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Resumen

El paradigma de la computación Grid es definido como un sistema paralelo y

distribuido que permite compartir, seleccionar y recolectar recursos autónomos

distribuidos geográficamente de forma dinámica [41]. Todas estas acciones son

llevadas a cabo en tiempo de ejecución dependiendo de la disponibilidad, capaci-

dad, coste y calidad de los recursos requeridos por los usuarios. Este enfoque

emerge de la sinergia entre la cooperación de los recursos computacionales con

su control descentralizado y presentándolos como servicios.

Por tanto, uno de los más importantes actores, que participa en este control de-

scentralizado, son los meta-planificadores, también conocidos como gestores de

recursos. Este servicio es implementado en el middleware, lo que facilita el manejo

del entorno Grid. La principal función de un meta-planificador es asignar los tra-

bajos adecuadamente a los recursos siguiendo los requisitos computacionales y de

calidad de servicio demandados por los usuarios. La computación Grid es ampli-

amente usada en el mundo científico para resolver experimentos complejos (con-

junto de trabajos interdependientes) que requieren un alto rendimiento y produc-

tividad.

Por una parte, los científicos a menudo deben de cumplir plazos y presupuestos

para experimentos enrolados en importantes proyectos. A causa de eso, la opti-

mización del tiempo de ejecución y el coste económico asociado es un factor clave
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a considerar en el proceso de planificación de trabajos llevado a cabo por los meta-

planificadores. Sin embargo, este tipo de objetivos son conflictivos entre ellos, de-

bido a que los recursos más económicos suelen ser más lentos que los más caros. El

coste económico como objetivo es muy considerado en otros entornos distribui-

dos como la computación Cloud.

Por otra parte, la computación verde también conocida como Green IT está en

auge dentro del campo de la computación durante estos últimos años. La com-

putación verde consiste en permitir a las organizaciones realizar un uso más efi-

ciente y racional de los recursos tecnológicos, reduciendo costes mientras se adop-

tan tecnologías y métodos que respeten el medio ambiente. Por tanto, el ahorro

de energía se está convirtiendo en un nuevo objetivo a tener en cuenta en meta-

planificadores en entornos distribuidos. El tiempo de ejecución y el consumo de

energía son también objetivos conflictivos entre sí, ya que los recursos con más

rendimiento frecuentemente implican un mayor consumo de energía. El ahorro

de energía hoy en día está en auge en todos los entornos computacionales.

Para tratar con estos problemas una visión multiobjetivo es considerada en esta

Tesis para buscar las mejores soluciones que minimicen a la vez los objetivos con-

flictivos mencionados. Gracias al conocido y ampliamente utilizado simulador

GridSim [21] se han podido realizar diversos estudios con diferentes topologías

distribuidas, workflows y propuestas de optimización multiobjetivo basadas en al-

goritmos evolutivos e inteligencia colectiva. También se han incluido compara-

ciones con otros resultados publicados en la literatura y metaplanificadores grid

reales. Todos estos estudios incluyen los análisis estadísticos correspondientes.
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Multiobjective Optimization for Job Scheduling in Distributed
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Summary

The paradigm of grid computing is defined as a parallel, distributed system that

allows sharing, selecting, and collecting autonomous resources geographically dis-

tributed in a dynamic way [41]. All these actions are carried out during the execu-

tion time of a job operation depending on the availability, capacity, cost, and qual-

ity of the resources required by the users. This approach emerges from the synergy

between the cooperation of the computing resources with a decentralized control.

Therefore, one of the most important and challenging actors, that participates

in this decentralized control, is the meta-scheduler, also known as a resource bro-

ker. This service is implemented in the middleware, which facilitates grid envi-

ronment management. The main function of a meta-scheduler is to assign jobs to

suitable resources by following computational and quality of service requirements

demanded by users. Grid computing is widely used in the scientific world because

it facilitates the execution of complex experiments (Set of interdependent jobs)

that require high performance and throughput.

On one hand, scientists often have to consider deadlines and budgets for experi-

ments related to important projects. Because of that, the optimization of execution

time and cost is a key factor to consider in the job scheduling process carried out by

the meta-schedulers. However, these types of objectives are in conflict with each

other, because generally cheaper resources are usually slower than expensive ones.
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Economic cost is an objective that is often considered in other distributed systems

such as Cloud Computing.

On the other hand, Green Computing, also known as Green IT, is becoming a

popular topic in the computational field in the last few years. Green Computing

consists of enabling organizations to make a more rational and efficient use of their

technological resources and reduce costs while adopting technologies and working

methods that respect the environment. Energy consumption is a new valuable ob-

jective to optimize for meta-schedulers. Execution time and energy consumption

are also conflicting objectives, because faster resources frequently imply higher en-

ergy consumptions. Energy reduction is considered in all types of computational

environments.

In order to deal with these problems, a multi-objective approach is considered

in this Ph.D. thesis to research the best solutions that minimize, at the same time,

the mentioned conflicting objectives. Thanks to the well-known and widely used

GridSim [21] simulator, several studies have been carried out with different dis-

tributed topologies, workflows, and multi-objective optimization proposals based

on evolutionary and swarm intelligence algorithms. We have also included com-

parisons with other results published in the literature and with real grid meta-

schedulers. All these studies include the corresponding statistical analysis.
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“I dream my painting and I paint my dream”.

Vincent van Gogh

1
Introduction

In this chapter, a general overview of the problem with a short explanation of the
purpose of this study and the multi-objective approaches studied in this thesis are
briefly introduced in section 1.1. The outline of scientific purposes and objectives
for the research are performed in section 1.2 and the corresponding contributions
carried out in this thesis are described in section 1.3. Finally, the structure of this
thesis is enumerated in section 1.4.

1.1 GeneralOverview

Grid computing consists of a decentralized control of heterogeneous and geograph-
ically distributed resources [42]. Meta-schedulers are the actors that participates
in this decentralized control, and their main function is assign the jobs to suitable
resources by accomplishing computational requirements and quality of service de-
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manded by users [41].
Grid computing is widely used in the scientific world to solve complex experi-

ments that require high performance. Scientists often have to consider deadlines,
budgets or energy consumption from their experiments related to important projects.
Because of that, the optimization of execution time and cost, and/or energy con-
sumption is a key factor to consider in the job scheduling process carried out by
the meta-schedulers. However, these types of objectives are in conflict with each
other, because cheaper resources are usually slower than expensive ones or faster
resources can consume more energy, necessitating a multi-objective optimization.

In this thesis, a study of different multi-objective algorithms is presented to solve
this multi-objective problem. The implemented algorithms are based on Swarm
Intelligence and evolutionary populations. Swarm intelligence is a kind of intelli-
gence that emerges from collaboration and competition among individuals. Evo-
lutionary algorithms are based on population evolution with only parental rela-
tionships between their members. Five multi-objective algorithms from different
fields (biology, physics, and sociology) have been adapted and evaluated:

• Multi-Objective Gravitational Search Algorithm (MOGSA) is built from
the Gravitational Search Algorithm [77], and the agents (candidate solu-
tions) are considered as planets that interact among them according to the
physical field.

• Multi-Objective Artificial Bee Colony (MOABC) is based on the Artificial
Bee Colony [50], [49] from the biological field, and its collaborating agents
are represented by bees.

• Multi-Objective Small World Optimization (MOSWO) is a multi-objective
approach based on the small world phenomenon from the sociology field
point of view. The MOSWO approach implements some practices from the
single-objective algorithm Tabu Small World Optimization (TSWO) [70],
and its agents are represented as nodes in a social network.
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• Multi-Objective Firefly Algorithm (MO-FA) is based on the Firefly Algo-
rithm [97], which is inspired from firefly behaviour, and it is biological al-
gorithm.

• Multi-Objective Brain Storm Algorithm (MOBSA) is based on a novel al-
gorithm called Brain Storm Optimization (BSO) ([79], [80]). The BSO al-
gorithm is inspired by humans behaviour (sociological field), when a brain-
storming process is applied in a group, especially with different backgrounds,
in order to resolve a complex problem.

One of the main contributions of this research is the adaption of these algo-
rithms to deal with multi-objective requirements that are in conflict with each other
(execution time and economic cost or energy consumption). Therefore, to give
more reliability to this multi-objective study, an evaluation with well-known multi-
objective algorithms has been accomplished: Non-dominated Sorting Genetic Al-
gorithm II (NSGA-II) [29], which is the standard multi-objective algorithm and
Multi-Objective Heterogeneous Earliest Finish Time (MOHEFT) [37], a recent
multi-objective algorithm that has demonstrated very good results in the work-
flows scheduling field. All these evaluations include the corresponding statistical
analysis.

GridSim [21] is the simulator used to implement all the meta-schedulers. Grid-
Sim is a powerful simulator for grid environments, it is very well-known and used
in the field. GridSim allows us to configure complex topologies and resource fea-
tures, therefore, their results are very close to the results that would be obtained in
real grid environments.

In this thesis, six workflows–Gaussian, Gauss-Jordan, LU decomposition, Find-
Max, Fast Fourier Transform (FFT), and Stencil–have been deployed with all the
implemented meta-schedulers to study their behaviour in each situation. In ad-
dition, two different grid environments have been used to reinforce the study of
their behaviour in different scenarios. Also, the best meta-scheduler, in this case
MOABC, has been compared with two real meta-schedulers. The Workload Man-
agement System (WMS) [47], by gLite (Lightweight Middleware for Grid Com-
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puting) [38], is a European middleware, which is the most extended in grid envi-
ronments. The second meta-scheduler is the Deadline Budget Constraint (DBC)
of Nimrod-G [22], which is used to show the relevance of our results.

1.2 Objectives

The main objective of this thesis is the design of a multi-objective optimization
meta-scheduler to resolve the job scheduling problem in distributed environments,
such as Grid computing. Execution time, economic cost, or energy consumption
optimizations are applied in the approaches presented in this thesis. Therefore,
real quality parameters should be taken into account making the problem more
complex and necessitating the use of complex heuristics and multi-objective meta-
heuristics to achieve an effective solution. The concrete objectives of this thesis are
presented as follows:

• Study and analysis of real meta-schedulers on grid environments: WMS and
DBC.

• Study of new technologies for energy saving in distributed environments.

• Analysis and study of all necessary concepts related to multi-objective opti-
mization problems.

• Objective functions analysis and implementation for each multi-objective
optimization problem proposed in this thesis.

• Study and analysis of the simulator used to obtain the required data, Grid-
Sim.

• Bibliography study about the job scheduling problem in distributed envi-
ronments and the strategies carried out for solving it.

• Study, evaluation, and extension of the multi-objective meta-heuristics that
are applied to solve the problem, by analysing their suitability for each one
accordingly to the characteristics of the problem.
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• Development and parametric adjustment of the algorithm approaches with
the purpose of obtaining quality results to solve the problem.

• Statistical analysis and comparison of the obtained results for each algo-
rithm regarding different datasets (grid topologies and scientific workflows).

• Extension design and development from the simulator, GridSim, to study
the multi-objective job scheduling problem in distributed environments.

1.3 Contributions

The contributions of this thesis are established from the following points of view:

• First, from the scientific point of view, the approach presented represents an
advanced and deep understanding of evolutionary and swarm intelligence
algorithms and multi-objective meta-heuristics in general, to resolve com-
plex optimization problems. Particularly, these strategies are being applied
to Grid computing. However, these techniques could be extrapolated to
other fields, where techniques are needed to solve complex problems, which
can not be tackled in another way.

• New strategies have been designed to provide multi-objective optimization
in the scientific field. These strategies are not only based on biology inspi-
ration or physics, as is usually common in the bio-inspired optimization
world, but also on social inspiration through algorithms based on human
behaviour, such as the brainstorming process or small world phenomena.
These new approaches imply an extension of the multi-optimization study.

• Regarding the fields where this research is applied, this project represents a
study from two points of view of the job scheduling problem in distributed
environments, the simultaneous execution time and cost optimization view
and the energy consumption and responsiveness optimization view. There-
fore, the multi-objective optimization of distributed infrastructures in meta-
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schedulers leads to suppose an economic and ecological advance by offering
better responsiveness for scientific and private projects.

• Finally, from the technical and research point of view, this research con-
tributes to the extension of the well-known and often used simulator Grid-
Sim [21] with the implementation of novel multi-objective algorithms (evo-
lutionary and swarm intelligence algorithms) able to optimize the afore-
mentioned objectives, by offering a multi-objective study platform with met-
ric calculations, such as hypervolume, set coverage, and statistical analysis.

1.4 Thesis Organization

This thesis is organized as follows:

• Chapter 2 presents the related work of the grid scheduling problem and the
current multi-objective advances provided by literature.

• Chapter 3 describes the problem statement with an introduction of the multi-
objective approach.

• Chapter 4 explains the five multi-objective approaches presented in this the-
sis and also the application of the standard and well-known NSGA-II algo-
rithm to the problem.

• Chapter 5 details the test environments used with the aim to make the ex-
periments reproducible for future researches.

• Chapter 6 presents the methodology followed, indicating the multi-objective
quality metrics used, the statistical analysis applied, and the parametrical
study performed for all the algorithms.

• Chapters 7 and 8 analyse and compare the quality and performance of all
multi-objective algorithms presented and compare other standard and well-
known multi-objective algorithms, such as NSGA-II, MOHEFT. Real grid
meta-schedulers, such as WMS and DBC are also studied.
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• Chapter 9 summarizes the conclusions obtained by this thesis and discusses
future lines to follow.

• Annexes A and B elaborate on all the research achievements.
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“Study the past if you would define the future” .

Confucius

2
RelatedWork

This chapter is divided in two sections. Each section details the development of
each problem presented in this research: The Economic cost and Execution Time
Optimization Problem and the Energy Consumption and Responsiveness Opti-
mization Problem for grid meta-schedulers.

2.1 Economic Cost and Execution Time Optimization for

Job Scheduling in Grid Environments

Real grid meta-schedulers have been considered for evaluating the quality of the
multi-objective algorithms proposed for optimizing the execution time and cost
requirements demanded by users. Currently, the most used meta-scheduler is the
Workload Management System (WMS) [47], by gLite (Lightweight Middleware
for Grid Computing) [38], a European middleware, which is the most extended
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in grid environments. The second meta-scheduler studied is the Deadline Bud-
get Constraint (DBC) of Nimrod-G ([22], [1]). Its algorithm adjusts both the
budget and the deadline per job specified by the user. Moreover, the Nimrod-G
system is mentioned as the only one that optimizes execution time and economic
cost according to a recent study of task scheduling [92]. Xhafa and Abraham [95]
reveal the complexity of the job scheduling problem and show the utility of meta-
heuristiscs for the multi-objective design of grid schedulers.

At present, multi-objective algorithms are emerging in literature for the opti-
mization of objectives that are in conflict with each other. The optimization of
these objectives tends to be resolved by different versions of multi-objective evo-
lutionary algorithms [103]. Evolutionary algorithms are usually based on genetic
algorithms or other bio-inspired algorithms, such as artificial weed colonies [58]
or particle swarms ([51], [24]). They have demonstrated a high performance in
optimizing multiple functions in complex environments. Execution time opti-
mization is one of the most important goals for job scheduling problems on grid
systems ([39], [60], [87]). These research efforts have tried to fulfil deadlines or
minimize response time for scientific applications with independent or dependent
jobs. Multi-objective approaches are also emerging to solve the job scheduling
problem. Genetic algorithms are usually applied to this problem by optimizing
execution time and cost ([99], [100], [101], [85], [55]).

Experimental results show that multi-objective genetic algorithms offer better
solutions than classic meta-heuristics, such as Simulated Annealing (SA), Duplex,
and Min-Min to control the resources located in high scale distributed systems
[76]. However, the test environments do not take into account specific topolo-
gies with network configurations such as the following: speed transmission, de-
lay, Maximum Transfer Unit (MTU), etc. They also lack specifications such as
resource location or computational resource features (operating system, number
of machines, CPUs, speed, cost, etc.) by being generally homogeneous. More-
over, the majority of the research does not consider workflows that follow the DAG
model design (Dirigid Acyclic Graph), which implies the study of workflows with
dependent jobs .
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New multi-objective algorithms are usually compared with the standard NSGA-
II (Non-dominated Sorting Genetic Algorithm II) ([29], [28]) to evaluate quality.
NSGA-II is a very popular algorithm in the multi-objective optimization field due
to its high efficiency demonstrated in the literature. For this reason, the proposed
algorithms are compared with NSGA-II.

At this point, the contributions for the multi-objective optimization problem
in terms of economic cost and execution time are presented. In this research, the
problem is tackled by multi-objective algorithms from evolutionary techniques
and swarm intelligence behaviours.

On one hand, five multi-objective algorithms have been developed as follows:
Multi-Objective Gravitational Search Algorithm (MOGSA) ([3], [14]), Multi-
Objective Artificial Bee Colony algorithm (MOABC) [15], Multi-Objective Small
World Optimization (MOSWO) [4], Multi-Objective Firefly Algorithm (MO-
FA) [5] and Multi-Objective BrainStorming Algorithm (MOBSA) ([12], [8]).
Note that MO-FA has been studied after using the algorithm for the energy con-
sumption and responsiveness optimization research carried out in this thesis. All
these algorithms have been implemented in a multi-objective version from their
well-known single-objective version: TSWO [70]→MOSWO, GSA [77]→MOGSA,
ABC [50] → MOABC, BSO [80] → MOBSA, FA [97] → MO-FA.

On the other hand, these algorithms are compared with NSGA-II, which is a
recognized standard algorithm in the multi-objective optimization field, to study
the efficacy and efficiency of the approaches presented. Moreover, all the algo-
rithms are also compared with the multi-objective version of HEFT [102] [93],
one of the most-used algorithms in workflow scheduling, Multi-Objective Het-
erogeneous Earliest Finish Time (MOHEFT) [37], in order to show the quality
of the proposed algorithms. It is worth highlighting that these multi-objective ap-
proaches have been developed to solve the job scheduling issues in grid computing
in order to optimize execution time and economic cost, but they could also be used
in future research to solve other problems that require multi-objective optimiza-
tion.

In this thesis, comparisons have been accomplished with other algorithms and
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techniques collected in the literature. On one hand, the proposed algorithms have
been compared with the DBC algorithm and with the meta-scheduler WMS. The
DBC algorithm is based on an algorithm that tries to keep cost within budget re-
quirements and time within the deadline given. On the other hand, a comparison
with the grid meta-scheduler WMS has been carried out. Finally, a comparative
study among the proposed algorithms is presented by using two real grid topolo-
gies. IBERGRID [16] and the combination of EU DataGrid [84] with the re-
source features of the testbed WWG [22]. This comparative study has high rele-
vance in the distributed computing field, because it presents an exhaustive analysis
of six multi-objective algorithms on two real topologies using six different work-
flows ([88], [94], [19]) with dependent jobs. In contrast to all the research previ-
ously found in literature by other authors, in this thesis, specific and detailed fea-
tures of the network architectures and computing resources are presented as well
as the detailed specifications of the applied workflows.

2.2 Energy Consumption and Responsiveness Optimization

for the Job Scheduling problem inGrid environments

Green computing, also known as Green IT has been a trendy topic in the comput-
ing field during the few last years. Green computing allows organisations rational,
efficient use of their resources and to the reduction of costs by adopting new meth-
ods and technologies that respect the environment. Many technological advances
such as the energetic efficiency in super computers are emerging. In fact, a list of
supercomputers that use green technologies in the world, called ’The Green 500’
[26], is published. This list details some of the new energy saving advances. The
Grid infrastructure could contribute to the reduction of the energy consumption
thanks to its sharing policies [43]. However, although Grid matches some con-
cept points of Green computing, Grid scheduling is still one of the most important
problems to resolve from standpoint of energy saving.

In the Wieczorek et al. [92] model the job scheduling problem is classified
in different taxonomies by taking into account current Grid systems, however,
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among all these systems energy consumption optimization is not considered. Green
Computing is creating opportunity for a new goal for job scheduling on grid envi-
ronments. Current research deals with physical energy management by switching
off idle resources ([18], [46], [31], [68]) or the cores of processing for multipro-
cessors [59], or by reducing energy consumption for data communication [66].

Dynamic Voltage and Frequency Scaling (DVFS) [89] is the most-used tech-
nique in current research. DVFS optimizes energy consumption by decreasing
the voltage and clock frequency (CPU speed) for non-critical or idle nodes. The
DVFS technique is used by heuristics or greedy algorithms to balance energy con-
sumption with execution time using predefined weights. The work of Khan et
al. ([54], [52], [53], [65]) takes into account a multi-objective approach for job
scheduling in grid systems from a low-level point of view. This research simulates
the power off and DVFS techniques.

Although the research of Khan et al. ([54], [52], [53], [65]), considers the
optimization of both execution time and energy consumption, it lacks complex
grid topologies and detailed specifications for the heterogeneous grid resources in
experimental tests. Moreover, it does not provide experiments with detailed infor-
mation of the workflows executed on the grid and is therefore unreproducible.

Recently, a novel multiobjective approach, MOHEFT, is emerging for optimiz-
ing both energy saving and makespan in distributed environments ([40], [36],
[34], [35]). MOHEFT ([37]) is based on the well-known HEFT approach ([86],
[102], [93]) for optimizing workflow-scheduling problems. MOHEFT has demon-
strated higher quality results than SPEA 2 ([105] [100]), optimizing execution
time and energy consumption.

Our multi-objective approaches detail more information about the test envi-
ronments and workflows used to solve these problems. This research contribution
assumes the use of ecological resources that are currently emerging using software
and other techniques, such as CLUES [44] or EnergySaving Cluster (ESC) [32].
These techniques manage idle resources and other approaches per site or machine.
Therefore, our proposal is the perfect complement to the ecological software that
is emerging. Aiming at testing the effectiveness of our multi-objective approaches,
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we studied each of them to resolve our problem for energy consumption ([5], [7],
[11], [10], [13], [9]). In addition, a comparison with MOHEFT ([37], [34],
[35], [36]) is performed because of its efficiency as a multi-objective workflow-
scheduling algorithm. NSGA-II and the real grid schedulers, WMS and DBC, are
compared and analysed as well.

All the multi-objective meta-heuristics approaches and the real grid meta-schedulers
published previously in literature have been studied. Furthermore, a statistical
analysis ([78], [57], [62]) is applied to the proposed multi-objective evolution-
ary algorithms using different scenarios. These scenarios are heterogeneous with
the objective of evaluating the algorithms’ performance. In each topology men-
tioned in the previous problem ([16], [84], [22]), six different workflows ([88],
[94], [19]) are executed with respect to the job numbers, execution time per job,
and the data transfer rates between them. Due to the topologies’ heterogeneity
and the variety of workflows performed, this study has important relevance in the
distributed computing domain.
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“There are unsolved problems, not solved, that keep the mind
active”.

Erwin Guido Kolbenheyer

3
Problem Statement

Traditionally, real world problems are solved by optimization techniques that min-
imize or maximize a single objective. Many of these problems usually have more
than one objective to accomplish. Timing optimization is one of the most impor-
tant objectives in scheduling problems, but other objectives are also considered
important, such as the length of the schedule, the availability and cost of resources
(machine scheduling), preferences of human resources (workforce scheduling),
compliance with regulations (educational timetables), etc. Traditional techniques
try to combine multiple objectives into a single scalar value by using weighted
methods according to the importance suggested by the experts. However, in many
instances, these objectives have the same level of importance and conflict with
each other. Currently, multi-objective optimization techniques are emerging in
scheduling problems ([81], [74]) allowing the opportunity to optimize more than
one objective with the same importance and providing decision support for end
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users. In this chapter, a general multi-objective optimization problem and its ap-
plication to the different fields related to scheduling problems are defined. Finally,
the problem statement of the research carried out in this thesis is presented in last
section.

3.1 Multi-objectiveOptimizationDefinition

In the current marketplace, diverse real-world problems from different fields are
solved by multi-objective optimization techniques. In this section, background
and basic multi-objective concepts are described. In general, a Multi-objective
Optimization Problem (MOP) is defined as the task of finding a decision variable
vector that satisfies the problem constraints and optimizes an objective function
vector [55]. The functions are usually in conflict each other, due to the difficulties
in improving one objective function without negatively affecting another objec-
tive function. Therefore, the term optimization means to find a solution vector
with acceptable values for all objective functions. Multi-objective problems must
optimize m objective functions at the same time. The optimization process can
deal with the minimization/maximization of all the objective functions. More in-
formation about multi-objective optimization can be found in the following refer-
ences: [106], [107], [28] and [25] . The most important definitions are explained
in this section.

Definition1:Multi-objectiveOptimizationProblem(MOP).A Multi-objective
Optimization Problem includes a set of n parameters (decision variables), a set
of m objective functions, and a set of k constraints. Objective function and con-
straints are a function of the decision variables. The mathematical definition is
shown as follows (Equation 3.1):

Optimize y⃗ = f⃗(x) = (f1(x), f2(x), . . . , fm(x))

subject to e⃗(x) = (e1(x), e2(x), . . . , ek(x)) ≤ /0

where x⃗ = (x1, x2, . . . , xn) ∈ X

y⃗ = (y1, y2, . . . , ym) ∈ Y

(3.1)
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where x is the decision vector that belongs to the decision space X and y is the
objective vector that is represented in the objective space Y. The decision variables
vector can be discrete or continuous while the objective functions can be linear or
nonlinear and discrete or continuous. The function f : X→ Y is a transformation
of the decision variables vector x on a response vector y (see Figure 3.1.1).

Y, the objective spaceX, the decision space

X
n

X
1

Y
m

Y
1

X
2 Y

2

Figure 3.1.1: Multi-objective optimization function [6].

In single-objective optimization problems, the optimization process obtains one
optimum solution that minimizes or maximizes a single objective function. When
the problem is multi-objective, ’optimum’ must be redefined because of the pres-
ence of multiple, conflicting objectives. The conflict among objectives does not
allow the improvement of one without negatively impacting the others. Thus, a
multi-objective optimization finds the best compromise among those objectives.
The best compromise is called Pareto optimum.

Definition2: ParetoOptimality. A decision vector x∈Xf is a Pareto Optimum
regarding a set A⊆ Xf if and only if:

∄a ∈ A : a ≺ x (3.2)

whereXf is the set of feasible solutions that satisfy the constraints of the problem
(⃗e(x)). This definition specifies x as a Pareto Optimum if not other feasible vec-
tor a exists that decreases any of the objective functions without simultaneously
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increasing another (assuming minimization in all the objective functions). This
comparison is also known as dominance (≺).

Definition 3: Pareto Dominance. For any two decision vectors a and b (as-
suming a minimization problem):

a ≺ b (a dominates b) ⇐⇒ f⃗(a) < f⃗(b)

a ⪯ b (a weakly dominates b) ⇐⇒ f⃗(a) ≤ f⃗(b)

a ∼ b (a is indifferent to b) ⇐⇒ f⃗(a) ≰ f⃗(b) ∧ f⃗(b) ≰ f⃗(a)

(3.3)

Indifferent

Indifferent
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f 2
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Figure 3.1.2: Graphical representation of dominance regions regarding the
solution F [6].

Figure 3.1.2 shows a graphical representation of dominance regions regarding
the solution F in a minimization problem. The solutions that are in the green re-
gion (A,C, andD) dominate solution F. In the case ofA andD, both values for the
objective functions are better than those obtained by F. Also, despite C and F ob-
taining the same value for the objective function f2, solution C has better value for
the objective function f1. On the other hand, F is not dominated by the solutions
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B, E, G, and I, being equally beneficial. Finally, the solutions in the blue region, H
and J, are dominated by F.

Definition4: OptimalPareto Set. The Optimal Pareto set for a multi-objective
problem is denoted as P∗ and is defined as:

P∗ := {x ∈ X | ∄ x′ ∈ X, f⃗(x′) ⪯ f⃗(x)} (3.4)

The optimal Pareto set contains all the solutions from the decision space whose
objective vectors can not be improved simultaneously. The objective vectors from
the optimal Pareto set are called non-dominated solutions and generate the Pareto
Front (PF∗).

Definition 5: Pareto Front. The Pareto front PF∗ from an optimal Pareto set
P∗ is defined as:

PF∗ := {a = f⃗(x) | x ∈ P∗} (3.5)

Generally, the solutions found by multi-objective optimization are presented as
Pareto front plots generated from each algorithm in order to evaluate them. In
Figure 3.1.3, a Pareto front example is shown. Solutions that represent the best
possible trade-offs among the objectives are the aim of the search (in case of Figure
3.1.3, solutions lying on the “knee” of the Pareto curve).

3.2 Multi-objectiveOptimizationappliedonSchedulingProb-

lems

Scheduling problems appear continuously in diverse real-world situations. The
entities (people, tasks, vehicles, meetings, etc.) usually follow a space-time pat-
tern in which some constraints must be fulfilled and certain objectives have to be
achieved. The scheduling process objective is to find the optimal schedules that
satisfy user needs. Many scheduling problems are multi-objective by nature be-
cause users normally have more than one objective, such as minimizing the length
of a schedule, satisfying preferences among human resources (workforce schedul-
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Figure 3.1.3: Pareto Front example with two objective functions [6].
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ing), maximizing compliance with regulations (educational timetables), minimiz-
ing the tardiness of orders (production scheduling), optimizing task/job schedul-
ing (machine scheduling), etc. As we mention previously, traditionally these multi-
objective problems are solved using a weighted combination of the objectives in
order to manage one objective function. However, in many real multi-objective
scheduling problems, it is more desirable to offer consideration for different ob-
jectives separately in order to obtain a better trade-off among all the conflicting
objectives. This approach is given by the Pareto optimization technique. Multi-
objective algorithms are emerging that use the Pareto optimality to support de-
cision makers in almost all the domains. Next, some of the outstanding multi-
objective scheduling problems are briefly presented. An extension of this part of
the chapter can be found in [82] and [74].

3.2.1 Multi-objective Workforce Scheduling

Personal scheduling manages the requirements of employees and employers while
taking into account working regulations. Mobasher [72] carried out an example of
a multi-objective approach in a clinical context. This approach consists of tackling
a multi-objective nurse scheduling problem in which shift preferences as a proxy
for job satisfaction and patient workload as a proxy for patient dissatisfaction are
considered. Another more general approach, applicable to nurse scheduling is pre-
sented by Li et al. [63]. They introduce a hybrid algorithm combining goal pro-
gramming and meta-heuristic search to create compromise solutions in difficult
employee scheduling problems. In the context of airlines, two objectives are opti-
mized, which minimize airline operation cost and maximize crew staff satisfaction.
Moudani et al. [73] use a genetic algorithm and a greedy algorithm to manage
multi-objective optimization. Yannibelli and Amandi [98] have proposed another
multi-objective evolutionary algorithm to optimize the project scheduling prob-
lem using human resources. This approach aims to minimize the makespan for
the project and assign the most effective set of human resources to each project
activity.
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3.2.2 Multi-objective Educational Timetables

Educational timetables are critical in terms of inaccurate predictions of student en-
rollment, mistakes in event lists or resource availability, and inadequate selection
of hard and soft constraints [82]. A multi-objective linear programming model
was proposed by Ismayilova et al. [48] to consider administration and instructor
preferences by using a weighted priority to schedule the class-course timetable.
Educational timetables also consider exams timetables, Côté et al. [27] present a
multi-objective evolutionary algorithm that optimizes the maximum free time for
students while satisfying the clashing constraint exam conflicts without regard to
the seating capacity. Moreover, this multi-objective approach takes into account
the timetable length as an optimization objective. The Balanced Academic Cur-
riculum Problem is other type of educational timetables that consists of assigning
courses to teaching terms satisfying prerequisites and balancing the credit course
load within each term. Castro et al. [23] presented a multi-objective genetic algo-
rithm to deal with this problem.

3.2.3 Multi-objective Production Scheduling

In manufacturing, the purpose of scheduling is to minimize production time and
costs, by informing a production facility when to run production, what manpower
is needed, and on which equipment should be utilized. Production scheduling
aims to maximize the efficiency of the operation and reduce costs. Currently, multi-
objective production scheduling problems are widely studied in several domains
in real life [61]. Different objectives should be considered in production schedul-
ing problems as the makespan (response time), the mean completion time (the
mean of slower activity during production), the maximal tardiness or the mean
tardiness (the maximum and minimum mean times obtained after several produc-
tion runs). In the study carried out by Loukil et al. [67], these objectives are op-
timized with a multi-objective simulated annealing approach. Moreover, multi-
objective algorithms offer decision support; Mansouri et al. [69] aim to iden-
tify the gaps in decision-making support based on multi-objective optimization
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(MOO) for make to order supply chain management. Although, these scheduling
problems are based on the economy, multi-objective approaches allow consider-
ation for other aspects, such as the intangible value of freshness in their products
[2].

3.2.4 Multi-objective Machine Scheduling

Machine scheduling refers to problems where a set of jobs or tasks has to be sched-
uled for processing in one or more machines [74]. Each job or task consists of one
or more operations (sub-tasks) and usually, a number of additional constraints
must be also satisfied. Examples of such constraints are precedence relations be-
tween the jobs and the limited availability of resources. Machine scheduling is
widely studied, and multiple multi-objective approaches are applicable to it [74].
Xiong et al. [96] address a robust scheduling for a flexible job-shop scheduling
problem with random machine breakdowns. Makespan and robustness objec-
tives are simultaneously optimized using a multi-objective evolutionary algorithm.
There exist other approaches, such as the Hamta et al. study [45] where more ob-
jectives are optimized, such as cycle time, total equipment cost, and the smooth-
ness index. This research deals with a single-model assembly line balancing prob-
lem, where the operation times of tasks are unknown variables, and the only known
information is the lower and upper bounds for the operation time of each task. In
this chapter, a type of machine scheduling problem is going to be presented as the
focus of study. This research is related to the multi-objective grid scheduling prob-
lem and it is going to be explained in the following section.

3.3 Multi-objective Grid SchedulingOptimization

Job scheduling is a challenging task in grid environments, especially if many ob-
jectives need to be accomplished. In this research, we have presented this problem
in a general way in order to optimize the execution time and the economic cost or
energy consumption at the same time and with the same level of importance.
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Execution time, as we have mentioned in the Related Work chapter, is the es-
sential objective to be accomplished in scheduling problems, however for many
distributed systems the economic cost has an important role for those systems and
experiments that require financial models. Moreover, energy saving is becoming
an important goal along with execution time objective for big and distributed sys-
tems, such as Grid Computing due to its high demand of power. Due to this, we
present a generic model with two objective functions to optimize this pair of ob-
jectives.

In our case, we solve a multi-objective problem with two objectives (economic
cost and execution time or energy consumption and response time). Given a set
of jobs J = |ji|, i =/0, ..,m − 1 and a set of resources R = |rz|, z =/0, .., n − 1 un-
der the constraint that there are dependence relationships among jobs, the fitness
functions are described as follows:

Min F = (F1, F2) (3.6)

F1 =
∑

Economic Cost/Energy Consumption(ji, fz(ji)) (3.7)

F2 = Maximum Time(ji, fz(ji)) (3.8)

where fz(ji) is a mapping function that assigns job ji onto resource rz. The objec-
tive function F1 returns the energy consumption or economic cost (depending on
the problem to solve) for processing the experiment (set of jobs) and the objective
function F2 reports its completion time. Both objectives are minimized. Energy
consumption or economic cost are the sum of energy consumption or economic
cost for all the grid resources used executing the corresponding jobs. However,
the execution time is calculated by considering the completion time which hap-
pens when the slowest job is executed.

Job scheduling is even more critical in terms of execution time when the jobs
have dependencies between them. Dependent jobs influence on the total execu-
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Figure 3.3.1: A simple workflow that follows a weighted directed acyclic
graph (DAG) model.

tion time, because a workflow (or experiment) is modelled by a weighted directed
acyclic graph (DAG) JG = (V, E, l, d), where V is a set of nodes and E is a set of
edges. Each node ji ∈V represents a job and is assigned a constant length l(ji) rep-
resenting its length in terms of Millions of Instructions (MI). Each edge ⟨ji, jk⟩ ∈
E (ji, jk ∈V) from ji to jk represents the precedence constraint, so that job jk cannot
be executed until job ji has been completed successfully and jk receives all neces-
sary data from ji. The length (bytes) of the data transfer d(ji→jk) between jobs is
denoted by a label in the edge ji→jk. In Figure 3.3.1 an example is shown.

Autonomous agents represent candidate solutions for the problem. In this work,
the same data structure represents the agents for each multi-objective algorithm
studied in this thesis. Each agent is a candidate solution and contains the follow-
ing objects (see Figure 3.3.2):

1. The allocation vectora represents the assignment between jobs and resources.
The length of the allocation vector is denoted by |J|, such that a(i) = z, where

/0≤ i< |J| and /0≤ z< |R|, that is job ji is assigned to resource rz. The same
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Figure 3.3.2: Agent representation as a candidate solution.

job in different resources could have different economic cost, energy con-
sumption, and execution time. The symbol |J| indicates the total number
of jobs to allocate, and |R| indicates the total number of available grid re-
sources.

2. The order vector o indicates the execution order of the jobs. Different or-
ders have different consequences for the execution time in the case of de-
pendencies between jobs. The length of the order vector is expressed as |J|,
such that o(p) = i, where /0≤ i; p < |J|, and each job ji appears once in the
vector. This representation is based on the work [85].

3. Economic cost (measured in Grid dollars, G$) or Energy consumption (mea-
sured in kilowatts, kW) and Execution time (measured in seconds, s) are
obtained while taking into account the two vectors mentioned. GridSim
returns all these three different metrics.
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“Look deep into nature, and then you will understand every-
thing better”.

Albert Einstein

4
Multi-ObjectiveOptimization Algorithms

In this chapter, six multi-objective algorithms from different fields are explained
and adapted to solve the grid scheduling problem.

4.1 Multi-Objective Gravitational Search Algorithm

Gravitational Search Algorithm [77] (GSA) is a swarm algorithm within the physics
field, because its agents represent planets that have masses with different sizes ex-
erting gravitational attractions among them through different dimensions. These
attractions follow the Newtonian gravity law as metaheuristics. Thus, the biggest
masses exert more force of attraction than those with less mass, positioning them-
selves as the best solutions. In this paper, a multi-objective version, called Multi-
Objective Gravitational Search Algorithm (MOGSA), is presented to deal with
the job scheduling problem in grid environments. In this new algorithm, the di-
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mensions correspond to the combination of the two vectors: allocation and order
vector. This combination is denoted as UA+O. The gravitational forces are applied
to each element of the vector UA+O, and its size is the sum of the allocation and
order vector size. MOGSA manages the agents considering the multi-objective
context. The main steps of MOGSA are shown in Algorithm 1.

Algorithm 1 MOGSA pseudocode
INPUT: Population Size, G0, MinKbest, α, ε
OUTPUT: Set of Solutions

1: Initialize population of solutions;
2: Evaluate population (Time and Cost/Energy consumption);
3: while not stop condition do
4: Update Gravitational constant;
5: Calculate size of masses;
6: Calculate Force and Acceleration between masses;
7: Update Velocity and Position per each mass;
8: Select Set of Best Solutions (Pareto Front);
9: Generate New Population;

10: end while

MOGSA has the same parameters of GSA [77].

• Population size is the number of agents that participate per iteration.

• G0 is the initial gravitational force that acts in each dimension of the agents
that compose the population.

• MinKbest indicates the minimum of agents that exert their force over others.
In GSA not all the agents exert their force over others, only the best ones,
those that have bigger masses. Initially, the Kbest attribute has the same
value as population size, and it decreases over the duration of the algorithm
until it reaches the value ofMinKbest, but always maintaining the best masses.

• α and ε are parameters used in equations 4.2 and 4.5 respectively.
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The output returned by MOGSA is the Pareto front found after completing the
algorithm. This Pareto front contains the best set of solutions found that minimize
the fitness functions with the same level of importance.

4.1.1 Initialization and Evaluation

The algorithm starts randomly initiating the population. The allocation vector as-
signs randomly available grid resources to the jobs that compound the workflow.
The initialization of the order vector is similar to the allocation vector randomly se-
lecting the sent order for jobs, while considering the precedence constraints from
the workflow. This initialization process is the same in the other algorithms im-
plemented. However, to facilitate the management of the dimensional position
for each agent, MOGSA joins the allocation and order vectors to form UA+O in
order to more quickly calculate the exerted force per dimension. Once the allo-
cation and the order vectors are created per agent, GridSim returns the execution
time and cost/energy consumption according to the vectors.

The evaluation begins using the ranking operator from NSGA-II [29]. This op-
erator is implemented in MOGSA to classify the agents per Pareto fronts. This
ranking operator assigns a rank per agent to the corresponding front. Then, a sec-
ond operator, crowding distance, from NSGA-II is applied, in order to calculate
the multi-objective fitness (MOFitness) per agent. This value is calculated by equa-
tion 4.1.

MOFitness(Xi) = (2(Xi.r) +
1

1 + Xi.cd
)−1 (4.1)

where Xi denotes the agent i, r indicates the rank of the Pareto front, and cd rep-
resents the crowding distance. MOFitness is used to sort the agents according to
quality. Agents with less MOFitness represent better solutions.

4.1.2 Update Gravitational Constant

Gravitational constant G is initialized at the beginning with the value of G0, but it
is reduced as the time goes by, in order to control the search accuracy (see equation
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4.2).
G = G0 exp(−α)

t
T (4.2)

where t is the current time,T is the total time, and α is a parameter used to measure
the reduction of G.

4.1.3 Calculate size of masses

Heavier masses mean more efficient agents, so better agents exert higher attrac-
tions and walk more slowly. The size of masses is calculated considering their fit-
ness and they are updated following equations 4.3 and 4.4.

Xi.q =
MOFitnessworst − Xi.MOFitness
MOFitnessworst −MOFitnessbest

(4.3)

Xi.m =
Xi.q∑N
1 Xj.q

(4.4)

whereMOFitnessworst andMOFitnessbest are the highest and lowest values ofMOFit-
ness, respectively and N is the population size.

4.1.4 Calculate Force and Acceleration between masses

Acceleration is caused by the exerted force between masses in all these dimensions.
Therefore, MOGSA calculates the exerted force from the Kbest agents on the rest
of the population for each dimension. That means, only Kbest agents act on the
whole population. At first, Kbest has the same value of the population size, but
Kbest is decreasing as the time goes by until MinKbest is reached. To calculate the
corresponding force (see equation 4.5) per each pair of agents a Euclidean dis-
tance is calculated following equation 4.6. Euclidean distance is carried out from
the UA+O vectors of the pair of agents. Using in the first part of the vector (the al-
location vector), the distance between the resource numbers and the second part
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(the order vector) is the distance between the order positions.

Xi.Fdj = G×
Xi.m× Xj.m

Ri,j + ε
× (Xj.Ud

A+O − Xi.Ud
A+O) (4.5)

Ri,j = ∥Xi,Xj∥, ∀i, 1 ≤ i ≤ N;∀j, 1 ≤ j ≤ Kbest (4.6)

The total force that acts on Xi is the sum of a random weight in all its dimensions
(equation 4.7). MOGSA applies this stochastic feature to consider the exploration
process. In swarm algorithms, exploration and exploitation processes are required
to avoid local optima and achieve optimal solutions.

Xi.fd =
N∑

j∈Kbest,j ̸=i

rand [0, 1]× Xi.Fdj (4.7)

Agents obtain their acceleration taking into account the total mass and the forces
that are exerted in all dimensions (see equation 4.8).

Xi.ad =
Xi.fd

Xi.m
(4.8)

4.1.5 Update Velocity and Position per each mass

The acceleration provokes the update in the velocity and the position of the agents.
However, during the calculation of the velocity not only does acceleration affects
the update, but a random number is applied to improve the exploration process
(see equations 4.9 and 4.10).

Xi.vd = rand [0, 1]× Xi.vd + Xi.ad (4.9)

Xi.Ud
A+O = Xi.Ud

A+O + Xi.vd (4.10)

The new agent position is updated, modifying the values of the UA+O vector, the
identifier of the resource in the case of the allocation vector, or the number of the
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position in the order vector. In case the last vector, the precedence constraint is
considered.

4.1.6 Select Set of Best Solutions (Pareto Front)

The current best solutions are calculated from the ranking operator that classifies
the population per Pareto fronts. MOGSA has been improved to avoid early stag-
nations, so a stagnation evaluation is implemented on the new population. When
stagnation occurs along several iterations, a mutation process is applied to the
agents that are not changed regarding the previous population. This mutation pro-
cess is subdivided in two types of mutations for each vector (allocation and or-
der). These mutations use heuristics of the job scheduling problem to do a local
search. Both, allocation and order vectors are randomly generated and heuristics
are applied. The random order is compared with other built from a greedy algo-
rithm. The greedy algorithm is based on the precedence constraint of the work-
flow. The method consists of first executing the parent jobs with more dependent
jobs. The mutation process for the allocation vector is more complex, because
more heuristics are considered, such as the following: order of resources according
to speed/cost (or energy consumption), time per job in its specific resource, over-
head time (prediction of execution for the entire workflow), and wait time caused
by the precedence between jobs.

Finally, the resulting best Pareto front will be saved as a set of best solutions, and
MOGSA restarts a new generation until the time limited is expired.

4.2 Multi-Objective Artificial Bee Colony

Artificial Bee Colony (ABC) ([50], [49]) is a single-objective swarm algorithm
within the biological field. This algorithm is based on the collective behaviour
of its agents, bees, to find the best nectar from the flowers. The main feature of
the ABC algorithm is that its agents have different behaviours. Some bees move
in a multidimensional search space by selecting nectar sources considering their
last experience and the experience of their fellow hive members. However, other
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bees move randomly without regard to experience and influence. When they find
a better nectar source (flower position), they memorize it and forget the previ-
ous flower position. That means, ABC also combines exploration and exploitation
processes with an effort to equilibrate them. These processes are collected from
the behaviour of three kinds of bees: employed, onlooker, and scout bees.

• Onlookers are waiting in the work area to select a good flower, previously
chosen by employed bees.

• Employed bees initially go to the flowers and dance according to the quality
of the nectar found. Onlookers choose them according to best dance.

• Scouts are those that perform random scans to find other flowers, usually
based on heuristics.

In this research, a multi-objective version, called Multi-Objective Artificial Bee
Colony (MOABC), is implemented and adapted to solve the job scheduling prob-
lem in grid environments. The fundamental steps of the MOABC are shown in
Algorithm 2.

Algorithm 2 MOABC pseudocode
INPUT: Population Size, Mutation Probability
OUTPUT: Set of Solutions

1: Initialize population of solutions;
2: Evaluate population (Time and Cost/Energy consumption);
3: while not stop condition do
4: Multi-Objective Exploitation Process (Employed and Onlooker Bees);
5: Multi-Objective Exploration Process (Scout Bees);
6: Select Set of Best Solutions (Pareto Front);
7: Generate New Population;
8: end while

MOABC manages the same parameters as the ABC algorithm ([50], [49]). In
particular, this swarm algorithm stands out for its simplicity with a small number
of parameters.
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• Population size indicates the number of agents, bees, per iteration.

• Mutation probability is used in the mutation process during the algorithm
execution.

The output of the MOABC algorithm is composed of a set of solutions, bees, ob-
tained by calculation of the Pareto front after completing the algorithm execution.

4.2.1 Initialization and Evaluation of the population

The initialization of the population is similar to MOGSA. However, the population
begins considering only half of the population size given by the parameters. This
half is for creating the employed bees. During the algorithm execution, new bees
(onlookers and scouts) are added until reaching the total population size. These
first employed bees are also comprised of the allocation and order vectors, which
are randomly created, taking into account the workflow precedence constraint.
GridSim provides their execution time and cost/energy consumption according to
the vectors. Once employed bees are created, they are classified per Pareto fronts
using the ranking operator from the NSGA-II algorithm, and crowding distance is
calculated to evaluate the quality of the solutions found.

4.2.2 Multi-Objective Exploitation Process

In the multi-objective exploitation process, employed and onlooker bees search
for the best solutions based on their last experience and the experience of their
fellow bees. This process begins generating neighbour bees from the employed
bees. This step uses two types of mutations, one per vector (allocation and order)
to generate a neighbour bee.

• The order mutation is in charge of modifying the order vector while con-
sidering the DAG model from the workflow. First of all, each job is selected
while taking into account the mutation probability. The process identifies
the last position of the order vector that is occupied by one parent of the job
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to mutate. After that, the positions of the child jobs are searched in the or-
der vector to select the first position. Finally, the process randomly chooses
a new position for the job to mutate among the last parent position and the
first child position.

• The allocation mutation provides a neighbour allocation vector using the
mutation probability. The jobs selected to mutate randomly choose a re-
source identification number from the list of available grid resources.

Once employed and neighbour bees are created, they compete to be selected for
the next generation. This competition uses two operators from the standard NSGA-
II. First, the ranking operator is applied to calculate the rank for each bee. The bee
with best rank is the winner. In case of the bees have the same rank, the crowding
distance operator is used to break the tie. The bee with more crowding distance is
the winner, and replaces the other bee.

All the winner bees are ordered according to their solution quality using the
ranking and crowding distance operators. A method of roulette selection is used
to generate these new bees following the bee probability equation 4.11 (that is,
using a linear bias [75]).

bee.pb =
1

bee.p∑
i

1
beei.p

(4.11)

Once onlookers are selected by this process, the neighbours generation is applied
to these bees in the same way as the employed bees, with winner bees replacing
the loser bees.

4.2.3 Multi-Objective Exploration Process

The multi-objective exploration process is executed by a new kind of bee, the scout
bee, whose behavior mimics the heuristics of the job scheduling problem. In this
problem, one scout bee is enough to execute this process. The scout bee randomly
generates its vectors, allocation and order, and then modifies them using infor-
mation from the problem without the experience of the hive members. For each
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vector a different process is performed considering different heuristics. These pro-
cesses are similar to those mentioned in the stagnation mutation in the MOGSA.

• Heuristic generation for the order vector begins generating a random order
vector according to the precedence constraint as processed in the popula-
tion initialization. At the same time, another order vector is generated using
a greedy algorithm that takes into consideration that jobs with more depen-
dent jobs must be executed first. The random order is modified in effort to
achieve the greedy order without violating the job dependencies.

• Heuristic generation for the allocation vector begins generating a random
allocation vector. Then, the algorithm applies heuristics for the job pro-
cessing time MI

MIPS , where MI denotes the job length and MIPS is the speed
of the assigned resource. The duration of the workflow execution is calcu-
lated according to the dependencies between jobs. This process assumes
that jobs with no dependencies between them can be executed simultane-
osly. After that, each job is assigned to a resource that reduces the current
total execution time. The available grid resources are sorted according to
the processing speed/cost (or energy consumption) value. The overhead
time is also considered by the competing jobs (jobs without dependencies
on each other that are allocated to the same resource).

4.2.4 Select Set of Best Solutions

This set of solutions is selected from the set of all types of bees. All the bees (em-
ployed, onlooker, and scout bees) are ranked, and the bees that comprise the best
Pareto front are the best solutions for the current iteration. This new, best Pareto
front is saved and will be compared with the Pareto front from the next iteration.

Finally, a new population is selected by the ranking operator, saving the number
of employed bees from the first fronts. Therefore, if the employed number is 50,
the first 50 bees from the best Pareto fronts are chosen.
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4.3 Multi-Objective SmallWorldOptimization

Multi-Objective Small World Optimization (MOSWO) is a multi-objective ap-
proach based on the small world phenomenon in the sociological field. Swarm
meta-heuristics in the context of complex networks date back to Milgram’s pioneer
experiment, which originated the famous term “six degrees of separation” [71].
More recently, Watts and Strogatz ([91][83]) reported a mathematical model for
a network attaining the small world (SW) effect and bridged the SW algorithms to
the computer science community. Small-world phenomenon soon became an ac-
tive field of research in complex systems and related problems due to its inter(trans)-
disciplinary nature, combining sociology, physics, biology, mathematics, and com-
puter science ([33], [90], [64]).

The cornerstone of the SW phenomenon is the exploitation of local connec-
tions combined with a few long-range links to find the shortest paths in a network.
This approach has been shown to offer an efficient searching strategy [56]. The
MOSWO algorithm implements some practices from the Tabu Small World Op-
timization (TSWO) [70] algorithm, but in our case, it is used to optimize more
than one objective. The TSWO algorithm is also based on the Small World Algo-
rithm (SWA) [33] by using a Tabu search for the local search operator. The solu-
tion space is represented as a small-world network, and the optimization process
attempts to find the shortest path from a candidate solution to an optimal solution.
The TSWO algorithm demonstrated better performance than SWA due to its dec-
imal encoding in contrast to the binary enconding used by SWA. Moreover, both
single-objective algorithms have been compared with genetic algorithms (GAs)
([33], [64], [70]), providing better results than the last ones. In [33], seven two-
dimensional functions have been evaluated by SWA and GA from 50 simulations.
The measurements considered the time to reach the optimal value and the max-
imum, minimum, average, and standard deviation of the optimal value, respec-
tively. Results show that SWA has a stronger ability to break away from the lo-
cal optimum than GA. One hundred percent of simulations performed by SWA
achieve the optimal solution in all the functions. Meanwhile, GA achieves 68.85%
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successful optimizations. The standard deviation of SWA is approximately 50%
less (in all the functions) than the GA standard deviation, which indicates that
SWA has better robustness and stability than GA. Moreover, a decimal-coding ver-
sion of SWA (DSWOA) is compared with the orthogonal genetic algorithm with
quantization (OGA/Q) to solve high-dimensional functions [64]. The simulation
results of several benchmark functions show that SWA can locate beneficial solu-
tions, stabilizes well, and converges at a fast rate. Work carried out by [70] demon-
strates that TSWO locates the global optimum in each of 30 runs performed by six
two-dimensional modal functions considered also in [33]. In contrast, the DGA
(Decimal-coding Genetic Algorithm) tends to be trapped in local optima. In the
same work, TSWO is also compared with PSO (Particle Swarm Optimization):
TSWO performs better than PSO and DGA on the average value and standard er-
ror of 30 runs. The MOSWO algorithm applies the Tabu search as a local search
operator with a multi-objective perspective, following the efficiency of the single-
objective algorithm, TSWO. The main steps of MOSWO are shown in Algorithm
3.

Algorithm 3 MOSWO pseudocode
INPUT: Population Size, Mutation Probability
OUTPUT: Set of Solutions

1: Initialization and Evaluation (Time and Cost/Energy consumption);
2: while not stop condition do
3: Multi-Objective Random Long-Range Operator (Γ);
4: Multi-Objective Local Shortcuts Search Operator (Ψ);
5: end while
6: Stagnation and Best Solutions processes;

The required parameters are defined as follows:

• Population Size indicates the number of nodes that are included in the next
iteration.

• Mutation Probability (Pmutation) provides the probability to indicate which
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nodes are going to be modified by using the Multi-Objective Random Long-
Range Operator (Γ) .

The output is a set of solutions, typical in multi-objective algorithms, and it comes
from the best Pareto front found until the last iteration of MOSWO.

4.3.1 Initialization and Evaluation

A random process is carried out to perform the initialization taking into account
the dependencies between jobs. This initialization is applied to both vectors, the
allocation and order vectors, which are generated from different processes. The
allocation generation method assigns random resources to the jobs that make up
the workflow; many jobs could be mapped to the same resource. The order vector
is generated with a similar process in which a random job is assigned to an order
position fulfilling the dependencies between jobs. The union of these vectors is de-
noted asUA+O, which represents the coordinates of each node. Once both vectors
are generated, GridSim provides cost/energy consumption and execution time
values accordingly. After that, a ranking process is applied following the Pareto
dominance concept.

4.3.2 Multi-Objective Random Long-Range Operator (Γ)

Multi-Objective Random Long-Range Operator (Γ) is applied to each node Ni,
that does not appear in the set of best solutions (best Pareto front), following the
mutation probability. This operator consists of the execution of two similar pro-
cesses to modify both vectors. In the case of the allocation vector, μ and ν jobs
that were assigned previously to a resource are selected randomly, 1 ≤ μ< ν≤m,
where m is the number of jobs that belong to the workflow. Hence, it is also the
length of the allocation and order vectors. Then, the resources assigned to μ and ν
jobs are swapped. The process for the order vector is similar, although, before ap-
plying the swap between order positions assigned to the jobs, a checking process is
applied to avoid the dependency fault between jobs. Finally, a new node is created
N′

i after this Γ operator.
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4.3.3 Multi-Objective Local Shortcuts Search Operator (Ψ)

Multi-Objective Local Shortcuts Search Operator (Ψ) is executed to obtain the
best set of neighbours, Best (ξ(N′

i)), by using the Tabu search. Tabu search up-
dates a list, called the Tabu list, following the Least Recent Used (LRU) strategy.
The LRU strategy stores the studied nodes to avoid the repetition of their study.
The Ψ operator starts by checking if the node N′

i is in the Tabu list before generat-
ing its neighbours. After that, it generates a set of neighbours by N′

i by modifying
the allocation and order vectors. Due to performance issues, the algorithm gener-
ates a limited number of neighbours; this number is equal to the total number of
jobs. On one hand, the allocation vector is crossed and the resource assignment
is modified sequentially. This assignment process increases the resource identifi-
cation by one. On the other hand, the order vector uses the same technique as
the allocation vector, but in respect to the dependency constraint between jobs.
Once the neighbours are generated, the Ψ operator obtains the best Pareto Front
from the neighbours set from a ranking process that applies the Pareto dominance
concept in the same way as in the initialization (subsection 4.3.1) . Then, the front
is crossed in order to check whether its nodes are in the Tabu list. If one node is
in the list, it is deleted from the front. Otherwise, it is included in the Tabu list in
order to remove it from further study.

4.3.4 Stagnation and Best Solutions processes

Finally, the resulting front is built from all first fronts calculated per node in the
current iteration. These fronts are joined with the current population. The Pareto
front ranking as well as the crowding distance operator sort this new node set.
Next, an improvement is applied to this algorithm in order to add further diver-
sity and avoid stagnation. The least optimal node of the set is modified by using
heuristics from the problem. Two different heuristics are applied per vector for
each node. The heuristic for the order vector consists of modifying the vector by
comparing it with another order vector calculated from a greedy algorithm. This
greedy algorithm provides the best order of execution for the workflow according
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to the number of dependencies. Top positions of this vector are assigned to the
jobs that have more dependent jobs without violating the precedence constraint.
The allocation vector heuristic calculates its processing time MI/MIPS for each
job, where MI denotes the job length (in instructions) and MIPS indicates the
speed of the job execution in the resource assigned in the allocation vector. The to-
tal time execution of the workflow is calculated with consideration for the depen-
dencies between jobs, assuming those that have no dependencies between them
can be executed simultaneously. Therefore, each job is assigned to the resource
that reduces the total execution time previously calculated. Moreover, resources
are sorted following the value of processing speed/cost (or energy consumption). The
overhead time is also taken into account by the competing jobs (without depen-
dencies between them) that run sequentially in the same resource. Before final-
izing the iteration, the population is reduced to its previous size by choosing the
best nodes that compose the set (old population and neighbours) to obtain the
new population and the set of best nodes (Best Pareto Front).

4.4 Multi-Objective Firefly Algorithm

The Firefly Algorithm (FA) [97] is a single-objective swarm algorithm based on
the fireflies’ behaviour and therefore, is within the framework of biology. Their
brightness represents the value of the fitness function and is proportional to the
attractiveness to each other. Therefore, for any two flashing fireflies, the less bright
one will move towards the brighter one. The multi-objective approach (MO-FA)
has to consider more than one fitness function. For the minimization problem the
brightness attribute would be inversely proportional to the fitness functions. The
MO-FA algorithm is described in Algorithm 4.

This algorithm requires the following four parameters: population size, β, γ, and
α . The last three parameters are used in equation 4.13 to diversify the optimization
process.

• Population size denotes the number of fireflies that are going to be studied
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Algorithm 4 MO-FA pseudocode
INPUT: Population Size, β, γ, α
OUTPUT: Set of Solutions

1: Initialization and Evaluation (Time and Cost/Energy consumption);
2: while not stop condition do
3: Multi-Objective Comparison among fireflies;
4: Multi-Objective firefly attraction;
5: end while
6: Stagnation and Best Solutions processes;

per each iteration.

• The initial attractiveness between two fireflies is defined by β.

• The coefficient of light absorption is indicated by γ and represents the light
absorbed from the air.

• The variable α is a randomization parameter to give more diversity to the
algorithm.

The output is a set of solutions as it is a multi-objective algorithm.

4.4.1 Initialization and Evaluation

The algorithm starts with a random initialization of the fireflies’ population tak-
ing into account the dependencies between jobs. When the fireflies are generated,
GridSim returns the values of energy consumption in watts (or cost in G$) and
the execution time in seconds. This generation directly affects the union of both
vectors, the allocation and order vectors, which denotes the dimensional position
of the fireflies. The union of these vectors is UA+O. After this initialization, a rank-
ing is applied for each firefly following the Pareto dominance concept in the same
method carried out in MOSWO.
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4.4.2 Multi-Objective Comparison among fireflies

Each firefly is compared with the others in order to detect if there is any firefly
with more brightness. Those fireflies with a higher brightness value, which is de-
noted by the fitness function, are considered good candidate solutions. This com-
parison is carried out for each pair of fireflies according to the dominance con-
cept. Those fireflies located in different Pareto fronts have different brightness and,
therefore one that has less brightness will be attracted to the one with more bright-
ness (Multi-Objective firefly attraction). In the case of the pair of fireflies is in the
same Pareto front, they will not be attracted to each other.

4.4.3 Multi-Objective firefly attraction

The dominated firefly will move toward the firefly with better fitness values. The
firefly attraction process first needs the calculation of the Euclidean distance. The
Euclidean distance is the distance between the allocation vectors (resource dis-
tance) of each firefly and the difference between their order vectors (order posi-
tions)¹ (equation 4.12).

ri,j = ∥csi − csj∥ =

√√√√ dim∑
k=1

(csi,k − csj,k)2 (4.12)

The movement of a firefly csi attracted to another, more attractive (brighter) firefly
csj is determined by equation 4.13 (applied to every dimension of the fireflies).

csi = csi + βe−γr2
i,j(csj − csi) + α(rand− 1

2
) (4.13)

where β indicates the attractiveness for r = /0, γ is the coefficient of light absorp-
tion, and α is the randomization parameter, because rand denotes a random num-
ber between /0 and 1. This stochastic feature applies the exploration processes for
this algorithm. In swarm algorithms, exploration and exploitation processes are

¹Notice cs refers to a candidate solution or firefly.
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required to avoid local optima and achieve good solutions.

4.4.4 Stagnation and Best Solutions processes

Finally, a stagnation checking method is applied to the new firefly population. This
method is an improvement with respect to the original FA in order to avoid the
population stagnation over several iterations. Two mutation methods (one per
vector) are applied to the stagnated fireflies. Both mutations consider heuristics
from the job scheduling problem carrying out a local search. The order and allo-
cation vectors are randomly generated but each one has its own heuristics. The
random order vector is compared with other order vector built from a greedy al-
gorithm. The greedy algorithm consists of the creation of an order vector in which
the first positions are assigned for the jobs that have more dependent jobs. This fact
implies that these jobs will be executed first. The mutation for the allocation vec-
tor is more complex, since it considers more heuristics, such as the first selection of
the resources according to their speed/cost (or energy consumption), time per job
in the resource selected, wait time based on the dependencies between jobs, and
overhead time to predict the total execution time of the workflow. The new pop-
ulation is processed again until the stop condition is met. The fireflies are ranked,
and the best Pareto front is extracted from the final population resulting in the set
of solutions for the problem.

4.5 Multi-Objective Brain Storm Algorithm

Multi-Objective Brain Storm Algorithm (MOBSA) is based on a novel single-objective
algorithm called Brain Storm Optimization (BSO) ([79], [80]) which belongs to
the sociological field algorithm classification. The BSO algorithm is inspired by
human behaviour when a brainstorming process is applied in a group, especially
with different backgrounds, in order to resolve a complex problem. This process
is widely applied in different fields, and it has been proven that for several prob-
lems that cannot be solved by a single person, when a group of people carry out
a brainstorming process, the problem is usually solved with high probability. An
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un-expectable intelligence can occur from this interactive collaboration of human
beings. The MOBSA algorithm adds multi-objective properties to BSO algorithm
to optimize more than one objective. It is applied to the grid scheduling problem.
The main steps of MOBSA are presented in Algorithm 5.

Algorithm 5 MOBSA pseudocode
INPUT: Population Size (n), Cluster Number (m), Pcenter−replacement, Pcluster−mutation,
Pcenter−mutation, Pcell−mutation, Pcenter−cross

OUTPUT: Set of Solutions
1: Initialize population of solutions;
2: Evaluate population (Time and Cost/Energy consumption);
3: while not stop condition do
4: Multi-Objective ideas ranking;
5: Random cluster replacement;
6: while not n ideas generation do
7: Multi-Objective ideas generation;
8: end while
9: end while

10: Best solutions selection;

This algorithm has less parameters than the BSO approach because heuristic
mutation and crossover processes are implemented instead of the random Gaus-
sian process proposed by Shi ([79], [80]). The required parameters are as follows:

• Population Size (n) indicates the total of ideas that are considered per iter-
ation.

• Cluster Number (m) represents the number of groups of ideas that are sim-
ilar. Each cluster of ideas has a center idea that represents one of the best
ideas from this cluster.

• Pcenter−replacement is the probability used to replace a cluster center from other
randomly generated.

• Pcluster−mutation is the probability of selecting the cluster where the mutation-
crossover process is carried out.
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• Pcenter−mutation is the probability of mutating a center or other idea in the same
cluster.

• Pcell−mutation is the probability of mutating one cell per each vector, allocation
or order vector.

• Pcenter−cross is the probability of crossing two centers or two other ideas from
two random clusters.

The output returned by MOBSA is the best Pareto front obtained until achiev-
ing the stop condition. This Pareto front contains the best set of solutions found
that minimize the fitness functions. The main steps of MOBSA are explained in
the following subsections.

4.5.1 Initialization and Evaluation

A random initialization is generated. The initialization process consists of two dif-
ferent methods of generation according to the features of allocation and order vec-
tors that make up a new idea. The allocation generation method assigns a random
resource per job that comprises execution of the workflow; many jobs could be
mapped to the same resource. On the other hand, the order generation method
indicates a random job per each order position and it has to consider an order
constraint in the case of workflows with dependencies between jobs. Then, the
resulting idea with the corresponding vectors (allocation and order) is executed
in GridSim in order to obtain both fitness values: energy consumption (watts)
or cost (G$), and execution time (seconds). Once all the ideas are generated, a
ranking process is applied following the Pareto dominance concept.

4.5.2 Multi-Objective ideas ranking

This step serves the purpose of the brainstorming process when some (e.g. 3 or 5)
clients act as the owners of the problem to pick up several ideas (e.g. one per each
owner) as better ideas for solving the problem. The number of owners is indicated
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by the m parameter that represents the number of clusters. Then, m ideas are se-
lected from the best Pareto fronts to be considered as centers or better ideas picked
up by problem owners. The rest of the ideas are clustered, taking into account
their similarity with the centers by calculating their Euclidean Distance (Equation
4.14).

EDi,j = ∥Xi,Xj∥, ∀i, 1 ≤ i ≤ m;∀j, 1 ≤ j ≤ n− m (4.14)

Ideas with more similarity are located in the same cluster. Center ideas usually
have more chances to be used to generate new ideas than other ideas from the same
cluster.

4.5.3 Random cluster replacement

This step enables the population to cover unexplored areas. It is similar to one
of the steps from the real brainstorming process when a random object is picked
up and the functions and appearance of the object are used as clues to generate
more ideas. The MOBSA uses the probabilityPcenter−replacement to decide if a random
cluster center is replaced by a newly generated idea. The new idea is generated with
the same methods used by the initialization.

4.5.4 Multi-Objective ideas generation

This process simulates idea generation and is divided in two subprocesses: a Multi-
Objective mutation process and a Multi-Objective crossover process. The gener-
ation of new ideas will be executed until n ideas are generated. If new ideas are
generated, but are finally discarded, they still count as generated ideas.

Multi-Objective mutation process

The Multi-Objective mutation process simulates new idea generation inspired from
a single existing idea and can be applied to a random cluster. An idea from this
cluster will be mutated according to the probability indicated by Pcluster−mutation.
Then, if the mutation process is selected, a center idea is mutated according to the
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probabilityPcenter−mutation, otherwise another idea from the same cluster is mutated.
Two heuristic and multi-objective mutation processes are implemented in order to
manage the mutation of both allocation and order vectors.

• The order mutation modifies the order vector taking into consideration the
job dependency constraint. Each job is selected while taking into account
the mutation probabilityPcell−mutation. The process identifies the last position
that is occupied by one parent of the job to mutate. Then, the positions of
the child jobs are searched in the order vector to select the first position.
Finally, the process randomly chooses a new position for the job to mutate
among the last parent position and the first child position.

• The allocation mutation provides a new allocation vector using the muta-
tion probability Pcell−mutation. The selected jobs are assigned to random grid
resources from the list of available resources.

The generated idea is evaluated by obtaining its energy consumption (or cost) and
execution time values in order to compare it with the old idea. If they belongs
to different Pareto fronts, the dominated idea is discarded, otherwise the crowd-
ing distance for each idea is calculated, and the idea with less value is discarded.
Crowding distance operator is used to break ties in the standard NSGA-II [29].

Multi-Objective crossover process

This process simulates the new idea generation inspired from two existing ideas
from two different idea clusters. Two cluster centers have the probabilityPcenter−cross

to be selected for the crossover process, otherwise, two other ideas (not centers)
from two different clusters are crossed generating two new ideas. This is the same
as the mutation process; two crossover processes are implemented for allocation
and order vectors.

• The allocation crossover randomly selects a position from the allocation
vector, which indicates the identifier of the job. Parent vectors swap their
vectors from the random position, creating two new individuals.
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• The order crossover is similar to the allocation vector crossover but consid-
ers the dependencies between jobs. After the swapping process, the depen-
dencies and possible repeated order positions are checked. To avoid this
during the crossover, after swapping this method checks whether there is
not an order position in the order vector. If it occurs, this position is stored,
and when there is a repeated position, one stored position is randomly se-
lected.

Finally, the two generated ideas are evaluated and compared with their parent ideas
using the same methods as in the multi-objective mutation process. Only the two
worst ideas are discarded.

4.5.5 Stagnation checking

In every iteration, when the set of best solutions is selected from a ranking process
by applying the dominance concept, a stagnation checking process is performed in
the new population. This method is an improvement with respect to the original
BSO in order to avoid population stagnation during several iterations. Two heuris-
tic methods (one per each vector) are applied to the worst idea. Both heuristic
methods consider heuristics from the job scheduling problem by carrying out a
local search. The order and allocation vectors are randomly initialized.

On one hand, the random order vector is compared with other order vector
built from a greedy algorithm. This greedy algorithm consists of the creation of an
order vector in which the first positions are assigned to the jobs that have more de-
pendent jobs. This fact implies that these jobs will be executed first. On the other
hand, the allocation heuristic method is more complex due to the consideration
of more heuristics, such as the first selection of the resources according to their
speed/cost (energy consumption), duration of job in the resource selected, wait
time taking into account the dependencies between jobs, and the overhead time
to predict the total workflow execution time.
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4.6 Non-dominated SortingGenetic Algorithm II

Non-dominated Sorting Genetic Algorithm II (NSGA-II) [29] is the most pop-
ular multi-objective genetic algorithm and is widely known due to its efficiency.
In this research, this algorithm is applied to the job scheduling problem to prove
the multi-objective quality of the proposed swarm algorithms. As a genetic algo-
rithm, it has agents as individuals that comprise the evolutionary population. The
main steps of NSGA-II are shown in Algorithm 6. The NSGA-II input has three
parameters:

Algorithm 6 NSGA-II pseudocode
INPUT: Size of population, Number of Iterations or Maximum time of execution,
Crossover and Mutation Probability
OUTPUT: Set of Solutions

1: Initialize population of solutions;
2: Evaluate population (Time and Cost/Energy consumption);
3: while not stop condition do
4: Binary Tournament Selection;
5: Crossover;
6: Mutation;
7: Select Set of Best Solutions (Pareto Front);
8: Select New Generation;
9: end while

• Population size indicates the number of individuals that take part in the op-
timization.

• Crossover probability is the probability of interchanging the gens (alloca-
tion or order vector elements) to crossover with other individuals.

• Mutation probability is the probability of mutating the gens of an individual.

The output is the same as the previous algorithms; it is the set of best solutions
found during the execution of the algorithm comprising a Pareto front.
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4.6.1 Initialization and evaluation of the population

The initialization of the population follows the same process as the other algo-
rithms. Population size indicates the number of individuals, and these individuals
randomly create their allocation and order vectors with respect to the precedence
constraint from the workflow execution. Moreover, GridSim provides the execu-
tion time and cost/energy consumption for each individual taking into account its
vectors. After that, the evaluation is done by the NSGA-II operators, Ranking of
Pareto fronts and crowding distance. The next processes, tournament selection,
crossover, and mutation are in charge of creating the offspring population of the
same size as the initial population.

4.6.2 Global optimum search

In NSGA-II the descendant population Q (size N) is created from the parent pop-
ulation P (size N). After that, these two populations are combined forming a new
population R with size 2N. The population R is classified by a non-dominated sort-
ing in different Pareto fronts. This allows a global verification of dominance be-
tween the parent and descendant populations. When the process of non-dominated
sorting is finalized, the new population is generated from the non-dominated Pareto
fronts. This new population starts its building from the best non-dominated front
(F1) followed by the second Pareto front (F2) and so on. As the size of population
R is 2N and the size of the origin population is N, not all the solutions from R will
be part of the new population. Those fronts that cannot be added to the new popu-
lation will be discarded. When the last front is being considered, the solutions that
belong to it can exceed the size of the population, and then the crowding distance is
applied to these solutions. The crowding distance permits the solutions selection
located in the least-crowded areas (far away from other solutions) to complete the
new population instead of randomly choosing the solutions. This process is not
relevant for the first iterations of this algorithm, because many fronts survive to
the next iteration. However, when the process advances, many solutions are lo-
cated in the first front and second front, and they could have more than N solu-
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tions. This fact makes the diversity and selection of quality solutions important.
The idea is to always promote those solutions that ensure more diversity from the
same Pareto front. When the population converges to the optimum Pareto front
(the first one), the algorithm ensures that the solutions are not close to each other
and that the global optimum search objective is achieved.

4.6.3 Binary tournament selection

Binary tournament selection takes care of choosing the parent individuals to cross.
This method sorts the individuals based on non-domination with crowding dis-
tance assigned; the selection is carried out using a crowded-comparison-operator
(≺ n).

• Non-domination rank for individualp indicates that the individual is in front
Fi, so if p is in Fi its rank will be prank = i.

• Crowding distance Fi(dj): In this case, p ≺ n q if

– prank < qrank

– Or if p and q belong to the same front Fi, then Fi(dp) > Fi(dq) that is,
the crowing distance should be greater for p.

The individuals are selected by using a binary tournament selection with a crowded-
comparison-operator.

4.6.4 Crossover

The crossover process is divided in two crossover (one per vector, allocation and
order vector). These two crossover processes are based on Talukder’s work [85]:

• The allocation crossover randomly selects a position from the allocation
vector, which indicates the identifier of the job. Then, the parent vectors
swap their vectors from the random position, creating two new individuals.
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• The order crossover is similar to the allocation vector crossover, but consid-
ers the precedence constraint. Therefore, after the swapping process, this
method checks the dependencies and possible repeated order positions. To
avoid this during the crossover, before swapping, this method checks whether
there is not a position in the order vector. If it occurs, this position is stored
and when there is a repeated position, one stored position is randomly se-
lected.

These new individuals are evaluated by obtaining their execution time and cost/energy
consumption and are added to the population set. Population size is set to 2N.

4.6.5 Mutation

The mutation process is divided in two mutation processes for the two vectors.
These mutations are the same as the ones described in the MOABC algorithm in
Section 4.2. Execution time and cost/energy consumption are calculated for the
new individuals.

4.6.6 Select set of best solutions

The set of best solutions is calculated by the ranking operator from the total set of
individuals. The best Pareto front from the current iteration will be compared with
the previous iteration set following the same process as the previous algorithms.

Finally, the new population is formed by choosing the individuals that comprise
the best Pareto fronts until completing the new population indicated by the pop-
ulation size parameter.
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“Be a yardstick of quality. Some people aren’t used to an envi-
ronment where excellence is expected”.

Steve Jobs

5
Experimental Environment

In this chapter, we describe in detail the test environments used with the aim to
make the experiments reproducible for future research. The whole experimental
environment presented in this thesis (topologies, workflows, and algorithms) is
implemented in the GridSim simulator with a complete configuration.

5.1 ScientificWorkflows

A variety of workflows based on specific numerical computational problems such
as Parallel Gaussian Algorithm, Parallel Gauss-Jordan Algorithm, Parallel LU de-
composition [88], Find-Max Algorithm [94], Fast Fourier Transform (FFT) and
Stencil [19], are tested. All of them follow a DAG model (Figure 5.1.1), and their
complex structure allows a good study of the behaviour of our algorithms.
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Figure 5.1.1: Workflows: Gaussian, Gauss-Jordan, LU Decomposition , Find-
Max, Fast Fourier Transform (FFT), and Stencil.
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5.2 Grid Topologies: EUDataGrid andWWG

The first topology used in the analysis is a combination between two testbeds. The
topology information is based on the EU DataGrid testbed [84], and it is com-
pleted with grid resource characteristics from the WWG testbed [21]. The combi-
nation of these testbeds is shown in Figure 5.2.1 and in Table 5.2.1. Moreover, we
have simulated three working nodes (WNs) per resource to add more complexity
to this environment.

Table 5.2.1: Resource Characteristics WWG testbed.
Resource Features (Vendor, Type, OS, Resource MIPS Price(G$) Power(W)

Name CPUs/WN) Manager Type /CPU /CPU time /CPU time
LYON Compaq, AlphaServer, OSF1, 4 Time-shared 515 8 67
CERN Sun, Ultra, Solaris, 4 Time-shared 377 4 50

RAL Sun, Ultra, Solaris, 4 Time-shared 377 3 50
IMPERIAL Sun, Ultra, Solaris, 2 Time-shared 377 3 50

NORDUGRID Intel, Pentium/VC820, Linux, 2 Time-shared 380 2 29.05
NIKHEF SGI, Origin 3200, IRIX, 6 Time-shared 410 5 17
PADOVA SGI, Origin 3200, IRIX, 16 Time-shared 410 5 17

BOLOGNA SGI, Origin 3200, IRIX, 6 Space-shared 410 4 17
ROME Intel, Pentium/VC820, Linux, 2 Time-shared 380 1 29.05

TORINO SGI, Origin 3200, IRIX, 4 Time-shared 410 6 17
MILANO Sun, Ultra, Solaris, 8 Time-shared 377 3 50
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Figure 5.2.1: Testbed EU DataGrid.

5.3 Grid Topologies: IBERGRID

The second topology considered in the analysis is based on the Spanish Grid Initia-
tive (NGI) ¹ including the Portuguese Grid infrastructure to represent the Iberian
Grid Infrastructure (IBERGRID) ². This testbed was carried out in the CETA-

¹http://www.e-ciencia.es/ngi/.
²http://www.ibergrid.eu.
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Figure 5.3.1: Site View from the IBERGRID infrastructure [16]

Ciemat ³ during the month of June 2011. The information of the grid sites is shown
in Figure 5.3.1 and Table 5.3.1. The network communication is based on the RedIris-
NOVA⁴ using the combination of the RedIris⁵ and the RCTS⁶ (Figure 5.3.2), where
the fiber ring communication network allows 10 Gbps. The cost of the resources
is adapted following the EU Data Grid testbed. In order to take advantage of this
complex topology, we have considered that the size of jobs sent per each workflow
is measured in the Million of MI.

³http://www.ceta-ciemat.es/.
⁴http://www.redirisnova.es/caracteristicas/mapa-red.html.
⁵http://www.rediris.es/lared/mapa.html.
⁶http://www.umic.pt/.
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Figure 5.3.2: Communication Network: RedIris and RCTS maps [16].

5.4 GridSim

GridSim [21] is the simulator used to implement all the meta-schedulers. GridSim
[20] is a Java-based toolkit for modelling and simulating distributed resource man-
agement in Grid environments. GridSim is based on SimJava, a general-purpose
discrete-event simulation package implemented in Java. All components in Grid-
Sim communicate with each other through message passing operations defined
by SimJava. It allows modelling of heterogeneous types of resources operating
under space or time shared mode. The resource capability can be defined in the
form of million instructions per second (MIPS) and can be located in any time
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Table 5.3.1: Resource Characteristics IBERGRID testbed (¢G$ means cent
of Grid dollars). Note: Some sites have more than one resource or computing
element.

Resource Features (Vendor, Type, OS, Resource MIPS Price(¢G$) Power(W)

Name CPUs, WN) Manager Type /CPU /CPU time /CPU time

CESGA AMD, Opteron 6174, Linux (Carbon), 21, 24 Space-shared 4400 56 115

USC Intel, Xeon E5335, Linux (Boron), 22, 8 Space-shared 3990 18 80

UNICAN Intel, Pentium D, CentOS, 241, 2 Space-shared 7505 91 130

CETA-Ciemat Intel, Xeon 5130, Linux (Beryllium), 29, 4 Space-shared 6405 19 60

Ciemat-TIC AMD, Opteron 270, Linux (Boron), 74, 4 Space-shared 3608 27 95

Ciemat-LCG Intel, Xeon E5450, Linux (Boron), 118, 8 Space-shared 5985 142 80

SGAI-CSIC AMD, Opteron 246, Red Hat (Tikanga), 9, 2 Space-shared 3983 2 89

BIFI Intel, Xeon E5650, Linux (Boron), 31, 12 Space-shared 5334 50 80

IFIC1 Intel, Xeon E5420, Linux (Boron), 47, 8 Space-shared 5004 47 80

IFIC2 Intel, Xeon E5420, Linux (Boron), 106, 8 Space-shared 4988 106 80

IFISC Intel, Xeon L5520, Linux (Boron), 60, 8 Space-shared 4534 55 60

IAA-CSIC Intel, Xeon X7350, Red Hat (Tikanga), 32, 16 Space-shared 5863 75 130

Uporto1 AMD, Opteron 250, Linux (Boron), 23, 2 Space-shared 4786 6 89

Uporto2 AMD, Opteron 250, Linux (Boron), 11, 2 Space-shared 4779 3 89

Uminho1 Intel, Xeon E5420, Linux (Beryllium), 12, 1 Space-shared 4991 2 80

Uminho2 Intel, Xeon E5420, Linux (Boron), 8, 1 Space-shared 4988 1 80

LIP-Coimbra1 Intel, Xeon E5472, Linux (Boron), 22, 8 Space-shared 5985 26 80

LIP-Coimbra2 Intel, Xeon E5472, Linux (Boron), 22, 8 Space-shared 5985 26 80

NCG-INGRID Quad-Core AMD, Opteron 2356, Linux (Boron), 128, 8 Space-shared 4600 118 75

CFP-IST Intel, Core i7 980, Linux (Boron), 4, 12 Space-shared 6747 8 130

LIP-LISBON Intel, Xeon E5472, Linux (Boron), 2, 8 Space-shared 5985 2 80

IFCA1 Intel, Xeon E5420, Linux (Boron), 182, 8 Space-shared 6254 228 80

IFCA2 Intel, Xeon E5420, Linux (Boron), 182, 8 Space-shared 6254 228 80

IFCA3 Intel, Xeon E5420, Linux (Boron), 182, 8 Space-shared 6254 228 80

IEETA Intel, Xeon E5130, Linux (Boron), 4, 2 Space-shared 4989 1 65

zone. Moreover, applications with different parallel application models can be
simulated. The GridSim toolkit is suitable for application scheduling simulations
in Grid Computing environments. GridSim is of great value in testing new algo-
rithms and strategies in a controlled environment. By using GridSim, it is possi-
ble to perform repeatable experiments and studies that are not possible in a real
dynamic Grid environment. The main advantage of GridSim is that various al-
location or scheduling policies can be implemented and integrated into GridSim
easily, by extending them from one of the existing classes. Research students in the
GRIDS Laboratory [30] tend to be heavy users of GridSim extending it whenever
necessary for their own research needs. In the last five years, GridSim has been
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continuously extended in this manner to include many new capabilities and has
also received contributions from external collaborators. It has been chosen due
to these advantages and as well as its ability to configure complex topologies and
resource features, such as processing speed, MIPS, cost of resources per time unit,
and/or energy consumption. Furthermore, thanks to the GridSim’s flexibility, it
has been modified to support workflows with dependent jobs, due to the impor-
tance of controlling the execution time in this type of workflow (child jobs are
required to wait until the parent jobs are successfully executed).
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“A methodology will lack the precision of a technique but will
be a firmer guide to action than a philosophy. Where a tech-
nique tells you ’how’ and a philosophy tells you ’what’, a
methodology will contain elements of both ’what’ and ’how’.”

Peter Checkland

6
Methodology

The methodology followed during the analysis process is presented in this chapter.
In this thesis, two widely used quality indicators are applied and the correspond-
ing explanation, motivation and definition are described in section 6.1. Moreover,
in order to reinforce the reliability of the results presented in this thesis a statisti-
cal analysis is performed, the process of this analysis is explained in section 6.2.
Finally, the specific parameters of the algorithms implemented in this research
are enumerated in section 6.3 with the aim to make this research reproducible for
other researches.

6.1 Quality Assessment inMultiobjectiveOptimization

In order to evaluate and compare the quality of the sets of non-dominated solu-
tions from out multi-objective approaches, it is normally considered in the objec-
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tive space towards the global Pareto-optimal front or simply Pareto front. A fair
comparison between two approximations should be performed by using the Pareto
dominance concept. However, since the Pareto dominance is not a total order, not
all points are comparable.

In our problem we have considered two quality indicators widely used in the lit-
erature: Hypervolume (HV) and Set Coverage (SC). Moreover, none of them need
to know the Pareto-optimal to compare with, which is ideal to apply in our thesis.
Furthermore, hypervolume and set coverage are complementary, because the hyper-
volume is a unitary quality indicator, while the set coverage is a binary indicator, that
allows a suitable evaluation and comparison from different point of view over our
multi-objective approaches.

Following, we present the definition of these quality indicators with the corre-
sponding figures.

Definition 1: Hypervolume (HV) [107]. It measures the volume (in the ob-
jective function space) covered by members of a non-dominated set of solutions.
In a multiobjective optimization problem with M minimization objective func-
tions, we calculate the size of the region of the objective space (hypervolume)
of a non-dominated set of solutions A = a1, .., ak bounded by a reference point
r = (r1, ..., rM). The corresponding hypercube for each member ai of set A is cal-
culated as follows: h(ai) = [ai1, r1] × ... × [aiM, rM]. In this way, as it is shown in
equation 6.1 the hypervolume of A is computed by the union of these |A| hyper-
cubes, with repeatedly covered hypercubes being counted once, where L refers to
Lebesgue [17] measure.

HV(A, r) = L

 |A|∪
i=1

h(ai)|ai ∈ A

 (6.1)

In Figure 6.1.1 we present an illustration of the 2-dimensional and 3-dimensional
hypervolume of a set of non-dominated solutions.

Definition2: SetCoverage(SC)[104]. If we suppose two sets of non-dominated
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Figure 6.1.1: Hypervolume (HV), quality indicator. 2-dimensional and 3-
dimensional HV.

solutions A = a1, ..., ak and B = b1, ..., bj, this indicator measures the fraction of
non-dominated solutions inB; which are covered by the non-dominated solutions
in A as:

SC(A,B) =
|{b ∈ B; ∃a ∈ A : a ⪯ b}|

|B|
(6.2)

If SC(A,B) = 1, all points in B are dominated by or equal to points in A, whereas
SC(A,B) = /0 means that none of the points inB are covered by the set ofA. As the
dominance operator is not symmetric, it is necessary to calculate both SC(A,B)
and SC(B,A), since SC(B,A) is not necessarily equal to 1−SC(A,B). An example
of this indicator is shown in Figure 6.1.2. In Figure 6.1.2, the black points (red) are
the solutions in A, and the grey (green) points are the solutions in B. As we may
observe, the front A dominates 30% of the front B, whereas the front B dominates
60% of the front A.
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Figure 6.1.2: Set Coverage (SC), quality indicator. SC(A, B) and SC(B, A)

6.2 Statistical Reliability

In this thesis, with the aim of making a comparison among the algorithms with a
certain level of confidence, and because we are dealing with stochastic algorithms,
we have performed a statistical analysis of the results obtained. This statistical anal-
ysis has been applied to all the results in this thesis.

More specifically, the statistical analysis applied in this research is shown in Fig-
ure 6.2.1. This statistical analysis is based on 30 independent repetitions for every
experiment. The first test carried out consists of the calculation of the residual
normality, in our case, Kolmogorov-Smirnov [78]. This test checks whether or
not the results’ values follow a Gaussian distribution. In the case of non-Gaussian
distributions, a non-parametric analysis is applied (the well-known Kruskal-Wallis
[57]). However, if a Gaussian distribution is found, a homogeneity of variances
test is also carried out (Levene [62]). Finally, if the homogeneity is positive, an
ANOVA [78] analysis is performed; otherwise Kruskal-Wallis analysis is applied.
The confidence level considered in this work is always 95% in the statistical tests
with a significance level of 5% or p-values under 0.05. The differences are unlikely
to have occurred by chance with a probability of 95%.
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Variance Analysis
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No

Parametric Variance 
Analysis
(ANOVA)

Yes

Figure 6.2.1: Statistical Analysis Process performed in this work.

6.3 Parametrization

Parameter settings for each multi-objective algorithm are presented. We have pre-
viously performed a study (each single experiment was repeated 30 times inde-
pendently) to find the best parameter configuration for each algorithm in order to
solve our problem. The parameters used in the algorithms have been properly ad-
justed after performing numerous experiments. First, we performed several runs
to observe which is the most influential parameter. Thus, the most influential pa-
rameter will be the first to be set up, and so on. As said, in each experiment we have
performed 30 independent runs, which are sufficient to ensure the statistical sig-
nificance of the obtained results. To select the tested values for each parameter, we
have examined its range of possible values, establishing a minimum of five possible
uniformly distributed values. If two distinct values present similar results, we es-
tablish a new intermediate value and repeat the process. The parameter value that
finally achieves the best results (using the hypervolume [106] as quality metric)
in most workflows will be established. This process is repeated for all parameters
and all algorithms.

• MOGSA: Population size = 25, G0 = 10000, MinKbest = 5, α = 2, ε = 1, maxi-
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mum time of execution = 2 minutes.

• MOABC: Population size = 101 (50 employed bees, 50 onlooker bees and
1 scout bee), mutation probability = 0.25, maximum time of execution = 2
minutes.

• MOSWO: Population Size = 100, Pmutation = 0.25, maximum time of execu-
tion = 2 minutes.

• MO-FA: Population Size = 100, β = 0.2 , γ = 1, α = 1, maximum time of
execution = 2 minutes.

• MOBSA: Population Size (n) = 25, Cluster Number (m) = 5,Pcenterreplacement
= 0.4, Pclustermutation = 0.8, Pcentermutation = 0.8, Pclustercross = 0.25, maximum
time of execution = 2 minutes.

• NSGA-II: Population Size = 100, Pcrossover = 0.9, Pmutation = 0.1, selection by
binary tournament, maximum time of execution = 2 minutes.
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“There can be economy only where there is efficiency.”

Benjamin Disraeli

7
Results and Analysis: Economic Cost and

Execution TimeOptimization

This chapter is divided to three main analyses. The first one performs a statistical
analysis of our multi-objective approaches, which are compared with the standard
and well-known multi-objective algorithm NSGA-II. In the second section, the
best multi-objective algorithm from our previous study is compared with the lat-
est and well-known multi-objective scheduling algorithm, MOHEFT. Finally, the
third study compares our best multi-objective algorithm with two real grid meta-
schedulers: WMS and DBC.
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7.1 Multi-Objective comparison

In this analysis, we compare the multi-objective algorithms presented in Chapter
4 (MOGSA, MOABC, MOSWO, MO-FA, and MOBSA) from the physical, bio-
logical, and sociological fields with the standard and well-known NSGA-II, which
is an often used algorithm in multi-objective optimization. The first part of this sec-
tion evaluates the algorithms on the EU DataGrid and WWG combination testbed,
and the second part uses the IBERGRID testbed as a grid environment (see Chap-
ter 5 for more details).

7.1.1 EU DataGrid and WWG combination testbed

First, we compare the six algorithms using the hypervolume metrics. Tables 7.1.1
and 7.1.2 show the median and interquartile range for each algorithm. We observe
that the reliability of the swarm algorithms (MOABC, MOGSA, MOSWO, and
MOBSA) is greater than the standard NSGA-II in all the cases with a lower in-
terquartile range.

Table 7.1.1: MOGSA, MOABC, and MOSWO Hypervolume properties by
workflow. EU DataGrid and WWG combination testbed. Economic Cost and
Execution Time Optimization.

Workflows Median (Interquartile Range) Reference Point

MOGSA MOABC MOSWO (Time (s), Cost (G$))

Gaussian 55.06 (0.37) 57.44 (0.23) 53.18 (0.62) (1000, 10000)

Gauss-Jordan 55.53 (0.43) 57.29 (0.63) 54.45 (0.38) (1200, 22000)

LU 54.48 (0.39) 56.57 (0.14) 52.71 (0.89) (1200, 22000)

Find-Max 54.23 (0.15) 56.57 (0.14) 53.45 (0.32) (2000, 10000)

FFT 55.94 (0.38) 57.41 (0.66) 54.79 (0.31) (1200,22000)

Stencil 57.40 (0.42) 59.61 (1.08) 56.20 (0.31) (1000, 15000)

Average 55.44 (0.35) 57.48 (0.45) 54.13 (0.47) -

The MOABC algorithm presents the best average, 57.48, followed by MOGSA
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with an average value of 55.44, while NSGA-II only achieves a value of 45.60 on
average, by being the worst algorithm in this test.

Table 7.1.2: MO-FA, MOBSA, and NSGA-II Hypervolume properties by
workflow. EU DataGrid and WWG combination testbed. Economic Cost and
Execution Time Optimization.

Workflows Median (Interquartile Range) Reference Point

MO-FA MOBSA NSGA-II (Time (s), Cost (G$))

Gaussian 46.39 (1.47) 51.93 (0.60) 46.40 (1.11) (1000, 10000)

Gauss-Jordan 47.51 (0.92) 54.07 (0.06) 47.17 (0.46) (1200, 22000)

LU 48.30 (0.77) 51.34 (0.78) 48.02 (1.27) (1200, 22000)

Find-Max 36.10 (1.83) 53.06 (0.39) 36.23 (1.51) (2000, 10000)

FFT 49.21 (0.91) 54.15 (0.43) 48.88 (0.89) (1200,22000)

Stencil 46.82 (0.94) 55.94 (0.39) 46.91 (1.38) (1000, 15000)

Average 45.72 (1.14) 53.41 (0.44) 45.60 (1.10) -

Moreover, a statistical boxplot is provided for each workflow in order to visual-
ize and reinforce the statistical results (see Figure 7.1.1).

In Figure 7.1.2, all the Pareto fronts are presented for each workflow and algo-
rithm. Results show that all the algorithms follow the same behaviour regarding
the studied workflows. However, the MOABC’s Pareto fronts always dominate the
solutions obtained by the rest of the multi-objective algorithms.

Moreover, a numerical comparison of these six algorithms with regard to set
coverage metrics is given in Table 7.1.3. Each cell gives the fraction of non-dominated
solutions evolved by algorithm B, which are covered by the non-dominated points
achieved by algorithm A [106]. Again, MOABC covers all the results obtained by
NSGA-II and almost all the solutions (88.24%) found by MOGSA (our second
best algorithm in this evaluation).
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Figure 7.1.1: Boxplot Gaussian, Gauss-Jordan, LU, FindMax, FFT, and Sten-
cil workflows. EU DataGrid and WWG combination testbed. Economic Cost
and Execution Time Optimization.
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Figure 7.1.2: Pareto fronts by workflow and algorithm. In every case, from
the 30 repetitions, the closest Pareto front to the median hypervolume is
shown. EU DataGrid and WWG combination testbed. Economic Cost and
Execution Time Optimization.
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Table 7.1.3: Set Coverage comparison of MOGSA, MOABC, MOSWO, MO-
FA, MOBSA and NSGA-II by workflow. EU DataGrid and WWG combination
testbed. Economic Cost and Execution Time Optimization.

Coverage A ≥ B (%)

Algorithm Workflows Average

A B Gaussian Gauss-Jordan LU Find-Max FFT Stencil

MOGSA MOABC 0.00 0.00 3.70 0.00 2.00 5.71 1.90

MOABC MOGSA 92.30 92.85 83.33 90.47 90.47 80.00 88.24

MOGSA MOSWO 81.81 85.71 68.42 80.00 66.66 92.30 79.15

MOSWO MOGSA 0.00 7.14 0.00 15.00 23.80 10.00 9.32

MOGSA MO-FA 83.33 100.00 100.00 100.00 90.00 100.00 95.55

MO-FA MOGSA 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOGSA MOBSA 92.85 53.33 50.00 50.00 36.36 45.45 54.66

MOBSA MOGSA 7.69 28.57 27.77 35.71 33.33 20.00 25.51

MOGSA NSGA-II 100.00 100.00 100.00 100.00 100.00 100.00 100.00

NSGA-II MOGSA 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOABC MOSWO 90.90 92.85 100.00 93.33 91.66 92.30 93.50

MOSWO MOABC 0.00 2.94 3.70 0.00 2.00 2.85 1.91

MOABC MO-FA 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MO-FA MOABC 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOABC MOBSA 93.33 93.33 100.00 92.85 100.00 90.91 95.07

MOBSA MOABC 0.00 0.00 3.70 7.54 2.00 5.71 3.16

MOABC NSGA-II 100.00 100.00 100.00 100.00 100.00 100.00 100.00

NSGA-II MOABC 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOSWO MO-FA 50.00 57.14 87.50 83.33 100.00 71.42 74.89

MO-FA MOSWO 45.45 28.57 7.14 26.66 0.00 38.46 24.38

MOSWO MOBSA 36.66 20.00 12.50 0.00 9.09 27.27 17.58

MOBSA MOSWO 55.55 66.66 50.00 56.25 46.66 53.84 54.83

MOSWO NSGA-II 100.00 72.72 100.00 74.47 90.00 71.42 84.77

NSGA-II MOSWO 0.00 16.66 7.14 20.00 8.33 0.00 8.69

MO-FA MOBSA 60.00 0.00 100.00 0.00 0.00 0.00 26.66

MOBSA MO-FA 16.66 85.71 0.00 100.00 100.00 100.00 62.56

MO-FA NSGA-II 88.88 81.81 66.66 58.82 30.00 57.14 63.88

NSGA-II MO-FA 0.00 0.00 37.50 33.33 70.00 42.85 30.61

MOBSA NSGA-II 100.00 90.90 77.77 100.00 100.00 100.00 94.77

NSGA-II MOBSA 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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As we mentioned in the previous chapter, we carried out a statistical analysis
to make a comparison with a major level of confidence. The confidence level con-
sidered in this work is always 95% in the statistical tests with a significance level
of 5% or p-values under 0.05. The differences are unlikely to have occurred by
chance with a probability of 95%. The summary of the statistical study is pre-
sented in Table 7.1.4, where only those data sets in which no statistical differences
were found (p-value > 0.05) are shown. The MOABC algorithm results are sig-
nificantly different from the results obtained by the other algorithms in all cases,
including MOGSA, which is our second-best algorithm. Therefore, the evidence
points to MOABC as our winner algorithm in this complete multi-objective com-
parison.

Table 7.1.4: Statistical analysis of the comparison among MOGSA, MOABC,
MOSWO, MO-FA, MOBSA, and NSGA-II using hypervolume metrics. The
non-significant differences are shown in this table. EU DataGrid and WWG
tesbeds. Economic Cost and Execution Time Optimization.

MOGSA MOABC MOSWO MO-FA MOBSA NSGA-II

MOGSA - - - - -

MOABC - - - -

MOSWO - - -

MO-FA - #Gaussian, #Gauss-Jordan, #LU, #Find-Max, #FFT, #Stencil

MOBSA -

NSGA-II
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7.1.2 IBERGRID testbed

The same multi-objective study is carried out for the IBERGRID testbed. Hyper-
volume metrics is calculated for each algorithm and workflow. Tables 7.1.5 and
7.1.6 present the median and interquartile values of hypervolumes.

Hypervolume metrics show that MOABC obtains a better set of solutions than
the rest of algorithms with an average of 58.94, followed by the average value of
MOBSA (53.91). In this evaluation NSGA-II obtains almost the worst average
(38.30).

Table 7.1.5: MOGSA, MOABC, and MOSWO Hypervolume properties by
workflow. IBERGRID testbed. Economic Cost and Execution Time Optimiza-
tion.

Workflows Median (Interquartile Range) Reference Point

MOGSA MOABC MOSWO (Time (s), Cost (¢G$))

Gaussian 56.39 (0.90) 60.69 (0.35) 52.59 (1.03) (65000, 6500000)

Gauss-Jordan 53.03 (0.46) 58.16 (1.92) 51.11 (0.75) (80000, 8000000)

LU 52.99 (0.74) 58.55 (0.71) 48.58 (1.24) (80000, 8000000)

Find-Max 52.91 (0.50) 57.76 (0.69) 49.31 (1.15) (105000, 10500000)

FFT 53.72 (0.79) 58.26 (0.72) 50.59 (1.20) (80000, 8000000)

Stencil 53.62 (0.77) 60.23 (1.08) 50.52 (1.26) (60000, 6000000)

Average 53.77 (0.69) 58.94 (0.91) 50.45 (1.10) -
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Table 7.1.6: MO-FA, MOBSA, and NSGA-II Hypervolume properties by
workflow. Testbed IBERGRID. Execution Time and Cost Optimization.

Workflows Median (Interquartile Range) Reference Point

MO-FA MOBSA NSGA-II (Time (s), Cost (¢G$))

Gaussian 44.74 (2.16) 55.80 (0.79) 44.80 (2.46) (65000, 6500000)

Gauss-Jordan 35.09 (4.67) 53.77 (0.46) 34.39 (3.79) (80000, 8000000)

LU 40.00 (3.15) 53.41 (0.97) 40.27 (2.76) (80000, 8000000)

Find-Max 37.65 (2.83) 52.87 (0.93) 38.42 (3.46) (105000, 10500000)

FFT 37.10 (3.71) 53.53 (0.57) 38.04 (3.43) (80000, 8000000)

Stencil 33.44 (4.27) 54.13 (1.48) 33.88 (6.59) (60000, 6000000)

Average 38.00 (3.46) 53.91 (0.86) 38.30 (3.74) -

The corresponding boxplot for this test is provided in Figure 7.1.3. The results
obtained are similar to the results performed in the study with the WWG and EU
DataGrid testbed, except that MOBSA is second-best algorithm in this case.

Furthermore, graphs of the resulting Pareto fronts are displayed in Figure 7.1.4,
and the direct comparison with the set coverage metrics is calculated in Table 7.1.7.
These tests prove that MOABC usually covers almost all the solutions from the
other algorithms. This second test environment demonstrates a similar behaviour
as the first one, highlighting MOABC as the best meta-scheduler in terms of exe-
cution time and cost optimization. Moreover, it also proves that swarm algorithms
have better behaviour than NSGA-II in dealing with the job scheduling problem
in grid environments.
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Figure 7.1.3: Boxplot Gaussian, Gauss-Jordan, LU, FindMax, FFT, and Sten-
cil workflows. IBERGRID testbed. Economic Cost and Execution Time Opti-
mization.
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the 30 repetitions, the closest Pareto front to the median hypervolume is
shown. IBERGRID testbed. Economic Cost and Execution Time Optimization.
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Table 7.1.7: Set Coverage comparison of MOGSA, MOABC, MOSWO, MO-
FA, MOBSA, and NSGA-II by workflow. IBERGRID testbed. Economic Cost
and Execution Time Optimization.

Coverage A ≥ B (%)

Algorithm Workflows Average

A B Gaussian Gauss-Jordan LU Find-Max FFT Stencil

MOGSA MOABC 12.50 4.54 3.33 7.40 0.00 0.00 4.63

MOABC MOGSA 93.75 88.88 100.00 81.81 100.00 90.00 92.41

MOGSA MOSWO 88.88 80.00 85.71 90.00 80.00 90.00 85.76

MOSWO MOGSA 0.00 22.22 12.50 9.09 11.11 69.23 20.69

MOGSA MO-FA 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MO-FA MOGSA 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOGSA MOBSA 33.33 28.57 22.22 42.85 14.28 11.11 25.39

MOBSA MOGSA 50.00 44.44 37.50 36.36 33.33 40.00 40.27

MOGSA NSGA-II 100.00 100.00 100.00 85.71 100.00 100.00 97.61

NSGA-II MOGSA 0.00 0.00 0.00 9.09 0.00 0.00 1.51

MOABC MOSWO 90.00 85.71 100.00 81.81 100.00 92.30 91.64

MOSWO MOABC 5.00 4.54 3.33 3.70 3.45 0.00 3.34

MOABC MO-FA 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MO-FA MOABC 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOABC MOBSA 66.66 71.42 88.88 71.42 100.00 88.88 81.21

MOBSA MOABC 12.50 0.00 3.33 3.70 3.45 0.00 3.83

MOABC NSGA-II 100.00 100.00 100.00 100.00 100.00 100.00 100.00

NSGA-II MOABC 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOSWO MO-FA 85.71 57.14 0.00 50.00 77.77 66.67 56.21

MO-FA MOSWO 0.00 0.00 42.85 9.09 0.00 0.00 8.66

MOSWO MOBSA 0.00 28.57 11.11 14.28 14.28 22.22 15.08

MOBSA MOSWO 90.00 85.71 100.00 72.73 100.00 84.61 88.84

MOSWO NSGA-II 50.00 100.00 33.33 57.14 80.00 50.00 61.74

NSGA-II MOSWO 20.00 0.00 14.28 27.27 0.00 53.84 19.23

MO-FA MOBSA 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOBSA MO-FA 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MO-FA NSGA-II 25.00 50.00 66.67 42.85 0.00 37.50 37.00

NSGA-II MO-FA 42.85 28.57 0.00 50.00 44.44 50.00 35.98

MOBSA NSGA-II 100.00 100.00 100.00 100.00 100.00 100.00 100.00

NSGA-II MOBSA 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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The statistical analysis performed with the previous testbed is also applied to the
datasets obtained with the IBERGRID topology. Once more, MOABC presents
significantly different results compared to the results obtained by the other multi-
objective algorithms in all the cases with p-values under 0.05. We can observe that
MOGSA and MOBSA do not have significant differences for four of the six work-
flows executed in the grid. Therefore, both are good enough for the second best
algorithm in this last evaluation, however taking into account the perfomance of
MOGSA in the previous testbed, we could say that MOGSA is our second most
promising option. Finally, again, MO-FA and NSGA-II do not have significant
differences for this problem.

Table 7.1.8: Statistical analysis of the comparison among MOGSA, MOABC,
MOSWO, MO-FA, MOBSA, and NSGA-II using hypervolume metrics. The
non-significant differences are shown in this table. IBERGRID testbed. Eco-
nomic Cost and Execution Time Optimization.

MOGSA MOABC MOSWO MO-FA MOBSA NSGA-II

MOGSA - - - #LU, #Find-Max, #FFT, #Stencil -

MOABC - - - -

MOSWO - - -

MO-FA - #Gaussian, #Gauss-Jordan, #LU, #Find-Max, #FFT, #Stencil

MOBSA -

NSGA-II
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7.2 MOHEFT comparison

HEFT (Heterogeneous Earliest Finish Time) algorithm ([102], [93]) is one of the
most popular algorithms for workflow-scheduling. Recently, its multi-objective
version, MOHEFT [37] has been compared with two state-of-the-art approaches:
the classical HEFT algorithm used in single-objective scheduling and the SPEA2
algorithm used for multi-objective optimization problems. The MOHEFT algo-
rithm optimizes both execution time and energy consumption objectives in com-
putational workflow-scheduling [34]. Other new research compares MOHEF with
greenHEFT, which is the single-objective scheduling for energy saving [35]. The
results of MOHEFT show its superiority regarding its competitors and due to this,
we compare our best algorithm, MOABC, with MOHEFT to demonstrate the
quality of our approach. We have adapted MOHEFT so that it optimizes execu-
tion time and cost.

The MOHEFT algorithm improves and extends the HEFT algorithm. The only
additional input parameter of MOHEFT is the size of the set of tradeoff solutions,
K. The authors do not indicate an exact value for K, but they say [35]: “Given a
set of n activities and m resources, the computational complexity of HEFT (and
greenHEFT) is O(n × m) ... Considering that the set of tradeoff solutions is K,
the extra loop in MOHEFT performs only K iterations, rendering a complexity of
O(n×m×K). Usually, the number of tradeoff solutions is a constant much lower
than n and m ... Thus, the complexity can be approximated as almostO(n×m), as
in HEFT (or greenHEFT)”. For this reason, we have usedK=5 in our experiments.
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The comparative study between MOABC and MOHEFT is carried out by ap-
plying the multi-objective metrics used previously (section 7.1). In Tables 7.2.1
and 7.2.2, the hypervolume results demonstrate a higher quality of MOABC over
MOHEFT regarding all the workflows and topologies studied. Note, that the in-
terquartile range is not evaluated since MOHEFT is deterministic by always being
equal to /0.

Table 7.2.1: MOABC vs. MOHEFT: Hypervolume. EU DataGrid and WWG
combination testbed. Economic Cost and Execution Time Optimization.

Workflows Median Reference Point
MOABC MOHEFT (Time (s), Cost (G$))

Gaussian 57.44 48.70 (1000, 10000)
Gauss-Jordan 57.29 51.31 (1200, 22000)

LU 57.74 50.77 (1200, 22000)
Find-Max 56.57 43.89 (2000, 10000)

FFT 57.41 48.58 (1200,22000)
Stencil 59.61 46.72 (1000, 15000)

Average 57.67 48.32 -

Table 7.2.2: MOABC vs. MOHEFT: Hypervolume. IBERGRID testbed. Eco-
nomic Cost and Execution Time Optimization.

Workflows Median Reference Point
MOABC MOHEFT (Time (s), Cost (¢G$))

Gaussian 60.69 47.12 (65000, 6500000)
Gauss-Jordan 58.16 51.62 (80000, 8000000)

LU 58.55 52.53 (80000, 8000000)
Find-Max 57.76 52.14 (105000, 10500000)

FFT 58.26 52.58 (80000, 8000000)
Stencil 60.23 44.17 (60000, 6000000)

Average 58.94 50.02 -
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The coverage between both algorithms is also evaluated. Once more, MOABC
has good results in all the workflows and covers more solutions than MOHEFT
by obtaining 61.66% of the coverage average against the 12.55% of MOHEFT (see
Table 7.2.3 and 7.2.4).

Table 7.2.3: Set Coverage comparison of MOABC and MOHEFT per each
workflow. EU DataGrid and WWG combination testbed. Economic Cost and
Execution Time Optimization.

Coverage A ≥ B (%)

Algorithm Workflows Average

A B Gaussian Jordan LU Find-Max FFT Stencil

MOABC MOHEFT 50.00 100.00 50.00 50.00 100.00 100.00 75.00

MOHEFT MOABC 15.00 14.70 7.40 9.43 0.00 0.00 7.75

Table 7.2.4: Set Coverage comparison of MOABC and MOHEFT per each
workflow. IBERGRID testbed. Economic Cost and Execution Time Optimiza-
tion.

Coverage A ≥ B (%)

Algorithm Workflows Average

A B Gaussian Jordan LU Find-Max FFT Stencil

MOABC MOHEFT 50.00 40.00 50.00 50.00 50.00 50.00 48.33

MOHEFT MOABC 20.00 33.33 16.67 10.00 24.13 0.00 17.35
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Moreover, the statistical analysis shows that both algorithms are significantly
different with respect to all the instances studied (p-value<0.05) (see Table 7.2.5).

Table 7.2.5: Statistical analysis of the comparison between MOABC and
MOHEFT by using hypervolume metrics. The non-significant differences are
shown in this table. EU DataGrid and WWG combination testbed and IBER-
GRID testbed. Economic Cost and Execution Time Optimization.

EU DataGrid and WWG combination testbed IBERGRID testbed

MOABC MOHEFT MOABC MOHEFT

MOABC - MOABC -

MOHEFT MOHEFT
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7.3 Real grid meta-schedulers comparison

This second kind of analysis compares the best multi-objective algorithm, MOABC,
studied in the previous analysis, with respect to two current, popular meta-schedulers
(WMS and DBC) with all the workflows and the two topologies. Also, each exper-
iment performed in our study includes 30 independent executions per algorithm
and workflow. First, the WWG and EU DataGrid testbed is studied.

WMS has been deployed by taking into account the free CPUs of every resource
to calculate the rank of preferences. In these tests, the meta-scheduler is located
in the European Council for Nuclear Research (CERN). Table 7.3.1 shows the
time and cost obtained for each meta-scheduler and workflow. In these results, we
can see that MOABC always offers a better solution than WMS and DBC in both
objectives at the same time. However, DBC provides similarly beneficial solutions.
Because of that, we performed another test in order to check the performance of
the meta-schedulers by providing a range of deadline constraints.

Table 7.3.1: Results of MOABC, WMS, and DBC by workflow. Time (s) and
Cost (G$). EU DataGrid and WWG combination testbed. Economic Cost and
Execution Time Optimization.

Workflows MOABC WMS DBC
Time Cost Time Cost Time Cost

Gaussian 478.11 848.14 482.68 3434.82 480.82 850.00
Gauss-Jordan 531.71 1593.74 534.70 6405.20 533.41 1593.74

LU 608.76 1164.00 612.29 4684.63 610.46 1164.00
Find-Max 796.07 1591.74 797.67 2929.98 797.77 1591.74

FFT 542.62 2113.00 561.24 5560.52 544.96 2583.00
Stencil 377.18 2742.99 400.02 5973.12 378.98 2368.90

In Table 7.3.2, three restrictive deadlines are performed per each workflow. Re-
sults show that WMS is not consistently able to accomplish the execution of entire
workflows and DBC requires complexity to achieve it, while MOABC optimizes
the solutions and always completes the execution of the workflows.

Using the IBERGRID topology, results show a similar behaviour regarding to
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Table 7.3.2: MOABC, WMS, and DBC: Successfully executed jobs with re-
gard to deadline variation. EU DataGrid and WWG combination testbed. Eco-
nomic Cost and Execution Time Optimization.

Workflows Constraint MOABC WMS DBC
Deadline Time Cost/ Jobs Time Cost/ Jobs Time Cost/ Jobs

Job Job Job
460 456.41 102.85 12 460.00 325.93 10 460.43 79.63 10

Gaussian 445 441.62 132.39 12 445.00 340.36 9 445.64 105.44 10
430 422.92 170.66 12 430.00 321.06 7 430.73 82.63 9
530 524.01 125.44 15 530.00 547.12 14 525.71 121.35 15

Gauss-Jordan 515 504.11 174.45 15 515.00 419.81 14 505.82 112.12 15
500 496.24 240.29 15 500.00 422.67 14 500.08 101.84 14
560 556.62 161.81 14 560.00 389.22 13 560.80 123.14 12

LU 545 540.89 194.24 14 545.00 372.89 10 545.00 178.67 12
530 525.97 200.85 14 530.00 344.95 10 500.08 123.62 10
750 749.87 143.86 18 721.42 399.25 15 750.68 99.03 15

Find-Max 735 724.08 169.54 18 721.42 440.07 15 735.68 117.52 15
720 697.80 226.12 18 667.32 445.13 12 720.68 149.14 15
540 529.43 168.84 15 507.13 426.90 11 540.06 170.80 11

FFT 525 501.83 168.84 15 507.13 426.90 11 525.06 191.90 11
510 501.83 168.84 15 507.13 426.90 11 510.06 179.89 11
380 377.18 175.38 12 373.48 533.25 10 379.03 177.40 12

Stencil 365 350.59 276.15 12 319.42 612.54 8 365.60 203.92 10
330 321.94 387.32 12 319.42 612.54 8 330.70 174.71 8

the previous topology studied. The meta-scheduler is located in Ciemat-TIC in
all the tests. In Table 7.3.3, results indicate MOABC is the best meta-scheduler for
both objectives. Moreover, when we applied the deadline constraints (see Table
7.3.4), both WMS and DBC were not able to execute all the jobs that comprise
the workflows. However, MOABC has no problems in carrying out the experi-
ments. The jobs are interdependent; therefore the execution of all the jobs may be
necessary.
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Table 7.3.3: Results of MOABC, WMS, and DBC by workflow. Time (s) and
Cost (¢G$). IBERGRID testbed. Economic Cost and Execution Time Opti-
mization.

Workflows MOABC WMS DBC
Time Cost Time Cost Time Cost

Gaussian 36085.88 641.53 30081.41 75940.03 36090.01 641.53
Gauss-Jordan 38759.33 1256.25 55437.59 4490.21 38764.00 1309.65

LU 45442.98 908.74 63754.48 32930.58 45445.66 1114.26
Find-Max 60140.90 1202.76 72328.42 3013.16 60145.21 1202.76

FFT 42098.00 1042.35 52927.30 2611.39 42102.02 1239.45
Stencil 28735.14 1202.76 37663.20 2812.18 29072.86 1289.88

Table 7.3.4: MOABC, WMS, and DBC: Successfully executed jobs with re-
gard to deadline variation. IBERGRID testbed. Economic Cost and Execution
Time Optimization.

Workflows Constraint MOABC WMS DBC
Deadline Time Cost/ Jobs Time Cost/ Jobs Time Cost/ Jobs

Job Job Job
35000 34751.61 57.91 12 30081.41 6328.33 12 35000.68 60.14 10

Gaussian 30000 29862.43 198.76 12 28409.53 7119.20 10 30000.92 71.28 9
25000 24818.09 1523.87 12 21724.07 8700.93 6 25000.27 82.42 6
40000 38759.33 83.75 15 33262.57 2993.61 12 38764.00 87.31 15

Gauss-Jordan 37500 37007.08 251.72 15 33262.57 2993.61 12 37410.48 398.24 15
35000 34894.49 289.36 15 33262.57 2993.61 12 35000.23 80.18 14
46000 45442.98 64.91 14 44350.05 2827.31 9 45445.66 79.59 14

LU 38500 38488.01 230.20 14 36034.15 3118.33 6 38500.38 74.17 10
32000 31560.51 266.40 14 24946.66 3143.28 5 32000.05 89.10 9
61000 60140.90 66.82 18 52728.25 210.00 11 60145.21 66.82 18

Find-Max 51500 47014.72 621.80 18 45915.17 243.91 7 51500.85 83.52 12
42000 41376.77 3735.86 18 30130.15 234.34 6 42000.41 77.77 11
43500 42098.00 69.49 15 40173.89 229.56 7 42102.02 82.63 15

FFT 37750 36925.65 274.55 15 30130.11 267.82 3 37750.71 94.77 11
32000 32030.00 2117.87 15 30130.11 267.82 4 32000.23 122.21 7
29500 28735.14 100.23 12 27619.46 318.03 6 29072.86 107.49 12

Stencil 26250 25894.05 389.32 12 20086.46 401.72 4 26250.86 115.26 8
23000 22868.49 660.75 12 20086.46 401.72 4 23000.50 128.65 8

86



“We simply must balance our demand for energy with our
rapidly shrinking resources. By acting now we can control our
future instead of letting the future control us.”

Jimmy Carter

8
Results and Analysis: Energy

Consumption and Responsiveness
Optimization

This chapter analyses the multi-objective optimization problem for energy con-
sumption and responsiveness following the same sections in the previous prob-
lem in order to have a homogeneous frame. First, the multi-objective algorithms
proposed in this thesis are compared with the standard multi-objective algorithm
NSGA-II. Later, our best multi-objective algorithm selected in the previous test
is compared with MOHEFT in order to prove its quality with this strong multi-
objective scheduling algorithm. And finally, a comparison with the real meta-schedulers
WMS and DBC will be carried out.
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8.1 Multi-Objective comparison

8.1.1 EU DataGrid and WWG combination testbed

In this section we starts by comparing the six multi-objective algorithms using
hypervolume metrics with the WWG and EU DataGrid topology. Tables 8.1.1
and 8.1.2 show the median and interquartile for each algorithm and workflow.
MOABC provides the best average for the hypervolume (64.69), while NSGA-
II provides the worst average value (56.41). MOGSA is the second best algorithm
in this test by obtaining a 63.14 average value.

Table 8.1.1: MOGSA, MOABC, and MOSWO Hypervolume properties by
workflow. EU DataGrid and WWG combination testbed. Energy Consumption
and Responsiveness Optimization.

Workflows Median (Interquartile Range) Reference Point

MOGSA MOABC MOSWO (Time (s), Power (kW))

Gaussian 62.14 (0.47) 63.79 (0.00) 60.73 (0.73) (1300, 113)

Gauss-Jordan 67.98 (0.17) 68.94 (0.32) 67.69 (0.19) (3000, 130)

LU 63.27 (0.43) 65.19 (0.00) 62.51 (0.55) (2000, 120)

Find-Max 62.33 (0.15) 64.47 (0.13) 60.97 (0.62) (2200, 220)

FFT 60.74 (0.20) 62.15 (0.60) 59.92 (0.15) (1600, 160)

Stencil 62.38 (0.31) 63.65 (0.00) 61.60 (0.28) (1400, 140)

Average 63.14 (0.28) 64.69 (0.17 ) 62.23 (0.42) -
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Table 8.1.2: MO-FA, MOBSA and NSGA-II Hypervolume properties per each
workflow. EU DataGrid and WWG combination testbed. Energy Consumption
and Responsiveness Optimization.

Workflows Median (Interquartile Range) Reference Point

MO-FA MOBSA NSGA-II (Time (s), Power (kW))

Gaussian 57.60 (1.30) 60.56 (0.68) 57.18 (1.04) (1300, 113)

Gauss-Jordan 59.06 (1.46) 65.90 (0.72) 58.64 (1.85) (3000, 130)

LU 56.90 (0.85) 61.71 (0.85) 53.34 (1.23) (2000, 120)

Find-Max 56.92 (1.05) 59.93 (0.59) 57.04 (1.20) (2200, 220)

FFT 55.34 (1.08) 59.37 (0.59) 55.60 (1.61) (1600, 160)

Stencil 56.69 (1.40) 61.64 (0.78) 56.67 (1.79) (1400, 140)

Average 57.08 (1.19) 61.51 (0.70) 56.41 (1.45) -

In the boxplot (Figure 8.1.1) we can see the results graphically.
Moreover, the Pareto fronts are shown in Figure 8.1.2, in order to see the num-

ber of solutions and the coverage between them. However, we also provide the nu-
merical values in Table 8.1.3 for clarification. Once more, MOABC covers most
of the solutions obtained by the other algorithms with more than 90% in all the
cases, and almost no other algorithms cover its solutions. The MOGSA is the sec-
ond best algorithm, but its coverage is slower with an average of 62.52%, and the
rest of algorithms covers an average of 29.11% of its solutions.
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Figure 8.1.1: Boxplot Gaussian, Gauss-Jordan, LU, FindMax, FFT and Sten-
cil workflows. EU DataGrid and WWG combination testbed. Energy Con-
sumption and Responsiveness Optimization.
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Figure 8.1.2: Pareto fronts by workflow and algorithm. In every case, from
the 30 repetitions, the closest Pareto front to the median hypervolume is
shown. EU DataGrid and WWG combination testbed. Energy Consumption
and Responsiveness Optimization.
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Table 8.1.3: Set Coverage comparison of MOGSA, MOABC, MOSWO, MO-
FA, MOBSA, and NSGA-II by workflow. EU DataGrid and WWG combination
testbed. Energy Consumption and Responsiveness Optimization.

Coverage A ≥ B (%)

Algorithm Workflows Average

A B Gaussian Gauss-Jordan LU Find-Max FFT Stencil

MOGSA MOABC 0.00 0 .00 2.63 0.00 0.00 0.00 0.44

MOABC MOGSA 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MOGSA MOSWO 100.00 75.00 40.00 83.33 83.33 33.33 69.16

MOSWO MOGSA 8.33 16.67 22.22 0.00 0.00 33.33 13.42

MOGSA MO-FA 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MO-FA MOGSA 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOGSA MOBSA 44.44 100.00 22.22 20.00 57.14 14.28 43.01

MOBSA MOGSA 25.00 0.00 44.44 36.84 20.00 66.67 32.16

MOGSA NSGA-II 100.00 100.00 100.00 100.00 100.00 100.00 100.00

NSGA-II MOGSA 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOABC MOSWO 100.00 100.00 100.00 100 100 66.66 91.11

MOSWO MOABC 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOABC MO-FA 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MO-FA MOABC 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOABC MOBSA 88.89 100.00 100.00 100.00 100.00 100.00 98.15

MOBSA MOABC 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOABC NSGA-II 100.00 100.00 100.00 100.00 100.00 100.00 100.00

NSGA-II MOABC 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOSWO MO-FA 50.00 75.00 66.67 75.00 75.00 60.00 66.94

MO-FA MOSWO 0.00 0.00 0.00 33.33 0.00 0.00 5.55

MOSWO MOBSA 11.11 50.00 22.22 20.00 42.85 14.28 26.74

MOBSA MOSWO 50.00 50.00 60.00 50.00 66.67 66.67 57.22

MOSWO NSGA-II 100.00 100.00 100.00 71.42 100.00 100.00 95.23

NSGA-II MOSWO 0.00 0.00 0.00 16.66 0.00 0.00 2.77

MO-FA MOBSA 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOBSA MO-FA 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MO-FA NSGA-II 100.00 57.14 28.57 28.57 50.00 100.00 60.71

NSGA-II MO-FA 0.00 25.00 33.33 50.00 50.00 0.00 26.38

MOBSA NSGA-II 100.00 100.00 100.00 100.00 100.00 100.00 100.00

NSGA-II MOBSA 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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To finalize the multi-objective comparison with the WWG and EU DataGrid
topology, a statistical analysis is performed following the workflow in Figure 6.2.1.
The statistics show that MOABC presents a significant difference among all the al-
gorithms, being the best algorithm for this multi-objective comparison (see Table
8.1.4).

Table 8.1.4: Statistical analysis of the comparison among MOABC, MOGSA,
MOSWO, MOBSA, MO-FA, and NSGA-II using hypervolume metrics. The
non-significant differences are shown in this table. EU DataGrid and WWG
combination testbed. Energy Consumption and Responsiveness Optimization.

MOGSA MOABC MOSWO MO-FA MOBSA NSGA-II

MOGSA - - - - -

MOABC - - - -

MOSWO - #Gaussian, #Stencil -

MO-FA - #Gaussian, #Gauss-Jordan, #Find-Max, #FFT, #Stencil

MOBSA -

NSGA-II
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8.1.2 IBERGRID testbed

Following a new evaluation of the multi-objective algorithms for energy consump-
tion and responsiveness optimization is performed with the IBERGRID topology
(see Chapter 5 for detailed information). First, the comparison starts with the hy-
pervolume medians and interquartiles for each algorithm and workflow (see Ta-
bles 8.1.5 and 8.1.6).

Table 8.1.5: MOGSA, MOABC, and MOSWO Hypervolume properties by
workflow. IBERGRID testbed. Energy Consumption and Responsiveness Opti-
mization.

Workflows Median (Interquartile Range) Reference Point

MOGSA MOABC MOSWO (Time (s), Power (kW))

Gaussian 58.23 (0.14) 59.70 (0.09) 57.59 (0.26) (120000, 12000)

Gauss-Jordan 56.83 (0.00) 57.24 (0.13) 56.83 (0.00) (180000, 18000)

LU 60.09 (0.23) 60.12 (0.26) 59.81 (0.00) (170000, 17000)

Find-Max 55.36 (0.16) 56.95 (0.19) 55.08 (0.00) (200000, 20000)

FFT 57.57 (0.00) 58.43 (0.24) 57.57 (0.00) (170000, 17000)

Stencil 59.61 (0.00) 61.92 (0.28) 59.61 (0.00) (170000, 17000)

Average 57.94 (0.08) 59.06 (0.19) 57.74 (0.04) -
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Table 8.1.6: MO-FA, MOBSA, and NSGA-II Hypervolume properties by
workflow. IBERGRID testbed. Energy Consumption and Responsiveness Opti-
mization.

Workflows Median (Interquartile) Reference Point

MO-FA MOBSA NSGA-II (Time (s), Power (kW))

Gaussian 48.50 (1.43) 58.14 (0.29) 49.74(1.17) (120000, 12000)

Gauss-Jordan 42.08 (1.09) 56.83 (0.00) 43.41 (1.48) (180000, 18000)

LU 49.57 (0.99) 61.71(0.85) 50.86 (1.01) (170000, 17000)

Find-Max 43.72 (1.10) 55.39 (0.24) 44.86 (1.14) (200000, 20000)

FFT 45.07 (1.69) 57.60 (0.00) 46.01 (1.39) (170000, 17000)

Stencil 46.57 (1.63) 59.61 (0.00) 47.83 (0.94) (170000, 17000)

Average 45.91 (1.32) 58.21 (0.23) 47.11 (1.18) -

Results show that MOABC provides the highest values (59.06 on average), fol-
lowed by MOBSA with an average of 58.21. Although NSGA-II provides a lower
average (47.11) this time, it surpasses MO-FA with an average of 45.91. A boxplot
is also provided in Figure 8.1.3 to reinforce the data visualization of Tables 8.1.5
and 8.1.6.

Furthermore, the resulting Pareto fronts are displayed in Figure 8.1.4, where is
visually verified that MOABC surpasses the other multi-objective algorithms. The
coverage metrics is also calculated and proves that MOABC is the multi-objective
algorithm that covers more solutions (see Table 8.1.7).
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Figure 8.1.3: Boxplot Gaussian, Gauss-Jordan, LU, FindMax, FFT, and Sten-
cil workflows. Testbed IBERGRID. Responsiveness and Energy Consumption.
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Table 8.1.7: Set Coverage comparison of MOGSA, MOABC, MOSWO, MO-
FA, MOBSA, and NSGA-II by workflow. IBERGRID testbed. Energy Con-
sumption and Responsiveness Optimization.

Coverage A ≥ B (%)

Algorithm Workflows Average

A B Gaussian Gauss-Jordan LU Find-Max FFT Stencil

MOGSA MOABC 4.76 7.69 3.57 0.00 0.00 12.50 4.75

MOABC MOGSA 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MOGSA MOSWO 100.00 100.00 100.00 0.00 100.00 100.00 83.33

MOSWO MOGSA 14.28 0.00 50.00 50.00 0.00 100.00 35.71

MOGSA MO-FA 100.00 60.00 50.00 100.00 100.00 60.00 78.33

MO-FA MOGSA 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOGSA MOBSA 33.33 100.00 33.33 0.00 100.00 100.00 61.11

MOBSA MOGSA 42.86 100.00 0.00 50.00 100.00 0.00 48.81

MOGSA NSGA-II 66.67 60.00 57.14 60.00 50.00 50.00 57.30

NSGA-II MOGSA 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOABC MOSWO 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MOSWO MOABC 4.76 0.00 3.57 0.00 0.00 12.50 3.47

MOABC MO-FA 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MO-FA MOABC 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOABC MOBSA 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MOBSA MOABC 4.76 7.69 0.00 3.33 0.00 0.00 2.63

MOABC NSGA-II 100.00 100.00 100.00 100.00 100.00 100.00 100.00

NSGA-II MOABC 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOSWO MO-FA 80.00 60.00 50.00 66.67 60.00 60.00 62.78

MO-FA MOSWO 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOSWO MOBSA 33.33 0.00 33.33 0.00 0.00 100.00 27.78

MOBSA MOSWO 100.00 100.00 0.00 100.00 100.00 0.00 66.67

MOSWO NSGA-II 100.00 60.00 57.14 60.00 50.00 50.00 62.86

NSGA-II MOSWO 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MO-FA MOBSA 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOBSA MO-FA 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MO-FA NSGA-II 0.00 20.00 0.00 40.00 0.00 0.00 10.00

NSGA-II MO-FA 40.00 40.00 75.00 66.67 100.00 60.00 63.61

MOBSA NSGA-II 66.67 60.00 71.42 80.00 50.00 50.00 63.01

NSGA-II MOBSA 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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In the IBERGRID topology, MOABC, again, presents significant differences
from the rest of the multi-objective algorithms according to the statistics described
in Figure 6.2.1. We can see that the algorithms MOGSA, MOSWO, and MOBSA
do not have significant differences for many of the workflows executed in the grid
(see Table 8.1.8).

Table 8.1.8: Statistical analysis of the comparison among MOABC, MOGSA,
MOSWO, MOBSA, MO-FA, and NSGA-II using hypervolume metrics. The
non-significant differences are shown in this table. IBERGRID testbed. Energy
Consumption and Responsiveness Optimization.

MOGSA MOABC MOSWO MO-FA MOBSA NSGA-II

MOGSA - #Gauss-Jordan, #FFT - #Gaussian, #Gauss-Jordan, #LU, #Find-Max, #FFT -

MOABC - - - -

MOSWO - #Gauss-Jordan -

MO-FA - -

MOBSA -

NSGA-II
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8.2 MOHEFT comparison

As MOABC is the best of our multi-objective algorithms after the tests performed
in last section, we compare it with one of the best multi-objective scheduling al-
gorithms in literature, MOHEFT. First, we calculate the median hypervolume for
each algorithm and workflow. Then, we can appreciate that MOABC surpasses
MOHEFT in the studied topologies, WWG and EU DataGrid topology and IBER-
GRID, and for all the workflows (see Tables 8.2.1 and 8.2.2).

Table 8.2.1: MOABC vs. MOHEFT: Hypervolume. EU DataGrid and WWG
combination testbed. Energy Consumption and Responsiveness Optimization.

Workflows Median Reference Point
MOABC MOHEFT (Time (s), Power (kW))

Gaussian 63.79 60.28 (1300, 113)
Gauss-Jordan 68.94 60.91 (3000, 130)

LU 65.19 60.18 (2000, 120)
Find-Max 64.47 59.71 (2200, 220)

FFT 62.15 48.61 (1600, 160)
Stencil 62.38 44.17 (1400, 140)

Average 64.69 55.64 -

Table 8.2.2: MOABC vs. MOHEFT: Hypervolume. Testbed IBERGRID. En-
ergy Consumption and Responsiveness Optimization.

Workflows Median Reference Point
MOABC MOHEFT (Time (s), Power (kW))

Gaussian 60.69 54.14 (120000, 12000)
Gauss-Jordan 58.16 56.34 (180000, 18000)

LU 58.55 57.53 (170000, 17000)
Find-Max 57.76 50.38 (200000, 20000)

FFT 58.26 52.96 (170000, 17000)
Stencil 53.39 44.21 (170000, 17000)

Average 59.06 52.59 -
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In order to reinforce this comparison, we performed the coverage metrics and
observed that MOABC covers a higher percentage of solutions than MOHEFT for
both topologies and all the executed workflows. The coverage results are collected
in Tables 8.2.3 and 8.2.4.

Table 8.2.3: Set Coverage comparison of MOABC and MOHEFT by work-
flow. EU DataGrid and WWG combination testbed. Energy Consumption and
Responsiveness Optimization.

Coverage A ≥ B (%)

Algorithm Workflows Average

A B Gaussian Jordan LU Find-Max FFT Stencil

MOABC MOHEFT 50.00 100.00 50.00 100.00 50.00 0.00 58.33

MOHEFT MOABC 8.33 33.33 31.57 11.76 3.22 0.00 14.70

Table 8.2.4: Set Coverage comparison of MOABC and MOHEFT by work-
flow. IBERGRID testbed. Energy Consumption and Responsiveness Optimiza-
tion.

Coverage A ≥ B (%)

Algorithm Workflows Average

A B Gaussian Jordan LU Find-Max FFT Stencil

MOABC MOHEFT 50.00 50.00 50.00 50.00 50.00 0.00 41.66

MOHEFT MOABC 28.57 49.84 28.57 40.00 16.67 0.00 27.27

101



Moreover, the statistical analysis shows that both algorithms are significantly
different (p-value < 0.05) (see Table 8.2.5). With this whole comparison, we can
conclude that MOABC provides better results than MOHEFT for the energy con-
sumption and responsiveness optimization problem in both topologies.

Table 8.2.5: Statistical analysis of the comparison between MOABC and
MOHEFT using hypervolume metrics. The non-significant differences are
shown in this table. EU DataGrid and WWG combination testbed and IBER-
GRID testbed. Energy Consumption and Responsiveness Optimization.

EU DataGrid and WWG combination testbed IBERGRID testbed

MOABC MOHEFT MOABC MOHEFT

MOABC - MOABC -

MOHEFT MOHEFT
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8.3 Real grid meta-schedulers comparison

The last study consists of comparing MOABC, our best algorithm, with two real
grid meta-schedulers, WMS and DBC. In Table 8.3.1, Time and Power values are
obtained for each algorithm and workflows from the testbed WWG and EU Data-
Grid. The results show that MOABC offers the minimum energy consumption
and execution time. The improvement that MOABC provides is at least 28% of
reduction in the energy consumption.

Table 8.3.1: Results of MOABC, WMS, and DBC by workflow. Time (s) and
Power (kW). Testbed EU DataGrid and WWG combination testbed. Energy
Consumption and Responsiveness Optimization.

Workflows MOABC WMS DBC
Time Power Time Power Time Power

Gaussian 439.48 13.2 482.68 42.93 480.82 24.69
Gauss-Jordan 488.24 24.75 534.70 80.06 533.41 46.29

LU 551.53 20.02 612.29 58.55 596.66 34.91
Find-Max 732.37 24.84 803.06 80.31 797.77 46.24

FFT 513.66 21.58 561.24 69.50 558.73 40.09
Stencil 366.12 23.22 400.02 74.66 399.68 43.03

Moreover, we have applied the deadline constraint in order to study how the
meta-schedulers react regarding it (see Table 8.3.2). The meta-schedulers WMS
and DBC, have problems with completing the workflows most of the time, while
MOABC always executes all the jobs. Since the jobs are interdependent, the exe-
cution of all the jobs is usually necessary.

We carried out the same study for the IBERGRID topology and once more,
MOABC provides the best results for both objectives, energy consumption and
responsiveness, as can be seen in Table 8.3.3.
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Table 8.3.2: Study restricted by deadline to check the jobs executed suc-
cessfully (Time (s) and Power (kW)). EU DataGrid and WWG combination
testbed. Energy Consumption and Responsiveness Optimization.

Workflows Constraint MOABC WMS DBC
Deadline Time Power/ Jobs Time Power/ Jobs Time Power/ Jobs

Job Job Job
460 439.48 1.10 12 460.00 4.01 10 460.43 2.31 10

Gaussian 445 439.48 1.10 12 445.00 4.16 9 445.64 2.42 10
430 429.50 1.25 12 430.00 4.16 9 430.73 2.40 9
530 488.24 1.65 15 530.00 5.34 14 525.71 2.99 15

Gauss-Jordan 515 488.24 1.65 15 515.00 5.34 14 505.82 3.23 15
500 488.24 1.65 15 500.00 5.34 14 500.08 3.08 14
560 551.53 1.43 14 560.00 4.53 12 560.80 2.63 12

LU 545 541.58 1.55 14 545.00 4.90 10 545.00 2.81 12
530 521.68 1.81 14 530.00 4.90 10 530.10 2.85 10
750 732.37 1.38 18 721.42 4.99 15 750.68 2.87 15

Find-Max 735 732.37 1.38 18 721.42 4.99 15 735.68 2.87 15
720 713.44 1.58 18 667.32 5.56 12 720.68 2.87 15
540 513.66 1.43 15 507.13 5.33 11 540.06 3.07 11

FFT 525 513.66 1.43 15 507.13 5.33 11 525.06 3.07 11
510 473.83 1.91 15 507.13 5.33 11 510.06 3.07 11
380 366.12 1.93 12 373.48 6.65 10 379.03 3.85 12

Stencil 365 352.16 2.38 12 319.42 7.65 8 365.60 4.06 10
350 347.20 2.75 12 319.42 7.65 8 350.70 4.41 8

Table 8.3.3: Results of MOABC, WMS, and DBC by workflow. Time (s) and
Power (kW). IBERGRID testbed. Energy Consumption and Responsiveness
Optimization.

Workflows MOABC WMS DBC
Time Power Time Power Time Power

Gaussian 28109.49 2998.32 30081.41 4278.31 36090.01 4169.94
Gauss-Jordan 31231.00 5621.40 55437.59 15799.63 38764.00 7818.15

LU 25916.60 4122.58 63754.48 15867.68 45445.66 5733.51
Find-Max 46846.80 5621.58 72328.42 13408.56 60145.21 7818.35

FFT 32791.34 4871.40 52927.30 11620.70 42102.02 6775.80
Stencil 23422.46 5246.52 37663.20 12514.23 29072.86 7317.13
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Regarding the deadline restriction, WMS and DBC still have problems with re-
solving all the jobs from the workflows, however MOABC always executes all of
them (see Table 8.3.4). Therefore, we can confirm that MOABC also provides the
best results in the IBERGRID topology for the studied datasets.

Table 8.3.4: MOABC, WMS, and DBC: Successfully executed jobs with re-
gard to deadline variation. IBERGRID testbed. Energy Consumption and Re-
sponsiveness Optimization.

Workflows Constraint MOABC WMS DBC
Deadline Time Power/ Jobs Time Power/ Jobs Time Power/ Jobs

Job Job Job
35000 28109.49 249.86 12 30081.41 356.52 12 35000.68 390.92 10

Gaussian 30000 28109.49 249.86 12 28409.53 401.08 10 30000.92 407.65 9
25000 24676.96 359.31 12 21724.07 490.19 6 25000.27 480.03 6
40000 31231.00 374.76 15 33262.57 1053.30 12 38764.00 522.11 15

Gauss-Jordan 37500 31231.00 374.76 15 33262.57 1053.30 12 37410.48 532.66 15
35000 31231.00 374.76 15 33262.57 1053.30 12 35000.23 521.21 14
46000 25916.60 294.47 14 44350.05 994.79 9 45445.66 410.02 14

LU 38500 25916.60 294.47 14 36034.15 1097.19 6 38500.38 482.12 10
32000 25916.60 294.47 14 24946.66 1105.96 5 32000.05 495.64 9
61000 46846.80 312.31 18 52728.25 934.51 11 60145.21 434.35 18

Find-Max 51500 46846.80 312.31 18 45915.17 1085.41 7 51500.85 542.92 12
42000 41814.03 460.73 18 30130.15 1042.85 6 42000.41 548.59 11
43500 32791.34 324.79 15 40173.89 1021.57 7 42102.02 451.72 15

FFT 37750 32791.34 324.79 15 30130.11 1191.82 3 37750.71 535.85 11
32000 31074.74 374.08 15 30130.11 1191.82 3 32000.23 603.39 7
29500 23422.46 437.21 12 27619.46 318.03 6 29072.86 609.76 12

Stencil 26250 23422.46 437.21 12 20086.46 1787.68 4 26250.86 749.21 8
23000 22747.43 500.22 12 20086.46 1787.68 4 23000.50 842.89 8
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”You know a conjurer gets no credit when once he has ex-
plained his trick and if I show toomuch ofmymethod of work-
ing, you will come to the conclusion that I am a very ordinary
individual after all.”

Arthur Conan Doyle (The Complete Adventures of
Sherlock Holmes)

9
Conclusions and FutureWork

In this chapter, we present the conclusions performed after the analysis carried out
in the previous chapters. Future work tasks are also proposed to continue with
the multi-objective scheduling optimization in distributed environments research
line.

9.1 Conclusions

In this thesis, six multi-objective algorithms from different fields (physics, biology
and sociology) are evaluated to resolve the job scheduling problem in grid envi-
ronments. These algorithms have been applied to optimize typical and conflict-
ing pairs of objectives: Execution Time and Cost/Energy Optimization. The evalua-
tion is performed with six workflows with interdependent jobs and two different
topologies with heterogeneous resources.
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First, we have compared the proposed algorithms with the standard multi-objective
algorithm NSGA-II in order to evaluate their quality as multi-objective algorithms.
Results indicate that MOABC is the best algorithm for all the cases tested in terms
of hypervolume and coverage metrics. A statistical analysis confirms that it has sig-
nificant differences with regard to the rest of algorithms. Moreover, MOABC out-
performs MOHEFT, the multi-objective version of HEFT, one of the most popu-
lar algorithms for workflow scheduling (that has proved to be better than SPEA2).
Furthermore, MOABC presents a clear superiority in terms of cost/energy and ex-
ecution time regarding the real schedulers: WMS from the most-used European
grid middleware and the well-known DBC. We think that swarm intelligence is
appropriate to solve problems similar to the grid scheduling problem.

Other existing proposals (such as NSGA-II or MOHEFT) generate new solu-
tions by applying a recombination methodology that considers only the knowl-
edge provided by certain parent solutions (for example, the two parents in NSGA-
II or the previous partial solution used in the construction phase of MOHEFT).
Swarm intelligence generates new solutions considering all the information gath-
ered by the entire swarm. This collective behaviour allows the swarm to carry out
the search for high-quality solutions. MOABC goes a step further and provides
three black boxes, which allow different search procedures (one for the employees,
another for the onlookers, and the scout). This schema provides much more ver-
satility than MOGSA or MO-FA, which have mathematical formulas to calculate
the individual updates following the best solutions from the swarm. In the case
of MOABC, the flexibility provided by the black boxes as opposed to the math-
ematical formulas, allow us to adjust the operators to the current problem. For
example, in some cases the mathematical formulas from MOGSA and/or MO-
FA are not appropriate for certain problems, and if used to update an individual it
could have a negative rather than positive effect on the outcome. The black boxes
avoid that situation and provide the flexibility to intelligently adapt the operators
to the specific problem. The search procedures from employed and onlooker bees
in MOABC improve the exploitation process. Moreover, the onlookers are ap-
plied with higher probability for a best solution; the exploitation process is more
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intense for the best solutions. The exploration process is carried out by the scout
bee, which re-initiates the search by assigning new starter solutions to scout bees
and avoiding the stagnation. This strategy allows the algorithm to explore undis-
covered regions of the search space, generating promising solutions that will be
exploited by other groups of bees.

The MOABC algorithm has demonstrated superior quality performance in all
the analyses carried out in this thesis.

9.2 FutureWork

The next immediate step in future work would be the implementation of MOABC
in the middleware gLite to see the studied improvements with regard to WMS.
This line will not be reproducible as we were doing in the study of this thesis. Due
to the evaluation results, we can see that the MOABC results will be more promis-
ing for the WMS, by allowing multi-objective optimization with the confidence
that this algorithm performs better than those presented in current literature to
optimize the job scheduling problem.

The algorithms presented in this thesis are independent from any distributed
platform. Therefore, multiple lines can be continued with the current research. In
fact, cloud computing is an infrastructure where job scheduling is still an issue to
optimize; MOABC and the rest of algorithms can be studied using CloudSim (a
platform created by the authors of GridSim) to later implement the best algorithm
for a cloud infrastructure. In this case both cost and energy optimization are in-
teresting problems, with regards to the cloud business model. Moreover, another
well-known distributed platform, Hadoop, also needs to optimize the job schedul-
ing problem. Overall this line would benefit from optimizing energy consumption
and execution time during the map-reduce process for the tasks involved.

Another point to address is the optimization of more than two objectives in
distributed systems. The multi-objective approaches presented in this thesis are
flexible enough to add more objectives for their optimization. The corresponding
objective functions and their respective heuristics during the exploration and ex-
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ploitation processes would need to be added. Conflicting objectives, such as load
balancing with regard to cost/energy and execution time, would be considered in
order to resolve the job scheduling problem in distributed systems.
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“And, when you want something, all the universe conspires in
helping you to achieve it.”

Paulo Coelho (The Alchemist)

A
Scientific publications arising from this

PhDThesis

All the scientific publications achieved during the research period of this PhD the-
sis are collected and classified in this chapter.

A.1 International Journals

• María Arsuaga-Ríos, Miguel A. Vega-Rodríguez, Francisco Prieto-Castrillo.
“Meta-Schedulers for Grid Computing based on Multi-Objective Swarm
Algorithms”. Applied Soft Computing, Elsevier Science, Amsterdam, Nether-
lands, Vol. 13, Issue 4, 2013, pp. 1567-1582, ISSN: 1568-4946. (Impact
Factor = 2.679 in 2013, Q1)

• María Arsuaga-Ríos, Miguel A. Vega-Rodríguez. “Multi-Objective Energy
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Optimization in Grid Systems from a Brain Storming Strategy”. Soft Com-
puting, Springer, New York, USA, 2014, pp. 1-14, ISSN: 1432-7643, DOI:
10.1007/s00500-014-1474-7. (Impact factor = 1.304 in 2013, Q2)

• María Arsuaga-Ríos, Miguel A. Vega-Rodríguez. “Swarm Approach based
on Gravity for Optimizing Energy Savings in Grid Systems”. Journal of Heuris-
tics, Springer, Dordrecht, The Netherlands, 2014, pp. 1-27, ISSN: 1381-
1231, DOI: 10.1007/s10732-014-9253-2. (Impact factor = 1.359 in 2013,
Q2)

• María Arsuaga-Ríos, Miguel A. Vega-Rodríguez. “Multiobjective Small-World
Optimization for Energy Saving in Grid Environments”. Computer Jour-
nal, Oxford University Press, Oxford, England, 2014, pp. 1-14, ISSN: 0010-
4620, DOI: 10.1093/comjnl/bxu045. (Impact factor = 0.888 in 2013, Q2)

• Francisco Prieto-Castrillo, Antonio Astillero, Elena Rey-Espada, María Botón-
Fernández, María Arsuaga-Ríos. “Application workflow deployments on
computing grids with a complex network topology”. International Journal
of Complex Systems in Science, vol.1 (2), pp. 89-95, 2011. ISSN: 2174-
6036.

A.2 International BookChapters

• María Arsuaga-Ríos, Miguel A. Vega-Rodríguez. “Multi-objective Grid Schedul-
ing”, in: “Automated Scheduling and Planning. From Theory to Practice.
SCI 505”. Springer-Verlag, Berlin Heidelberg, Germany, 2013, pp. 225-249.
ISBN: 978-3-642-39303-7.

A.3 International IEEEConferences

• María Arsuaga-Ríos, Miguel A. Vega-Rodríguez. “Cost Optimization based
on Brain Storming for Grid Scheduling”. Proceedings of the Fourth Inter-
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national Conference on Innovative Computing Technology, IEEE Com-
puter Society, Luton, United Kingdom, 2014, pp. 31-36. ISBN: 978-1-
4799-4233-6.

• María Arsuaga-Ríos, Miguel A. Vega-Rodríguez. “Energy Optimization for
Task Scheduling in Distributed Systems by an Artificial Bee Colony Ap-
proach”. Sixth World Congress on Nature and Biologically Inspired Com-
puting (NaBIC), IEEE Computer Society, Porto, Portugal, 2014, pp. 127-
132. ISBN: 978-1-4799-5937-2.

• María Arsuaga-Ríos, Francisco Prieto-Castrillo, Miguel A. Vega-Rodríguez.
“Multiobjective Optimization Comparison-MOSWO vs MOGSA-– for solv-
ing the Job Scheduling Problem in Grid Environments”. 10th IEEE Inter-
national Symposium on Parallel and Distributed Processing with Applica-
tions, IEEE Computer Society, Madrid, Spain, 2012, pp. 570-575. ISBN:
978-0-7695-4701-5.

• María Arsuaga-Ríos, Miguel A. Vega-Rodríguez, Francisco Prieto-Castrillo.
“Evaluation of Multiobjective Swarm Algorithms for Grid Scheduling”. 11th
International Conference on Intelligent Systems Design and Applications,
IEEE Computer Society, Córdoba, Spain, 2011, pp. 1104-1109. ISBN: 978-
1-4577-1675-1 (Best Student Paper Award).

• María Arsuaga-Ríos, Miguel A. Vega-Rodríguez, Francisco Prieto-Castrillo.
“Multi-objective Artificial Bee Colony for Scheduling in Grid Environments”.
Proceeding of the 2011 IEEE Swarm Intelligence Symposium (SIS 2011),
IEEE Computational Intelligence Society, Paris, France, 2011, pp. 206-212.
ISBN: 978-1-61284-051-2.

A.4 International LNCSConferences

• María Arsuaga-Ríos, Miguel A. Vega-Rodríguez. “Multi-objective Proposal
based on Firefly Behaviour for Green Scheduling in Grid Systems”, in: “Adap-
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tive and Natural Computing Algorithms”. Lecture Notes in Computer Sci-
ence, vol. 7824. Springer-Verlag, 2013, pp. 70-79. ISBN: 978-3-642-37212-
4.

• María Arsuaga-Ríos, Miguel A. Vega-Rodríguez. “Multi-Objective Firefly
Algorithm for Energy Optimization in Grid Environments”, in: “Swarm In-
telligence”. Lecture Notes in Computer Science, vol. 7461. Springer-Verlag,
2012, pp. 350-351. ISBN: 978-3-642-32649-3.

• María Arsuaga-Ríos, Francisco Prieto-Castrillo, Miguel A. Vega-Rodríguez.
“Small-World Optimization applied to Job Scheduling on Grid Environ-
ments from a Multi-Objective perspective”, in: ”Application of Evolution-
ary Computation”. Lecture Notes in Computer Science, vol. 7248. Springer-
Verlag, 2012, pp. 42-51. ISBN: 978-3-642-29177-7.

A.5 Other International Conferences

• María Arsuaga-Ríos, Miguel A. Vega-Rodríguez, Francisco Prieto-Castrillo.
“Multi-Objective Swarm Optimization for Grid Scheduling”. 7th European
Conference on Complex Systems (ECCS 2010), The Complex Systems So-
ciety, Lisbon, Portugal, 2010, pp. 1-2.
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Fernández, María Arsuaga-Ríos. “Application Workflow Deployments on
Computing Grids”. Net-Works International Conference, El Escorial, Madrid,
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A.6 National Conferences
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jetivo para la Planificación de Tareas en la Grid a través de la Tormenta de
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“True optimization is the revolutionary contribution of mod-
ern research to decision processes. ”

George Bernhard Dantzig

B
Other scientific achievements during the

PhDThesis

Different scientific achievements are performed during this PhD thesis and they
are enumerated and classified in this chapter.

B.1 International Stays

• The European Organization for Nuclear Research, known as CERN is a Eu-
ropean research organization whose purpose is to operate the world’s largest
particle physics laboratory¹, Switzerland. April 2012 – July 2012.

¹www.cern.ch/.
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• European Organization for Nuclear Research (CERN)¹, Switzerland. 2012
– Present.

B.7 ResearchGrants

• María Arsuaga-Ríos has been supported by the research grant FPI “Sub-
ject nº 6: Development of multi-objective optimization strategies for meta-
schedulers in GRID environments” published in Official State Gazette (BOE)
nº 237 from the CIEMAT ¹⁰, Spain. Granted period 2011 – 2015. Rejected
for a contract at CERN in 2012.

⁷http://www.evostar.org/2013/.
⁸http://i3media.barcelonamedia.org/.
⁹http://openlab.web.cern.ch/competence-centre/platform

¹⁰www.ciemat.es/
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B.8 Teaching

• Master on Grid Computing and Parallelism (official postgraduate degree),
University of Extremadura, Spain: Member of the teaching staff, giving the-
ory and lab practices of the course “Fundamentals of Grid Computing”, with
the following teaching load:

– Academic year 2011/2012: 1.5 ECTS (15 attendance hours).

– Academic year 2010/2011: 1.2 ECTS (12 attendance hours).

• Technical Trainning Programme, European Organization for Nuclear Re-
search (CERN), Switzerland: Member of the trainning staff, giving theory
and lab practices of the courses “Distributed Front-End Software Architec-
ture for the CERN Accelerators System” (8 Introduction and 8 Advanced
courses) for more than 120 participants, with the following teaching load:

– Introduction Courses: Academic year 2013: 12.8 ETCS (128 atten-
dance hours).

– Advanced Courses: Academic year 2013 : 6.4 ETCS (64 attendance
hours).
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