
Microprocessors and Microsystems 73 (2020) 102997

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Recommender system implementations for emb e dde d collaborative

filtering applications

Francisco Pajuelo-Holguera

a , Juan A. Gómez-Pulido

a , ∗, Fernando Ortega

b ,
José M. Granado-Criado

a

a Department of Technologies of Computers and Communications, Universidad de Extremadura, Spain
b Dep. Sistemas Informáticos, ETSI Sistemas Informáticos, Universidad Politécnica de Madrid, Spain

a r t i c l e i n f o

Article history:

Received 13 January 2019

Revised 19 June 2019

Accepted 9 January 2020

Available online 10 January 2020

Keywords:

Collaborative filtering

Matrix factorization

Recommender systems

Reconfigurable computing

FPGAs

High level synthesis

a b s t r a c t

This paper starts proposing a complete recommender system implemented on reconfigurable hardware

with the purpose of testing on-chip, low-energy embedded collaborative filtering applications. Although

the computing time is lower than the one obtained from usual multicore microprocessors, this proposal

has the advantage of providing an approach to solve any prediction problem based on collaborative fil-

tering by using an off-line, highly-portable light computing environment. This approach has been suc-

cessfully tested with state-of-the-art datasets. Next, as a result of improving certain tasks related to the

on-chip recommender system, we propose a custom, fine-grained parallel circuit for quick matrix mul-

tiplication with floating-point numbers. This circuit was designed to accelerate the predictions from the

model obtained by the recommender system, and tested with two small datasets for experimental pur-

poses. The accelerator is built from two levels of parallelism. On the one hand, several predictions run

in parallel through the simultaneous multiplication of different vectors of two matrices. On the other

hand, the operation of each vector is executed in parallel by multiplying pairs of floating-point values to

later add the corresponding results in parallel as well. This circuit was compared with other approaches

designed for the same purpose: circuits built using automatized tools of high-level synthesis, a general-

purpose microprocessor, and high-performance graphical processing units. The performance of the pre-

diction accelerator in terms of time surpassed that of the other approaches. We also evaluated the scal-

ability of the circuit to practical problems using the high-level synthesis approach, and confirmed that

implementations based on reconfigurable hardware allow acceptable speedups of multi-core processors.

© 2020 Elsevier B.V. All rights reserved.

1

p

r

r

c

d

G

r

s

a

m

d

R

V

a

a

[

v

a

h

0

. Introduction

Recommender systems (RS) [1] are intelligent systems that make

ersonalized recommendations for users of large databases. The

ecommendations are obtained according to user behavior when

equesting and handling information involving data analytics (DA)
Abbreviations: ALS, alternating least squares; CF, collaborative filtering; CNN,

onvolutional neural network; CPU, central processing units; DA, data analytics; DL,

eep learning; DSP, digital signal processor; FPGA, field programmable gate array;

PU, graphics processing unit; HLS, high-level synthesis; HPRC, high-performance

econfigurable computing; K, number of latent factors; MB, Microblaze proces-

or; MF, matrix factorization; ML, machine learning; NA, number of floating-point

dders; NM, numbers of floating-point multipliers; NPE, number of prediction ele-

ents; OS, operating systems; PPC, prediction parallel circuit; PSP, predicting stu-

ent performance; RC, reconfigurable computing; RMSE, root mean square error;

S, recommender systems; SGD, stochastic gradient descent; SoC, system-on-chip;

HDL, VHSIC Hardware Description Language.
∗ Corresponding author.

E-mail address: jangomez@unex.es (J.A. Gómez-Pulido).

p

y

a

i

p

(

i

i

m

c

ttps://doi.org/10.1016/j.micpro.2020.102997

141-9331/© 2020 Elsevier B.V. All rights reserved.
nd machine learning (ML) techniques. Mainly, RS provide person-

lized recommendations to the users based on their preferences

2,3] . RS are also known as filters because they block the irrele-

ant information to the users.

The algorithms developed for RS focus on prediction, and are

pplied to other systems where knowledge of user behavior is im-

ortant, not only for recommendation purposes, but also for anal-

sis. For example, a student’s performance on some tasks in the

cademic process can be predicted when RS tackles it as a rank-

ng prediction problem: this is the well-known predicting student

erformance (PSP) problem [4] .

The most popular implementation of RS is collaborative filtering

CF) [5,6] . CF is based on the idea that users with similar tastes

n the past will have similar tastes in the future [7] . For example,

f Alice and Bob have rated the same movies as positive, the new

ovies that Alice rates as positive might like to Bob.

CF can be applied to several fields [3,8] : movies, books, e-

ommerce, e-learning, etc. CF is built using a matrix that relates

https://doi.org/10.1016/j.micpro.2020.102997
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2020.102997&domain=pdf
mailto:jangomez@unex.es
https://doi.org/10.1016/j.micpro.2020.102997

2 F. Pajuelo-Holguera, J.A. Gómez-Pulido and F. Ortega et al. / Microprocessors and Microsystems 73 (2020) 102997

h

c

f

p

s

S

2

s

l

m

t

l

e

b

A

w

w

f

m

F

[

i

w

t

l

p

m

m

p

p

l

t

l

p

w

p

i

f

s

i

m

t

t

f

i

o

t

p

p

o

o

t

f

a

h

c

f

b

c
users with items. This matrix stores the ratings (explicit or im-

plicit) of the users to the items. No additional information such

as items’ features or users’ properties is required. The rating ma-

trix has a high level of sparsity, because users only rate a small

number of available items. The rating matrix usually stores thou-

sands of million ratings that thousands of hundreds of users have

performed to thousands of hundreds of items.

The main goal of CF is to fill the gaps of the sparse ratings ma-

trix [9] . This task is usually performed by the matrix factorization

(MF) algorithm [10,11] . MF makes predictions as a linear combina-

tion of factors, allowing for better scalability. It generates a model

from which we can make predictions [12] . The prediction model

is composed of two matrices such that when we make predictions

for a certain user and task, the corresponding row in the first ma-

trix and column in the second are multiplied.

MF assumes that users’ ratings are conditioned by K latent fac-

tors that describes the items of the RS. For example, in a movies’

RS, users’ ratings are conditioned by the genres of the movies that

each user rate. If a user likes action movies and dislikes romance

movies, is highly probable that he or she rates positively any action

movie and rates negatively any romance movie. MF algorithms try

to find these hidden factors through the rating matrix.

One of the most important features of RS relates to the large

amount of data involved because of the number of users and items

in databases. The needs of predictions and data handling requires

extensive computational resources, especially if we want to re-

spond to real-time requests by many users. Nevertheless, some

computing contexts as mobile devices make difficult to satisfy real-

time requirements. Therefore, in this work we focus on two re-

search aspects. First, we implemented a RS on a field programmable

gate array (FPGA) device [13] . This embedded, low-energy design

has the advantage of providing a first approach of the RS for off-

line, highly-portable light computing environments. This approach

was successfully tested considering state-of-the-art datasets. Sec-

ond, we explored the acceleration of the predictions using the real-

parallelism feature that FPGA provides according to two possibili-

ties. On the one hand, at the bottom-level, we can design a circuit

that parallelizes the matrix multiplication involved in the predic-

tion operation, by multiplying the corresponding pairs of elements

in the selected rows and columns, and finally adding the results

in parallel as well. On the other hand, we can make several pre-

dictions in parallel at the upper-level by replicating these opera-

tions, satisfying prediction requests in parallel. Thus, if we design

a system considering these two levels of parallelism, overall per-

formance improves.

We propose using FPGA devices for the design and acceleration

of RS because the reconfigurable computing (RC) [14] technology

combines software flexibility with hardware performance by ex-

ploiting parallelism. Thus, a circuit carefully designed for specific

purposes, even in arithmetic and algorithmic domains, can surpass

the performance delivered by usual microprocessors or central pro-

cessing units (CPU) in similar experimental conditions, as RC has

been shown to do for many applications [15] . Moreover, we use FP-

GAs instead of other technologies, such as graphics processing units

(GPUs), because they provide better performance at fine-grained

levels of parallelization and consume less power in most cases [16] .

The remainder of this paper is structured as follows: We sum-

marize related work in Section 2 . In Section 3 , we discuss the

basis of the RS. Next, Section 4 explains the design and imple-

mentation of a complete on-chip RS, which was tested with state-

of-the-art datasets and measured in computing time and energy

consumption terms. In Section 5 , we detail our proposal of fine-

grained parallel implementation of the prediction by considering

the two parallel levels discussed above, where fast floating-point

matrix multiplication is the target of interest. Two datasets are in-

troduced as testbenches for the hardware implementation. Other
ardware solutions based on high-level synthesis, graphics pro-

essing units and commonly used microprocessors are presented

or performance comparison purposes. Some issues about speedup,

ower consumption, and circuit’s scalability are described in this

ection too. Finally, the conclusions of this paper are detailed in

ection 6 .

. Literature review

The reconfigurable computing technology is drawing re-

earchers attention in different possibilities to apply it to machine

earning. Some ML algorithms, or parts of them, have been imple-

ented on FPGAs for different purposes, mainly for acceleration

asks. For example, convolutional neural networks (CNN) and deep

earning (DL) [17,18] , K-Means for clustering [19–21] , kernel density

stimation [22] are a few examples in that direction. The possi-

ility of considering FPGAs in this context led some companies as

mazon to offer tools and platforms to accelerate particular tasks

hen dealing with large databases and cloud services [23] . Some

orks attempt to implement CF and RS on FPGAs, considering dif-

erent parts, focus and constraints. It is more usual to find imple-

entations of some parts of a RS rather than the whole RS itself.

or example, in [24] a stochastic gradient descent (SGD) algorithm

25] used for training RS models is implemented on FPGA consider-

ng single-precision floating-point. In this sense, the approach that

e present in Section 4 tries to host on FPGA both modeling and

raining aspects of the RS when handling datasets.

As pointed out in Section 1 , RS are appropriate for use in paral-

el, not only by using repeated processing elements in parallel for

rediction purposes, but also by parallelizing the relevant matrix

ultiplication tasks. Both ways are used in our proposal to imple-

ent parallel circuits for prediction purposes using FPGAs from the

erspective of fine-grained parallelization. This approach is sup-

orted by trends of research in analytics [26] , where promising

ines of work have exploited the features of FPGAs. For example,

hey have been applied to online analytical processing, text ana-

ytics, and time series processing. On this matter, the fine-grained

arallel architecture proposed in this study contributes to recent

ork that has used FPGAs to accelerate functions in RS, for exam-

le, neighborhood-based collaborative filtering [27] .

With regard to matrix multiplication in general, several stud-

es have implemented approaches using FPGAs in pursuit of dif-

erent goals: high speed [28] , area reduction [29] , low power con-

umption, and the pipeline approach [30] , for instance. The major-

ty of these implantations deal with fixed-point values for arith-

etic operations [31] , whereas fewer researchers have examined

he floating-point domain [32] . In this sense, our research meets

he usual needs of floating-point calculation when predicting per-

ormance, according to the kind of data and algorithmic operations

n RS.

An instance of matrix multiplication is the implementation

f MF techniques on FPGAs. Some attempts have been made in

his vein [33] , allowing floating-point operations [34] and adding

ipelined calculation [30] . In this context, our proposal of parallel

rocessing is restricted to the prediction phase of the RS, instead

f model building using MF. Moreover, the matrix multiplication in

ur approach multiplies matrix vectors in parallel by considering

he constraints of the floating-point arithmetic.

Our research starts focusing on designing a circuit that can per-

orm matrix multiplication quickly, and can be replicated for par-

llel predictions. Once its speedup with regard to other solutions

as been obtained, several approaches can be used where the core

an be included to build massively parallel scalable systems ready

or big data management, where larger matrices can be handled

y solving different questions concerning memory and communi-

ation. These approaches usually involve several FPGA devices in

F. Pajuelo-Holguera, J.A. Gómez-Pulido and F. Ortega et al. / Microprocessors and Microsystems 73 (2020) 102997 3

m

u

l

d

w

m

e

m

m

o

m

s

a

M

h

m

b

m

t

c

e

t

3

t

t

t

T

t

R

m

t

r

l

t

n

i

t

c

m

v

m

m

k

t

p

i

k

c

�q

a

t

e

t

d

a

c

r

s

i

i

d

m

p

t

o

R

u

r

p

h

t

m

o

4

r

R

R

c

p
ulti-core architectures, where basic cores such as ours can be

sed as coprocessors of small, embedded CPUs, such as Microb-

aze (MB) [35] . This coarse-grained parallelization belongs to the

omain of high-performance reconfigurable computing (HPRC) [36] ,

hich exploits FPGAs [37] but require a design according to proper

odels of computation [38] . Some hardware solutions in the lit-

rature involve several boards, each of which has several FPGAs

ounted on it, such as the RIVYERA computing system [39] .

Other works focus on different MF techniques parallelized by

eans of GPUs. Thus, a parallel architecture to be performed

n GPUs is proposed in [40] where SGD was adapted to re-

ove the dependence on the user and item pair in MF for large-

cale CF problems. With regard to non-negative MF, [41] proposes

n online, scalable and single-thread-based generalized sparse

F for parallelization on GPUs, which describes properly the

igh-dimensional and sparse matrices, whereas [42] deals with

anifold-regularized non-negative MF, proposing a single-thread-

ased model parallelized on GPUs in order to avoid large-scale

atrix manipulation and remove the dependence among the fea-

ure vectors. Our contribution differs from these works in the fo-

us (fine and coarse grained parallelization for on-chip, low-energy

mbedded collaborative filtering application) and the platform for

he hardware implementation (FPGA).

. Matrix factorization based collaborative filtering

Matrix factorization approaches build a model of the rating ma-

rix R by its factorization into two dense matrices [43] : P , that con-

ains the suitability of each latent factor with each user; and Q ,

hat contains the suitability of each latent factor with each item.

he values of these new matrices are learned from the rating ma-

rix in such a way that they satisfy Eq. (1) .

 ≈ P · Q

T (1)

MF has demonstrated its superiority against other CF imple-

entations [44–46] . MF provides both accurate predictions (the es-

imated rating) and recommendations (the set of top N items more

elevant to an user). MF is also highly scalable: once the model is

earned, predictions can be computed by a simple dot product of

wo K -dimensional vectors. However, this model is outdated when

ew ratings, users or items are incorporated to the RS. The learn-

ng process must be repeated periodically in order to incorporate

hem to the model. Consequently, this training process has a high

omputational cost.

The training process requires to find the optimal values of the

atrices P and Q that minimize the error in the predictions pro-

ided by the model. To learn the factor vectors the system mini-

izes the regularized squared error of the known rating set:

in

p u ,q i

∑

(u,i) ∈ κ
(r u,i − �

 q T i · � p u)
2 + λ(|| q i || 2 + || p u || 2) (2)

Where κ is the set of (u, i) pairs for with the rating r u,i is

nown, p u is the latent factors vector of the user u, q i is the la-

ent factors vector of the item i and λ is a regularization hyper-

arameter to avoid overfitting.

The model can be trained using SGD. It loops over all the exist-

ng ratings (r u,i) until convergence. For each training case (ie. each

nown r u,i) SGD updates the values of the matrices P and Q ac-

ording to Eqs. (3) and (4) respectively.

�
 p u ←

�
 p u + γ · (e u,i · � p u − λ · � q i) (3)

 i ←

�
 q i + γ · (e u,i · � q i − λ · � p u) (4)

Where γ is an hyper-parameter that controls the learning speed

nd e u,i is the error in the prediction of the rating of the user u to
he item i :

 u,i = r u,i − �
 q T i · � p u (5)

The training of the model usually spends a huge amount of

ime until convergence. To speed up the training process, the up-

ates of the factors vectors of each user and item can be par-

llelized. However, using Eqs. (3) and (4) of SGD, parallelization

annot be performed. To update each

�
 p u the value of each

�
 q i is

equired, and vice versa. To solve this problem alternating least

quares (ALS) technique is applied [47] . ALS rotates between fix-

ng the � q i and fixing the � p u . In ALS, the system computes each

�
 q i

ndependently of the other item factors and computes each

�
 p u in-

ependently of the other user factors. This gives rise to potentially

assive parallelization of the algorithm.

Once the model is trained, predictions can be performed com-

uting the dot product of the factors vector of the target user and

he factors vector of the target item. The prediction of the rating

f the user u to the item i can be computed according to Eq. (6) .

ecommendations to each user can be obtained from the set of T

nrated items with the highest predictions (̂ r u,i).

ˆ
 u,i =

�
 q T i · � p u (6)

Algorithm 1 contains the pseudo code for MF. It receives as in-

ut the rating matrix R , the number of latent factors K , and the

yper-parameters to control the learning process λ and γ . It re-

urns the latent factors matrices P and Q learned from the rating

atrix. Convergence criteria is usually defined as a fixed number

f iterations.

input : R, K, λ, γ
output : P, Q

Create a random matrix P with U rows and K columns

Create a random matrix Q with I rows and K columns

repeat
for each user u do // This loop can me parallelized for

each user

for each item i rated by user u do

error = R [u][i] - dotProduct(P [u] , Q[i])

for each factor k do

P [u][k]+ = γ · (error · P [u][k] − λ · Q[i][k])

end

end

end

for each item i do // This loop can be parallelized for

each item

for each user u that has rated the item i do

error = R [u][i] - dotProduct(P [u] , Q[i])

for each factor k do

Q[i][k]+ = γ · (error · Q[i][k] − λ · P [u][k])

end

end

end

until convergence

return P, Q

Algorithm 1: Matrix Factorization algorithm.

. On-chip implementation of a complete recommender system

In this section we detail two implementations of the RS on a

econfigurable hardware platform. The first implementation (FPGA-

S1) consists simply in installing the required source codes of the

S on an embedded operating system and next running the exe-

utable files on an FPGA embedded microprocessor. This fast im-

lementation allows us to obtain a first approach to measure the

4 F. Pajuelo-Holguera, J.A. Gómez-Pulido and F. Ortega et al. / Microprocessors and Microsystems 73 (2020) 102997

Table 1

Datasets used to test the on-chip recommender system.

Dataset Kaggle Movielens-100K Movielens-1M Netflix-100M

Ratings 100,000 100,000 1,000,000 100,000,000
Users 700 943 6000 480,188
Items 9000 1682 4000 17,691

s

a

w

s

4

t

b

s

c

b

m

c

c

f

A

s

t

p

H

t

w

a

w

4

f

R

A

a

e

m

t

t

m

s

w

T

a

o

9
performance in computing time and energy consumption terms,

as well as check for accurate results. The second implementation

(FPGA-RS2) consists in designing a parallel RS by using high level

synthesis programming, pursuing an improved performance with

regard to the previous approach.

4.1. Datasets

The two on-chip implementations of the RS were tested us-

ing four state-of-the-art datasets of different characteristics, widely

considered for this purpose: The Movies Dataset (Kaggle) [48] ,

Movielens-100K, Movielens-1M [49] , and Netflix-100M [50] . These

datasets gather the activity of many users when rating movies

with scores from 1 to 5, where each user rates at least 20 movies.

Table 1 shows the main features of these datasets.

4.2. FPGA-RS1: RS on embedded microprocessor and operating system

We chose the low-energy system Zedboard Zynq-70 0 0 proto-

typing board for this first implementation approach. This low-cost

and popular board includes a system-on-chip (SoC) Xilinx Zynq

XC7Z020 and all the elements required to design any computing

system based on Linux, Windows, and Android operating systems

(OS), among others. The core of the board is an ARM processing

architecture attached to the SoC and programmable logic. Further-

more, other elements provide enough features to interact with the

user’s needs: HDMI and VGA video interfaces, audio input/output,

Ethernet connector, slot for SD cards, and USB interfaces (OTG for

handling peripherals, JTAG for programming Zynq from PC, and

UART for serial port communications). The processing potentiality

is conditioned by 512MB of DDR3 memory and two oscillators to

generate clock signals of 100 MHz and 33.3 MHz.

We installed an embedded Linux OS (Linaro distribution) on the

board in order to allow running the RS on the FPGA. This OS is

launched from a separated partition in the SD card, so the changes

made by the program are written in that partition. The advan-

tage of using the Linaro distribution is that we can work with the

board in the same way that we usually handle the microprocessor

of a personal computer. Therefore, the C codes of the RS executed

on both ZedBoard and CPU are exactly the same. Once installed

Linaro on the board, we access it from our PC through a secure
Fig. 1. Basic strategy to design the p
hell client; next, we transfer the source code files, compile them,

nd run the file with the machine code just as in a PC.

The circuit in the FPGA was designed with Xilinx Vivado 2017,

hich includes the required support for a Zynq-based processing

ystem.

.3. FPGA-RS2: parallel RS design

The second implementation improves a lot the performance ob-

ained by the first approach. In this case, the RS was parallelized

y considering high-level synthesis (HLS) [51] . Specifically, we con-

idered Vivado HLS [52] for this work. HLS allows us to design

ircuits quickly by parallelizing code in C automatically for FPGA-

ased implementations. However, we can also modify the design

anually by including different optimization directives to build a

ircuit with higher precision without the need to modify the C

ode. Therefore, we included some directives to unroll loops and

unctions, and divide arrays to perform parallel operations.

Fig. 1 shows the basic strategy to run certain tasks in parallel.

ccording to Algorithm 1 , after initializing the algorithm, two con-

ecutive loops were parallelized to update the corresponding fac-

orized matrices for each user/item. These loops are sequentially

erformed several times.

We measured the elapsed time in the system designed using

LS by specifying the same FPGA device and the required opera-

ional frequency. Once the code had been synthesized, HLS tells us

hether the given frequency can be supported by the FPGA device

s well as the number of clock cycles used by the hardware. Hence,

e calculated the elapsed time.

.4. Performance results and comparison

The two FPGA implementations and a simple program for CPUs

or comparison purposes, consider the same settings to run the

S. For example, we have considered 150 iterations according to

lgorithm 1 . As a sample of performance results obtained by this

lgorithm after applying the four datasets, Table 2 shows the time

lapsed in each iteration and the prediction error measured as root

ean square error (RMSE) for the FPGA-RS2 implementation (all

he hardware implementations will give the same RMSE results).

The number of iterations in Algorithm 1 is the main cause of

he elapsed time in all the implementations, slowing down the

odel generation. Tables 3 and 4 show the timing and power re-

ults respectively of both FPGA implementations and a simple soft-

are solution performed on CPU, after applying the four datasets.

he timing and power consumption reports shown in both tables

re clearer when we read “speedup” and “power reduction” instead

f “time taken” and “power consumed”, respectively.

For the RS performed on CPU, we have considered an Intel i7-

50 CPU. It is important to highlight that this CPU provides a clock
arallel recommender system.

F. Pajuelo-Holguera, J.A. Gómez-Pulido and F. Ortega et al. / Microprocessors and Microsystems 73 (2020) 102997 5

Table 2

Performance results of the recommender system.

Dataset Kaggle Movielens-100K Movielens-1M Netflix-100M

Time (s) by iteration 7.53 5.54 19.56 657.66
RMSE (training dataset) 0.9266 0.9286 0.9491 0.9547
RMSE (test dataset) 0.8396 0.8489 0.8664 0.8992

Table 3

Timing results (s).

Kaggle Movielens-100K Movielens-1M Netflix- 100M

CPU 76.12 33.62 113.41 96,381.80
FPGA-RS1 5057.81 3279.54 11,580.68 525,742.73
FPGA-RS2 1129.70 831.04 2934.57 98,649.80
Speedup FPGA-RS2 vs FPGA-RS1 × 5 × 4 × 4 × 5

Table 4

Power results.

Kaggle Movielens-100K Movielens-1M Netflix- 100M

CPU 8.21 7.33 12.31 32.21
FPGA-RS1 0.95 0.82 1.64 3.03
FPGA-RS2 0.95 0.82 1.64 3.03
Power reduction FPGA vs CPU 88% 89% 87% 91%

f

t

t

o

p

t

m

t

i

e

i

m

i

U

t

c

t

m

t

T

5

c

c

l

fi

i

p

c

c

d

m

l

s

f

e

a

a

fl

o

w

a

m

c

c

m

m

s

F

u

5

c

s

o

p

a

i

requency of 3 GHz, whereas the maximum frequency provided by

he FPGA implementations to run the RS safely was 667 MHz.

As expected, the embedded FPGA implementations are slower

han CPU, although this result does not devalue the advantages

f implementing RS on embedded devices based on FPGAs, as we

ointed out previously in Section 1 . These results indicate also that

he parallel RS design outperforms the simple embedded imple-

entation.

Finally, it is important to know the energy impact of running

he RS implementations. We think that power consumption is an

mportant indicator because it allows us to design energy-aware

mbedded circuits that minimize operational costs when perform-

ng many predictions over time in computing-intensive environ-

ents, such as RS. The power consumption of the RS in the CPU

mplementation was measured by using Powerstat tool under Linux

buntu OS, whereas Power Analyzer tool in Xilinx Vivado provided

he total on-chip power of the two FPGA implementations. In this

ase, the power reduction in both FPGA implementations regarding

he CPU was very significant (around 90%). Even this reduction is

ore significant when we consider the largest dataset.

The timing results obtained by the FPGA implementations of

he whole RS led us to tackle the acceleration of particular tasks.

his is the case of the prediction phase.

. Accelerating the prediction phase: proposal and alternatives

The design of any accelerator system based on FPGAs must

over several issues, from the basic core at the bottom level to the

ommunication architecture at the upper level, by solving prob-

ems related to scalability, memory, and bandwidth. Therefore, the

rst and mandatory step is to carefully design the basic core: If

ts performance is not adequate, the remaining steps are not com-

leted to design a more complex architecture. Therefore, we fo-

us on this first step. We designed a custom prediction parallel cir-

uit (PPC) for accelerating the prediction according to the model

escribed in Section 3 . This core replicates small operators for

atrix multiplications, from the perspective of fine-grained paral-

elization, to allow for parallel predictions. As we obtained a good

peedup, different architectures for the entire RS process can be
urther explored, including a configurable PPC. In this sense, we

xplore an approach that includes the PPC in training and gener-

tes the prediction model driven by an FPGA-embedded processor.

Our proposal contributes to a better understanding of some

spects of the problem. We tackle the strong component of the

oating-point arithmetic in matrix multiplication using a large set

f optimized floating-point adders and multipliers. These elements

ork in a coordinated way to implement parallel operations. We

lso used custom datasets composed of small matrices for experi-

ental purposes. Thus, if our proposal achieves good speedups, we

an delegate the solution for larger matrices to future research that

an use the same methodology. Moreover, we think this approach

ay be interesting when the RS works with the practical require-

ents and prediction models of fixed size. We also seek significant

peedups on common computing devices, such as CPUs and GPUs.

urthermore, the proposed circuit consumes less power, which is

seful in intensive computing scenarios.

.1. Design of the prediction parallel circuit

Once the RS generates the prediction model, many predictions

an be requested in real time. A hardware accelerator can perform

everal predictions in parallel from the values in P and Q . Hence,

ur effort is oriented to design a fast on-chip architecture that can

erform parallel predictions by multiplying the corresponding rows

nd columns of P and Q in parallel as well. PPC is designed accord-

ng to two levels of parallelism.

• At the bottom level, each prediction ˆ r u,i is calculated in two

stages from the corresponding data of the pair (p u,k , q i,k). Row

u in P is multiplied by column i in Q by using K floating-point

parallel multipliers, and the results are added in parallel by us-

ing K /2 floating-point adders. All individual predictions are cal-

culated in parallel and at the same time.

• At the top level, we replicate a certain number of prediction

elements (NPE). This number mainly depends on the area avail-

able in the FPGA device, which is strongly related to the num-

ber of latent factors. These elements operate in parallel to pro-

vide the results of the predictions at the same time. Hence, the

6 F. Pajuelo-Holguera, J.A. Gómez-Pulido and F. Ortega et al. / Microprocessors and Microsystems 73 (2020) 102997

Fig. 2. PPC architecture with the two levels of parallelism for dataset 20 × 5 .

c

w

4.9.3 C compiler and OpenCL 1.2 library [54] .
numbers of floating-point multipliers (NM) and adders (NA) re-

quired for the overall circuit are NPE × K and NPE × K /2, re-

spectively.

Fig. 2 shows a hardware implementations of this accelerator cir-

cuit for a simple test dataset of size s 20 × 5. It includes both

levels of parallelism: vector multiplication and parallel prediction.

The inputs to the multipliers come from P and Q , whereas those

to the adders from the outputs of the multipliers. Matrix multi-

plication is fully parallelized, whereas the sums in the prediction

calculation combine parallel and sequential stages.

We designed different elements of PPC by programming codes

in VHSIC Hardware Description Language (VHDL) [53] . This hardware

description language is efficient, especially when programming at

the register-transfer level. We also measured the speedup of the

FPGA devices taking advantage of the post-placement and routing

simulation tools provided by the implementation software.

We implemented and tested the accelerator circuit on a high-

performance FPGA device: Virtex6 xc6vlx550t (40 nm CMOS depth,

550 k logic cells, 864 DSP slices, and 22,752kB RAM blocks). The

results were compared to those obtained by a contemporary CPU:

Intel i7-2600 (32 nm CMOS depth, 3.4 GHz). Four features were

important for identifying the performance of the FPGA device: pro-

cess technology (CMOS depth), number of logic cells (in connection

with the area available to fit the circuit), number of internal DSP

slices (allows the floating-point arithmetic operators to increase

their speed), and the number of memory blocks (useful to handle

data).

We considered two alternatives to the PPC based on state-

of-the-art hardware prototyping technologies: high-level synthesis

and GPU devices. These alternatives helped us test the comparative

performance of the PPC in terms of computing time and power
onsumption. The performance of PPC and these two approaches

as also compared with that of a typical CPU.

• High level synthesis approach. Using this technology previously

presented, we designed a circuit that implements the same

computational tasks as the PPC by exploiting parallelism. The

advantage of this approach is the ease of programming with

HLS to scale to architectures for managing larger datasets or

considering more than two latent factors. On this matter, a PPC

programmed by VHDL is less flexible.

• Graphics processing units (GPU) approach. Modern GPUs are

hardware platforms popular for high-performance computing

(HPC) applications in many fields. They exploit massively par-

allel operations on chip, including the floating-point arith-

metic. These features have motivated us to check whether GPUs

[16] can surpass the performance of FPGA devices for this prob-

lem, following the trend of the competition between FPGAs

and GPUs for floating-point arithmetic operations. To accom-

plish this goal, we designed a parallel code that executed the

operations described in (6) and implemented the GPU accord-

ing to the PPC architecture. For a realistic comparison with the

PPC, we performed the same parallel tasks and measured only

the execution time of the arithmetic operations. The time spent

sending and receiving data from the matrices was not mea-

sured to compare similar operations. For this implementation,

we used the GeForce TitanX GPU board for the experiments. It

has 3,072 CUDA cores running at 10 0 0 MHz clock frequency,

and 12GB of GDDR5 memory at 7 Gbps frequency with max-

imum bandwidth of 336.5 GB/s. It consumes 250 W of power.

To programme the code for matrix operations, we used the GCC

F. Pajuelo-Holguera, J.A. Gómez-Pulido and F. Ortega et al. / Microprocessors and Microsystems 73 (2020) 102997 7

Fig. 3. Time needed to perform different number of predictions (NPE) in the test dataset, for four implementations: PPC, HLS, GPU and CPU. Note that time of CPU is divided

by 3 in order to reduce the bar height.

5

a

b

p

c

w

c

t

m

m

c

p

t

i

i

P

u

m

P

T

c

t

m

u

s

o

y

o

o

5

o

t

c

n

p

i

t

i

Table 5

PPC speedups with regard to other implementations

(CPU, GPU, and HLS) according to different number of

predictions (NPE) for test dataset 20 × 5.

NPE PPC vs CPU PPC vs GPU PPC vs HLS

30 × 28.2 × 15.6 × 2.0
35 × 24.6 × 11.6 × 1.4
40 × 32.1 × 12.6 × 1.6
45 × 26.5 × 10.9 × 1.2
50 × 36.7 × 12.2 × 1.4
55 × 28.7 × 8.4 × 1.2
60 × 35.6 × 9.5 × 1.1
65 × 45.5 × 11.7 × 1.4
70 × 45.5 × 10.4 × 1.4
75 × 48.9 × 10.9 × 1.3
80 × 47.6 × 10.1 × 1.2
85 × 53.8 × 10.1 × 1.3
90 × 56.4 × 10.3 × 1.2
95 × 60.3 × 10.4 × 1.0
100 × 55.4 × 9.2 × 0.7

t

e

fi

s

b

c

u

t

p

t

fi

e

f

o

i

n

fl

d

i

l

s

n

F

fl

t

.2. Performance results

Next we present the experimental results, mainly the speedup

chieved by the PPC in comparison with other approaches. The

est implementation practices drawn from the PPC, useful to im-

rove overall performance, are also explained. We highlight three

onsiderations stemming from the analysis. First, the area occupied

as given by several indicators (registers, look-up tables, and oc-

upied slices) that allowed us to calculate the number of predic-

ions we could perform in parallel on the same device. Also, perfor-

ance in terms of computing time was calculated from the maxi-

um frequency corresponding to the minimum clock cycle. Power

onsumption was calculated in the placement and routing phases.

Fig. 3 shows the time needed to perform different number of

redictions (NPE) according to (6) . The figure shows the times

aken for four implementations: PPC, HLS, GPU, and CPU.

From this figure, we can arrive at three conclusions. First, only

n the CPU implementation did the time needed for computation

ncrease with NPE . The reason is simple: The elapsed time in the

PC, HLS, and GPU considered parallel NPE predictions, whereas we

sed a loop of sequential predictions for the CPU. The FPGA imple-

entations (PPC and HLS) took much less time than the GPU and

PC, even though the GPU performed predictions in parallel too.

his fact, together with the high power consumption of the GPU,

onfirmed that the FPGA is the best option to accelerate predic-

ions of the recommender system. Between the two FPGA imple-

entations, the PPC performed slightly better than HLS.

Table 5 shows the PPC speedups. Speedups on the CPU were

p to × 60, showing that the more parallel predictions we con-

idered, the better the speedup. With regard to the GPU, the PPC

btained speedups of around × 10 in most cases. Thus, the PPC

ielded slightly better performance than the HLS (except for in

nly one case, when NPE = 100). Of course, the computing time

f all the approaches measured the same number of predictions.

.3. Implementation keys

We considered three implementation keys: synthesis options,

peration frequency, and power consumption.

We tested two possibilities to synthesize floating-point opera-

ors: internal digital signal processors (DSPs) and logic blocks. If we

onsider DSPs, the performance can be improved, but the limited

umber of DSPs forces us to consider digital logic if we want more

arallel operators. Nevertheless, more logic blocks involve increas-

ng the area required for the FPGA; hence, the trade-off between

he number and performance of parallel units must be evaluated

n each case.
The best results of the PPC considered different synthesis op-

ions and implementations for the arithmetic operators. The differ-

nt synthesis options were grouped into three optimization pro-

les: default (DEF), performance in terms of time with physical

ynthesis (TPP), and performance in terms of time without I/O

lock packing (TPN). Other synthesis profiles were discarded be-

ause of their poor results. Each synthesis of the CPC was repeated

p to six times (according to the three synthesis profiles and the

wo possibilities, of using DSPs or logic blocks for the floating-

oint operators) to obtain the highest clock frequency.

Fig. 4 shows the operational frequency of the PPC with regard

o the number of parallel predictions for the three synthesis pro-

les, and by considering whether the floating-point arithmetic op-

rators include internal DSPs or logic blocks (Logic). The curves

ollow a non-linear trend to reduce frequency when the number

f predictions increased. Among other effects, this implied that an

ncrease in PPC speedup compared with the CPU was neither linear

or unlimited because more logic elements appeared when more

oating-point arithmetic operators were replicated, rendering the

atapath denser. Consequently, the routing effect had a negative

nfluence. Nevertheless, the reduction in operational frequency was

ess pronounced when more predictions were performed. However,

maller frequencies do not imply a worse speedup, as a higher

umber of parallel predictions makes up for higher clock cycles.

inally, Fig. 4 considers the DEF profile in case we use DSPs for

oating-point operators. Otherwise, we can opt for a TPN profile

o yield an acceptable result in a majority of cases.

8 F. Pajuelo-Holguera, J.A. Gómez-Pulido and F. Ortega et al. / Microprocessors and Microsystems 73 (2020) 102997

Fig. 4. Frequency of the PPC for the three synthesis profiles.

Fig. 5. HLS speedup with regard to CPU-p (parallelized CPU) according to different number of latent factors (K) and predictions (NPE) for the test dataset

K

p

d

F

p

C

p

c

t

c

o

g

i

e

a

F

6

i

s

s

b

n

t

r

o

t

t
With regard to energy issues, the total power consumption and

thermal distribution in the FPGA device were measured after the

placement and routing phase of the implementation process by

means of the Xilinx XPower Analyzer tool. For the test dataset,

30 parallel predictions, floating-point arithmetic operators imple-

mented with DSPs, and the default synthesis profile, we obtained

a power consumption of 6.4 watts for the PPC, whereas the proces-

sor consumed approximately 95 watts. This means that the FPGA

reduces power consumption by at least 93% compared with the

CPU.

5.4. Scalability study

In this experiment, we studied the effect of increasing the num-

ber of latent factors in the FPGA speedup. The greater the number

of latent factors, the greater the size of matrices P and Q . Con-

sequently, the numbers of addition and multiplication operations

involved in the prediction calculations increase considerably. The

main consequence in implementing hardware is a significant in-

crease in the FPGA logic resources needed to replicate more par-

allel units at both levels: matrix multiplications parallelized and

parallel predictions. Moreover, the greater number of floating-point

arithmetic operators significantly affects the available area of the

FPGA. Nevertheless, real-world recommender systems can consider

more than two latent factors, hence the need to evaluate the FPGA

speedup in these cases.

For this purpose, we tested FPGA speedup for K = two, four, and

six latent factors. As a new hardware design of the PPC for an in-

creased K becomes much more complex, and bearing in mind that

the performance of the PPC and HLS was similar, we take advan-

tage of the programming flexibility that HLS provides to explore
 scalability. Moreover, to make a more realistic comparison, we

rogrammed the same CPU with OpenMP to perform parallel pre-

ictions with four cores. We call this new parallelized design CPUp.

inally, we considered the same test dataset, knowing that it im-

lied greater computational effort.

Fig. 5 shows the HLS speedup with regard to the parallelized

PU (CPUp) according to different numbers of latent factors (K) and

redictions (NPE). The analysis of this figure generates two main

onclusions. First, the FPGA solution improved in performance in

erms of time when K increased, which is promising for the appli-

ation of a reconfigurable hardware design to practical cases. Sec-

nd, there was a slight decrease in speedup if we considered a

reater number of parallel predictions. The reason for this behav-

or has been pointed out before: A greater the number of logic el-

ments required to replicate prediction units implies a denser dat-

path that slightly decreases operational frequency, as shown in

ig. 4 .

. Conclusions

This paper explores the application of reconfigurable comput-

ng technology based on FPGAs to design and implement on-chip

olutions for recommender systems. On the one hand, we de-

igned a parallelized recommender system to be hosted on an em-

edded platform. This solution provides a first approach for run-

ing off-line and light embedded collaborative filtering applica-

ions when using highly-portable and low-energy computing envi-

onments. This approach was successfully tested considering state-

f-the-art datasets. On the other hand, we have designed a circuit

hat can supply simultaneous predictions based on matrix mul-

iplication. The design performs fast parallel predictions using a

F. Pajuelo-Holguera, J.A. Gómez-Pulido and F. Ortega et al. / Microprocessors and Microsystems 73 (2020) 102997 9

m

g

v

r

o

c

c

F

d

t

s

i

w

D

s

y

a

A

t

(

A

S

f

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
odel previously obtained through basic collaborative filtering al-

orithm, where many floating-point arithmetic operations are in-

olved. The results show that FPGAs provide high speedups with

egard to general-purpose CPUs and high-performance GPUs, not

nly because of the parallelization of matrix operations and effi-

ient floating-point arithmetic operators, but also thanks to con-

urrent predictions. Furthermore, the low power consumption of

PGA devices in comparison with CPUs and GPUs facilitates the

esigning of low-cost computing solutions for embedded applica-

ions. This approach may be interesting when the recommender

ystem tackles frameworks where the size of the prediction model

s fixed but its contents update quickly. Moreover, the proposal is

orthwhile if many predictions are required in real time.

eclaration of Competing Interest

The authors declare no conflict of interest. The founding spon-

ors had no role in the design of the study; in the collection, anal-

ses, or interpretation of data; in the writing of the manuscript,

nd in the decision to publish the results.

cknowledgements

This work was partially funded by the Government of Ex-

remadura (Spain) under the project IB16002, and by the ERDF

European Regional Development Fund, EU) and the State Research

gency under the contract TIN2016-76259-P .

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.micpro.2020.102997 .

eferences

[1] D. Jannach , M. Zanker , A. Felfernig , G. Friedrich , Recommender Systems. An

Introduction, Cambridge University Press, 2011 .
[2] J. Bobadilla , F. Ortega , A. Hernando , A. Gutiérrez , Recommender systems sur-

vey, Knowl.-Based Syst. 46 (2013) 109–132 .
[3] G. Adomavicius , A. Tuzhilin , Context-aware recommender systems, in: Recom-

mender systems handbook, Springer, 2015, pp. 191–226 .

[4] N. Thai-Nghe , L. Drumond , T. Horvath , A. Krohn-Grimberghe , A. Nanopou-
los , L. Schmidt-Thieme , Factorization techniques for predicting student perfor-

mance, in: Educational Recommender Systems and Technologies: Practices and
Challenges, IGI-Global, 2012, pp. 129–153 .

[5] G. Adomavicius , A. Tuzhilin , Toward the next generation of recommender
systems: asurvey of the state-of-the-art and possible extensions, IEEE Trans.

Knowl. Data Eng. 17 (6) (2005) 734–749 .

[6] F. Ricci , L. Rokach , B. Shapira , Introduction to recommender systems handbook,
in: Recommender systems handbook, Springer, 2011, pp. 1–35 .

[7] J. Bobadilla , F. Serradilla , J. Bernal , A new collaborative filtering metric that im-
proves the behavior of recommender systems, Knowl.-Based Syst. 23 (6) (2010)

520–528 .
[8] H.J. Ahn , A new similarity measure for collaborative filtering to alleviate the

new user cold-starting problem, Inf. Sci. 178 (1) (2008) 37–51 .

[9] J.L. Herlocker , J.A. Konstan , L.G. Terveen , J.T. Riedl , Evaluating collaborative fil-
tering recommender systems, ACM Trans. Inf. Syst. (TOIS) 22 (1) (2004) 5–53 .

[10] A. Hernando , J. Bobadilla , F. Ortega , A non negative matrix factorization for
collaborative filtering recommender systems based on a bayesian probabilistic

model, Knowl.-Based Syst. 97 (2016) 188–202 .
[11] P. Paatero , U. Tapper , Positive matrix factorization: a non-negative factor model

with optimal utilization of error estimates of data values, Environmetrics 5 (2)

(1994) 111–126 .
[12] S. Rendle , L. Schmidt-Thieme , Online-updating regularized kernel matrix fac-

torization models for large-scale recommender systems, in: Proceedings of the
2008 ACM conference on Recommender systems, 2008, pp. 251–258 .

[13] C. Unsalan , B. Tar , Digital System Design with FPGA: implementation Using
Verilog and VHDL, McGraw-Hill, 2017 .

[14] R. Tessier , K. Pocek , A. DeHon , Reconfigurable computing architectures, Proc.
IEEE 103 (3) (2015) 332–354 .

[15] M. Vestias, H. Neto, Trends of cpu, gpu and fpga for high-performance comput-

ing, in: 24th International Conference on Field Programmable Logic and Appli-
cations, IEEE, 2014, pp. 1–6, doi: 10.1109/FPL.2014.6927483 .

[16] S. Chey , J. Liz , J. Sheaffery , K. Skadrony , J. Lach , Accelerating compute-intensive
applications with gpus and fpgas, in: IEEE Symposium on Application Specific

Processors, IEEE, 2008, pp. 101–107 .
[17] Y. Ma, N. Suda, Y. Cao, S. Vrudhula, J. sun Seo, Alamo: fpga acceleration of deep
learning algorithms with a modularized rtl compiler, Integration 62 (2018) 14–

23, doi: 10.1016/j.vlsi.2017.12.009 .
[18] P.R. Gankidi, J. Thangavelautham, Fpga architecture for deep learning and its

application to planetary robotics, in: 2017 IEEE Aerospace Conference, 2017,
pp. 1–9, doi: 10.1109/AERO.2017.7943929 .

[19] J. Canilho, M. Véstias, H. Neto, Multi-core for k-means clustering on fpga, in:
2016 26th International Conference on Field Programmable Logic and Applica-

tions (FPL), 2016, pp. 1–4, doi: 10.1109/FPL.2016.7577313 .

20] F. Winterstein, S. Bayliss, G.A. Constantinides, Fpga-based k-means clustering
using tree-based data structures, in: 2013 23rd International Conference on

Field programmable Logic and Applications, 2013, pp. 1–6, doi: 10.1109/FPL.
2013.6645501 .

[21] Z. Lin, C. Lo, P. Chow, K-means implementation on fpga for high-dimensional
data using triangle inequality, in: 22nd International Conference on Field Pro-

grammable Logic and Applications (FPL), 2012, pp. 437–442, doi: 10.1109/FPL.

2012.6339141 .
22] K. Nagarajan, B. Holland, A.D. George, K.C. Slatton, H. Lam, Accelerating

machine-learning algorithms on fpgas using pattern-based decomposition, J.
Signal Process. Syst. 62 (1) (2011) 43–63, doi: 10.10 07/s11265-0 08-0337-9 .

23] Amazon ec2 f1 instances, 2019.
[24] K. Kara, D. Alistarh, G. Alonso, O. Mutlu, C. Zhang, Fpga-accelerated dense lin-

ear machine learning: aprecision-convergence trade-off, in: 2017 IEEE 25th An-

nual International Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM), 2017, pp. 160–167, doi: 10.1109/FCCM.2017.39 .

25] L. Bottou , Large-scale machine learning with stochastic gradient descent, in:
Proceedings of 19th International Conference on Computational Statistics,

Springer, 2010, pp. 177–186 .
26] R. Bordawekar , B. Blainey , C. Apte , Analyzing analytics, SIGMOD Record 42 (4)

(2014) 17–28 .

[27] X. Ma , C. Wang , Q. Yu , X. Li , X. Zhou , An fpga-based accelerator for neighbor-
hood-based collaborative filtering recommendation algorithms, in: IEEE Inter-

national Conference on Cluster Computing (CLUSTER 2015), Chicago, IL, USA,
2015, pp. 4 94–4 95 .

28] S.M. Qasim , S.A. Abbasi , B. Almashary , A proposed fpga-based parallel archi-
tecture for matrix multiplication, in: IEEE Asia Pacific Conference on Circuits

and Systems, 2008 (APCCAS 2008), 2008, pp. 1763–1766 .

29] J.W. Jang , S. Choi , V.K. Prasanna , Area and time efficient implementations of
matrix multiplication on fpgas, in: Proceedings of the 2002 IEEE International

Conference on Field-Programmable Technology, 2002, pp. 93–100 .
30] T.L.Y.Q. Ting Zhang Cheng Xu , M. Nie , An optimized floating-point matrix mul-

tiplication on fpga, Inf. Technol. J. 12 (2013) 1832–1838 .
[31] N. Dave , K. Fleming , M. King , M. Pellauer , M. Vijayaraghavan , Hardware acceler-

ation of matrix multiplication on a xilinx fpga, in: 5th IEEE/ACM International

Conference on Formal Methods and Models for Codesign, 2007 (MEMOCODE
20 07), 20 07, pp. 97–100 .

32] Z. Jovanovic , V. Milutinovic , Fpga accelerator for floating-point matrix multi-
plication, IET Comput. Digit. Tech. 6 (4) (2012) 249–256 .

[33] W. Wu , Y. Shan , X. Chen , Y. Wang , H. Yang , Fpga accelerated parallel sparse
matrix factorization for circuit simulations, in: A. Koch, R. Krishnamurthy,

J. McAllister, R. Woods, T. El-Ghazawi (Eds.), Reconfigurable Computing: Archi-
tectures, Tools and Applications, Springer Berlin Heidelberg, Berlin, Heidelberg,

2011, pp. 302–315 .

34] S. Zhou , R. Kannan , V.K. Prasanna , Accelerating low rank matrix completion
on fpga, in: 2017 International Conference on ReConFigurable Computing and

FPGAs (ReConFig), 2017, pp. 1–7 .
[35] E. Matthews, L. Shannon, A. Fedorova, Shared memory multicore microblaze

system with smp linux support, ACM Trans. Reconfigurable Technol. Syst. 9 (4)
(2016) 26:1–26:22, doi: 10.1145/2870638 .

36] D. Buell , T. El-Ghazawi , K. Gaj , V. Kindratenko , High-performance reconfig-

urable computing, Computer 40 (3) (2007) 23–27 .
[37] V. Sriram , M. Leeser , Fpga supercomputing platforms, architectures, and tech-

niques for accelerating computationally complex algorithms, EURASIP J. Em-
bedded Syst. (2009) .

38] M.C. Herbordt , Y. Gu , T. VanCourt , J. Model , B. Sukhwani , M. Chiu , Computing
models for fpga-based accelerators, Comput. Sci. Eng. 10 (6) (2008) 35–45 .

39] T. Guneysu , T. Kasper , M. Novotny , C. Paar , L. Wienbrandt , R. Zimmermann ,

High-performance cryptanalysis on rivyera and copacobana computing sys-
tems, in: High-Performance Computing Using FPGAs, Springer, New York, 2013,

pp. 335–366 .
40] H. Li, K. Li, J. An, K. Li, Msgd: A novel matrix factorization approach for large-

scale collaborative filtering recommender systems on gpus, IEEE Trans. Parallel
Distrib.Syst. 29 (7) (2018) 1530–1544, doi: 10.1109/TPDS.2017.2718515 .

[41] H. Li, K. Ge Li, J. An, K. Ge Li, An online and scalable model for generalized

sparse non-negative matrix factorization in industrial applications on multi-
gpu, IEEE Transactions on Industrial Informatics (2019), doi: 10.1109/TII.2019.

2896634 . 1–1
42] H. Li, K. Li, J. An, W. Zheng, K. Li, An efficient manifold regularized sparse non-

negative matrix factorization model for large-scale recommender systems on
gpus, Inf. Sci. 496 (2019) 464–484, doi: 10.1016/j.ins.2018.07.060 .

43] Y. Koren , R. Bell , C. Volinsky , Matrix factorization techniques for recommender

systems, Computer 42 (8) (2009) 30–37 .
44] A. Mnih , R.R. Salakhutdinov , Probabilistic matrix factorization, in: Advances in

Neural Information Processing Systems, 2008, pp. 1257–1264 .

https://doi.org/10.13039/501100011033
https://doi.org/10.1016/j.micpro.2020.102997
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0002
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0002
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0002
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0002
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0002
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0003
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0003
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0003
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0004
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0004
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0004
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0004
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0004
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0004
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0004
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0005
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0005
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0005
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0006
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0006
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0006
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0006
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0007
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0007
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0007
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0007
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0008
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0008
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0009
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0009
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0009
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0009
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0009
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0010
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0010
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0010
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0010
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0011
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0011
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0011
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0012
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0012
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0012
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0013
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0013
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0013
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0014
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0014
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0014
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0014
https://doi.org/10.1109/FPL.2014.6927483
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0016
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0016
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0016
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0016
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0016
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0016
https://doi.org/10.1016/j.vlsi.2017.12.009
https://doi.org/10.1109/AERO.2017.7943929
https://doi.org/10.1109/FPL.2016.7577313
https://doi.org/10.1109/FPL.2013.6645501
https://doi.org/10.1109/FPL.2012.6339141
https://doi.org/10.1007/s11265-008-0337-9
https://doi.org/10.1109/FCCM.2017.39
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0024
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0024
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0025
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0025
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0025
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0025
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0026
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0026
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0026
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0026
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0026
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0026
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0027
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0027
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0027
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0027
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0028
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0028
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0028
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0028
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0029
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0029
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0029
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0030
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0030
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0030
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0030
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0030
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0030
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0031
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0031
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0031
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0032
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0032
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0032
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0032
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0032
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0032
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0033
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0033
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0033
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0033
https://doi.org/10.1145/2870638
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0035
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0035
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0035
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0035
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0035
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0036
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0036
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0036
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0037
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0037
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0037
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0037
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0037
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0037
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0037
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0038
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0038
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0038
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0038
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0038
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0038
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0038
https://doi.org/10.1109/TPDS.2017.2718515
https://doi.org/10.1109/TII.2019.2896634
https://doi.org/10.1016/j.ins.2018.07.060
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0042
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0042
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0042
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0042
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0043
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0043
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0043

10 F. Pajuelo-Holguera, J.A. Gómez-Pulido and F. Ortega et al. / Microprocessors and Microsystems 73 (2020) 102997

F

i

i

t

t

o

J

o

H

2

c

e

c

[45] Y. Koren , Factorization meets the neighborhood: a multifaceted collaborative
filtering model, in: Proceedings of the 14th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, ACM, 2008, pp. 426–434 .
[46] F. Ortega , A. Hernando , J. Bobadilla , J.H. Kang , Recommending items to group

of users using matrix factorization based collaborative filtering, Inf. Sci. 345
(2016) 313–324 .

[47] R.M. Bell, Y. Koren, Scalable collaborative filtering with jointly derived neigh-
borhood interpolation weights, in: Seventh IEEE International Conference on

Data Mining (ICDM 2007), 2007, pp. 43–52, doi: 10.1109/ICDM.2007.90 .

[48] R. Banik, The movies dataset, version 7, 2017.
[49] F.M. Harper, J.A. Konstan, The movielens datasets: history and context, ACM

Trans. Interact. Intell. Syst. 5 (4) (2015) 19:1–19:19, doi: 10.1145/2827872 .
[50] J. Bennett , S. Lanning , et al. , The netflix prize, in: Proceedings of KDD cup and

workshop, 2007, New York, NY, USA., 2007, p. 35 .
[51] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, Z. Zhang, High-level syn-

thesis for fpgas: from prototyping to deployment, IEEE Trans. Comput.-Aided

Des.Integr. Circuits Syst. 30 (4) (2011) 473–491, doi: 10.1109/TCAD.2011.2110592 .
[52] D. O’Loughlin, A. Coffey, F. Callaly, D. Lyons, F. Morgan, Xilinx vivado high level

synthesis: Case studies, in: 25th IET Irish Signals Systems Conference 2014 and
2014 China-Ireland International Conference on Information and Communica-

tions Technologies (ISSC 2014/CIICT 2014), 2014, pp. 352–356, doi: 10.1049/cp.
2014.0713 .

[53] F. Vahid , R. Lysecky , VHDL for Digital Design, Wiley, 2007 .

[54] D. Kirk , W. Hwu , Programming Massively Parallel Processors: A Hands-on Ap-
proach, Morgan Kaufmann, 2010 .

Francisco Pajuelo-Holguera received the Master in Computer Engineering from the
University of Extremadura, Spain, in 2019. He is currently hired researcher working

on parallel implementations of algorithms and systems by means of reconfigurable
hardware.
Juan A. Gómez-Pulido received the Ph.D. degree in

physics, electronics specialty, from the Complutense Uni-
versity, Madrid, Spain, in 1993. He is currently profes-

sor of computer organization and design of processors in
the Department of Technology of Computers and Commu-

nications, University of Extremadura, Spain. He has au-

thored or co-authored 62 ISI journals, tens of book chap-
ters, and more than two hundred peer-reviewed confer-

ence proceedings. His main research interests fall within
hot topics on machine learning applied to big-data anal-

ysis, reconfigurable and embedded computing based on
FPGA devices, optimization, and evolutionary computing.

ernando Ortega received the Master in Artificial Intelligence and the Ph.D. degree

n Computer Science from the Universidad Politcnica de Madrid, Spain. Currently, he
s assistant professor at the same university. His research interests include informa-

ion retrieval, natural computing and specially recommender systems. He belongs
o the FilmAffinity.com research team working on the collaborative filtering kernel

f the web site.

ose M. Granado-Criado is a professor of computer architecture in the Department
f Computer and Communications Technologies, University of Extremadura, Spain.

e received his PhD in computer science from the University of Extremadura in
009. Dr. Granado-Criado’s main research interests are in the field of parallel pro-

essing and, particularly, in the use of reconfigurable hardware (FPGAs), GPUs, and

mbedded systems (SoC, MPSoC, etc.) in custom-computing applications, such as
ryptography, evolutionary computation, and bioinformatics.

http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0044
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0044
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0045
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0045
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0045
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0045
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0045
https://doi.org/10.1109/ICDM.2007.90
https://doi.org/10.1145/2827872
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0048
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0048
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0048
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0048
https://doi.org/10.1109/TCAD.2011.2110592
https://doi.org/10.1049/cp.2014.0713
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0051
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0051
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0051
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0052
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0052
http://refhub.elsevier.com/S0141-9331(19)30031-6/sbref0052

	Recommender system implementations for embedded collaborative filtering applications
	1 Introduction
	2 Literature review
	3 Matrix factorization based collaborative filtering
	4 On-chip implementation of a complete recommender system
	4.1 Datasets
	4.2 FPGA-RS1: RS on embedded microprocessor and operating system
	4.3 FPGA-RS2: parallel RS design
	4.4 Performance results and comparison

	5 Accelerating the prediction phase: proposal and alternatives
	5.1 Design of the prediction parallel circuit
	5.2 Performance results
	5.3 Implementation keys
	5.4 Scalability study

	6 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	Supplementary material
	References

