
electronics

Article

Performance of Two Approaches of Embedded
Recommender Systems

Francisco Pajuelo-Holguera 1 , Juan A. Gómez-Pulido 1,* and Fernando Ortega 2

1 Department of Tecnología de Computadores y Comunicaciones, Escuela Polítécnica, Universidad de
Extremadura, 10003 Cáceres, Spain; franciscoph@unex.es

2 Department of Sistemas Informáticos, ETSI Sistemas Informáticos, Universidad Politécnica de Madrid,
28031 Madrid, Spain; fernando.ortega@upm.es

* Correspondence: jangomez@unex.es

Received: 22 February 2020; Accepted: 21 March 2020; Published: 25 March 2020
����������
�������

Abstract: Nowadays, highly portable and low-energy computing environments require programming
applications able to satisfy computing time and energy constraints. Furthermore, collaborative
filtering based recommender systems are intelligent systems that use large databases and perform
extensive matrix arithmetic calculations. In this research, we present an optimized algorithm
and a parallel hardware implementation as good approach for running embedded collaborative
filtering applications. To this end, we have considered high-level synthesis programming for
reconfigurable hardware technology. The design was tested under environments where usual
parameters and real-world datasets were applied, and compared to usual microprocessors running
similar implementations. The performance results obtained by the different implementations were
analyzed in computing time and energy consumption terms. The main conclusion is that the
optimized algorithm is competitive in embedded applications when considering large datasets and
parallel implementations based on reconfigurable hardware.

Keywords: embedded systems; collaborative filtering; recommender systems; parallelism;
reconfigurable hardware; high-level synthesis

1. Introduction

Nowadays, in the framework of the information society, a large amount of information is
being generated from multiple and heterogeneous data sources. The own interaction of the user
who generates or uses this information is added to the same. Representative examples can be
found in areas such as e-commerce (users who buy and value products) and the entertainment
industry (users who value series and movies). This information is usually stored in large databases,
permanently and dynamically growing and updating, which constitute a source of knowledge
regarding user behavior, so that predictions and recommendations can be made. This is where
recommendation systems emerge.

Recommender Systems (RS) [1] are algorithmic techniques that allow users to obtain
recommendations and predictions after an intelligent processing of the data of large databases. RS
give personalized recommendations to the users according to their behavior when requesting and
handling information [2,3]. In this sense, RS are also known as filters because they block the data not
connected to the users’ behavior.

Besides the analysis and recommendation of information, an important application of RS is the
prediction of the users’ behavior. For example, in the Predicting Student Performance (PSP) problem [4],
the score of an evaluation task in the academic environment for a particular student can be predicted
when RS considers it as a ranking prediction problem. Nevertheless, the most popular implementation

Electronics 2020, 9, 546; doi:10.3390/electronics9040546 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-4887-8256
https://orcid.org/0000-0002-0441-9402
https://orcid.org/0000-0003-4765-1479
http://dx.doi.org/10.3390/electronics9040546
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/4/546?type=check_update&version=2


Electronics 2020, 9, 546 2 of 15

of RS is Collaborative Filtering (CF) [5,6], where users with similar preferences in the past will have
similar preferences in the future [7]. For example, if two users have rated the same movies as positive,
new movies that either rates as positive might be liked by the other user.

A matrix defines the relationship between users and items in CF. This matrix stores the ratings
(explicit or implicit) of the users to the items, and has a high level of sparsity, because users only rate a
small number of available items. Popular online applications, such as e-commerce websites or movies
databases, generate rating matrices composed of thousands of million ratings, where hundreds of
thousands of users have rated hundreds of thousands of items.

The way to fill the gaps of the sparse ratings matrix [8] considers the Matrix Factorization (MF)
technique [9]. MF generates a scalable model for prediction purposes [10] composed of two matrices.
The prediction is a combination of factors as result of multiplying the row corresponding to a user in
the user-latent space with the column corresponding to an item in the item-latent matrix. In addition,
MF assumes that users’ ratings are conditioned by K latent factors describing the items of the system.
MF algorithms try to find these hidden factors through the rating matrix.

We would like to highlight the interest in implementing a CF algorithm in hardware for running
embedded applications due to several reasons. Firstly, we must bear in mind that CF involves large
amount of data because of the number of users and items in databases. The needs of predictions
and data handling involve high computational efforts, especially if real time constraints are required.
Therefore, the design of hardware circuits that accelerate some processes of the algorithm is especially
interesting. Besides, possible embedded applications of CF require fast algorithms if they should
be performed on small, low-power computing environments. Therefore, we focus the research on
implementing embedded applications of CF by considering Field Programmable Gate Array (FPGA)
devices [11], under the Reconfigurable Computing (RC) [12] and System-On-Chip (SoC) [13] concepts.

We propose using FPGA devices for designing accelerated CF algorithms because this technology
combines software flexibility with hardware performance by exploiting parallelism. Thus, if an
embedded implementation is designed carefully by following these advantages, it can provide excellent
results, even surpassing the performance delivered by usual microprocessors or Central Processing
Units (CPU) in similar experimental conditions [14]. Other design approaches based on different
hardware technologies can also be explored. In this sense, Graphical Processing Units (GPUs) can be
programmed by using OpenCL for similar purposes, although their high power consumption could be
a constraint when using them for embedded applications.

In summary, our proposal is to design an embedded, low-energy implementation of an efficient
CF algorithm in order to perform applications on highly-portable light computing environments. Our
approach was successfully tested considering several state-of-the-art datasets.

The remainder of this paper is structured as follows. We present some related works in
Section 2. In Section 3, we discuss the basis of two approaches, basic and enhanced, of CF algorithms.
Next, Section 4 explains the design and implementation of both algorithms, emphasizing on the
parallelization strategy considered for improving the performance results. Section 5 shows a
performance comparison between the two approaches and usual microprocessors, detailing the
state-of-the-art datasets considered, the experimental procedure followed, and the timing and power
results. Finally, the conclusions of this paper are summarized in Section 6.

2. Related Works

RS are a good opportunity to provide advanced services to Internet users. Some classic
examples of heterogeneous successful applications are PHOAKS [15] (it helps users to locate useful
information on the World Wide Web (WWW) examining USenet news messages), Referral Web [16] (it
combines social networks and collaborative filtering), Fab [17] (it combines content-based information
with collaborative filtering), Siteseer [18] (a conceptual recommender system for CiteSeerX), and
many others. However, currently growing concepts in the Internet domain, such as Internet of
Things, autonomous driving, and augmented reality, among many others, are pushing to consider



Electronics 2020, 9, 546 3 of 15

new applications of the RS. For example, we can find novel and advanced applications of RS in
vehicles [19], voice-enabled devices [20], smartphones [21], and multimedia data for robustness [22],
diversification [23], and real-time [24] recommendation aims, among many other examples.

In the context of an increasing application of the RS, many research efforts are focused on
improving the accuracy and reducing their limitations. In this regard, RS have some limitations,
especially related to their complexity and difficulty in understanding them. They represent black
boxes that require personalized explanations related to the individuals’ mental models [25], which has
consequences in many areas, such as computer vision [26].

Computing systems based on low-performance and low-consumption microprocessors may
be involved in some of these new fields of application of RS. Thus, there are environments where
RS could run on such computer systems, for example smartphones and IoT devices. In fact, the
demand of computing resources by RS may have limited their application in these areas and devices.
Particularly, mobile RS are an interesting area for online applications (social networks, e-commerce,
and streaming platforms) in situations where the data volume can produce overload. These situations
may occur more and more frequently, given the rapid increase in the use of mobile devices in a context
of continuous growth and improvement of network infrastructure. The links between web and mobile
RS are identified in [27] to provide guidelines for embedded RS in mobile domain. We find some
examples of mobile RS in recommending different types of media to its users using a context-aware
approach [28] or in recommending photos by means of current contextual data in combination with
information found in the photos [29]. Other examples of mobile RS can be found in the mobile news
based on the current context and format [30], the recommendation of music depending on the daily
activities of a person [31], or the passengers of a car [32].

For all the above reasons, the tools and technologies for designing and implementing embedded
computing systems based on low-consumption devices can lead to the application of RS for many
purposes in novel fields. Our proposal considers the reconfigurable technology based on FPGA devices
for implementing fast, low-power collaborative filtering algorithms for embedded applications. This
proposal is in line with other works where ML functions and features have been implemented using
similar technology, for different purposes, mainly for acceleration tasks. Thus, we can find FPGA
technology applied for Convolutional Neural Networks (CNN) [33], Deep Learning (DL) [34], K-Means
clustering [35–37], and kernel density estimation [38], among others.

It is particularly interesting to explore the application of FPGAs for CF, especially for
acceleration purposes. In this regard, there are some attempts to accelerate tasks involved in
cloud services and large databases, such as Amazon [39]. We can find some examples of FPGA
implementations of different aspects of RS algorithms, rather than the whole system itself. For example,
a Stochastic Gradient Descent (SGD) algorithm [40] used for training some RS models is implemented
on FPGA considering single-precision floating-point [41]. In this sense, our proposal takes a step
forward, as we undertake the complete implementation of two CF algorithms, which are capable of
handling real datasets.

3. Recommender Systems: Two Approaches

In this section, we present two approaches of CF algorithms, detailing their mathematical
descriptions and how they work.

3.1. Basic Algorithm

In the context of machine learning, MF technique represents a well known family of algorithms
that split a matrix X ∈ Rn×m into two matrices U ∈ Rn×k and V ∈ Rk×m, in such a way that X ≈ U ·V
[42]. Note that the rank of the matrices U and V is much smaller than the rank of X, since k� n and
k� m. Therefore, the factorized matrices U and V contain a compact representation of the original
matrix X.



Electronics 2020, 9, 546 4 of 15

Applied to CF, MF based RS factorize the sparse rating matrix R ∈ Rn×m that contains the set of
known ratings of n users to m items [43]. The fundamental assumption of these kinds of algorithms
is that the ratings of the users to the items are conditioned by a subset of latent factors intrinsic to
the users and items. For example, in a movies’ RS, it is assumed that the rating a user provides to a
movie is conditioned by the genre of that movie. As consequence of the factorization process, two new
matrices are generated: P ∈ Rn×k, which represents the k-latent factors of the n users; and Q ∈ Rm×k,
which represents the k-latent factors of the m items. Once the factorization is performed, the rating
predictions (r̂ui) of a user u to an item i can be computed by the dot product of the row vector of the
matrix P that contains the latent factors of the user u (~pu) and the column vector of the matrix Q that
contains the latent factors of the item i (~qi):

r̂ui = ~pu ·~qT
i . (1)

Hence, the learning process consists on find the optimal parameters for the matrices P and Q
that verifies

R ≈ P ·QT . (2)

This process is usually raised as an optimization problem in which the quadratic difference
between the known ratings (ru,i) of the matrix R and the predicted ones (~pu ·~qT

i ) must be minimized:

min
~pu ,~qi

∑
(u,i)∈R

(ru,i − ~pu ·~qT
i )

2. (3)

The most popular implementation of MF applied to CF is Probabilistic Matrix Factorization (PMF) [44].
PMF performs the factorization thorough a probabilistic model that represents interaction between the
users and items in a CF context. Figure 1 contains a graphical representation of this probabilistic model.
The figure contains three representational elements: circles that symbolize random variables; arrows
between two variables that indicate dependence between that random variables; and rectangles that
indicate repetitions of the random variables. The color of the circles indicates if the random variables
are observed (black) or must be learned (white). As we can observe, there exists three random variable:
Rui that symbolizes the rating of the user u to the item i; Pu that symbolizes the latent factors of each
user u; and Qi that symbolizes the latent factors of each item i. The arrows between Pu and Qi with
Rui denote that there exists dependency between the rating of user u to item i and the latent factors of
user u and item i. PMF assumes a Gaussian distribution for all the random variables. σR, σP and σQ
denotes model hyper-parameters.

Pu

UI
R
ui

R

Q P

Qi

Figure 1. Graphical representation of PMF model.



Electronics 2020, 9, 546 5 of 15

Algorithm 1 summarizes PMF. The inputs are the rating matrix R, the number of latent factors K,
and the hyper-parameters to control the learning process λ and γ. The outputs are the latent factors
matrices P and Q learned from the rating matrix.

Algorithm 1: PMF algorithm.
input : R, K, λ, γ
output : P, Q
Create a random matrix P with U rows and K columns
Create a random matrix Q with I rows and K columns
repeat

for each user u do // This loop can me parallelized for each user
for each item i rated by user u do

error = R[u][i] - dotProduct(P[u], Q[i])
for each factor k do

P[u][k]+ = γ · (error · P[u][k]− λ ·Q[i][k])

for each item i do // This loop can be parallelized for each item
for each user u that has rated the item i do

error = R[u][i] - dotProduct(P[u], Q[i])
for each factor k do

Q[i][k]+ = γ · (error ·Q[i][k]− λ · P[u][k])

until convergence
return P, Q

3.2. BNMF Algorithm

Bayesian Non-negative Matrix Factorization (BNMF) [9] model is another factorization model
designed for CF based RS. BNMF model has demonstrated its superiority by providing more accurate
predictions and recommendations than PMF model. As PMF, BNMF factorizes the rating matrix in a
probabilistic way.

The main objective of BNMF is to provide an understandable probabilistic meaning of the latent
factors space generated as consequence of the factorization process. To achieve this, the model has
been designed in such a way that it better represents the interaction between users and items. Instead
of assuming a continuous distribution to represent ratings, such as Gaussian distribution, a discrete
distribution is used. This coincides with the reality of most CF systems, where users must rate items
on a pre-set scale (e.g., 1–5 stars).

Figure 2 contains a graphical representation of BNMF model. The model is composed by the
following random variables:

• ~θu is a K dimensional vector from a Dirichlet distribution. This random variables are used to
represent the probability that a user belongs to each group.

• κik from the Beta distribution used to represent the probability that a user in the group k likes the
item i.

• Zui from the Categorical distribution used to represents that the user u rates the item i as if
he or she belongs to the group k.

• ρui from the Binomial distribution used to represent the observable rating of the user u to the item i.

The model also contains the following hyper-parameters:

• α is related to the possibility of obtaining overlapping groups of users sharing the same
preferences.

• β is related to the amount of evidences required to belong to a group.



Electronics 2020, 9, 546 6 of 15

• K is related to the number of groups (i.e., number of latent factors) that exists in the dataset.
• R is related to the Binomial distribution which take values from 0 to R.

To be able to compute predictions with the BNMF model, we must determine the conditional
probability distribution of the non-observable random variables given a set of observations (i.e., the
known ratings). Applying the variational inference technique [45], we can obtain the algorithm to
perform this task. Algorithm 2 contains a detailed explanation about the training phase of BNMF
model. For further information about the inference process, see [9].

Algorithm 2: BNMF algorithm. The algorithm returns the latent factors for each user and item.
Input ratings (rui) must be normalized.

input : rui, α, β, K, R
output : puk, qik
temp : γuk, ε−ik , ε+ik , λuik, λ′uik
Initialize γuk
Initialize ε−ik
Initialize ε+ik
repeat

for each user u do
for each item i rated by user u do

for each factor k do
λ′uik ← exp(Ψ(γuk) + r+ui ·Ψ(ε+ik ) + r−ui ·Ψ(ε−ik )− R ·Ψ(ε+ik + ε−ik ))

for each factor k do

λuik ←
λ′uik

λ′ui1+···+λ′uiK

for each item i do
ε+ik ← β

ε−ik ← β

for each user u do
γuk ← α

for each item i rated by user u do
for each factor k do

γuk ← γuk + λuik
ε+ik ← ε+ik + λuik · R · rui
ε−ik ← ε−ik + λuik · R · (1− rui)

until convergence
for each factor k do

for each user u do
puk ← γuk

∑ f=1..K γu f

for each item i do

qik ←
ε+ik

ε+ik+ε−ik



Electronics 2020, 9, 546 7 of 15

u

U

Zuiuikik

R

K

I

Figure 2. Graphical representation of BNMF model.

4. Hardware Designs for Embedded Applications

In this section, we present the hardware implementations of PMF and BNMF. The purpose of
both implementations is twofold. On the one hand, the operations of the algorithms are accelerated by
using the parallelism that hardware provides; on the other hand, the energy consumption is reduced
in comparison with usual microprocessors.

4.1. PMF Design

PMF was parallelized by considering High-Level Synthesis (HLS) technology [46]. HLS transforms
C specifications (C, C++, SystemC, or OpenCL code) into a Register Transfer Level (RTL) implementation,
which allows us to synthesize the design to any Xilinx FPGA. This way, HLS facilitates the fast design
of efficient circuits by parallelizing code automatically. Specifically, for this work, we considered
Vivado HLS tool [47], which was deeply analyzed by O’Loughlin et al. [48].

The main parallelization strategy for PMF is described in [49]. As we can see in Algorithm 1,
two consecutive loops can be parallelized after initialization in order to update the corresponding
factorized matrices for each user/item. These loops are sequentially performed several times.

4.2. BNMF Design

In this section, we show how we implemented the BNMF algorithm on a reconfigurable hardware
platform. Previously, we implemented two versions of PMF on FPGA. The first version was a simple
design without parallelism in order to check the viability of using an embedded operating system
for running a full recommender system and analyze its performance. The second version was a
parallelized design in order to accelerate the operations. Therefore, next, we focused our efforts just on
implementing a parallelized design of BNMF, once checked the viability of using the same hardware
platforms and software tools applied to PMF. In this section, we detail how we designed the BNMF
algorithm for a high-performance implementation on FPGA.

The main tools used for the design of the BNMF algorithm in an FPGA are summarized in
Table 1. Zedboard is a low-energy and low-cost prototyping board that mounts a programmable
System-on-Chip (SoC) including an ARM processing architecture. Furthermore, there are many
elements and features to design any computing system based on Linux, Windows, and Android
operating systems, among others, and interact with the user’s needs.

Table 1. Main tools for implementing BNMF in FPGA.

Hardware Zedboard Zynq-7000

SoC: Xilinx Zynq XC7Z020
Elements: HDMI, VGA, audio, Ethernet, SD, USB ...
Memory: 512 MB DDR3
Oscillators: 100 MHz and 33.3 MHz

Operating System Linaro OS

Software Xilinx Vivado HLS



Electronics 2020, 9, 546 8 of 15

Figure 3 shows the architecture where BNMF is implemented and executed. This architecture
basically consists of three elements, mutually communicated along an AXI bus: external memory,
multiprocessor system, and programmable logic.

• The memory of type DDR3 can store up to 512 MB. It hosts the datasets that provide the users
and items to the RS, as well as the main program to control the BNMF flow. Storing the datasets
in the external memory instead of in the internal memory blocks of the FPGA frees up space in
the programmable logic to implement the BNMF core. In addition, an AXI interface was chosen
to implement parallel access to memory so as not to limit bandwidth excessively. However, very
large datasets may exceed the available memory capacity; in this case, the dataset is hosted on the
SD card together with Linaro OS.

• The multiprocessor system is based on an ARM Dual Cortex-A9. It just runs the main control
program: basic operations for initializing and starting the BNMF core implemented in the FPGA,
as well as getting and displaying the results returned by it.

• The SoC block implements the BNMF core. The main advantage of this block is the high
parallelization level of the operations described in Algorithm 2. Thus, the expected performance
of this design would be higher than the performance given by a simple sequential code in the
same main control program.

MPCore System

ARM Dual Cortex-A9

control program execution

initializations

call BNMF

get results

display results

FPGA Xilinx Zynq-7000 SoC

XC7Z020-CLG484

BNMF core

start

loads users/items

performs parallel

calculations

returns results

Memory

512 MB DDR3

datasets

users

items

AXI bus
control

program

Figure 3. Basic architecture for BNMF on the Zynq Zedboard 7000.

As we did in PMF, we installed an embedded Linux OS (Linaro distribution) on the board in
order to allow running the BNMF on the FPGA. This OS is launched from a separated partition in the
SD card, thus the changes made by the program are written in that partition. The Linaro filesystem
is a complete Ubuntu-based Linux distribution with graphical desktop. The advantage of using the
Linaro is that we can work with the ZedBoard just as if we used a commercial processor. Thus, the
code executed both in ZedBoard and in CPU is exactly the same.

4.3. Parallelization Strategy

In this section, we detail how the parallel implementation of the BNMF algorithm was designed.
The results obtained in PMF encouraged us to improve the performance by designing a more accurate
parallel design in BNMF.

The parallel design was developed mainly by programming with HLS. However, we also modified
the design manually by including different optimization directives provided by HLS in order to
increase the fine-grained parallelism without the need to modify the C code, in order to obtain a higher
performance circuit. Thanks to these directives, we managed the way of parallelizing certain loops
and operations. The most used directives were those for unrolling loops or functions, which allow



Electronics 2020, 9, 546 9 of 15

us to work with arrays in parallel. Additionally, other directives to later transfer data to the BNMF
algorithm were used too.

Figure 4 allows explaining easily the parallelization strategy followed by the design. First,
according to Algorithm 2, we perform random initializations of γ, e+ and e− in parallel, since they
are matrices and are highly parallelizable.

Next, four consecutive blocks implement parallel operation for calculating some sections of the
algorithm. These four blocks are executed sequentially because there is a clear data dependency
between them.

The update of λ requires a great computational cost, since we could define it as a matrix vector.
Basically, the parallelization consists in updating each of the elements of that matrix vector in parallel. Then,
we also perform the update of e+ and e− in parallel. Finally, we calculate the user factors a and b in parallel.

,, ,, ,,Initialization

parallel tasks

sequential

tasks i1 i2 i iI

k1
k2

kK

k1
k2

kK

k1
k2

kK

, ,

Parallel block for calculating , and ,

k1
k2

kK

i1 i2 iI
k1
k2

kK

i1 i2 iI
k1
k2

kK

i1 i2 iI

k

i

u1 u2 u uU

Parallel block for calculating , ,

, ,

k

i

u1 u2 u uU

k1
k2

kK

i1 i2 iI
k1
k2

kK

i1 i2 iI

,, ,

k1
k2

kK

i1 i2 iI

Parallel block for calculating , , , , and ,

Convergence?

No

k1 k2 k kK

Parallel blocks for calculating , and ,

,

u1 u2 uU

i1 i2 iI

Yes

u1 u2 uU

i1 i2 iI
u1 u2 uU

i1 i2 iI

,

u i

k

items

i

users

u

factors

End

Start

Figure 4. Strategy for parallelizing BNMF.



Electronics 2020, 9, 546 10 of 15

5. Performance Comparison

In this section, we highlight the different results obtained by PMF and BNMF. First, we explain the
datasets considered for the experiments. Next, we show the performance results in terms of computing
time and energy consumption.

5.1. Datasets

Both PMF and BNMF were tested using four state-of-the-art datasets of different characteristics,
widely used for this purpose: The Movies Dataset (Kaggle), Movielens-100K, Movielens-1M, and
Netflix-100M (Table 2). These datasets gather the activity of many users when rating movies with
scores from 1 to 5, where each user rates at least 20 movies.

We chose datasets of very different sizes to check the impact of the matrix calculations in the
performance given by the FPGA implementation. To get a rough idea, the product Users × Items goes
from 6.3M in Kaggle to 8495M in Netflix-100M.

Table 2. Datasets used to test PMF and BNMF algorithms.

Dataset Kaggle Movielens-100k Movielens-1M Netflix-100M

Ratings 100,000 100,000 1,000,000 10,000,000
Users 700 943 6,000 480,188
Items 9000 1682 4000 17,691

5.2. Experimental Procedure

Figure 5 shows the phases of the experimental procedure followed in our research. First, we
studied in depth the best way to parallelize BNMF, looking for those operations that can be parallelized
without altering the right calculation of the remaining ones. Once the parallelizaton strategy was
determined, we generated the parallel core using Xilinx Vivado HLS. The BNMF design was exported
as IP core, which can be reached by the processor and memory in the architecture described in Figure 3.
Next, this core was exported as bitstream into the Linaro OS, and the aforementioned datasets were
added to perform the tests. Finally, the BNMF algorithm was executed and the results are validated.

This experimental procedure was performed as many times as different datasets available for
performance purposes.

BNMF parallelization

Vivado HLS parallelization

Export HLS block into Linaro OS in Zynq

Load datasets into Linaro OS in Zynq

Run BNMF

Valid results?

No

Yes

Test another datest

New design

strategy

Figure 5. Experimental procedure.



Electronics 2020, 9, 546 11 of 15

5.3. Timing Results

In this section we show the computing time obtained by the hardware implementations of BNMF
and PMF algorithms, and by an up-to-date microprocessor for comparison purposes.

With regard to the FPGA implementation, we measured the elapsed time by using HLS,
considering the same FPGA device and the required operational frequency. Once the design is
synthesized, HLS allows us to know whether the given frequency can be supported by the FPGA
device, as well as the number of clock cycles used by the hardware. Hence, we calculated the elapsed
computing time.

We considered for the CPU experiments an Intel i7-950 with clock frequency of 3 GHz. Note that
the RS implemented on the FPGA reached a very low frequency compared to the CPU: 667 MHz. The
CPU runs codes that implement the same operations described in the PMF and BNMG algorithms,
considering the same parameters and datasets.

Table 3 shows the computing time in seconds of the PMF and BNMF algorithms for the CPU and
FPGA implementations, considering the four datasets. We deduce two interesting conclusions.

Table 3. Computing time (s) and FPGA speedup of PMF and BNMF algorithms for the CPU and FPGA
implementations.

Dataset Kaggle Movielens-100k Movielens-1M Netflix-100M

Algorithm PMF BNMF PMF BNMF PMF BNMF PMF BNMF

CPU (s) 76.12 284.38 33.62 152.22 113.41 504.01 96,381.80 405,843.84
FPGA (s) 1129.70 313.82 831.04 163.72 2934.57 105.93 98,649.80 50,625.32

FPGA speedup ×0.07 ×0.91 ×0.04 ×0.93 ×0.04 ×4.76 ×0.98 ×8.02

First, comparing both algorithms, we can observe that BNMF takes more computing time than
PMF in CPU, although much less in FPGA. The reason is simply that BNMF provides the greatest
parallelization degree in the FPGA implementation. Second, we can observe that, the larger is the
dataset, the better are the results we obtain in the parallel implementation of BNMF in FPGA. In both
the Kaggle dataset and the Movielenes-100k dataset, the time results are very similar. However, the
two largest datasets begin to show a greater computing time difference between FPGA and CPU. Thus,
for the Movielens-1M dataset, the FPGA gets a speedup of almost ×5, while this speedup increases to
×8 for the Netflix-100M dataset.

In conclusion, a FPGA implementation is more attractive for the BNMF algorithm and larger
datasets. As a proposal, it would be interesting to experiment with larger sets corresponding to other
types of data.

5.4. Power Results

Energy consumption is another important metric for computing systems performance. The RS
algorithms have a certain energy impact on the hardware platforms. Knowing this impact is important
because it helps us to optimize energy-aware designs of embedded RS. We keep in mind that embedded
RS can be demanded for computing-intensive cases when performing many predictions over time.

Xilinx Vivado provides the total on-chip power of the FPGA implementations. Table 4 shows the
power in watts of the PMF and BNMF algorithms for the CPU and FPGA implementations, considering
the four datasets. We observe that the power reduction in any FPGA implementation is very high
(more than 80% on average). Therefore, a clear advantage of implementing RS in FPGA is the low
energy consumption with regard to current CPUs.

Under the algorithmic point of view, we can check in Table 4 that BNMF gives a more significant
power reduction than PMF. This fact, along with the computing time reduction for large datasets
deduced from Table 3, encourage us to consider BNMF as the best algorithmic option for building
embedded RS applications.



Electronics 2020, 9, 546 12 of 15

Table 4. Power (w) and FPGA power reduction of PMF and BNMF algorithms for the CPU and FPGA
implementations.

Dataset Kaggle Movielens-100k Movielens-1M Netflix-100M

Algorithm PMF BNMF PMF BNMF PMF BNMF PMF BNMF

CPU (w) 8.21 11.33 7.33 10.81 12.31 16.26 32.21 41.20
FPGA (w) 0.95 2.52 0.82 2.24 1.64 4.41 3.03 7.37
FPGA power reduction 88% 78% 89% 80% 87% 73% 91% 83%

6. Conclusions

We researched the performance of two different approaches of collaborative filtering based
recommender systems for embedded applications. For this purpose, we parallelized some operations
by considering high-level synthesis technology for FPGA devices. Regarding computing time, the
FPGA implementation of the Bayesian non-negative matrix factorization algorithm provided good
speedups compared to general-purpose microprocessors when dealing with large datasets, and it
surpassed clearly the results obtained by the probabilistic matrix factorization approach. Furthermore,
the low power consumption of FPGA devices makes interesting the line of exploring computing
solutions for embedded applications of collaborative filtering. In summary, the proposed approach
allows running efficient embedded collaborative filtering applications when using low-energy
computing systems based on FPGAs, taking advantage of the opportunity provided by reconfigurable
computing to exploit parallelism.

Author Contributions: F.O. proposed the recommender systems algorithms and provided the datasets.
F.P.-H. and J.A.G.-P. proposed the methodology and tools for designing the embedded architectures. F.P.-H.
programmed the parallel codes, implemented the circuits, and measured the timing and energy behaviors. All
authors analyzed the results, suggested the conclusions, and revised the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Government of Extremadura (Spain) grant number IB16002 and by the
AEI (State Research Agency, Spain) and the ERDF (European Regional Development Fund, EU) grant number
TIN2016-76259-P. The APC was funded by the Government of Extremadura (Spain) grant number IB16002.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

BNMF Bayesian Non-negative Matrix Factorization
CF Collaborative Filtering
CNN Convolutional Neural Networks
DL Deep Learning
FPGA Field-Programmable Gate Array
HLS High-Level Synthesis
MF Matrix Factorisation
ML Machine Learning
PMF Probabilistic Matrix Factorization
RC Reconfigurable Computing
RMSE Root Mean Squared Error
RS Recommender Systems
RTL Register Transfer Level
SGD Stochastic Gradient Descent
SoC System-on-Chip
WWW World Wide Web



Electronics 2020, 9, 546 13 of 15

References

1. Jannach, D.; Felfernig, A.; Zanker, M.; Friedrich, G. Recommender Systems. An Introduction; Cambridge
University Press: Cambridge, UK, 2011.

2. Bobadilla, J.; Ortega, F.; Hernando, A.; Gutiérrez, A. Recommender systems survey. Knowl. Based Syst.
2013, 46, 109–132. [CrossRef]

3. Adomavicius, G.; Tuzhilin, A. Context-aware recommender systems. In Recommender Systems Handbook;
Springer: Berlin/Heidelberg, Germany, 2015; pp. 191–226.

4. Thai-Nghe, N.; Drumond, L.; Horvath, T.; Krohn-Grimberghe, A.; Nanopoulos, A.; Schmidt-Thieme, L.
Factorization Techniques for Predicting Student Performance. In Educational Recommender Systems and
Technologies: Practices and Challenges; IGI-Global: Hershey, PA, USA, 2012; pp. 129–153.

5. Adomavicius, G.; Tuzhilin, A. Toward the next generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734–749. [CrossRef]

6. Ricci, F.; Rokach, L.; Shapira, B. Introduction to recommender systems handbook. In Recommender Systems
Handbook; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–35. [CrossRef]

7. Bobadilla, J.; Serradilla, F.; Bernal, J. A new collaborative filtering metric that improves the behavior of
recommender systems. Knowl. Based Syst. 2010, 23, 520–528.

8. Herlocker, J.L.; Konstan, J.A.; Terveen, L.G.; Riedl, J.T. Evaluating collaborative filtering recommender
systems. ACM Trans. Inf. Syst. TOIS 2004, 22, 5–53. [CrossRef]

9. Hernando, A.; Bobadilla, J.; Ortega, F. A non negative matrix factorization for collaborative filtering
recommender systems based on a Bayesian probabilistic model. Knowl. Based Syst. 2016, 97, 188–202.
[CrossRef]

10. Rendle, S.; Schmidt-Thieme, L. Online-updating regularized kernel matrix factorization models for
large-scale recommender systems. In Proceedings of the 2008 ACM Conference on Recommender Systems,
Lousanne, Switzerland, 23–25 October 2008; pp. 251–258. [CrossRef]

11. Unsalan, C.; Tar, B. Digital System Design with FPGA: Implementation Using Verilog and VHDL; McGraw-Hill:
New York, NY, USA, 2017.

12. Tessier, R.; Pocek, K.; DeHon, A. Reconfigurable Computing Architectures. Proc. IEEE 2015, 103, 332–354.
13. Goeders, J.; Holland, G.M.; Shannon, L.; Wilton, S.J.E. Systems-on-Chip on FPGAs. In FPGAs for Software

Programmers; Koch, D., Hannig, F., Ziener, D., Eds.; Springer International Publishing: Cham, Switzerland,
2016; pp. 261–283. doi:10.1007/978-3-319-26408-0_15. [CrossRef]

14. Vestias, M.; Neto, H. Trends of CPU, GPU and FPGA for high-performance computing. In Proceedings of
the IEEE 24th International Conference on Field Programmable Logic and Applications, Munich, Germany,
2–4 September 2014; pp. 1–6. [CrossRef]

15. Terveen, L.; Hill, W.; Amento, B.; McDonald, D.; Creter, J. PHOAKS: A system for sharing recommendations.
Commun. ACM 1997, 40, 59–62. [CrossRef]

16. Kautz, H.; Selman, B.; Shah, M. Referral Web: Combining Social Networks and Collaborative Filtering.
Commun. ACM 1997, 40, 63–65. [CrossRef]

17. Balabanovic, M.; Shoham, Y. Fab: Content-Based, Collaborative Recommendation. Commun. ACM 1997, 40,
66–72. [CrossRef]

18. Pudhiyaveetil, A.K.; Gauch, S.; Luong, H.P.; Eno, J. Conceptual recommender system for CiteSeerX.
In Proceedings of the 2009 ACM Conference on Recommender Systems, RecSys 2009. New York, NY, USA,
23–25 October 2009; Bergman, L.D., Tuzhilin, A., Burke, R.D., Felfernig, A., Schmidt-Thieme, L., Eds.; ACM:
New York, NY, USA, 2009; pp. 241–244. [CrossRef]

19. Luettin, J.; Rothermel, S.; Andrew, M. Future of In-Vehicle Recommendation Systems @ Bosch. In Proceedings
of the 13th ACM Conference on Recommender Systems; RecSys ’19; Association for Computing Machinery:
New York, NY, USA, 2019; p. 524. [CrossRef]

20. Ostuni, V.C. “Just Play Something Awesome”: The Personalization Powering Voice Interactions at Pandora.
In Proceedings of the 13th ACM Conference on Recommender Systems; RecSys ’19; Association for Computing
Machinery: New York, NY, USA, 2019; p. 523. [CrossRef]

http://dx.doi.org/10.1016/j.knosys.2013.03.012
http://dx.doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1016/j.knosys.2010.03.009
http://dx.doi.org/10.1145/963770.963772
http://dx.doi.org/10.1016/j.knosys.2015.12.018
https://doi.org/10.1007/978-3-319-26408-0_15
http://dx.doi.org/10.1109/JPROC.2014.2386883
http://dx.doi.org/10.1007/978-3-319-26408-0_15
http://dx.doi.org/10.1109/FPL.2014.6927483
http://dx.doi.org/10.1145/245108.245122
http://dx.doi.org/10.1145/245108.245123
http://dx.doi.org/10.1145/245108.245124
http://dx.doi.org/10.1145/1639714.1639758
http://dx.doi.org/10.1145/3298689.3346958


Electronics 2020, 9, 546 14 of 15

21. Verma, R.; Ghosh, S.; Saketh, M.; Ganguly, N.; Mitra, B.; Chakraborty, S. Comfride: A Smartphone Based
System for Comfortable Public Transport Recommendation. In Proceedings of the 12th ACM Conference on
Recommender Systems; RecSys ’18; Association for Computing Machinery: New York, NY, USA, 2018; p.
181–189. [CrossRef]

22. Tang, J.; Du, X.; He, X.; Yuan, F.; Tian, Q.; Chua, T. Adversarial Training Towards Robust Multimedia
Recommender System. In IEEE Transactions on Knowledge and Data Engineering; IEEE: Piscataway, NJ, USA,
2019; pp. 1–1. [CrossRef]

23. Raja, D.R.K.; Pushpa, S. Diversifying personalized mobile multimedia application recommendations through
the Latent Dirichlet Allocation and clustering optimization. Multim. Tools Appl. 2019, 78, 24047–24066.
[CrossRef]

24. Amato, F.; Moscato, V.; Picariello, A.; Sperli’ì, G. Extreme events management using multimedia social
networks. Future Gen. Comput. Syst. 2019, 94, 444–452. [CrossRef]

25. Kuhl, N.; Lobana, J.; Meske, C. Do you comply with AI? —Personalized explanations of learning algorithms
and their impact on employees’ compliance behavior. arXiv 2020, arXiv:2002.087772020. [CrossRef]

26. Meske, C.; Bunde, E. Using Explainable Artificial Intelligence to Increase Trust in Computer Vision. arXiv
preprint 2020, arXiv:cs.HC/2002.01543.

27. Pimenidis, E.; Polatidis, N.; Mouratidis, H. Mobile recommender systems: Identifying the major concepts.
J. Inf. Sci. 2019, 45, 387–397.

28. Zhiwen Yu.; Xingshe Zhou.; Daqing Zhang.; Chung-Yau Chin.; Xiaohang Wang.; Ji Men. Supporting
Context-Aware Media Recommendations for Smart Phones. IEEE Pervas. Comput. 2006, 5, 68–75. [CrossRef]

29. Lemos, F.; Carmo, R.; Viana, W.; Andrade, R. Towards a context-aware photo recommender system.
CEUR Workshop Proc. 2012, 889. [CrossRef]

30. Sotsenko, A.; Jansen, M.; Milrad, M. Using a rich context model for a news recommender system for mobile
users. CEUR Workshop Proc. 2014, 1181, 13–16.

31. Wang, X.; Rosenblum, D.; Wang, Y. Context-Aware Mobile Music Recommendation for Daily Activities.
In Proceedings of the 20th ACM International Conference on Multimedia; MM ’12; Association for Computing
Machinery: New York, NY, USA, 2012; p. 99–108.

32. Baltrunas, L.; Ludwig, B.; Peer, S.; Ricci, F. Context relevance assessment and exploitation in mobile
recommender systems. Perso. Ubiquit. Comput. 2012, 16, 507–526. [CrossRef]

33. Ma, Y.; Suda, N.; Cao, Y.; Vrudhula, S.; sun Seo, J. ALAMO: FPGA acceleration of deep learning algorithms
with a modularized RTL compiler. Integration 2018, 62, 14–23. [CrossRef]

34. Gankidi, P.R.; Thangavelautham, J. FPGA architecture for deep learning and its application to planetary
robotics. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2017; pp. 1–9.
[CrossRef]

35. Canilho, J.; Véstias, M.; Neto, H. Multi-core for K-means clustering on FPGA. In Proceedings of the 2016
26th International Conference on Field Programmable Logic and Applications (FPL), Lausanne, Switzerland,
29 August–2 September 2016; pp. 1–4. [CrossRef]

36. Winterstein, F.; Bayliss, S.; Constantinides, G.A. FPGA-based K-means clustering using tree-based data
structures. In Proceedings of the 2013 23rd International Conference on Field programmable Logic and
Applications, Porto, Portugal, 2–4 September 2013; pp. 1–6. [CrossRef]

37. Lin, Z.; Lo, C.; Chow, P. K-means implementation on FPGA for high-dimensional data using triangle
inequality. In Proceedings of the 22nd International Conference on Field Programmable Logic and
Applications (FPL), Oslo, Norway, 29–31 August 2012; pp. 437–442. [CrossRef]

38. Nagarajan, K.; Holland, B.; George, A.D.; Slatton, K.C.; Lam, H. Accelerating Machine-Learning Algorithms
on FPGAs using Pattern-Based Decomposition. J. Signal Proc. Syst. 2011, 62, 43–63. [CrossRef]

39. Amazon EC2 F1 Instances. 2019. Available online: https://aws.amazon.com/cn/ec2/instance-types/f1/
(accessed on 22 February 2020). [CrossRef]

40. Bottou, L. Large-Scale Machine Learning with Stochastic Gradient Descent. In Proceedings of 19th International
Conference on Computational Statistics; Springer: Heidelberg, Germany, 2010; pp. 177–186.

41. Kara, K.; Alistarh, D.; Alonso, G.; Mutlu, O.; Zhang, C. FPGA-Accelerated Dense Linear Machine Learning:
A Precision-Convergence Trade-Off. In Proceedings of the 2017 IEEE 25th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), Napa, CA, USA, 30 April–2 May 2017;
pp. 160–167.

http://dx.doi.org/10.1145/3298689.3347064
http://dx.doi.org/10.1145/3240323.3240359
http://dx.doi.org/10.1109/TKDE.2019.2893638
http://dx.doi.org/10.1007/s11042-019-7190-7
http://dx.doi.org/10.1016/j.future.2018.11.035
http://dx.doi.org/10.1177/0165551518792213
http://dx.doi.org/10.1109/MPRV.2006.61
http://dx.doi.org/10.1145/2393347.2393368
http://dx.doi.org/10.1007/s00779-011-0417-x
http://dx.doi.org/10.1016/j.vlsi.2017.12.009
http://dx.doi.org/10.1109/AERO.2017.7943929
http://dx.doi.org/10.1109/FPL.2016.7577313
http://dx.doi.org/10.1109/FPL.2013.6645501
http://dx.doi.org/10.1109/FPL.2012.6339141
https://aws.amazon.com/cn/ec2/instance-types/f1/
http://dx.doi.org/10.1007/s11265-008-0337-9


Electronics 2020, 9, 546 15 of 15

42. Lee, D.D.; Seung, H.S. Unsupervised learning by convex and conic coding. In Advances in Neural Information
Processing Systems; IEEE: Piscatawy, NJ, USA, 1997; pp. 515–521. [CrossRef]

43. Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. Computer
2009, 42, 30–37.

44. Mnih, A.; Salakhutdinov, R.R. Probabilistic matrix factorization. In Advances in Neural Information Processing
Systems; IEEE: Piscatawy, NJ, USA, 2008; pp. 1257–1264. [CrossRef]

45. Hoffman, M.D.; Blei, D.M.; Wang, C.; Paisley, J. Stochastic variational inference. J. Mach. Learn. Res. 2013, 14,
1303–1347.

46. Cong, J.; Liu, B.; Neuendorffer, S.; Noguera, J.; Vissers, K.; Zhang, Z. High-Level Synthesis for FPGAs: From
Prototyping to Deployment. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 2011, 30, 473–491.

47. Xilinx Inc. Vivado Design Suite User Guide: High-Level Synthesis; Technical Report UG902 (v2019.2); Xilinx Inc.:
San Jose, CA, USA, 2020. [CrossRef]

48. O’Loughlin, D.; Coffey, A.; Callaly, F.; Lyons, D.; Morgan, F. Xilinx Vivado High Level Synthesis: Case studies.
In Proceedings of the 25th IET Irish Signals Systems Conference 2014 and 2014 China-Ireland International
Conference on Information and Communications Technologies (ISSC 2014/CIICT 2014), Limerick, Ireland,
26–27 June 2014; pp. 352–356.

49. Pajuelo-Holguera, F.; Gómez-Pulido, J.A.; Ortega, F.; Granado-Criado, J.M. Recommender system
implementations for embedded collaborative filtering applications. Microproce. Microsyst. 2020, 73, 102997.
[CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/FCCM.2017.39
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1109/TCAD.2011.2110592
http://dx.doi.org/10.1049/cp.2014.0713.
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Recommender Systems: Two Approaches
	Basic Algorithm
	BNMF Algorithm

	Hardware Designs for Embedded Applications
	PMF Design
	BNMF Design
	Parallelization Strategy

	Performance Comparison
	Datasets
	Experimental Procedure
	Timing Results
	Power Results

	Conclusions
	References

