.J.; Alarcón Postigo, R.; Arnau Gras, J.; Bono Cabré, R.; Bendayan, R. Non-normal data: Is ANOVA still a valid

option? Psicothema 2017, 29, 552–557.
67. Kleidman, R.G.; O’Neill, N.T.; Remer, L.A.; Kaufman, Y.J.; Eck, T.F.; Tanre, D.; Dubovik, O.; Holben, B.N. Comparison of Moderate

Resolution Imaging Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET) remote-sensing retrieval of aerosol
fine mode fraction over ocean. J. Geophys. Res. 2005, 110, D22205. [CrossRef]

68. Lonati, G.; Riva, F. Regional scale impact of the COVID-19 Lockdown on Air Quality: Gaseous Pollutants in the Po Valley,
Northern Italy. Atmosphere 2021, 12, 264. [CrossRef]

69. Marinello, S.; Lolli, F.; Gamberini, R. The Impact of the COVID-19 Emergency on Local Vehicular Traffic and Its Consequences for
the Environment: The Case of the City of Reggio Emilia (Italy). Sustainability 2021, 13, 118. [CrossRef]

70. Ministerio Para la Transición Ecológica y el Reto Demográfico (MITECO). Episodios naturales de Partículas. African Dust Alert

System. Available online: https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-
aire/calidad-delaire/evaluacion-datos/fuentes-naturales/default.aspx (accessed on 31 March 2023).

71. Elias, T.; Silva, A.; Belo, N.; Pereira, S.; Formenti, P.; Helas, G.; Wagner, F. Aerosol extinction in a remote continental region of the
Iberian Peninsula during summer. J. Geophys. Res. 2006, 111, 1–20. [CrossRef]

72. Otero, L.; Ristori, P.; Holben, B.; Quel, E. Espesor óptico de aerosoles durante el año 2002 para diez estaciones pertenecientes a la
red AERONET—NASA. Opt. Pura Apl. 2006, 39, 355–364.

73. Kaskaoutis, D.; Kambezidis, H.; Hatzianastassiou, N.; Kosmopoulos, P.; Badarinath, K. Aerosol climatology: On the discrimination
of aerosol types over four Aeronet sites. Atmos. Chem. Phys. Discuss. 2007, 7, 6357–6411.

74. Toledano, C.; Cachorro, V.; Berjón, A.; de Frutos, A.; Sorribas, M.; de la Morena, B.; Goloub, P. Aerosol optical depth and Ångström
exponent climatology at El Arenosillo AERONET site (Huelva, Spain). Q. J. R. Meteorol. Soc. 2007, 133, 795–807. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1029/2000JD900040
https://doi.org/10.2307/3802789
https://doi.org/10.1177/1745691620958012
https://doi.org/10.1080/00031305.2018.1537892
https://doi.org/10.1002/9780471462422.eoct017
https://doi.org/10.5267/j.ijiec.2010.02.007
https://doi.org/10.1111/j.2044-8317.2012.02047.x
https://doi.org/10.1027/1614-2241/a000016
https://doi.org/10.1029/2005JD005760
https://doi.org/10.3390/atmos12020264
https://doi.org/10.3390/su13010118
https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/calidad-delaire/evaluacion-datos/fuentes-naturales/default.aspx
https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/calidad-delaire/evaluacion-datos/fuentes-naturales/default.aspx
https://doi.org/10.1029/2005JD006610
https://doi.org/10.1002/qj.54

	Introduction 
	Instrumentation and Data 
	Methodology 
	General Analysis (First Statistical Test) 
	Central Tendency Analysis (Second Statistical Test) 
	Proportions Hypothesis Test (Third Statistical Test) 

	Results 
	Preliminary Analysis 
	General Analysis 
	Central Tendency Analysis 
	Proportions Analysis 
	AOD 
	AE 
	SSA 


	Discussion 
	Conclusions 
	References

