
Engineering Applications of Artificial Intelligence 96 (2020) 103993

R
f
F
a

b

A

M
0
9

K
S
R
C
P
A
S

1

a
p
e
p

o
t
e
c
l
b
r
l
c
p
m

f
a
b

h
R
A
0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

ecommender systems for sensor-based ambient control in academic
acilities
rancisco Pajuelo-Holguera a, Juan A. Gómez-Pulido a,∗, Fernando Ortega b

Dep. Tecnología de Computadores y Comunicaciones, Universidad de Extremadura, Spain
Dep. Sistemas Informáticos, Universidad Politécnica de Madrid, Spain

R T I C L E I N F O

SC:
0-01
9-00

eywords:
ensors
ecommender systems
ollaborative filtering
rediction
mbient control
mart facilities

A B S T R A C T

Academic spaces are an environment that promotes student performance not only because of the quality of
its equipment, but also because of its ambient comfort conditions, which can be controlled by means of
actuators that receive data from sensors. Something similar can be said about other environments, such as
home, business, or industry environment. However, sensor devices can cause faults or inaccurate readings in
a timely manner, affecting control mechanisms. The mutual relationship between ambient variables can be
a source of knowledge to predict a variable in case a sensor fails. Moreover, the relationship between these
variables and the occupation of spaces by students over time also contains an adequate knowledge of the
context for prediction. In this article we propose to predict ambient variables by means of recommendation
systems based on collaborative filtering, which are fed with data from sensors over time in different academic
rooms. For this purpose, we applied two different algorithms: Probabilistic Matrix Factorization and Bayesian
Non-negative Matrix Factorization. The accuracy of the algorithms when comparing actual and predicted values
and the performance comparison between the two collaborative filtering implementations lead us to propose
Probabilistic Matrix Factorization as a good approach for supporting ambient control systems.
. Introduction

Sensor devices are increasingly present in all types of facilities in the
cademic environment, providing data that are monitored for multiple
urposes, such as safety, comfort, energy efficiency, etc. This data
cosystem promotes the creation of multiple innovative and specific
urpose applications that make life easier for the university community.

The academic spaces used by students for learning are facilities
f special interest for sensors, since the use of study and learning
ime depends not only on the quality of the furniture and technical
quipment, but also on the conditions of ambient comfort. These spaces
an be classrooms for master classes, laboratories, computer rooms,
ibraries, study rooms, etc. The ambient conditions of these spaces can
e controlled by means of actuators and systems such as thermostats to
egulate the temperature, motors to raise and lower blinds, water flow
imiters, acoustic warnings of the presence of gases, etc. In any case,
ontrol decisions are based on data from sensors that measure ambient
arameters such as temperature, humidity and CO2 concentration, to
ention only the three parameters covered by our study.

Sensor devices are electronic systems that can fail at specific times,
ailing to provide valid readings and causing incorrect decisions by the
mbient control systems. A possible solution to this type of event would
e to have an intelligent control system that not only detects the failure
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of the sensor reading, but is also able to predict the data that it would
provide, according to the context in which it is set. This context is
determined by two factors.

On the one hand, it is reasonable to assume that there is a rela-
tionship among the ambient parameters when faced with an external
event, such as the arrival of students in the room. In that case, not only
the temperature can be increased, but also the humidity and CO2 levels
can be affected. Moreover, this relationship can have a similar behavior
in analogous circumstances at other times. Therefore, the correlation
among the variations along the time of the ambient parameters mea-
sured by the sensors can be an important source of knowledge when
predicting the value of the variation of one parameter according to the
variations of the other parameters when its corresponding sensor fails.

On the other hand, the evolution or behavior over time of this rela-
tionship between the parameters in similar events of room occupation
by students, also contains an adequate context knowledge to be taken
into account for the prediction.

The intersection of both sources of knowledge can be exploited to
design an intelligent method of prediction. For this purpose, in this
article we propose the use of Recommender Systems (RS) (Jannach
et al., 2011) implemented as CF (Ricci et al., 2011), by linking the
times of use of spaces in different sessions over time with the relation-
ship among the ambient parameters measured by sensors during those
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sessions. RS represent a well-proven prediction technique because they
analyze in depth the relationship between users and items, evaluated
by ranking values. In our case, we consider the relationship between
sessions along the time and ambient parameters evaluated by the sensor
readings that a session collects from each sensor; therefore, the session
ambient conditions are strongly considered in the prediction.

The remainder of this paper is structured as follows. After going
over some related works in Sections 2, 3 describes the main features
of the academic smart environment where the research was carried
out. Next, Section 4 formulates the problem of predicting the values
of ambient parameters when a sensor fails. In Section 5, we detail the
RS algorithms used for prediction purposes. Next, Section 6 show the
experimental design and procedure, the datasets collected from selected
spaces and considered for the experiments, the results obtained as error
measures when comparing real with predicted values, and a discussion
of the results. Last, the conclusion of this work is left for Section 7.

2. Related works

The use of historical data from sensor devices and intelligent tech-
niques as Machine Learning (ML) or CF for different prediction pur-
poses is a wide research emerging area, due to the generalization of
IoT devices in heterogeneous contexts and the increasing efficiency
of the intelligent algorithms for data analytics. Some research efforts
can be found in this line. For example, the long short-term memory
(LSTM) artificial neural network was applied to uncover relations with
multiple historical sensor data and mental health conditions in order to
create a stress recognition model, which can implement an automatic
human mental health assistant (Acikmese and Alptekin, 2019). Also,
another recurrent neural network was applied to soft sensor data in
dynamic chemical processes: singular value decomposition based echo
state network (SVD-ESN) (He et al., 2020).

Currently, CF-based RS are intelligent techniques used for both
recommendation and prediction purposes. The approach we have taken
for this research is prediction, not recommendation. We can find many
cases of predictive RS. For example, predicting response in online
advertising (Menon et al., 2011), where the problem is estimating
the probability that an advertisement is clicked when displayed on
a content publisher’s webpage. Also predicting of elements in social
networks (He and Chu, 2010) where the system is able to predict which
elements a user with the same preferences would choose according to
the elements chosen before, allowing so to find the most popular trend
in RS. Other example is predicting in movies (Odić et al., 2013), where
the system will predict the interest of a user for a movie according to
the movies seen in the past.

These approaches are based on information available on the Internet
where we download the datasets and test our RS. However, we can
also use information obtained through sensors. For example, AIRPA
v2 (Santos et al., 2016) is an open platform to detect changes in
physiological signals acquired from sensors that can be associated
with stressful situations, and when this happens, it recommends the
learner to relax by delivering modulated sensorial support in terms of
light, sound, or vibration at a relaxation breath rate. In this way, by
taking advantage of ambient intelligence, the learner can perceive the
recommended action without interrupting the learning activity (in this
case, practicing the oral exam of a second language). We find another
example in DroidOppPathFinder app (Arnaboldi et al., 2013), which
recommends users exercise routes in the city by using the local sensors
placed on the smartphone, as the GPS sensor. As far as we can see, a
RS can use data from heterogeneous sensor sources.

The combination of facilities controlled by sensors and intelligent
software applications makes our lives easier. We find a good example
in the SEPRE project, which has developed a sensor capable of detecting
the position and body movements of the user in bed and, using a
predictive algorithm, deducing the moment when the person intends to

get up. This application allows the professionals be vigilant to help the
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elderly people to get up. Sensors are also applied to control failures in
the construction of civil works (Bernal et al., 2014) or heterogeneous
tasks in academic environments (Bernabeu et al., 2014; Fortes et al.,
2019).

Many other works can be found when we consider RS and sensors
working together, specially in the IoT context. For example, RS were
applied: on smart homes analyzing big data from sensors (Chen et al.,
2016); for personal well-being services based on health data (Nouh
et al., 2019); for Quality of Service (QoS) health applications based
on biometric sensors in wearable electronics and mobile phones; for
supporting sensor inputs from heterogeneous data sources (Kuchař and
Kliegr, 2017); for capturing the user preferences in physical stores and
provide either micro-location marketing or product recommendations
from sensors (Symeonidis and Chairistanidis, 2017); and on many other
developments and research proposals.

Our research proposal tries to extract knowledge of the behavior of
ambient parameters based on the activity of students in smart facilities.
In short, the proposal tries to infer knowledge from the context. In this
sense, RS have been widely used to process context information (Ado-
mavicius and Tuzhilin, 2015). For this reason RS may be a good
option to apply them to our purpose. There are several examples in
the literature in this regard: context-aware photo system (Lemos et al.,
2012), contextual situation as climate conditions for recommending a
holiday destination (Baltrunas et al., 2012), context-aware recommen-
dation of music (Wang et al., 2012) or news (Sotsenko et al., 2014) for
smartphones, etc.

3. SmartPolitech: A sensor-based framework in academic facilities

SmartPoliTech is a project developed at the School of Technology
at UEX (EPCC) of the University of Extremadura (UEX), Spain. It aims
to transform the Center into a large experimental ecosystem: a living-
lab for the design, implementation and validation of a wide range of
systems capable of creating and managing intelligent spaces. To this
end, SmartPoliTech applies different technologies to build an energy-
aware space in order to facilitate the social and academic life of the
users.

The School of Technology is a University Center located in the city
of Cáceres (Fig. 1). It was founded in 1982 and offers undergraduate
and postgraduate education in computer science, telecommunications,
architecture, and civil engineering. The Center provides the ideal condi-
tions for the implementation of this ambitious project. Several research
groups in computing, communications, building and environmental
technologies coexist here, as well as several technological spin-offs
and start-ups. All this creative potential, with the support of hundreds
of undergraduate and master’s students who live together in these
facilities every year, has been coordinated to develop SmartPoliTech
project+5.

The project planned a gradual process of sensor deployment and
automation of the different spaces of the center in order to introduce
increasing levels of intelligence in each of them and as a whole. The
deployment of sensors and actuators in areas delimited and controlled
by intelligent elements clearly links up with the concepts developed in
Robotics over the last few decades. These concepts have been adapted
and extended in recently created fields such as Ambient Intelligence, In-
motics or Ubiquitous Computing. Each space is robotized according to
its use and each group of spaces incorporates new intelligent elements.
The goals that this intelligence must reach are multiple and sometimes
opposed, so it is necessary to include automatic planning algorithms
and multi-objective optimization (Lanza-Gutierrez and Gomez-Pulido,
2015), along with learning techniques that increase the knowledge of
the system.

Considering all of the above, SmartPoliTech proposes an incre-
mental approach to these objectives, iterating on three phases: sensor
and actuator selection, predictive space modeling, and planning and
control. In each cycle of this process, all the technologies involved will

be evaluated and tested for reliability and sustainability.
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Fig. 1. Wi-Fi access points in the buildings of the School of Technology.
3.1. Technology

This project poses different technological challenges to be able to
walk the path that goes from a traditional, non-technological space to
an intelligent environment that interacts with its inhabitants through
applications and web services accessible from mobile devices. An intel-
ligent space like SmartPoliTech is based on the philosophy of open data,
which allow students, teachers and researchers to imagine and create
new applications and services every day. This requires the development
of technologies on five fronts: sensor connectivity, mass storage and
high availability, visualization, modeling and planning.

For this purpose, it is necessary to research into highly flexible,
scalable and secure open technology communication middleware that
allows important features:

• Enabling hundreds or thousands of heterogeneous sensor devices
to communicate with a highly accessible cloud storage system.

• Introducing NoSQL databases.
• Exploring the intersection of the IoT with Inmotics and the Open

Data philosophy with Data Mining.
• Committing to decoupling data storage from its end uses.

These challenges require a coordinated participation of existing
research groups with wide experience in electronics, communications,
information systems, data engineering, software engineering, artificial
intelligence, machine learning, statistics, acoustics, building, installa-
tions, etc., working on a common environment.

3.2. SmartPoliTech IoT and Communication Infrastructure

This section explains the information system on which SmartPo-
liTech is based: the installation of sensors and their programming
guidelines, the databases used, the Zato service bus (ESB) used to
connect the sensors, databases and users, and finally the Grafana vi-
sualization tool.

Fig. 2 shows an outline of all the components that together make up
the SmartPoliTech information system and the transit of SmartPoliTech-
generated data through them.

The most noteworthy aspects of this scheme are summarized next.
Firstly, a section of views includes sensors. A large number of sensors
are distributed throughout the EPCC, most of which have been in con-
tinuous operation for the last three years. These sensors generate data
related to different variables: ambient temperature, relative humidity,
carbon dioxide concentration, water consumption, electricity consump-
tion, etc. This section includes some installation and programming
guidelines for the sensors, as well as maps with their location.

The next important aspect of this scheme is the service bus. For
this purpose, Zato Enterprise Service Bus (ESB) (Suchojad, 2013) was
3

Table 1
Sensor features.

Measure Temperature CO2 Humidity

Units ◦ C %ppm %RH
Resolution 0.1 N/D 1
Range −40 to +80 400 to 10,000 0 to 100
Accuracy +/ −0.5 +/−3 +/−3

chosen. It is an open source software with commercial and community
support, mainly consisting of a request server written in Python that
can be used to build middleware and backend systems. SmartPoliTech
uses Zato as a host for services that facilitate data integration to the
databases, sending data from the sensors to the databases, requesting
databases by the users, and collecting information from the Wi-Fi access
points, among other outputs.

Another aspect to highlight is the persistence, which is represented
by InfluxDB and Neo4J databases in Fig. 2. InfluxDB is an open source
time series database that fits perfectly with the type of data generated
by SmartPoliTech (mainly, they are time series) and allows integration
with the Grafana visualization tool in a very simple way. Neo4J is
a graph oriented database used for building a maintenance system
with the operations of creating, reading, updating, and deleting on
a data network model. It is used in online processing systems, so
SmartPoliTech applies it to obtain an ordered structure of the facilities
and the sensors deployed through them, allowing generating interactive
maps available to the EPCC users.

3.3. Sensor devices

SmartPoliTech has currently a wide network of sensors (> 200
devices) that perform measurements on heterogeneous ambient and
energy parameters. Infrastructure parameters such as the state of win-
dows and blinds are also collected, as well as occupation parameters
by means of open sessions at wireless network access points.

The data considered in this work were collected from temperature
and humidity sensors via Wi-Fi. The deployment of these sensor devices
is simple and fast, as they are wireless and battery powered. They
were designed under Arduino architecture and manufactured by the
company Ray Ingeniería Electronica S.L. (Anon, 2020), whose headquar-
ters are in the city of Cáceres. The Arduino architecture of the sensors
allows the users to modify the firmware through the IDE and ICSP
programmer, according to the users’ preferences and purposes.

Table 1 lists the particular features of the sensors considered for this
work, mounted on two devices: DHT22 (temperature and humidity) and
RS485 (CO ) (Fig. 3).
2
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Fig. 2. SmartPoliTech infrastructure and data flow.
Fig. 3. Sensor devices deployed in SmartPoliTEch considered for this work.

.4. Monitoring solution

Grafana tool is used for visualizing the SmartPoliTech data, because
t allows an easy and fast integration with InfluxDB. It is the most
ommonly used tool for visualizing time-series data for infrastructure
nd analysis applications, but it is also used in other domains, including
ndustrial sensors and process control. Fig. 4 shows a real screen
apture of the SmartPoliTech project.

Grafana platform can detect if a sensor fails, taking the correspond-
ng action. In this sense, the tool was configured to send a control
essage in case of unusual readings. For example, if a temperature

ensor registers a very high value in winter, a warning message is sent
n order to identify two possible causes: the sensor has broken down or
here is a problem in the classroom where the sensor is located.

. Problem formulation

Sensor devices deployed in smart academic spaces, on occasion, may
ave malfunctions or just stop working. Erroneous readings can lead
o undesired control decisions by the actuator systems in charge of
mbient conditions of comfort and safety. This is the starting point of
ur research: What can be done when a sensor fails so that the control
ystem can continue to act with some reliability?

Fig. 5 shows this starting point on the left side. Let us suppose
hat a laboratory session takes place during a certain time interval, in
hich the mere presence of the students implies a change in the sensor

eadings with respect to their initial values. In this way, we can describe
he impact of the session progress on the ambient parameters as the
ariation of the same, expressed as the absolute value of the difference
etween the initial and final readings. For example, if 𝑃 is the ambient
arameter (𝑇 , 𝐶 or 𝐻), 𝑃𝑉 = |𝑃𝑒𝑛𝑑 − 𝑃𝑖𝑛𝑖| is the absolute variation

considered (𝑇𝑉 , 𝐶𝑉 or 𝐻𝑉 ).
4

These sessions take place over time, on possibly different days and
at different times. If a sensor failure occurs in any of these sessions,
our proposal is to develop an intelligent system capable of replacing
the erroneous data with another of fair value, which has been calcu-
lated taking into account two dimensions: the current context and the
historical context.

• The current context has to do with the relationship among the
different ambient parameters during the same session. The vari-
ations 𝑇𝑉 , 𝐶𝑉 and 𝐻𝑉 are clearly due to the presence and
activity developed by the students in the room, even in the mutual
influence among the parameters.

• The historical context has to do with the mutual relationship
between 𝑇𝑉 , 𝐶𝑉 and 𝐻𝑉 over time, that is, their relationship
throughout the different sessions. It is reasonable to assume that,
if the presence of students is the main source of variations 𝑇𝑉 ,
𝐶𝑉 and 𝐻𝑉 , the relationship between them is similar in the
different sessions of the same subject, as they all share the same
characteristic of activity (same number of students and same
materials used). The exception would be if a session corresponds
to a different subject or activity where other causes have to be
added to the students’ impact (such as the influence of different
equipment).

The 𝑇𝑉 , 𝐶𝑉 and 𝐻𝑉 variations recorded for the different sessions
build what we call the parameter matrix. The rows of this matrix
are the sessions and the columns are the variations of the ambient
parameters, and the matrix cells are the values of these variations in
the corresponding sessions. Thus, if the temperature sensor fails during
the session 𝑖, the value of the variation 𝑇𝑉 will be unknown. However,
taking into account the current and historical contexts explained before,
this 𝑇𝑉 value can be calculated from the 𝑇𝑉 values recorded in the
different sessions, as well as the variations of the rest of the ambient
parameters during the session 𝑖. This is the basis of collaborative
filtering. Therefore, we propose to use a recommender system capable
of calculating the predicted value 𝑇𝑉 𝑃 , which corresponds to the
unknown variation of the temperature in the session 𝑖.

The benefits of this intelligent solution are clear: there is no need to
replace a sensor in real time when it fails so that the ambient control
system can continue to perform well.

5. Recommender systems as predicting tool

As we said before, RS can be applied for prediction purposes. In

a classical description, a RS considers the ratings that a set of users
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h

Fig. 4. Grafana platform running for SmartPoliTech project.
Fig. 5. Proposal for predicting parameters after failures.
ave given to a set of items. Then, we have 𝑛 users, 𝑚 items, and a
rating matrix 𝑅 ∈ R𝑛×𝑚. We follow these terms in order to explain the
method, and later we map them to the problem that we have tackled
in SmartPoliTech.

Matrix Factorization (MF) is a technique that splits a matrix 𝑋 ∈
R𝑛×𝑚 into two matrices 𝑈 ∈ R𝑛×𝑘 and 𝑉 ∈ R𝑘×𝑚, so that 𝑋 ≈ 𝑈 ⋅𝑉 (Lee
and Seung, 1997). The factorized matrices 𝑈 and 𝑉 contain a compact
representation of 𝑋. Particularly for CF, MF based RS factorize 𝑅 that
contains the set of known ratings of 𝑛 users to 𝑚 items (Koren et al.,
2009).

MF is based on the assumption that the ratings of the users to the
items are related by a subset of latent factors 𝑘 intrinsic to the users
and items. Therefore, the factorization generates two new matrices,
𝑃 ∈ R𝑛×𝑘 and 𝑄 ∈ R𝑚×𝑘, where 𝑃 represents the 𝑘-latent factors of
the 𝑛 users and 𝑄 represents the 𝑘-latent factors of the 𝑚 items.

After factorizing 𝑅, the rating predictions (𝑟̂𝑢𝑖) of a user 𝑢 to the
item 𝑖 is calculated as the dot product of the row vector of the matrix
𝑃 that contains the latent factors of the user 𝑢 (𝑝𝑢) and the column
vector of the matrix 𝑄 that contains the latent factors of the item 𝑖 (𝑞𝑖)
(1). Hence, the learning process finds the optimal parameters for the
5

matrices 𝑃 and 𝑄 that verifies the condition given in (2).

𝑟̂𝑢𝑖 = 𝑝𝑢 ⋅ 𝑞
𝑇
𝑖 (1)

𝑅 ≈ 𝑃 ⋅𝑄𝑇 (2)

This process is usually raised as an optimization problem in which
the quadratic difference between the know ratings (𝑟𝑢,𝑖) of the matrix
𝑅 and the predicted ones (𝑝𝑢 ⋅ 𝑞𝑇𝑖 ) must be minimized (3).

min
𝑝𝑢 ,𝑞𝑖

∑

(𝑢,𝑖)∈𝑅
(𝑟𝑢,𝑖 − 𝑝𝑢 ⋅ 𝑞

𝑇
𝑖 )

2 (3)

In this work we have applied two approaches of CF algorithms in
order to study the behavior of the problem with more than one option.

5.1. Probabilistic Matrix Factorization (PMF)

PMF (Mnih and Salakhutdinov, 2008) is a popular implementa-
tion of MF applied to CF. It performs the factorization thorough a
probabilistic model that represents interaction between users and items.

Fig. 6 represents the probabilistic model through three elements:
circles that symbolize random variables; arrows between two variables,
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Fig. 6. Graphical representation of PMF model.

Algorithm 1: PMF algorithm
input : 𝑅,𝐾, 𝜆, 𝛾
utput: 𝑃 ,𝑄
reate a random matrix 𝑃 with 𝑈 rows and 𝐾 columns

Create a random matrix 𝑄 with 𝐼 rows and 𝐾 columns
repeat

for each user 𝑢 do
for each item 𝑖 rated by user 𝑢 do

𝑒𝑟𝑟𝑜𝑟 = 𝑅[𝑢][𝑖] - dotProduct(𝑃 [𝑢], 𝑄[𝑖])
for each factor 𝑘 do

𝑃 [𝑢][𝑘]+ = 𝛾 ⋅ (𝑒𝑟𝑟𝑜𝑟 ⋅ 𝑃 [𝑢][𝑘] − 𝜆 ⋅𝑄[𝑖][𝑘])

for each item 𝑖 do
for each user 𝑢 that has rated the item 𝑖 do

𝑒𝑟𝑟𝑜𝑟 = 𝑅[𝑢][𝑖] - dotProduct(𝑃 [𝑢], 𝑄[𝑖])
for each factor 𝑘 do

𝑄[𝑖][𝑘]+ = 𝛾 ⋅ (𝑒𝑟𝑟𝑜𝑟 ⋅𝑄[𝑖][𝑘] − 𝜆 ⋅ 𝑃 [𝑢][𝑘])

until convergence
return 𝑃 ,𝑄

that indicate dependence between those random variables; and rectan-
gles, that indicate repetitions of the random variables. Black or white
circles indicate if the random variables are observed or must be learned,
respectively. We see three random variables: 𝑅𝑢𝑖 (the rating of the user
𝑢 to the item 𝑖), 𝑃𝑢 (the latent factors of each user 𝑢), and 𝑄𝑖 (the latent
factors of each item 𝑖). The arrows between 𝑃𝑢 and 𝑄𝑖 with 𝑅𝑢𝑖 indicate
the dependency between the rating of the user 𝑢 to the item 𝑖 and the
latent factors of the user 𝑢 and the item 𝑖. PMF assumes a Gaussian
distribution for all the random variables. Finally, 𝜎𝑅, 𝜎𝑃 and 𝜎𝑄 are
the model hyper-parameters.

Algorithm 1 details how PMF works. The inputs are the rating
matrix 𝑅, the number of latent factors 𝐾, and the hyper-parameters
𝜆 and 𝛾. The outputs are the latent factors matrices 𝑃 and 𝑄 learned
from 𝑅.

5.2. Bayesian Non-negative Matrix Factorization (BNMF)

BNMF (Hernando et al., 2016) model is an accurate factorization
model designed for CF based RS, which factorizes the rating matrix
in a probabilistic way. The main objective of BNMF is to provide
an understandable probabilistic meaning of the latent factors space
generated as consequence of the factorization process. To this end,
the model has been designed for representing better the interaction
between users and items. A discrete distribution is used to represent
ratings, instead of assuming a continuous distribution like Gaussian.
 o

6

Fig. 7. Graphical representation of BNMF model.

This matches the reality of most CF systems, where users must rate
items on a pre-set scale of score values.

The BNMF model, graphically represented by Fig. 7, is composed by
the following random variables:

• 𝜃𝑢 is a 𝐾 dimensional vector from a Dirichlet distribution. This
random variables are used to represent the probability that a user
belongs to each group.

• 𝜅𝑖𝑘 from the Beta distribution is used to represent the probability
that a user in the group 𝑘 likes the item 𝑖.

• 𝑍𝑢𝑖 from the Categorical distribution is used to represent that the
user 𝑢 rates the item 𝑖 as if he or she belongs to the group 𝑘.

• 𝜌𝑢𝑖 from the Binomial distribution is used to represent the observ-
able rating of the user 𝑢 to the item 𝑖.

The model also contains the following hyper-parameters:

• 𝛼 is related to the possibility of obtaining overlapping groups of
users sharing the same preferences.

• 𝛽 is related to the amount of evidences required to belong to a
group.

• 𝐾 is related to the number of groups (i.e. number of latent factors)
that exists in the dataset.

• 𝑅 is related to the Binomial distribution which takes values from
0 to 𝑅.

As the first step to apply BNMF as prediction method, we must de-
ermine the conditional probability distribution of the non-observable
andom variables given a set of observations (i.e. the known rat-
ngs). Applying the variational inference technique (Hoffman et al.,
013), we can obtain the algorithm to perform this task. Algorithm
contains a detailed explanation about the training phase of BNMF
odel (Hernando et al., 2016).

Table 2 lists the values of the hyper-parameters applied for PMF and
NMF experiments. These values have been tuned using a Grid Search
pproach, in which a wide range of values for each hyper-parameter
as been evaluated in order to minimize prediction error.

. Results

In this section we describe the datasets used in the collaborative
iltering experiments, the experimental procedure, and the performance
omparison based on the error made in the prediction.

.1. Datasets

Table 3 shows the main features related to the datasets used in
he experiments, freely available in Gomez-Pulido et al. (2020). Six
aboratory classrooms were chosen according to the use of groups of
tudents of different subjects. Each space was used for a certain number

f sessions during several weeks. The heterogeneity of spaces, number
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Algorithm 2: BNMF algorithm. The algorithm returns the latent factors
for each user and item. Input ratings (𝑟𝑢𝑖) must be normalized.
input : 𝑟𝑢𝑖, 𝛼, 𝛽, 𝐾, 𝑅
output: 𝑝𝑢𝑘, 𝑞𝑖𝑘
temp : 𝛾𝑢𝑘, 𝜖−𝑖𝑘, 𝜖+𝑖𝑘, 𝜆𝑢𝑖𝑘, 𝜆′𝑢𝑖𝑘
Initialize 𝛾𝑢𝑘
Initialize 𝜖−𝑖𝑘
Initialize 𝜖+𝑖𝑘
repeat

for each user 𝑢 do
for each item 𝑖 rated by user 𝑢 do

for each factor 𝑘 do
𝜆′𝑢𝑖𝑘 ←

𝑒𝑥𝑝(𝛹 (𝛾𝑢𝑘) + 𝑟+𝑢𝑖 ⋅ 𝛹 (𝜖+𝑖𝑘) + 𝑟−𝑢𝑖 ⋅ 𝛹 (𝜖−𝑖𝑘) − 𝑅 ⋅ 𝛹 (𝜖+𝑖𝑘 + 𝜖−𝑖𝑘))

for each factor 𝑘 do
𝜆𝑢𝑖𝑘 ←

𝜆′𝑢𝑖𝑘
𝜆′𝑢𝑖1+⋯+𝜆′𝑢𝑖𝐾

for each item 𝑖 do
𝜖+𝑖𝑘 ← 𝛽
𝜖−𝑖𝑘 ← 𝛽

for each user 𝑢 do
𝛾𝑢𝑘 ← 𝛼
for each item 𝑖 rated by user 𝑢 do

for each factor 𝑘 do
𝛾𝑢𝑘 ← 𝛾𝑢𝑘 + 𝜆𝑢𝑖𝑘
𝜖+𝑖𝑘 ← 𝜖+𝑖𝑘 + 𝜆𝑢𝑖𝑘 ⋅ 𝑅 ⋅ 𝑟𝑢𝑖
𝜖−𝑖𝑘 ← 𝜖−𝑖𝑘 + 𝜆𝑢𝑖𝑘 ⋅ 𝑅 ⋅ (1 − 𝑟𝑢𝑖)

until convergence
for each factor 𝑘 do

for each user 𝑢 do
𝑝𝑢𝑘 ←

𝛾𝑢𝑘
∑

𝑓=1..𝐾 𝛾𝑢𝑓

for each item 𝑖 do
𝑞𝑖𝑘 ←

𝜖+𝑖𝑘
𝜖+𝑖𝑘+𝜖

−
𝑖𝑘

Table 2
Hyper-parameters applied in the experiments.

PMF BNMF

Number of factors 4 Number of factors 5
Number of iterations 50 Number of iterations 20
Learning rate 𝛽 0.2 Overlapping rate 𝛼 0.2
Regularization factor 𝜆 0.05 Number of evidences 𝛽 10

of students and subjects allows introducing a variety of behaviors very
useful to evaluate the response of a solution based on collaborative
filtering.

During all the sessions recorded in these spaces there were no sensor
failures or unusual readings, which is a requirement for the further
estimation of the prediction error.

6.2. Experimental procedure

Our proposal is to predict variations of ambient parameters in case
of sensor failures, as we pointed out in Fig. 5. We think that this goal
can be tackled by CF as prediction tool, considering the motivations
described before about current and historical contexts. To this end, we
map the corresponding terms as Table 4 describes. Note that, according
to these definitions, variations 𝑇𝑉 , 𝐶𝑉 and 𝐻𝑉 (for PMF) correspond
to item(1), item(2) and item(3), respectively.

When building the ranking matrix, one important consideration

must be taken into account: PMF can work with rankings corresponding i

7

Table 3
Characteristics of the datasets considered for the experiments.

Space Sessions Students Subject Cells

L1 36 (2h each) 20 Data structures 72

L2 15 (3h each) 15 Computer foundations
L2 7 (4h each) 15 Processor design
L2 12 (2h each) 12 Design of OS
L2 11 (4h each) 14 Parallel computing

L2 45 135

LD 18 (6h each) 12 Computer structure
LD 28 (4h each) 12 Computer foundations

LD 46 138

C3 24 (5h each) 40 Informatics-I
C3 26 (5h each) 40 Informatics-II

C3 50 150

T3 30 (5h each) 20 Telecomm.-III
T3 22 (5h each) 20 Telecomm.-IV

T3 52 156

C2A 40 (2h each) 15 English
C2A 33 (4h each) 10 Master technology

C2A 73 219

Table 4
Terms mapping between CF and our research proposal.

CF Proposal

Ranking matrix 𝑅 Parameter matrix
𝑛 users 𝑢 N sessions
𝑚 items 𝑖 Variations of three

ambient parameters
Rating 𝑟 Sensor measure
Predicted rating 𝑟̂ Predicted variations

to continuous variables (real values), while BNMF can only work with
discrete values. In our case, the ranking matrix is built from the
variations of the ambient parameters (for example, from 0.0 to 5.8);
therefore, for BNMF these values should be discretized to give, for
example, rankings with only 10 possible values that go from ‘‘very small
variation’’ to ‘‘very large variation’’.

To explain the experimental procedure we use the nomenclature
defined in Table 5. To simplify the description, we identify 𝑃 from now
n with the ambient parameter, which can be 𝑇 , 𝐶 or 𝐻 .

Fig. 8 summarizes the experimental procedure designed for our
roposal. Let us suppose a classroom where students attend a subject
uring a certain period of time. For this session, we record the values
f the ambient parameter 𝑃 at the beginning and at the end, by means
f the readings collected from the corresponding sensor.

To build the rating matrices, we have to take into account that PMF
an handle continuous variables while BNMF can only handle discrete
ariables. Thus, for PMF we consider as rating the absolute variation
f 𝑃 during the session, 𝑃𝑉 , whereas BNMF needs a discretization
echanism.

The discretization mechanism starts by calculating 𝑃𝑃 as the rel-
tive absolute variation of 𝑃 along the session. Then, knowing the
inimum and maximum values of 𝑃𝑃 for all sessions, we normalize
𝑃 between 0.0 and 1.0. Finally, the normalized result is rounded up

o the nearest first decimal dot and then multiplied by 10 to obtain the
ating 𝑃𝐷. This rating may correspond to one of the 11 possible values
rom 0 (no variation) to 10 (maximum possible variation). For example,
ig. 9 shows the ratings 𝑇𝐷 for the temperature column in the BNMF
ating matrix, obtained after applying the discretization mechanism for
he six datasets considered.

We assume as many prediction cases as there are cells in the ratings
atrix. For example, for cell 𝑃𝑖 that represents the rating experienced

y the ambient parameter 𝑃 during the session 𝑖, we assume that
t is an unknown value because of the failure of the corresponding
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Table 5
Nomenclature for the experiments.

Ambient parameter 𝑃 (𝑇 , 𝐶, 𝐻)
Measure at the start of the session 𝑃𝑖𝑛𝑖
Measure at the end of the session 𝑃𝑒𝑛𝑑

PMF BNMF

% of absolute variation along the session 𝑃𝑃 = |

𝑃𝑒𝑛𝑑

𝑃𝑖𝑛𝑖
− 1|

Min/max 𝑃𝑃 in all sessions 𝑃𝑃 𝑚𝑖𝑛, 𝑃𝑃 𝑚𝑎𝑥

Rating matrix 𝑃𝑉 a= |𝑃𝑒𝑛𝑑 − 𝑃𝑖𝑛𝑖| 𝑃𝐷b= 𝑟𝑜𝑢𝑛𝑑.1( 𝑃𝑃−𝑃𝑃𝑚𝑖𝑛

𝑃𝑃𝑚𝑎𝑥−𝑃𝑃𝑚𝑖𝑛
) × 10

Predicted value 𝑃𝑉 𝑃 𝑃𝐷𝑃
Prediction error 𝑃𝑉 𝑃 𝑒 = |𝑃𝑉 𝑃 − 𝑃𝑉 | 𝑃𝐷𝑃 𝑒 = |𝑃𝐷𝑃 − 𝑃𝐷|

% of prediction error 𝑃𝑉 𝑃 𝑒𝑝 = |

𝑃𝑉
𝑃𝑉 𝑃

− 1| 𝑃𝐷𝑃 𝑒𝑝 = |

𝑃𝐷
𝑃𝐷𝑃

− 1|

aAbsolute variation along the session.
b% Absolute variation, normalized and discretized.
Fig. 8. Experimental procedure.
w
m
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ensor. Therefore, we obtain the predicted value 𝑃𝑉 𝑃 𝑖 and 𝑃𝐷𝑃 𝑖 after
pplying PMF and BNMF respectively. As we know the real values 𝑃𝑉 𝑖

nd 𝑃𝐷𝑖, we can calculate the absolute errors 𝑃𝑉 𝑃𝑒𝑖 and 𝑃𝐷𝑃𝑒𝑖, which
an also be represented as a percentage errors of the predicted ratings
ith respect to the real 𝑃𝑉 𝑃𝑒𝑝𝑖 and 𝑃𝐷𝑃𝑒𝑝𝑖. Please, note that here you

an replace 𝑃 by any of the ambient parameter variations 𝑇 , 𝐶 or 𝐻 .

As PMF and BNMF are stochastic algorithms, the predicted values
ay differ in each run. For this reason, each value chosen as predicted
 T

8

as the mean of 41 runs, where the minimum, maximum, mean,
edian and standard deviation values were recorded.

Another aspect to highlight is that the CF algorithms perform the
rediction using training and a test datasets. We considered that the
raining dataset is composed of all the data of the ranking matrix, while
he test dataset was chosen following a diagonal strategy. This method
hooses the test data following a zigzag path that goes across the rows
nd columns of the matrix uniformly, as Fig. 10 shows for L1 dataset.
he reason of proposing this method to build the test dataset is that
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Fig. 9. Continuous and discretized variations for temperature.
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Fig. 10. Strategy for selecting training and test data.

we guarantee that the test data represent most of sessions and ambient
parameters with a similar weight.

6.3. Discussion

Once the predicted matrix has been generated after applying both
PMF and BNMF for all the variations of the ambient parameters in the
9

different facilities along the time, we can check not only the accuracy
of the algorithm when comparing actual and predicted values, but the
performance comparison between the two CF implementations.

Fig. 11 shows the actual variations (solid line) and predicted vari-
ations (dashed line) obtained by PMF along the time (defined as
laboratory sessions), for of each ambient parameter (𝑇 , 𝐶, and 𝐻) and
lassroom.

At first glance, the prediction curves look very similar to the real
urves in all the cases. The first conclusion is that the prediction
roposal based on collaborative filtering works reasonably well. This
ood behavior of the prediction is not only based on the degree of
imilarity between the curves, but also by the absence of outliers, which
oints out to the reliability of the proposed method.

Notwithstanding the good behavior of the prediction according to
he appearance of these curves, it is more meaningful to quantify the
rediction accuracy by considering the rates of the prediction error:
𝑉 𝑃𝑒𝑝 for PMF and 𝑃𝐷𝑃𝑒𝑝 for BNMF. This way, we can compare

he results obtained by both CF implementations, since they han-
le different measures of the variations of the ambient parameters
in the continuous and discrete domains), as Table 5 shows. Thus,
ig. 12 reports the percentages of prediction errors when applying
MF and BNMF. Analyzing this figure, we can draw some interesting
onclusions.

First, PMF reaches much better results than BNMF, which is also
hecked by calculating the mean of these rates, as Table 6 shows.
he good behavior of PMF is widespread, except in one case, when
he temperature was monitored in the C2A classroom. However, there
ould have been some anomalous circumstances with the temperature
ensor in this classroom, observing the behavior of the temperature
ariations drawn in Fig. 11. Even without considering this classroom,
he temperature prediction error rate would fall to 8%. In any case,
e clearly bet on PMF as the CF implementation to be applied for

ensor-based ambient control.
We also observe that not all the ambient parameters have the same

rediction accuracy. As we can see in Table 6, the humidity prediction
s more accurate than temperature and CO2.
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Fig. 11. Actual and predicted variations of the ambient parameters by PMF.
7. Conclusion

As a final conclusion, we can say that our proposal for predicting the
variation of ambient parameters by means of CF-based RS represents a
valid approach to the problem of covering the lack of valid readings to
ambient control systems when a sensor fails.
10
The novelty of this proposal lies in the fact that the prediction of an
ambient parameter takes into account its behavior in all the registered
sessions, and in the behavior of the remaining ambient parameters in
the same session, following a collaborative hypothesis. Although the re-
sults obtained by PMF are reasonably good, we highlight the reliability
of the proposal as there are no cases of anomalous predictions.



F. Pajuelo-Holguera, J.A. Gómez-Pulido and F. Ortega Engineering Applications of Artificial Intelligence 96 (2020) 103993

m
c
o
m
v

C

w

Fig. 12. Prediction error (%) of the ambient parameters by PMF and BNMF.
Table 6
Mean of the prediction error rates.

PMF BNMF

Temperature 15% 33%
CO2 15% 33%
Humidity 15% 33%

We consider that PMF is a good starting point for future improve-
ents. We think that better results could be reached by tuning effi-

iently the hyper-parameters and by considering more historical data
f the sensor readings, since they allow us a better understanding and
odeling of the relationship between the students’ behavior and the

ariations of the sensor readings.

RediT authorship contribution statement

Francisco Pajuelo-Holguera: Investigation, Data curation, Soft-
are, Visualization, Validation. Juan A. Gómez-Pulido: Conceptu-

alization, Methodology, Writing - original draft. Fernando Ortega:
Supervision, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors would like to thank to the entities that funded this
research project: the Government of Extremadura (Spain) under the
grant IB16002, and by the ERDF (European Regional Development
Fund, EU) and the Spanish State Research Agency under the contract
TIN2016-76259-P.
11
References

Acikmese, Y., Alptekin, S.E., 2019. Prediction of stress levels with LSTM and passive
mobile sensors. In: Knowledge-Based and Intelligent Information and Engineering
Systems: Proceedings of the 23rd International Conference KES2019. Procedia
Comput. Sci. 159, 658–667. http://dx.doi.org/10.1016/j.procs.2019.09.221, URL
http://www.sciencedirect.com/science/article/pii/S187705091931405X.

Adomavicius, G., Tuzhilin, A., 2015. Context-aware recommender systems. In:
Recommender Systems Handbook. Springer, pp. 191–226.

Anon, 2020. Ray Ingeniería Electrónica. URL https://www.ray-ie.com/.
Arnaboldi, V., Conti, M., Delmastro, F., Minutiello, G., Ricci, L., 2013. DroidOpp-

PathFinder: A context and social-aware path recommender system based
on opportunistic sensing. pp. 0–2. http://dx.doi.org/10.1109/WoWMoM.2013.
6583363.

Baltrunas, L., Ludwig, B., Peer, S., Ricci, F., 2012. Context relevance assessment and
exploitation in mobile recommender systems. Pers. Ubiquitous Comput. 16 (5),
507–526. http://dx.doi.org/10.1007/s00779-011-0417-x.

Bernabeu, J.M., Berna-Martinez, J., Maciá Pérez, F., 2014. Smart sentinel: Monitoring
and prevention system in the smart cities. Int. Rev. Comput. Softw. 9, 1554–1559.
http://dx.doi.org/10.15866/irecos.v9i9.2972.

Bernal, D., Ma, Q., Castro-Triguero, R., Gallego, R., 2014. Sensor placements for damage
localization with the SDLV approach. In: Conference Proceedings of the Society for
Experimental Mechanics Series, Vol. 6. pp. 347–353. http://dx.doi.org/10.1007/
978-3-319-04729-4_30, cited By 0.

Chen, H., Xie, X., Shu, W., Xiong, N., 2016. An efficient recommendation filter model
on smart home big data analytics for enhanced living environments. Sensors 16,
1706. http://dx.doi.org/10.3390/s16101706.

Fortes, S., Santoyo Ramón, J., Palacios Campos, D., Baena, E., Mora-Garcí a, R.o.,
Medina, M., Mora, P., Barco, R., 2019. The campus as a smart city: University
of Málaga environmental, learning, and research approaches. Sensors 19, 1349.
http://dx.doi.org/10.3390/s19061349.

Gomez-Pulido, J.A., Pajuelo-Holguera, F., Ortega, F., 2020. Data for: Recommender
systems for sensor-based ambient control in academic facilities. http://dx.doi.org/
10.17632/7j845nz5wh.2, Mendeley Data, V2.

He, J., Chu, W.W., 2010. A social network-based recommender system (SNRS). In:
Memon, N., Xu, J.J., Hicks, D.L., Chen, H. (Eds.), Data Mining for Social Network
Data. Springer US, Boston, MA, pp. 47–74. http://dx.doi.org/10.1007/978-1-4419-
6287-4_4.

He, Y.-L., Tian, Y., Xu, Y., Zhu, Q.-X., 2020. Novel soft sensor development using
echo state network integrated with singular value decomposition: Application to
complex chemical processes. Chemometr. Intell. Lab. Syst. 200, 103981. http://
dx.doi.org/10.1016/j.chemolab.2020.103981, URL http://www.sciencedirect.com/
science/article/pii/S0169743919308184.

Hernando, A., Bobadilla, J., Ortega, F., 2016. A non negative matrix factorization
for collaborative filtering recommender systems based on a Bayesian probabilistic
model. Knowl.-Based Syst. 97, 188–202.

http://dx.doi.org/10.1016/j.procs.2019.09.221
http://www.sciencedirect.com/science/article/pii/S187705091931405X
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb2
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb2
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb2
https://www.ray-ie.com/
http://dx.doi.org/10.1109/WoWMoM.2013.6583363
http://dx.doi.org/10.1109/WoWMoM.2013.6583363
http://dx.doi.org/10.1109/WoWMoM.2013.6583363
http://dx.doi.org/10.1007/s00779-011-0417-x
http://dx.doi.org/10.15866/irecos.v9i9.2972
http://dx.doi.org/10.1007/978-3-319-04729-4_30
http://dx.doi.org/10.1007/978-3-319-04729-4_30
http://dx.doi.org/10.1007/978-3-319-04729-4_30
http://dx.doi.org/10.3390/s16101706
http://dx.doi.org/10.3390/s19061349
http://dx.doi.org/10.17632/7j845nz5wh.2
http://dx.doi.org/10.17632/7j845nz5wh.2
http://dx.doi.org/10.17632/7j845nz5wh.2
http://dx.doi.org/10.1007/978-1-4419-6287-4_4
http://dx.doi.org/10.1007/978-1-4419-6287-4_4
http://dx.doi.org/10.1007/978-1-4419-6287-4_4
http://dx.doi.org/10.1016/j.chemolab.2020.103981
http://dx.doi.org/10.1016/j.chemolab.2020.103981
http://dx.doi.org/10.1016/j.chemolab.2020.103981
http://www.sciencedirect.com/science/article/pii/S0169743919308184
http://www.sciencedirect.com/science/article/pii/S0169743919308184
http://www.sciencedirect.com/science/article/pii/S0169743919308184
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb13
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb13
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb13
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb13
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb13


F. Pajuelo-Holguera, J.A. Gómez-Pulido and F. Ortega Engineering Applications of Artificial Intelligence 96 (2020) 103993
Hoffman, M.D., Blei, D.M., Wang, C., Paisley, J., 2013. Stochastic variational inference.
J. Mach. Learn. Res. 14 (1), 1303–1347.

Jannach, D., amd A. Felfernig, M.Z., Friedrich, G., 2011. Recommender Systems. An
Introduction. Cambridge University Press, Cambridge, United Kingdom.

Koren, Y., Bell, R., Volinsky, C., 2009. Matrix factorization techniques for recommender
systems. Computer (8), 30–37.

Kuchař, J., Kliegr, T., 2017. InBeat: JavaScript recommender system supporting
sensor input and linked data. Knowl.-Based Syst. 135, 40–43. http://dx.doi.org/
10.1016/j.knosys.2017.07.026, URL http://www.sciencedirect.com/science/article/
pii/S0950705117303428.

Lanza-Gutierrez, J.M., Gomez-Pulido, J.A., 2015. Assuming multiobjective metaheuris-
tics to solve a three-objective optimisation problem for Relay Node deployment in
Wireless Sensor Networks. Appl. Soft Comput. 30, 675–687. http://dx.doi.org/10.
1016/j.asoc.2015.01.051, URL http://www.sciencedirect.com/science/article/pii/
S1568494615000721.

Lee, D.D., Seung, H., 1997. Unsupervised learning by convex and conic coding. In:
Advances in Neural Information Processing Systems. pp. 515–521.

Lemos, F., Carmo, R., Viana, W., Andrade, R., Towards a context-aware photo
recommender system, in: CEUR Workshop Proceedings, Vol. 889.

Menon, A.K., Chitrapura, K.-P., Garg, S., Agarwal, D., Kota, N., 2011. Response
prediction using collaborative filtering with hierarchies and side-information. In:
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’11, Association for Computing Machinery, New
York, NY, USA, pp. 141–149. http://dx.doi.org/10.1145/2020408.2020436.

Mnih, A., Salakhutdinov, R.R., 2008. Probabilistic matrix factorization. In: Advances in
Neural Information Processing Systems. pp. 1257–1264.
12
Nouh, R., Lee, H.-H., Lee, W.-J., Lee, J.-D., 2019. A smart recommender based on
hybrid learning methods for personal well-being services. Sensors 19, 431. http:
//dx.doi.org/10.3390/s19020431.

Odić, A., Tkalčič, M., Tasič, J.F., Košir, A., 2013. Predicting and detecting the
relevant contextual information in a movie-recommender system. Interact. Comput.
25 (1), 74–90. http://dx.doi.org/10.1093/iwc/iws003, arXiv:https://academic.oup.
com/iwc/article-pdf/25/1/74/2304742/iws003.pdf.

Ricci, F., Rokach, L., Shapira, B., 2011. Introduction to recommender systems handbook.
In: Recommender Systems Handbook. Springer, pp. 1–35.

Santos, O.C., Uria-Rivas, R., Rodriguez-Sanchez, M., G. Boticario, J., 2016. An open
sensing and acting platform for context-aware affective support in ambient intel-
ligent educational settings. IEEE Sens. J. 16, 1. http://dx.doi.org/10.1109/JSEN.
2016.2533266.

Sotsenko, A., Jansen, M., Milrad, M., Using a rich context model for a news recom-
mender system for mobile users, in: CEUR Workshop Proceedings, Vol. 1181, 2014,
pp. 13–16.

Suchojad, D., 2013. Zato—Agile ESB, SOA, REST and cloud integrations in Python.
Linux J. 2013.

Symeonidis, P., Chairistanidis, S., 2017. CheckInShop.Eu: A sensor-based recommender
system for micro-location marketing. In: Proceedings of the Eleventh ACM Confer-
ence on Recommender Systems. RecSys ’17, Association for Computing Machinery,
New York, NY, USA, pp. 351–352. http://dx.doi.org/10.1145/3109859.3109977.

Wang, X., Rosenblum, D., Wang, Y., 2012. Context-aware mobile music recommenda-
tion for daily activities. In: Proceedings of the 20th ACM International Conference
on Multimedia. MM ’12, Association for Computing Machinery, New York, NY,
USA, pp. 99–108. http://dx.doi.org/10.1145/2393347.2393368.

http://refhub.elsevier.com/S0952-1976(20)30290-6/sb14
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb14
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb14
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb15
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb15
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb15
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb16
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb16
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb16
http://dx.doi.org/10.1016/j.knosys.2017.07.026
http://dx.doi.org/10.1016/j.knosys.2017.07.026
http://dx.doi.org/10.1016/j.knosys.2017.07.026
http://www.sciencedirect.com/science/article/pii/S0950705117303428
http://www.sciencedirect.com/science/article/pii/S0950705117303428
http://www.sciencedirect.com/science/article/pii/S0950705117303428
http://dx.doi.org/10.1016/j.asoc.2015.01.051
http://dx.doi.org/10.1016/j.asoc.2015.01.051
http://dx.doi.org/10.1016/j.asoc.2015.01.051
http://www.sciencedirect.com/science/article/pii/S1568494615000721
http://www.sciencedirect.com/science/article/pii/S1568494615000721
http://www.sciencedirect.com/science/article/pii/S1568494615000721
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb19
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb19
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb19
http://dx.doi.org/10.1145/2020408.2020436
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb22
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb22
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb22
http://dx.doi.org/10.3390/s19020431
http://dx.doi.org/10.3390/s19020431
http://dx.doi.org/10.3390/s19020431
http://dx.doi.org/10.1093/iwc/iws003
http://arxiv.org/abs/https://academic.oup.com/iwc/article-pdf/25/1/74/2304742/iws003.pdf
http://arxiv.org/abs/https://academic.oup.com/iwc/article-pdf/25/1/74/2304742/iws003.pdf
http://arxiv.org/abs/https://academic.oup.com/iwc/article-pdf/25/1/74/2304742/iws003.pdf
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb25
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb25
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb25
http://dx.doi.org/10.1109/JSEN.2016.2533266
http://dx.doi.org/10.1109/JSEN.2016.2533266
http://dx.doi.org/10.1109/JSEN.2016.2533266
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb28
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb28
http://refhub.elsevier.com/S0952-1976(20)30290-6/sb28
http://dx.doi.org/10.1145/3109859.3109977
http://dx.doi.org/10.1145/2393347.2393368

	Recommender systems for sensor-based ambient control in academic facilities
	Introduction
	Related works
	SmartPolitech: A sensor-based framework in academic facilities
	Technology
	SmartPoliTech iot and Communication Infrastructure
	Sensor devices
	Monitoring solution

	Problem formulation
	Recommender systems as predicting tool
	Probabilistic Matrix Factorization (PMF)
	Bayesian Non-negative Matrix Factorization (BNMF) 

	Results
	Datasets
	Experimental procedure
	Discussion

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


