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Abstract
τ–Lop: Scalably and Accurately Modeling Contention and Mapping Effects

in Multi-core Clusters

by Juan Antonio Rico Gallego

Modern HPC multi-core platforms are complex systems composed of heterogeneous pro-

cessors and a hierarchy of shared communication channels. Achieving optimal perfor-

mance of MPI applications on that platforms is not trivial. Formal analysis using parallel

performance models contributes to depict algorithms behavior and communication com-

plexities, with the goal of predicting their cost and improving their performance.

Current accepted communication models, as the representative LogGP, were initially

conceived to predict the cost of algorithms in mono-processor clusters as a sequence of

point-to-point transmissions characterized by network latency and bandwidth parame-

ters. Although multiple extensions have been proposed for covering issues derived from

current platforms complexities, as contention and channels hierarchy, such specific exten-

sions are not enough to meaningfully and accurately model more than simple algorithms.

As modern supercomputers are built upon cheap commodity boards with a growing num-

ber of cores, intra-node communication becomes progressively more relevant, as well as

the derived contention in the communication channels. These heterogeneous high per-

formance computing platforms need new approaches for the communication performance

modeling to address their complexities.

This work unveils the reasons for the poor fit of the cited representative models in this

domain, and proposes a new model named τ–Lop, which addresses the challenge of ac-

curately modeling MPI communications on heterogeneous multi-core clusters. τ–Lop

is based on the concept of concurrent transfers, and applies it to meaningfully repre-

sent the behavior of algorithms in platforms with hierarchical shared communication

channels, taking into account the effects of contention and deployment of processes on

the processors. It demonstrates the ability to predict the cost of advanced algorithms

and communication mechanisms used by mainstream MPI implementations, such as

MPICH or Open MPI, with a high accuracy. In addition, an exhaustive and repro-

ducible methodology for measuring the parameters of the model is described.

http://www.unex.es
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Chapter 1

Introduction

Twenty years ago parallel machines were converging to an emerging architecture, clusters

of workstations, now known as multicomputers and, more recently, as multi-core clusters.

Cost models such as Hockney [1] and LogP ([2, 3]) addressed the performance of the

network with the goal of guiding the design of a parallel algorithm, i.e., organizing the

computing loads and the communicating events (point-to-point messages) to optimize its

execution time in the cluster. LogP, for instance, characterizes the network performance

based on the parameters network delay, overhead or time invested by the processor in

sending or receiving a message, and gap per message or minimum time interval between

message transmissions. The execution time of a parallel algorithm is now formulated in

terms of these parameters with the goal of analyzing the performance of the algorithm

in the cluster.

LogGP [4] is an extension of LogP with an additional parameter, gap per byte, which

captures the network bandwidth for long messages. LogGP is a representative message-

passing performance model. It assumes that collective algorithms are built upon point-

to-point message transmissions deployed over a network of mono-processors and models

an algorithm as a sequence of stages, each one with the cost of a single point-to-point

transmission. For instance, a Broadcast operation on P processes based on the Binomial

Tree algorithm has a cost that equals the height of the tree (dlogP e) times the cost of a

single transmission between two processes (see Figure 1.1). In modern HPC platforms

this is an over-simplification that leads to important errors in the cost estimation of an

algorithm, as it will be discussed in this thesis.

Modern high performance computing systems are composed of nodes with a significant

number of cores per node and deep memory hierarchies, connected by high performance

networks. Scientific applications face the challenge of obtaining as much performance as

possible from such complex platforms. Hence, another branch of interest in LogP/LogGP

1
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is its ability to model the underlying message-passing algorithms that implement the

primitives of the MPI standard [5]. MPI is, and will continue to be, the de facto standard

that defines the communication interface used by this type of applications, despite of

others programming models have appeared to supplement its scalability problems ([6,

7]). MPI modeling is a critical issue, because it allows a formal machine-independent

performance comparison and analysis of different implementations of the standard [8–

11].

The MPI execution model is based on processes communicating by message passing,

including point-to-point and collective operations, which involve a group of processes.

Frequently used, collective operations are a key issue in achieving performance and

scalability in parallel applications, and their costs have an important influence in the

global performance of MPI applications. A well known profiling study by Rabenseifner

[12] shows that MPI applications spend more than eighty per cent of communication

time in collective operations; hence, efficient algorithms for the Broadcast or Reduce

have attracted special interest [13].

Communication performance models contribute to understand the collective algorithms

behavior and aid in the optimization of applications. Performance of the underlying

algorithms implementing MPI collectives vary significantly with parameters as the mes-

sage size, the number of involved processes and the platform characteristics. Hence, a

collective operation can be implemented by algorithms from a preset menu, with one of

them chosen at runtime based on the value of such parameters. In general, an algorithm

is executed as a sequence of steps, and defines a point-to-point communication graph be-

tween the processes of the group. Algorithms are designed with the goals of minimizing

the number of such steps, optimizing the use of the underlying communication channels

available in the system, or fitting a particular network technology or topology. Besides,

achieving these goals in modern complex multi-core clusters requires to consider the hi-

erarchy of communication channels (imposed by the difference in channels performance),

the implications of process distribution over the cores of the platform (virtual topology),

and the effects of the contention due to the use of shared communication resources.

Modeling and formal analysis of such algorithms is important to gain insights into their

performance. Due to the complexity and the lack of accuracy of the communication

modeling in modern heterogeneous HPC platforms, performance models have been par-

tially left behind in favor of intensive experimental measurements, more expensive in

computational time, system dependent, and which not ensure higher accuracy [14].

To get a feel of collective cost modeling, the well known Binomial tree broadcasting

algorithm is used here. A process named root sends data to the rest of the processes in

the communicator, an isolated group of P processes identified by their rank numbers,
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Figure 1.1: The broadcasting algorithm as a Binomial tree for P = 16 processes
and dlog2(P )e = 4 stages. An arc is a message transmission between two processes.

Processes are identified by rank, 0 being rank of the root.

defined in MPI as a consecutive integer number in the range 0 . . . P−1. Figure 1.1 shows

the algorithm deployment. The root process sends a message to the process with rank

root + P/2. The algorithm continues recursively, with these processes as roots of their

own trees with P/2 processes. It completes in dlog2 P e stages, the height of the tree; so,

the cost of the algorithm is T = dlog2 P e × (α+mβ) under the Hockney model, where

m is the size of the message, and α is the latency and β is the inverse of the bandwidth

for the specific network.

Current MPI implementations adopt common well established point-to-point algorithms

in the inter-node1 communication, as the Binomial tree formerly examined. However,

each implementation develops its own techniques in the intra-node domain. Two pop-

ular MPI implementations, MPICH [15] and Open MPI [16], are mainly considered in

this work. MPICH builds intra-node collectives upon point-to-point message commu-

nications. Open MPI promotes a software architecture based on components providing

different communication mechanisms, as the SM (shared memory) collective compo-

nent, which communicates processes in shared memory through a common memory

zone mapped to processes involved. As a consequence, point-to-point Hockney and Log-

P/LogGP are not the indicated modeling tools for Open MPI on shared memory, as it

will be demonstrated in this thesis. Besides, their difficulties in modeling shared memory

performance seem to have been tacitly recognized by the HPC community. In fact, to

the best of the author’s knowledge, no report exists on the practical ability of the LogP

family of algorithms to model the performance of MPI in shared memory. Yet, repre-

sentative model LogGP has been incorporated in the discussions from a formal point of

view and its parameters were measured in the studied platforms.

1The term intra-node refers to the communication between two processes by means of shared memory
and the term inter-node to communication by means of a network.



Chapter 1. Introduction 4

The more recent model lognP [17–19] has nothing to do with LogP, although they

are similar in name. lognP was also conceived, just as LogP, to model point-to-point

communication, but with a new key feature, each individual data transfer that occurs in a

message transmission. lognP introduces the concept of transfer, and it describes a point-

to-point transmission as a sequence of transfers or movements of data between memory

entities, that may vary in number depending on the communication channel. The cost

of a transfer is not directly related to hardware, but to the middleware, i.e., the software

providing services of data movement to the applications, and might include costs from

packing/unpacking non contiguous data. Nevertheless, lognP is still simplistic and it

considers a parallel algorithm as a set of point-to-point message transmissions. Indeed, it

has not demonstrated its capabilities to model complex algorithms nor even broadly used

basic techniques as the segmentation of messages in shared memory communication. In

the author’s view, the transfer is the building block that conveniently suits the purpose

of modeling the behavior of MPI algorithms in shared memory.

1.1 Motivations

Communication performance models provide a theoretical framework for the analytic

representation of the communications and their associated costs based on system pa-

rameters. Every model operates on a set of input platform-related parameters. An

adequate election of such parameters is essential to achieve an accurate cost estimation

and a meaningful representation. Processes communicate through different physical

channels with very different performance, and usually sharing the available bandwidth.

Direct transmissions are possible in the same node using operating system modules,

and even in different nodes through high performance networks as Infiniband. On the

other hand, that platforms execute applications based on parallel programming mod-

els different from message passing, as RMA (Remote Memory Access). Performance

models have to deal with all these complexities, something hard to represent with the

close to hardware LogGP parameters. Important features including advanced transmis-

sion mechanisms (such as RDMA and OS bypass), middleware related costs, or network

technology, should be captured by an accurate and scalable cost estimation model.

The type of parameters divides the known models in two broad groups: hardware and

software. Hardware models, such as Hockney or LogGP, represent communication costs

with hardware related parameters, such as network latency or bandwidth. They were

initially created for homogeneous mono-processor clusters, and the increasing complexity

of modern platforms limits their accuracy. In addition, they show weakness in repre-

senting different mechanisms provided by the software such as communication protocols,
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or in estimating the impact of the communication middleware on the communication

cost. These issues are partially addressed by adding new parameters to include addi-

tional costs in the communications (see chapter 2). Nevertheless, these extensions are

oriented to very specific platforms and topics. By contrast, software models, such as

lognP , abstract the hardware complexities by the adoption of parameters related to the

communication middleware, with the drawback of a possible loss of network technology

details.

1.2 Goals

The main goal of this work is to propose a new performance model named τ–Lop. It

is a software parametrized parallel model aimed to represent parallel algorithms and

accurately and scalably predict their cost. Just as lognP , it is rooted on the concept

of transfer. It will be shown that it is also capable of capturing issues that are specific

to shared communication channels, e.g., the formerly mentioned simultaneous access to

shared memory by all the processes involved in a collective, or message segmentation,

as discussed by Rico and Dı́az in ([20, 21]).

τ–Lop provides a simple and powerful abstraction: to consider a message transmission

composed of a sequence of, possibly concurrent, transfers progressing through the multi-

core cluster hierarchy of communication channels. The transfers reflect data movements

between hardware or software agents, and are modeled based on the underlying archi-

tecture characteristics. The decomposition of a message transmission into a sequence of

transfers allows for an incremental analysis of the algorithm, from a high level represen-

tation to low platform-specific details. An atomic point-to-point message transmission

could be used as a building block to model a collective operation, but deeper insight can

be obtained by further considering the transmission as a sequence of data movements

through a communication channel.

Although the decomposition of transmissions into transfers is not a new concept ([17]),

τ–Lop goes beyond in natively representing the concurrency in the access to the commu-

nication resources shared by parallel transfers. This contention effect has a significant

impact on the algorithm performance, so that its consideration in the model results in a

substantial improvement in the accuracy of the predicted cost. In stage 3 of Figure 1.1,

for instance, eight concurrent transfers contend for the bandwidth of the shared channel,

with a cost usually higher than the cost of stage 0. Furthermore, the model considers

that a transfer does not have to happen just between a sender and receiver, a restriction

of previous models, but also in the so-called collective transfers. In this way, τ–Lop pro-

vides with an expressive, straightforward and hierarchical representation of algorithms,
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covering the point-to-point approach of MPICH, and also the alternative mechanisms

adopted by Open MPI shared memory (SM) collectives and the cost of algorithms built

under parallel programming models as RMA.

The τ–Lop model addresses the influence of the deployment of processes over the system

processors on contention. In a multi-core cluster with hierarchical organization of com-

munication channels, the mapping of processes can improve or aggravate the contention

effect. τ–Lop takes into account the way the virtual topology defined by the algorithm

is mapped onto the physical topology of the machine. This ability provides a more real-

istic representation of the algorithm, leading to a better cost prediction, as introduced

by Rico and Dı́az in [22] and demonstrated by Rico et al. in [23].

1.3 Organization of the Thesis

Each chapter of this document introduces aspects of the proposed model incrementally,

which are discussed, evaluated and compared to other model approaches.

Chapter 2 gives a survey of the most important approaches to the parallel analytical

modeling of algorithms and applications on current and past platforms, including the

MPI communication libraries used in scientific applications. It revisits the LogGP and

lognP models and examines their weaknesses to model complex algorithms in current

platforms.

Chapter 3 introduces the basic aspects of the τ–Lop model, the parameters and their

meanings in comparison with other models, and the methodology to build a model

from them. Point-to-point communication modeling is introduced, including different

types such as Send-receive or Exchange of messages. A general expression describing

communication between two processes is developed. This chapter shows the impact

of the contention on a shared communication channel, and how τ–Lop manages that

contention, taking as an example shared memory. As well, the concurrency operator

is defined, an operator that allows to expressively represent concurrent point-to-point

message transmissions sharing a communication channel.

Chapter 4 explains τ–Lop application to key algorithms of MPI collectives, besides intro-

ducing its potential as an analytical inference model for the prediction of the communica-

tion cost. One shared channel is considered for simplicity, and some complex algorithms

are experimentally evaluated against the actual measured cost and the estimations of

other models.
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Chapter 5 extends the model to cover the issue of the communication channels hierarchy.

Processes in multi-core clusters communicate through shared communication channels

with uneven performance depending on their placement in the system, called the map-

ping of the processes. The performance of the collective algorithms depends highly on

such mapping, and the models have to consider this fact in the estimations.

Chapter 6 exhaustively shows the capabilities of the τ–Lop model through a two cases

of study. Their complexity exceeds that commonly addressed in previous related works,

which allows to state that the model can be used and adapted to broadly available

platforms and systems.

Chapter 7 covers a critical aspect in a model, the parameter measurement methodology.

The accuracy in the cost estimations of a model highly depends in the correct assessment

of its parameters. The methodology has to measure the behavior of the channels under

contention, hence a detailed approach based on a set of simple operations is described,

which can be extended for accuracy in a concrete platform by adding experiment costs

and applying a linear regression method. This chapter also describes the approach to

report the error in the cost estimation of the measurements along this work.

Finally, chapter 8 gives the conclusions of the work.

This thesis also includes an appendix for on-work extensions to the model exploring its

capacities in the field of the heterogeneous computing systems. Appendix A describes

the application of the model to the evaluation of the communications of hybrid scientific

applications executing on heterogeneous platforms. Current platforms trend is to include

different processing elements with different characteristics of performance, such a com-

bination of CPU multi-core nodes and GPUs. Each process running in these platforms

has to be provided with an unbalance computation load in order to balance the global

system workload. However, the communications in this type of applications are not ad-

dressed for optimization, and it is usually done experimentally. τ–Lop has been extended

to achieve the goal of helping in the modeling of these application communications and

providing a framework to facilitate their optimization.





Chapter 2

Related work

Next, a summarized survey of the large amount of available literature about performance

modeling is provided. Models are classified in hardware and software, based on the type

of parameters each model is composed. Then, extensions for that models, as well as

new proposals, covering different features of modern architectures, are analyzed and

their limitations discussed. Through this document, a new proposed model is compared

with the representative mainstream models of each type, and when necessary, the dis-

cussion includes extensions to the models which cover aspects of the specific platforms

considered. Finally, libraries implementing the MPI standard used in this document to

evaluate the model discussed are introduced.

2.1 Hardware models

Most of the current communication performance models derive from Hockney [1] and

LogP [3], oriented to support the message passing model on mono-processor clusters.

They model an algorithm as a sequence of point-to-point transmissions, with the goal

of organizing the computing loads and the communication events to optimize its ex-

ecution time in the cluster. Both are linear models, in the sense that they represent

the point-to-point cost by a linear function that involves the size of the message and

a set of network-related parameters. Together with benchmarks measurements, these

simple models have been used for comparison of different MPI collective algorithms in a

given distributed system, for ranges of message sizes and numbers of involved processes.

Chan et al. [24, 25] analyze some MPI collective algorithms and propose optimization

for their implementation in distributed memory systems. Thakur et al. [26, 27] use the

Hockney model to guide the selection of one among multiple algorithms for a collective

9
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Figure 2.1: A point-to-point message transmission cost represented as the overhead
in the sender (oS) plus the gap per byte (G) multiplied with the number of bytes of the
message (m = 5), and the latency of the network L, and finally the receiver overhead

oR. In the transmission of an isolated message, g parameter is not present.

operation depending on the message size, with the goal of improving the overall per-

formance in clusters with switched networks running the MPICH library. Other works

address the development and optimization of efficient algorithms for a specific range of

MPI collectives: a Hockney based optimal Broadcast is developed by Träff [28] and eval-

uated in clusters of SMP nodes, algorithms for the reduction operations are proposed by

Rabenseifner et al. in [29], and the Alltoall collective is discussed by Kale et al. in [30].

LogP characterizes the cost of a point-to-point message transmission according to the

four parameters that compose its name: network delay (L), the overhead or time invested

by the processor in sending or receiving a message (o), the minimum time interval

between message transmissions (g) and the number of processors (P ) in the cluster. With

respect to Hockney, the more advanced LogP cost model splits the network latency in the

network delay (L) and the processor overhead (o), what allows to model the computation

and communication overlap. It supposes that a long message is sent as a sequence

of shorter messages, using the minimum time interval between message transmissions

(g). Culler et al. [2] present and analyzes some example algorithms commonly used in

applications, such as Broadcast, summation, or FFT.

Alexandrov et al. LogGP model [4] appears as a new model that extends LogP with

an additional parameter, gap per byte G, the time between two consecutive byte trans-

missions. Following the LogP convention, LogGP characterizes the communication cost

according to the following parameters: the network latency (L), the overhead or time

a processor is engaged in the transmission or reception of a message (o), the time in-

terval between consecutive message transmissions (g), and the time interval between

consecutive byte transmissions (G), which captures the network bandwidth for long

messages. P is the number of processors in the cluster. Figure 2.1 shows the point-to-

point transmission of a message between two processes. The cost of the transmission

is formulated in terms of the parameters and the size in bytes of the message (m), as
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Figure 2.2: Transmission of a point-to-point message in k = 3 segments of S = 5
bytes in LogGP.

oS + L + (m − 1)G + oR, i.e., the overhead in the sender processor, the latency in

the network of the first byte, the time of sending the rest m − 1 bytes of the message,

and the overhead in the reception processor. For simplicity, it is usually assumed that

o = (oS + oR)/2 and g ≤ L + o. Conclusions are not affected by these simplifications

which are consistent with measured parameter values. Hence, the cost of a point-to-point

message transmission of size m is:

Tp2p = 2 o+ L+ (m− 1)G (2.1)

Segmentation of messages is a technique commonly used by MPICH and Open MPI

in shared memory transmissions. It operates by breaking up the message into smaller

chunks known as segments and sending them in sequence. Figure 2.2 represents a point-

to-point transmission of a message, split into k segments (k = 3) of size S. The cost is

modeled as:

Tp2ps = 2 o+ L+ (S − 1)G+ (k − 1)
(
g + (S − 1)G

)
(2.2)

As will be explained later, the segments allow overlapping of the sender copy (to the

shared buffers) with the receiver copy (from the shared buffers), accelerating the com-

munication. These buffers are not explicitly represented in the LogGP model.

LogGP, together with the aforementioned models, claim their ability to model the point-

to-point message transmission primitives of the MPI standard, as shown by Al-Tawil et

al. in [31], and upon them, the message passing algorithms underlying the collective

primitives of MPI, on mono-processor clusters. For instance, LogGP understands the

Binomial tree algorithm supporting the MPI Bcast collective as a sequence of parallel

point-to-point transmissions (as with Hockney). It estimates its cost by simply multi-

plying the cost of a stage with the height of the tree:

Tbcast = dlog2(P )e × Tp2p (2.3)
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As a result, for instance, the cost for P = 65 and that for P = 128 in a multi-core will

be the same, which is far from being a correct prediction.

Thorough studies of known collective algorithms and their performance evaluation under

the LogGP model can be found in Pješivac-Grbović et al. [13] and Hoefler [9].

Parallel algorithms are also modeled in [13] using PLogP [32, 33]. The Parametrized

LogP model slightly changes the meaning of some parameters of LogP and makes them

(except latency) dependent on the message size. This model is also applied to a wide

range of collective algorithms in [34] by Estefanel and Mounié. The cost of a point-to-

point transmission modeled under PLogP is Tp2p = L + g(m), with L the end-to-end

latency from process to process, and g(m) the gap, i.e. the minimum time interval

between consecutive message transmissions. The gap contains the overheads os(m) and

or(m), the time intervals the CPUs on both sides are busy sending and receiving. The

definition of the parameters as a function of the message size m, main contribution of

the PLogP model onto LogP, improves the accuracy of the model.

2.2 Software models

The increasing complexity of multi-core cluster architectures and the implementation

of different intra-node communication techniques by current MPI libraries, lead to the

necessity of new approaches to performance modeling. Albeit similar in name to LogP,

Cameron et. al lognP [17], [19], [18] is a different model addressing the middleware

costs of the communication. The lognP model assumes that a message transmission

takes place between two processes as a sequence of implicit transfers (copies) between

the source and the destination buffers. The cost of a transmission is the sum of the costs

of its n individual transfers:

Tp2p =
n−1∑
i=0

(
max{gi, oi}+ li

)
, (2.4)

where o (overhead) is the amount of time the processor is engaged in each transfer for a

contiguous message, which is represented by g (gap) when contention time is considered,

and l (latency) is the additional processor time when the message is not contiguous in

memory. Figure 2.3 shows an example of a message transmission in shared memory. Here

n = 2, because the transmission needs just two transfers going through an intermediate

buffer. On contiguous messages li = 0, ∀ i and, if the next reasonable simplifications

max{oi, gi} = oi and oi = o ∀ i apply, then (2.4) becomes

Tp2p = 2 o (2.5)
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Figure 2.3: Concept of message transmission in log2 P . Ps and Pr are the sender
and receiver processes respectively. The message transmission occurs in two transfers
through the shared memory channel. Each transfer has different cost parameters, but

equaling them is a reasonable approach in this context.

These foundations lead to simplistic modeling expressions of algorithms. For instance,

the cost of the Binomial tree broadcast with contiguous messages is modeled, similarly

to LogGP, as:

Tbcast =
⌈
log2(P )

⌉
× Tp2p = dlog2 P e (n o) (2.6)

The transfer concept conveniently suits the purpose of modeling MPI communication

algorithms. Nevertheless, this model lacks of several features commonly found in the

current middleware implementing the MPI standard. First, although segmentation has

a strong impact on the MPI intra-node performance, it is not explicitly considered in

lognP , even though the segmented and non-segmented transmissions of a message give

different values of g and o. It considers a message cost as a half of the actual measured

cost of a point-to-point message transmission in shared memory. Second, works intro-

ducing the model do not define neither the contention meaning nor its measurement1

(g parameter). Third, although the model is recent, it does not represent the mixture

of communications through the different channels present in current systems. Last, the

packing cost is usually not attributable to a point-to-point transmission when it is exe-

cuted in the context of a collective operation, but the cost is included at the beginning

and end of the collective.

2.3 Other models and extensions

In addition to new model proposals, extensions of the mainstreams models contribute

with a variety of add-ons to represent different aspects of the communication in the

complex modern HPC platforms. Amongst these, specific mention can be made of costs

derived from specific network technologies, different types of communication and syn-

chronization, and heterogeneous architectures. For instance, extensions of the LogGP

model addressing the former issues include the following. Ino et al. LogGPS [35] covers

1In fact, except enumeration of the parameter, the contention is not dealt with this works.
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aspects of synchronization, providing the rendezvous cost as a new parameter S, which

represents the cost of the communication protocols used in the data transmission. Chen

et al. LogGPO [36] accurately captures the overlap of communication and computa-

tion in non-blocking transmissions. More specific cost models fitting different network

technologies also exist. Hoefler et al. LogfP [37] models short messages in Infiniband

networks. The authors use the model to study the effects of multi-stage switches on

that kind of networks in [38]. Paper [39] by Kim and Lee analytically estimates the

communication delays in Myrinet networks.

Next, some of the proposals are summarized, with a particular focus on those facing

the hierarchy of the communication channels, the contention, and the heterogeneity of

clusters.

2.3.1 Hierarchy

Modern HPC clusters are composed of multi-core nodes connected by high performance

networks, which allows a hierarchical classification of the communication channels based

on their different performance. A process communicates with the rest using different

channels depending on its placement, for instance, using shared memory if the destina-

tion executes in the same node, or through the network if the destination is in a different

node. The most known model covering communication hierarchy derives from LogGP.

Yuan et al. LogGPH [40] supports representation for hierarchical architectures using a

different set of parameter values for each communication channel. The parameters are

measured separately and used to represent the cost of an algorithm as a composition

of point-to-point transmissions progressing through different channels. Unfortunately,

algorithms usually show a complex behavior that usually makes difficult to separate

simultaneous communications through different communication channels, as it will be

shown in chapter 5. In the other hand, LogGPH can analytically model a kind of al-

gorithms developed to perform in a hierarchical way on multi-core clusters ([41]). In a

broadcast, for instance, first, an inter-node broadcast is executed between the represen-

tative process in each node, and then a local shared memory Broadcast runs inside the

node with the representative acting as root. These hierarchical algorithms are modeled

in phases, involving different communication channels.

In the software models side, Tu et al. mlognP [42] extends lognP by distinguishing

the variety of communication channels2 in a system. In multi-core clusters, for instance,

intra-socket, inter-socket and inter-node communication channels can be found, perform-

ing in a hierarchy. The locality of a process determines the communication channel used

2We will use the term communication channel, though the term communication level is used in the
original definition.
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for communicating to another process, and so the communication cost. When only one

communication channel is considered, mlognP and lognP become equivalent.

2.3.2 Contention

Concurrent access to a shared communication channel shrinks its available bandwidth

and degrades the overall performance. Modeling the cost of those common situations is

required to provide with an accurate estimation, for instance, of collective operations.

Sound works directly related to the contention modeling issue in high performance net-

works are carried out by Bravetti et al. in [43], Martinasso et al. in [44] and by Jerome

et al. in [45] for Ethernet, Infiniband and Myrinet networks respectively. The authors

generate specific models for each type of network based on the study of network flow con-

trol mechanisms and experimentally deduce penalty coefficients, derived from resource

sharing experiments, and categorize different types of conflicts. Zhu et al. [46] show that

a model needs to address the contention derived from bidirectional TCP communication

in a full-duplex Ethernet network, which diminishes the maximum reachable network

bandwidth. Another LogGP derivative, the LoGPC model [47] proposed by Moritz and

Frank, introduces a large set of parameters to evaluate the contention in mesh networks

with wormhole routing. Work by Steffenel in [48] introduces the contention factor, rep-

resented as a parameter exclusively affecting the modeling of the network performance,

which is incremented linearly from the contend-free communication cost. This paper

evaluates the Total Exchange collective under this assumption.

In general, contention-aware studies provide hardware models very close to the specific

network technology. They usually deal with a limited number of nodes and, even more

important, with a short number of cores per node. These works do not address the

shared memory effects in the overall communication cost and, hence, omit the impact of

the virtual topology of processes on the cost of the collective algorithms. Besides, only

a limited set of simple collectives have been evaluated against the generated models.

2.3.3 Heterogeneity

In addition to the different performance of the communication channels in an hierar-

chical system, an heterogeneous system includes processing elements with differences in

performance and features. Currently, most common HPC heterogeneous systems are

composed of multi-core CPUs and GPUs.

Bhat et al. work [49] proposes a model-based framework for developing efficient schedul-

ing algorithms for the Broadcast and multicast collective communication patterns in
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heterogeneous platforms, including processor and network heterogeneity, and provides

performance evaluation mechanisms.

Scheduling algorithms for efficient Gather operation in distributed heterogeneous sys-

tems and their performance evaluation using a communication performance model are

addressed by Hatta and Shibusawa in [50], while Ooshita et al. [51] found an optimal

Gather scheduling time for an heterogeneous cluster system characterized by the number

of the processors and the number of processors of distinct types.

HLogGP [52] is a model based on LogGP that takes into account both the processor

and network heterogeneity of a system. The scalar parameters of LogGP are expanded

to represent the os, or and g values of the p processors as vectors of p components, and

the L and G values of each pair of processors as matrices of p × p. HLogGP provides

with a methodology to measure the parameters and validate the estimations in a small

cluster.

Lastovetsky et al. work in [53] addresses hierarchical communications including an

Ethernet network connecting a set of heterogeneous processors. The model proposed,

LMO, includes the impact of the heterogeneous processors on the global communication

time for a set of point-to-point, one-to-many (Scatter and Gather) and broadcasting

operations. LMO and its parameter measurement procedure is deeply discussed by

Lastovetsky et al. in [54] and [55]. LMO is a communication performance model aimed

to estimate the cost of algorithms in heterogeneous, in addition to homogeneous, systems.

Similar to LogGP, it carefully separates the cost related to the processors and the network

in order to gain more accurate communication cost predictions. The cost of a message

transmission between the processors i and j is:

Ti→j = Ci +mti + Cj +mtj +
m

βij

Ci and Cj are fixed processing delays, and reflect the processor heterogeneity. ti and tj

are delays of processing a byte, and reflect the communication channels heterogeneity.

βij is the transmission rate of the channel connecting the processors. A disadvantage of

this model is the amount of parameters to be measured, which tends to p2 in a platform

with p processors.

2.4 Libraries

Three implementations of the MPI Standard have been considered to evaluate the models

described in this document: the well known and broadly used MPICH [15] and Open MPI

[16] libraries, based on classic processes, and AzequiaMPI, a complete implementation
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of the MPI 1.1 Standard based on threads, described by Dı́az and Rico in [56, 57]. The

Intel IMB benchmark suite ([58]) is the tool used for performance measurements of the

point-to-point and collective communications in the implementations

2.4.1 MPICH

MPICH builds collectives upon the point-to-point communication library Nemesis [59].

Nemesis communicates two processes in the same node by lock-free message queues of,

by default, 64 KB memory blocks called cells3. Queues and cells are allocated in a

memory area mapped by each local pair of processes.

MPICH-Nemesis uses other communication protocols for improving the performance of

communications in shared memory. For instance, to improve the short message trans-

mission latency, MPICH-Nemesis sends small messages using a technique known as ”fast

box”, an intermediate buffer per local pair of processes with boolean flag that determines

if data is ready to be read or written.

2.4.2 Open MPI

Open MPI promotes a software architecture based on components (MCA, for Modular

Component Architecture). Every functionality is paid by a well defined interface known

as framework. An MCA framework uses the MCA’s services to find and load components

at run time. An MCA component is a standalone collection of code that can be inserted

into the Open MPI code base, either at run-time and/or compile-time. COLL is a frame-

work for collectives including the Tuned and SM (shared memory) components. Tuned

component implements collectives similarly to MPICH, as a sequence of point-to-point

transmissions between the involved processes. SM component implements collectives

based on a different approach. It does not use point-to-point communication to build

collectives, but it maps a memory zone which is common to all the participant processes

for interchanging messages in shared memory.

2.4.3 Operating system modules

Operating system modules can provide services of data movement between processes

without an intermediate copy in shared memory. This technique improves the trans-

mission bandwidth of large messages. However, it has proved to be inefficient in short

3The size of a cell can be changed in the implementation, and so it is done in most of the examples
of this thesis (to 8KB). The reason is to increment the number of segments fitting in the message sizes
considered in the measurements.
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messages due to the heavy overhead introduced by the system calls. Examples of this

approach are LiMIC [60] and KNEM [61]. KNEM transfers data from one process to

another through a single copy within the Linux kernel. It is used by MPICH-Nemesis

and some components of Open MPI to improve point-to-point messages. Paper [62]

presents a KNEM extension that implements collective operations directly in a Linux

kernel module, and achieves bandwidth improvements in the IMB benchmark between

40% and 75% with respect to Open MPI. A similar approach is achieved by Rico and

Dı́az in the implementation of an Open MPI component for executing collective opera-

tions in [63].

Operating system modules suppose a meaningful example of the importance of the mid-

dleware costs, which a model needs to represent to accurately predict the cost of appli-

cations in current HPC platforms.

2.4.4 Thread-based MPI

Thread-based MPI implementations are inherently more efficient in shared memory than

their process-based counterparts. Threads executing in the same node share the same

address space, which allows message transmissions in a single transfer without a signifi-

cant overhead, and precludes reserving additional common mapped memory. This issue

is becoming more and more important given the current trend to reduce the memory

per core rate in modern multi-core platforms. MPC-MPI [64] and AzequiaMPI are MPI

thread-based implementations. They use the same techniques as MPICH and Open

MPI for inter-node communication, and, in the case of AzequiaMPI, it uses fast boxes

to improve the latency of the very short messages in shared memory.



Chapter 3

Proposal: The τ–Lop model

This chapter describes the goals and features of the proposed model, named τ–Lop.

Parameters of the model are introduced, and the modeling of point-to-point messages in

shared memory and network communication channels are discussed, including commonly

used techniques as message segmentation. Furthermore, the concurrency operator is

introduced to represent the contending transmissions through a communication channel.

Finally, the chapter shows a generic expression representing the cost of a a point-to-point

transmission, which supposes the basis of the model.

3.1 Motivations and goals

Main τ–Lop key challenge is to represent and accurately model the cost of MPI oper-

ations, both point-to-point and collectives, when deployed on multi-core clusters, com-

posed of a hierarchy of communication channels that allow concurrent transfers.

The goals of the model are twofold:

• Representing the cost of the algorithms underlying the implementation of collec-

tive operations and applications. Although simple representation is important, it is

necessary to model the techniques actually used in the point-to-point and collective

operations in current MPI implementations. In order to grasp a realistic view that

allows their optimization and tuning. Zero-copy transmissions with the support

of the operating systems or the commonly used segmentation of large messages in

shared memory are two examples of communication which need a more explicit

modeling that provided by current models. Beyond the point-to-point transmis-

sions, complex scenarios need to be modeled and analyzed providing increasing

levels of abstraction, to extract useful information from their representation.

19
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• Accurately and scalably estimate the cost of algorithms and applications. The

choice of the parameters and their assessment method are critical to reach a good

level of approximation to the actual cost of an algorithm running in an specific

platform. As well, platform characteristics have to be captured in the parameter

values in order to achieve scalability in the predictions.

τ–Lop achieves the first goal introducing the concept of concurrent transfer. A concur-

rent transfer is the building block of a point-to-point transmission. It allows to abstract

from hardware complexities and enables a constructive modeling method to represent

MPI communications in a more intuitive way. These characteristics of the model are

covered in this and the next chapter, together with its accuracy in the estimation of

algorithms costs.

The second goal is faced with an incremental methodology for estimating the values of

the parameters. This methodology is based on benchmarking a simple RING operation,

and can be extended for improving the accuracy with the addition of more operations.

These issues are discussed in chapter 7. The obtained values are used in the prediction

of communication costs along the examples.

3.2 Communication issues covered by τ–Lop

In order to fulfill goals, a model needs to accomplish some of the issues commonly

presented in data communication on current platforms. τ–Lop has been designed to

model the next ones:

Concurrent transfers: A cost model has to consider the fact that a communication

channel bandwidth shrinks when transfers are concurrent. The cost of a transfer (a

copy or data movement through a channel) is represented as c(m, τ), which is a function

of the message size (m) and of the number of concurrent copies on the channel (τ).

Figure 3.1 represents the cost of broadcasting a buffer by a process running in core

0, that is read by P = 1 . . . 128 cores of a shared memory ccNUMA machine. If all

the copies are simultaneous (concurrent), the memory bandwidth gets exhausted. As a

result, the cost grows with the increase of the number of transfers. Current models do

not consider this fact, which leads to a lack of scalability in their cost estimations.

Collective transfers: A transfer need not be just between a sender and a single receiver,

a restriction of lognP and LogGP and their derivatives. For instance, as will be shown

later in chapter 4, the Open MPI COLL SM component implements the MPI Bcast



Chapter 3. Proposal: The τ–Lop model 21

2

4

6

8

10

12

8 16 32 64 96 128

T
im

e
 (

m
s
)

# parallel copies

Copy function c(m,τ). Medium size messages

8 KB
64 KB
128 KB

256 KB

512 KB

768 KB

1 MB

50

100

150

200

250

300

350

400

8 16 32 64 96 128

T
im

e
 (

m
s
)

# parallel copies

Copy function c(m,τ). Large size messages

1 MB

4 MB

8 MB

16 MB

24 MB

32 MB

Figure 3.1: Cost of a copy as a function of message size (m) and the number of pro-
cesses concurrently copying (τ) in Lusitania, a 128-core NUMA machine. All processes

copy from the same memory buffer, stressing the communication channel

collective operation using shared memory regions that are written by a sender and read

simultaneously by several receivers in a collective transfer.

Message segmentation: Transmissions that require an intermediate copy, as those be-

tween processes in shared memory, generally use message segmentation techniques for

large messages. Segmentation demands less intermediate memory because storing the

whole message is not needed. It comes with the additional cost generated by synchro-

nization of the processes in the interchange of segments, as well as by the effect of

concurrent copying by the sender and the receiver. Despite that, it speeds up the com-

munication progress by overlapping the sending of segments with their reception [59].

Other techniques exist for improving message transmission in shared memory. Operat-

ing system modules, as KNEM, provide services of data movement between processes
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without an intermediate copy, as well as other MPI implementations as MPC-MPI and

AzequiaMPI make direct copies in shared memory between ranks address spaces, by

implementing ranks as threads.

Costs attributable to protocol: The MPI standard includes a wide range of communica-

tion modes, including the synchronous send (MPI Ssend), which enforces sender process

to wait until receiver arrives. In addition, limitations on buffer space impose MPI li-

braries to set up communication protocols, such as rendezvous, so that the sender waits

for the receiver, who on arrival notifies the sender to proceed. Protocols charge addi-

tional cost, mainly at the beginning of the communication, which must be considered in

a model.

Computational cost: Collectives such as MPI Reduce, which involve application of an

algebraic operation to the message data, add cost to the communication. Their modeling

is direct, and although is beyond the scope of this document, some examples of modeling

and cost estimation of MPI collective algorithms including computation are provided.

3.3 The parameters of the model

To represent the foregoing communication issues, a set of six parameters are defined

below for τ–Lop:

L: Transfer time (L) is the cost of a transfer and is represented as L(m, τ). As the

transfer may flow concurrently with others (see Figure 1.1), its cost depends not only

on the message size (m), but also on the number of such concurrent transfers (τ). The

definition of L, hence, enforces the restriction that the cost of A concurrent transfers

will be some value between the cost of a single transfer and that of A consecutive ones,

L(m, 1) ≤ L(m,A) ≤ A × L(m, 1), an expression that is generalized for convenience as

follows:

L(m, τ) ≤ L(m,A× τ) ≤ A× L(m, τ)

As well, as assumed by most models, the transfer time cost grows linearly with the

increase of the message size, named the linearity principle, and hence:

L(A×m, τ) = A× L(m, τ)

In a transfer, the model considers not only the cost that is attributable to the bare copy

c(m, τ), but also the cost due to synchronization management y(τ), defined as the time

that the processes involved in the τ transfers invest on the synchronizing resources. Each

of the τ transfers involves normally two processes, except in the special case of collective
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Figure 3.2: A message transmission in τ–Lop is composed by two transfers on the
shared memory channel.

transfers. y(τ) can represent the time spent polling a flag or using synchronization

objects, such as mutexes or lock-free queues. The transfer time is hence defined as the

sum L(m, τ) = c(m, τ)+y(τ). Though y(τ) is difficult to measure empirically, it has been

observed to dominate the global cost of tiny messages. In particular, as c(0, τ) = 0, the

cost to transfer a null message is due to synchronization alone. This definition allows

τ–Lop to model the cost of operations without data transfer as MPI Barrier, where

synchronization is the exclusive cost.

p: Packing cost (p) is the cost due to pack and unpack a non-contiguous message. It

depends on the message size p(m), as well as on the layout of message fragments in

memory. It is library specific, because each MPI library implements its own data type

management procedure. It applies only to the first and last transfers of the operation, be

it point-to-point or collective (see Figure 3.2). For simplicity, only contiguous messages

(p(m) = 0) are considered in the following, unless otherwise specified.

o: Overhead cost (o), despite its name, has nothing to do with the parameter of the

same name in lognP . It is defined as the time elapsed since the invoking of a message

transmission operation until the beginning of data injection into the channel. Function

of the message size, o(m), is the sum of software stack OS and the protocol OP . It

is a step function with threshold H, so that o(m) = OS if m < H, o(m) = OS + OP

if m ≥ H. The implementation of shared memory collectives in the studied libraries

MPICH and Open MPI does not use protocol activities, so OP = 0, however, this value

is meaningful in transmissions progressing through the network. As regards OS , it is

significant only on transmissions of small messages, and hence this value can be ignored

in practice most of the times.

γop: Represented as γop(m, τ), it is the time invested in computing two vectors of size m

by the arithmetic operation op. The number of elements in m bytes depends on the type

of the data. Parameter γop depends on the number of simultaneous operations in course

(τ), because of the need to access the channel to obtain the operands. This parameter

allows to represent reduction operations defined in the MPI standard.
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Figure 3.3: τ–Lop representation of a contiguous message transmission through the
shared memory communication channel (c = 0) including the overhead cost.

Two additional parameters are usually referred in the modeling of algorithms, specially

in collective operations and multi-core clusters:

P : Number of processes involved in the MPI operation.

N : Number of different communication channels in the system.

3.4 Modeling message transmissions

τ–Lop uses the concept of concurrent transfers and middleware-related parameters to

model communications. It represents a point-to-point message transmission between

two processes as a sequence of transfers (data movements), progressing through a com-

munication channel. Its cost is denoted as T (m) and it indicates the cost of transmitting

a message of size m. It is always applied to a contiguous message. Under τ–Lop, the

cost of packing and unpacking a non-contiguous message is attributed to the operation,

with the cost denoted as Θ(m), so that, Θp2p(m) = 2 p(m) + T (m).

Next, the transmission cost modeling in several scenarios is addressed, finally concluding

in a generic definition representing a point-to-point message transmission which supposes

the basis of the model.

3.4.1 Shared memory transmissions

The most simple contiguous message transmission in the shared memory communication

channel (c = 0)1 between processes in MPI implementations is done through an inter-

mediate buffer. This buffer is mapped to a common memory zone accessible to sender

1The communication channels in a system are identified by a number (c) starting from 0, the number
usually assigned to the channel with the best overall performance. The context makes clear when c
refers to the communication channels or the copy function c(m, τ).
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Figure 3.4: A shared memory transmission of a message divided up in k = 3 segments
of size S. It needs a total of 4 transfers (L0).

and receiver processes. Figure 3.3 shows the message transmission. The transmission

starts after a time represented by the overhead parameter and requires two transfers

(n = 2). The first transfer copies the data to the intermediate buffer, hence with the

cost L0(m, 1). When data is ready in the intermediate buffer, the receiver starts the

second transfer to its user buffer. The total cost of the operation is represented as:

T 0(m) = o0(m) + L0(m, 1) + L0(m, 1) (3.1)

There are not concurrent transfers in this simple scenario. This is the common mecha-

nism adopted by widespread implementations MPICH and Open MPI for transferring

small messages between separate-address processes, with slight modifications.

3.4.2 Representation of other transmission techniques in shared

memory

Next, commonly used techniques for transmitting messages in shared memory are dis-

cussed and modeled using τ–Lop. These techniques reflect the importance of the mid-

dleware cost in the transmission of messages in current platforms.

Message segmentation. As introduced previously, segmentation of large messages

is a common technique used in shared memory for improving the transmission time.

Segmentation consists in dividing the message in the sender user buffer in segments

of size S. The technique uses a set of intermediate buffers of the same size S, and it

overlaps the transfers of the segments from the sender user buffer to the intermediate

buffers, with the transfers of segments to the receiver user buffer.
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Figure 3.4 illustrates how a segmented transmission flows in a number of stages (s),

a figure that depends on n, the number of transfers each segment needs to reach the

receive buffer, as well as on k, the number of segments the message is split into, so

that s = k + n − 1. n depends on the location of processes, as well as on the software

mechanisms used, which can vary with the message size or with the communication

mode. m = S × k, S being the constant size of the segment in the implementation.

The total number of transfers in a message transmission is k × n. Figure 3.4 shows the

transmission of a message broken into k = 3 segments with n = 2, hence with a total

of k × n = 6 transfers and s = 4 stages. Note how the first and last transfers proceed

alone, while the other four proceed in concurrent pairs, with a total cost of:

T 0(m) = o0(m) + 2L0(S, 1) + (k − 1)L0(S, 2) (3.2)

The cost (3.2) becomes that of the single transmission already defined in (3.1) when the

message size is smaller than segment size (m ≤ S).

Note that (3.1) equals the cost given by lognP in (2.5); so, log2P could be considered

as a particular case of τ–Lop when n = 2 and k = 1, namely, when τ–Lop ignores the

segmentation and the contention.

Segmentation is not represented in other models. For example, lognP ignores the inter-

nal structure of the transmission and hence T (m) becomes a black-box that has to be

measured for every value of m. The only parameter in (2.5) is the overhead o, which is

directly calculated as half of a MPICH ping, hence the estimation error of a point-to-

point message in lognP is simply zero. While lognP measures T (m) for every m, τ–Lop
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Figure 3.6: A zero-copy message transmissions (n = 1) in MPICH-KNEM using the
operating system. There are a total of s = 1 stages.

estimates it as the suitable composition of the L(S, τ) terms, which makes a difference.

Figure 3.5 compares costs from applying definitions (3.1) and (3.2) with respect to the

real measured cost of MPICH in shared memory. The message size m ranges from 64

KB to 2 MB, and the segment size is S = 32KB, producing an average proportional

error of µ = 1.16 in (3.2), while achieving µ = 1.31 using (3.1) (see section 7.6 for the

definition of the proportional error). The overlapped interchange of segments of sender

and receiver reduces the transmission cost, an effect that τ–Lop captures with reasonable

accuracy.

Zero-copy transmissions. MPICH-KNEM sends a long message through shared

memory in a single transfer (n = 1) using operating system services. This is the same

mechanism used in thread-based MPI implementations as AzequiaMPI. It results in

s = 1 stages, shown in Figure 3.6, and the cost becomes T 0(m) = o0(m) + L0(m, 1).

The former KNEM cost halves the cost of a simple point-to-point transmission defined in

(3.1). However, overhead in calling the operating system is high, and for small messages

the overhead dominates the overall cost, so this technique could be used just for long

message transmissions.

Buffered transmissions. The buffered transmissions (MPI Bsend) could be con-

sidered as composed of three transfers (n = 3). Copying data to an internal buffer

makes the sender process to return as fast as possible from the function invocation,

leaving the transfer to the middleware, which sends the data in two transfers through

a shared memory buffer. In this case the formulation is quite similar, with a cost

T 0(m) = o0(m) + 3L0(m, 1).
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Figure 3.7: τ–Lop cost of a point-to-point network transmission.

3.4.3 Network transmissions

In the network channel (channel number c = 1), τ–Lop follows the same scheme by

Cameron et al. in [18], that consider a simple message transmission between two pro-

cesses as composed of 3 transfers: first, from the sender buffer to the internal buffer

of the NIC in the sender node, second, to the NIC in the receiver node, and last, to

the receiver buffer. τ–Lop considers both the first and last transfers as shared mem-

ory transfers (L0), whereas the second transfer progresses through the network (L1), as

shown in Figure 3.7. The cost is represented as:

T 1
p2p(m) = o1(m) + 2L0(m, 1) + L1(m, 1) (3.3)

As before, the number of transfers a network transmission is composed of, depends on

the network technology. For instance, some networks as Infiniband allows the direct

transfer of data to the buffer of the receiver using a Remote Direct Memory Access

mechanism.

3.4.4 Message transmission definition

With regards to the former results, the point-to-point transmission cost of a message of

size m, through the communication channel c, is represented in τ–Lop as a two-terms

sum, the overhead and the aggregated cost of the individual transfers:

T cp2p(m) = oc(m) +

s−1∑
j=0

Lcj(m/k, τj) (3.4)

That is, the overhead (oc), including the stack and protocol costs as processor and

network attributable costs, in addition to the sequence of transfer times costs (Lc) of
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Figure 3.8: Cost of the concurrency of two transmissions in shared memory through
an intermediate buffer expressed in terms of τ–Lop.

the message. Each one of the s transfers composing the transmission can progress in

concurrency with others, a fact represented by τ . The transmission can be split in k

segments, as it is usual for long messages in shared memory.

3.5 Concurrent transmissions

The ‖ operator2 is introduced to represent the contention of concurrent transfers that

takes place mainly in MPI operations, both point-to-point and collective.

The expression A ‖L(m, 1) represents the cost of A concurrent transfers. An expression

that extends to A ‖L(m, τ), representing the cost of A concurrent sets of in turn τ

concurrent transfers. It is defined as A ‖L(m, τ) = L(m,A× τ). Also, it is defined that

A ‖ (L1(m, τ) +L2(m, τ)) = A ‖L1(m, τ) +A ‖L2(m, τ), so that concurrency operator ‖

possesses the distributive property with respect to the addition (sequence) of the costs

of serial transfers.

As a message transmission is built as a sequence of transfers, the concurrency operator

can be applied to characterize the cost of A concurrent message transmissions contending

for the c communication channel, as A ‖ T c(m), defined as follows:

A ‖ T c(m) = A ‖
s−1∑
j=0

Lcj(m, τj) =
s−1∑
j=0

A ‖ Lcj(m, τj) =
s−1∑
j=0

Lcj(m,A× τj) (3.5)

Figure 3.8 illustrates the concept. It shows a pair of concurrent message transmissions

(A = 2) through an intermediate buffer in shared memory. Each transmission, with the

cost defined by (3.1), is composed of two transfers actually contending for the commu-

nication channel, leading to an increase in the cost.

2The operator is named concurrency operator.
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Figure 3.9: τ–Lop cost of stage 2 of a Binomial broadcast, expressed in terms of
concurrent transfers.

Figure 3.8 scenery modeled with τ–Lop leads to a cost:

2 ‖T 0(m) = 2 ‖
[
o0(m) + 2L0(m, 1)

]
= o0(m) + 2L0(m, 2),

higher than the cost of a single point-to-point transmission, given by (3.1). Note that

the overhead cost is attributable mainly to the processor, a non-shared resource, and

hence it is considered not affected by ‖.

The concurrency operator allows a simple and expressive representation of point-to-point

transmissions in a collective operation. Figure 3.9 illustrates an example of a segmented

message taking place at the second stage of a Binomial tree in shared memory. If the

cost of the message transmission between processes 0 and 8 in Figure 3.9 is T 0(m), the

cost between processes 8 and 12 is higher because two concurrent transmissions share

the memory bandwidth. In contrast, the costs are the same with lognP and LogGP,

which is unrealistic. The true cost between processes 8 and 12 ranges between T 0(m),

for a perfectly parallel channel, and 2 × T 0(m) for a serial channel. The actual cost is

represented in τ–Lop as:

2 ‖T 0(m) = 2 ‖
[
o0(m) + 2L0(S, 1) + (k − 1)L0(S, 2)

]
= o0(m) + 2L0(S, 2) + (k − 1)L0(S, 4)

In the network channel the behavior is similar. Concurrent message transmissions share

the communication channel bandwidth. The contention increases the cost of each indi-

vidual transmission. Figure 3.10 shows the growth of the overall cost with the increase

of the number of concurrent transmissions τ progressing through an Ethernet network
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Figure 3.10: Cost of a transmission as a function of message size (m) and number of
processes concurrently copying (τ) in an Ethernet network communication channel.

channel. The impact of concurrency on the cost is significant when the size of message

is greater than 2KB in the Metropolis cluster, described in section 7.1.2.

Figure 3.11 shows the τ–Lop modeling of two concurrent point-to-point transmissions

through the network communication channel. An analysis of contention follows. The

two transfers in the node 0 between the source buffer and the NIC progress concurrently,

hence with the cost L0(m, 2). Data sent through the network has the same destination

node 1, therefore, contention is generated in the destination NIC, with the cost L1(m, 2).

Finally, the data is transferred from the NIC to the destination buffers (L0(m, 2)). The

total cost is:

2 ‖T 1(m) = o1(m) + 2L0(m, 2) + L1(m, 2)

For the sake of simplicity, the analysis in this thesis makes two assumptions regarding
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Figure 3.11: An example of two concurrent transmissions from node M#0 to the
node M#1 expressed in terms of τ–Lop transfers.

network transfers. First, it does not consider the overlap of the transfer from a buffer

to the local NIC with the transfer from the local NIC to the remote NIC, assuming, in

common with the rest of the models, the error in the prediction. Such concurrency has a

random behavior difficult to measure and highly dependent on the network technology.

Second, the only network transfers considered as concurrent are those reaching the same

destination node at the same time, hence contending in the destination NIC.

The impact of the concurrency on the cost of transfers from NIC to NIC is hardware

dependent. For instance, it varies from Ethernet to Infiniband networks. While in

the Metropolis Ethernet network the cost of two concurrent transmission of messages

approaches to their sequential cost (L(m, 2) ≈ 2L(m, 1)), specially for large messages

(as can be seen in Figure 3.10), the effect of the contention on an Infiniband network

could be lower, approaching to the pure parallel cost (L(m, 2) ≈ L(m, 1)). Nevertheless,

each individual platform characteristics have to be taken into account, and hence, the

parameters of the τ–Lop model have to be estimated in each of such individual platforms.

In any case, the flexibility of the model allows itself to adapt to any other system

characteristics found in other high performance platforms. For an exhaustive taxonomy

of contention effects in high performance networks, see Jerome et al. work [45].

3.6 Other point-to-point transmissions

Communication between processes others than a simple point-to-point message exists.

For instance, the commonly used Send-receive operation named as MPI Sendrecv in

the MPI Standard. On it, a process Pi sends a message of size m to a process Pj and

next Pi receives another message of size m from a process Pk. Usually, the Send-receive

operation has a higher cost than a point-to-point simple transmission (Tp2p) defined in

(3.1), because processes access the channel simultaneously, stressing its bandwidth.
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Figure 3.12: An Exchange point-to-point operation of a short message between two
processes represented by τ–Lop.

Figure 3.13: A point-to-point (left) and an Exchange (right) between two processes
represented by LogGP. Interestingly enough the parameters of LogGP are not affected
by processes operating concurrently. As a result LogGP equals the cost of MPI Send

and MPI Sendrecv.

For P participants, the cost of the operation under τ–Lop in shared memory is:

T 0
sr(m) = P ‖ T 0

p2p(m) = P ‖
[
o0(m) + 2L0(m, 1)

]
= o0(m) + 2L0(m,P ) (3.6)

For m > S, the segmented formulation will be applied. Each of the P processes involved

in a Send-receive operation makes two segmented transmissions: the send part requires

a k segments transfer to the intermediate buffer (with cost k L(S, 1)), and the receive

part requires an additional k segments transfer from the intermediate buffer (again with

cost k L(S, 1)). The total cost is applied for P concurrent transmissions as:

T 0
sr(m) = P ‖

[
o0(m) + 2 k L0(S, 1)

]
= o0(m) + 2 k L0(S, P ) (3.7)

The Send-receive operation is usually called Exchange when only P = 2 processes are

involved, with a cost of:

T 0
exch(m) = 2 ‖

[
o0(m) + 2L0(m, 1)

]
= o0(m) + 2L0(m, 2) (3.8)
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and, in segmented transmissions:

T 0
exch(m) = 2 ‖

[
o0(m) + 2 k L0(S, 1)

]
= o0(m) + 2 k L0(S, 2) (3.9)

Figure 3.12 shows the decomposition in transfers of a message Exchange between two

processes in shared memory. The figure shows the increasing in the cost compared to

the Figure 3.3 representing a simple point-to-point operation.

The left side of the Figure 3.13 shows the cost of the Exchange operation represented

under LogGP. Note that the total cost of the operation is not different from the point-to-

point cost (represented at the right of the figure), because contention is not considered.

The lognP model makes the same error.

Regarding network transmissions, due to the processes run in different nodes, two point-

to-point transmissions composing the Exchange arrive to different nodes. Therefore,

T 1
exch(m) = T 1

p2p(m) is assumed, although modeling could be adapted to the particular

behavior of the channel in each particular platform. Section 5 discusses the Send-receive

operation in different network scenarios.



Chapter 4

Modeling MPI collective

algorithms

Formal analysis and modeling of algorithms used in the implementation of MPI collec-

tive operations is important because it allows their comparison and optimization, as well

as an architecture independent cost prediction. Collective operations have a great influ-

ence in the overall performance of an MPI application. As new clusters are built upon

a growing number of cores per node, efficient implementation of intra-node collective

operations is becoming more relevant.

This chapter puts forward the modeling of several algorithms. For the sake of clarity

we restrict ourselves to a scenery of shared memory. The algorithms are used to imple-

ment MPI collective operations in mainstream libraries as MPICH and Open MPI. A

homogeneous platform is considered, with contention between all processes in the access

to the communication channel. τ–Lop estimations are analytically compared to those

developed for LogGP and lognP models. The concept of concurrent transmissions, in-

troduced in the previous chapter (section 3.5), is essential to model and represent the

MPI collective algorithms with τ–Lop. Currently used models represent a collective as a

sequence of mere point-to-point transmissions, which leads to an insufficient level of rep-

resentation and hence to a higher error. τ–Lop uses the Send-receive and Exchange, in

addition to the point-to-point transmissions, as the basis of several collective operations.

Indeed, this chapter evaluates the accuracy of the models cost estimation, comparing

their predictions with the real values in the test platforms. The study is not intended

to be an exhaustive analysis of the most known algorithms, but an incremental intro-

duction to how modeling algorithms with increasing complexity using the τ–Lop model.

Nevertheless, the algorithms modeled, used in MPICH and Open MPI COLL Tuned

component, are representative, and they are also used as building blocks by other MPI

35
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collective operations. For instance, the Recursive Doubling algorithm is used in the

MPI Allgather collective, but it is also used in the implementation of the MPI Bcast

for medium size messages and power of two number of processes in MPICH, preceded

by a Binomial Scatter. For other message sizes, the Ring algorithm replaces Recursive

Doubling, and it is used as well in the MPI Allgather collective.

From another point of view, the algorithms studied are of further interest because they

have contrasting features with respect to the size of the messages and the number of

processes communicating in each stage. A common feature of these algorithms is that

they are built as a point-to-point communication graph between processes and executed

in a sequence of stages. Regarding the differences, for instance, in the Binomial tree

Broadcast algorithm, the number of processes involved in transmissions grows in succes-

sive stages, while the message size remains constant. In the Binomial Scatter algorithm,

the number of involved processes grows, while the message size halves. In the Recursive

Doubling algorithm, the number of involved processes remains constant while the mes-

sage size doubles. Finally, in the Ring algorithm both the number of communicating

processes and the size of the interchanged messages remain constant.

The Open MPICOLL SM component implements a different kind of algorithms, targeted

to shared memory and not based on point-to-point messages, but on shared buffers be-

tween processes involved in the operation. As an example, the analysis of the Broadcast

and the reduction algorithms under τ–Lop is performed.

In the MPI collective operations, except the Broadcast and Barrier, each process provides

two buffers, called the input and output buffers1. The input buffer contains the data

contributed by the process, and the output buffer contains the product of the operation

for the process.

4.1 The Binomial tree Broadcast algorithm

In the Broadcast collective operation (MPI Bcast) a process called root sends a message

of size m to the rest of the processes in the group. The Binomial tree is a representative

algorithm used to implement the MPI Bcast. In the first stage of this algorithm, the

root sends the message to the process with rank root + P/2. The algorithm recursively

continues with both processes acting as roots of their respective sub-trees with P/2

processes. The height of a Binomial tree of P processes is h(P ) = dlog2(P )e, and hence

it requires dlog2(P )e stages.

1MPI standard allows to use the same buffer as the input and output, however, in this document
they are considered logically separated, without consequences in the modeling.
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Figure 4.1: Binomial tree algorithm with P = 16 processes sharing a communication
channel. The number of stages is the same as the heigh of the tree, and the number of

concurrent transmissions doubles in each stage.

As shown in Figure 4.1, the cost of the first stage (s#0) equals the cost of a point-to-

point message transmission T (m) between two processes. The cost of the subsequent

stages is represented using the concurrency operator developed in section 3.5 to express

the competing concurrent transmissions in each stage as 2 ‖T (m), 4 ‖T (m), 8 ‖T (m)

and so on. Hence, the cost of the whole Broadcast on a full tree is2:

ΘBin(m) =

dlog2(P )e−1∑
i=0

[
2i ‖T (m)

]
(4.1)

If T (m) is given by (3.1), i.e. short messages, the Broadcast cost becomes:

ΘBin(m) =

dlog2(P )e−1∑
i=0

[
2i ‖ (o(m) + 2L(m, 1))

]
=

dlog2(P )e−1∑
i=0

[
o(m) + 2L(m, 2i)

]
(4.2)

On the contrary, if T (m) is given by (3.2), i.e. large segmented messages, then (4.1)

becomes as follows:

ΘBin(m) =

dlog2(P )e−1∑
i=0

[
2i ‖

(
o(m) + 2L(S, 1) + (k − 1)L(S, 2)

)]

=

dlog2(P )e−1∑
i=0

[
o(m) + 2L(S, 2i) + (k − 1)L(S, 2i+1)

]
,

(4.3)

that, for great values of k could be simplified to:

ΘBin(m) =

dlog2(P )e−1∑
i=0

[
o(m) + k L(S, 2i+1)

]
(4.4)

2While T is commonly used in the literature to represent the cost of a point-to-point transmission
involving two processes, we use Θ to represent the cost of a collective algorithm as a whole.
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cost models. They compare to the real cost of the MPICH implementation for P = 128
processes and increasing message sizes in Lusitania. The LogGP estimated bandwidth
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LogGP models the cost of a Binomial tree as the largest path from the root to a leaf,

hence, as a sequence of dlog2(P )e point-to-point operations. For instance, for non seg-

mented transmissions, the cost is:

TLogGPbin = dlog2(P )e ×
(
2 o+ L+ (m− 1)G

)
(4.5)

The cost of the Binomial tree Broadcast algorithm in lognP leads to the same type of

expression than that of LogGP:

T
logn P
bcast =

⌈
log2(P )

⌉
× (2 o) (4.6)

As a result, in both (4.5) and (4.6), for instance, the cost for P = 65 and that for

P = 128 in a shared memory system will be the same (7 ×
(
2 o+ L+ (m− 1)G

)
and

7 × (2 o) respectively), which is far from being a correct prediction. τ–Lop, in con-

trast, models them as 2×
[
L(m, 1) + L(m, 2) + L(m, 4) + . . .+ L(m, 32) + L(m, 1)

]
for

P = 65, but 2×
[
L(m, 1) + L(m, 2) + L(m, 4) + . . .+ L(m, 32) + L(m, 64)

]
for P = 128,

which includes the concurrency in all the stages of the algorithm.

Figure 4.2 plots the costs estimated by the models compared to the real value measured

using MPICH in the shared memory 128-core Lusitania machine, described in the section

7.1.1. The bandwidth is used, instead of the execution time, for reasons of clarity in the

plot, and it is calculated as m/t, being m is the size of the message and being t the cost
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time returned by the models. The parameters of the models are measured as explained

in chapter 7.

In its parameter assessment, lognP assigns half of a MPICH point-to-point cost to the

overhead o parameter (see (4.6)). The cost of the point-to-point message transmission of

size m is the unity of measurement in lognP . This fact, together with the low contention

of a Binomial tree, leads to the good prediction exhibited by lognP .

Regarding LogGP, measuring its parameters in shared memory is difficult. A minimal
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the real cost of the MPICH implementation for eight processes and growing message
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Figure 4.6: Binomial tree algorithm proportional error µ made by LogGP, lognP and
τ–Lop cost models together with the real cost of the MPICH implementation for eight

processes and growing message size in a node of Metropolis.

variation, mainly in G, leads to a great prediction error, because the parameter value

is quite low (see section 7.2) and it is multiplied by the message size in bytes, as shown

in definition (4.5). The tool used for the measurement ([32]) leads to more than 4x

proportional error for any P , as shown in Figure 4.3. Although it might be understood

to mean a parameter estimation error that leads to a high bandwidth, the obtained

parameter values are used in the cost prediction of other collective operations in this

thesis, with the opposite results. lognP and τ–Lop achieve a similar accuracy in the cost

estimations, due to fact that the concurrency effect in the Binomial tree algorithm on

the Lusitania shared memory ccNUMA architecture is not high.
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Figure 4.5 shows the cost estimations of the models with respect to the real measure-

ments in a node of the Metropolis platform with P = 8 processes. Each core in the

node has a L2 cache of 256 KB and a L3 shared cache of 12 MB, figures that leave

their footprint in the MPI Bcast execution time despite the intent of the -off cache IMB

option to avoid the cache effect. Such cache effect increases the τ–Lop error in the range

of messages which fits in the L2 and L3 caches, as can be seen in Figure 4.6. The fig-

ure plots the proportional error made by LogGP, lognP and τ–Lop with respect to the

measured cost of the Binomial tree broadcast algorithm (4.3). The lognP error ends up

growing with m, because concurrency effect increases for large messages, while the cache

influence decreases, leading to more accurate predictions by τ–Lop. LogGP shows an ex-

pected behavior with a very low predicted execution time (hence, the showed bandwidth

is high) because it does not consider the contention cost. Indeed, as argued before, a

little error in the G parameter raises the error in the final prediction, although the G

estimation by the measurement tool ([32]) in Metropolis slightly improves the average

proportional error with respect to that in Lusitania. Average proportional error for the

range of message sizes for LogGP, lognP and τ–Lop are 2.36, 1.62 and 1.20 respectively.

4.2 Recursive Doubling

The Recursive Doubling algorithm is used in several collective operations, as Broadcast

and Allgather. It is based on the Send-receive operation instead of on the simpler point-

to-point transmission. In the Recursive Doubling algorithm for the Allgather collective

operation (RDA), each involved process contributes with a message of size m and receives

from the rest of processes P − 1 messages, ordered in the reception buffer by rank, for

a total of P ×m bytes. The RDA algorithm is executed in log2(P ) stages when P is a

power of two. In each stage i, rank p exchanges 2im bytes with rank p⊕ 2i. An initial

local copy of the m bytes message takes place in each process, from the input to the

output buffer, with offset p×m bytes. The number of processes communicating in each

stage remains constant in this algorithm, whereas the message size doubles.

Figure 4.7 shows the Recursive Doubling algorithm communication pattern for P = 16

processes. For clarity, Figure 4.8 details per stage the communication cost of RDA with

P = 4 processes. τ–Lop models the algorithm cost using the Send-receive operation

between each two processes, and hence, P processes are executing the Send-receive at a

time3. The cost becomes:

ΘRDA(m) = c(m,P ) +

log(P )−1∑
i=0

[
P ‖Tsr

(
2im

)]
(4.7)

3The RDA cost can also be modeled using the Exchange operation, as P
2
‖Texch.
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After the initial local copy represented by c(m,P ), there are P stages of concurrent

Send-receive transmissions (Tsr) of increasing message size (2im). If short messages are

considered as in (3.6), the cost expands to:

ΘRDA(m) = c(m,P ) +

log(P )−1∑
i=0

[
P ‖

(
o(m) + 2L(2im, 1)

)]

= c(m,P ) +

log(P )−1∑
i=0

[
o(m) + 2i+1 L(m,P )

]
= c(m,P ) + logP o(m) + (P − 1) 2L(m,P )

(4.8)

Note that definition (4.8) has been simplified using the linearity principle, defined in

section 3.3.



Chapter 4. Modeling MPI collective algorithms 43

The operation expands to segmented messages (see (3.7)) as:

ΘRDA(m) = c(m,P ) +

log(P )−1∑
i=0

[
P ‖

(
o(m) + 2i+1 k L(S, 1)

)]

= c(m,P ) +

log(P )−1∑
i=0

[
o(m) + 2i+1 k L(S, P )

]
= c(m,P ) + logP o(m) + (P − 1) 2 k L(S, P )

(4.9)

As the LogGP cost of RDA is the mere addition of the costs of all the stages ([13]), we

have that:

TLogGPRDA =

dlog2(P )e−1∑
i=0

Tp2p

(
2im

)
= log2 P · (L+ 2 o−G) + (P − 1) mG

(4.10)

Estimation for segmented messages (defined in 2.2) is:

TLogGPRDA = δ m+ logP
(
L+ 2 o+ (S − 1)G

)
+ (P − 1) (k − 1)

(
g + (S − 1)G

)
(4.11)

In LogGP, the δ parameter is usually used for representing the cost of a local copy of a

byte. The former cost can be divided in two parts, named the fixed and variable part

respectively. Fixed part represents the initial latency cost and depends on the logarithm

in base 2 of the number of processes. Variable part depends on the message size (number

of segments k and the size of a segment S), and represents the bandwidth. Variable cost

approximates to P k (g + S G), the cost of transmitting k messages of size P S, which

means that the cost represents just the cost of a single process, ignoring the contention.

For lognP , original notation in [18] is used, taking into account that the overhead cost

o refers to a message of size m. In addition, we introduce a new term om to represent

the cost of the initial local copy in RDA, usually with a value om ≤ o. The cost for the

algorithms is:

T
logn P
RDA = om +

log(P )−1∑
i=0

(
2i 2 o

)
= om + (P − 1) 2 o, (4.12)

similar to that of LogGP cost, which just considers the cost of the longest path.

The contention in the RDA algorithm, in contrast to that in the Binomial tree, is high

in shared memory. Note that in each stage all P processes access to the communication

channel concurrently. Figure 4.9 shows the estimated bandwidth of LogGP, lognP and

τ–Lop models in Lusitania for P = 128 processes. The lack of contention modeling

makes lognP prediction to distance from the real MPICH measured value. It leads to
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Figure 4.9: Recursive Doubling algorithm cost estimation by LogGP, lognP and τ–
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processes and increasing message sizes in Lusitania.
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Figure 4.10: Recursive Doubling proportional error made by LogGP, lognP and τ–
Lop models with respect to the real cost of the MPICH implementation for P = 128

processes and growing message sizes in Lusitania.

a mean proportional error of 3.48, showed for a range of messages in the Figure 4.10,

where the contention is more appreciable for increasing message sizes.

Figure 4.11 shows the proportional error made by τ–Lop (4.7), LogGP (4.11) and lognP

(4.12) on the RDA algorithm for increasing P . Above discussion of the Binomial tree

revealed that LogGP is incapable of predicting shared memory performance. Its error

on RDA, however, is not as high as expected, although much higher than that of τ–Lop.

Again τ–Lop presents error figures that remain constant as P increases, showing hence

a good scalability in shared memory. As LogGP and lognP do not model the contention
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Figure 4.12: Recursive Doubling algorithm cost estimation by LogGP, lognP and
τ–Lop models together with the real cost of the MPICH implementation for P = 8

processes and increasing message sizes in the Metropolis multi-core platform.

derived cost, their cost estimation is very optimistic for all the range of process number.

Furthermore, the most important point is their growth with P of the proportional error,

which confirms the importance of the contention modeling in current HPC platforms.

Figure 4.12 and Figure 4.13 confirm this fact in each node of the multi-core Metropolis

platform, with only P = 8 processes.
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4.3 Ring

The Ring algorithm is used in the MPI Allgather collective operation. It is also used in

others, for instance, preceded by an Scatter in the MPI Bcast of MPICH, for medium

and large size of messages and non-power-of-two number of processes.

The Ring algorithm for the Allgather collective operation is executed in P − 1 stages.

Each stage executes P simultaneous Send-receive operations (defined in 3.6) of a message

of size m in a ring of P processes. Its behavior is represented in Figure 4.14, in which,

after an initial local copy to the receive buffer with offset p×m, a process p concurrently

sends a message to the process p+ 1 and receives from the p− 1, with wraparound. The
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Figure 4.15: Ring algorithm cost estimation by LogGP, lognP and τ–Lop models
together with the real cost of the MPICH implementation for P = 128 processes and

increasing message sizes in the Lusitania machine.

cost is modeled in τ–Lop as:

ΘRing(m) = c(m,P ) + (P − 1)×
[
P ‖ Tsr(m)

]
, (4.13)

which is immediately expanded to short messages as:

ΘRing(m) = c(m,P ) + (P − 1) o(m) + (P − 1) 2L(m,P ), (4.14)

and to segmented messages (see definition (3.7)) as:

ΘRing(m) = c(m,P ) + (P − 1) o(m) + 2 k (P − 1)L(S, P ) (4.15)

LogGP models the Ring algorithm as the occurrence of P −1 transmissions of a message

of size m, as:

TLogGPRing (m) = δ m+ (P − 1)×
(
L+ 2 o+ (S − 1)G

)
+ (P − 1)(k − 1)

(
g + (S − 1)G

)
,

(4.16)

while lognP uses the same type of expression:

T
logn P
Ring (m) = om + (P − 1) 2 o (4.17)

Note that om represents the cost of a local copy as a local memory transfer.

Although accuracy is important in a cost prediction model, its expressive power is even

more important. It is to be noted how a complex algorithm, such as the Ring, is modeled
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Figure 4.16: Ring proportional error made by LogGP, lognP and τ–Lop models with
respect to the real cost of the MPICH implementation for P = 128 processes and

growing message sizes in Lusitania.
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Allgather algorithm, with respect to the real cost of its MPICH implementation in
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increasing number of processes P involved in the operation.

by τ–Lop in (4.13) in a compact and expressive way. LogGP and lognP produce less

meaningful formulations, because they simply multiply definitions (2.2) and (2.5) by

(P − 1) stages.

Figure 4.15 shows the estimated bandwidth in Lusitania with respect to the real MPICH

value for a range of messages and P = 128 processes. As can be seen, LogGP fails again

to explain the experimental results of the Ring Allgather algorithm. In spite of the

simplicity of expression (4.17), the output of lognP in Ring is too optimistic, leading

to a bandwidth higher than real, again mainly because of the lack of the contention
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modeling. This fact is confirmed in the Figure 4.16. Mean proportional error for P = 128

for LogGP, lognP and τ–Lop are 11.94x, 3.29x and 1.16x respectively. These figures are

the rule for the whole range of number of processes P , as Figure 4.17 shows.

4.4 Binomial Scatter

The algorithm implementing the MPI Scatter collective scatters a message of size m

across P processes. Figure 4.18 shows the communication pattern of the algorithm for

P = 16 processes, and Figure 4.19 details the per stage communication cost of the

algorithm for P = 8 processes and process 0 acting as root. The buffer of the root is

divided in P fragments of size m/P , and the process with rank p expects the fragment

in the position p. The algorithm uses a Binomial tree in such a way that the size of the

sent messages halves at each stage, and each receiver process receives all the data its
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children expect. τ–Lop allocates to the operation the following cost:

ΘBinSct(m) =

dlog(P )e−1∑
i=0

[
2i ‖Tp2p

(
m

2i+1

)]
(4.18)

Considering non-segmented messages, expression (4.18) expands to:

ΘBinSct(m) =

dlog(P )e−1∑
i=0

2i ‖

(
o(m) + 2L

(
m

2i+1
, 1

))
= logP o(m) +

dlog(P )e−1∑
i=0

[
2L

(
m

2i+1
, 2i
)] (4.19)

While segmented messages lead to:

ΘBinSct(m) =

dlog(P )e−1∑
i=0

2i ‖

(
o(m) + k L

(
S

2i+1
, 2

))
= logP o(m) +

dlog(P )e−1∑
i=0

[
k

2i+1
L
(
S, 2i+1

)] (4.20)

The difference in the cost between non-segmented and segmented messages comes in two

points. First, non-segmented messages require to fully send a message of size m before

the reception. Second, the segmented technique splits the interchanged messages but

increases the concurrency. For instance, expressions (4.19) and (4.20) for the particular

value of P = 8 processes, excluding the overhead, become:

ΘBinSct(m) = 2L

(
m

2
, 1

)
+2L

(
m

4
, 2

)
+2L

(
m

8
, 4

)
= L(m, 1)+L

(
m

2
, 2

)
+L

(
m

4
, 4

)
(4.21)

ΘBinSct(m) =
k

2
L(S, 2) +

k

4
L(S, 4) +

k

8
L(S, 8) (4.22)

Note that comparing term to term of (4.21) and (4.22), though the cost of the seg-

mented technique doubles the contention, it halves the message size. These subtle but

performance critical issues have driven the design of shared memory communication in

current MPI implementations. τ–Lop is able to retain and describe them in a simple

enough way.

LogGP prediction is again the addition of the cost of each one of the stages of the

Binomial tree in the longest path from the root to a leaf. For instance, considering
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Scatter algorithm, with respect to the real cost of its MPICH implementation in Lusi-
tania machine. The message size m ranges between 8 KB and 16 MB on an increasing

number of processes P involved in the operation.

segmented messages, the cost is:

TLogGPBinSct = logP
(
L+ 2 o+ (S − 1) G

)
+
P − 1

P
(k − 1)

(
g + (S − 1) G

)
(4.23)

The fixed part (latency) of (4.23) depends on the logarithm on base 2 of the number of

processes. The variable part (bandwidth) depends on the size of the message, with k

the number of segments.

lognP cost is similar to that of LogGP, in the sense that it considers the longest path.

Note once more that the referred messages size is hidden in the overhead parameter, as

done in the original paper:

T
logn P
BinSct =

dlog(P )e−1∑
i=0

2 o

(
m

2i+1

)
=
P − 1

P
2 o (4.24)

When the number of processes is high, expression (4.24) derives in the cost of a point-

to-point message of size m. T
logn P
BinSct = 2 o is far from being a correct representation

of the cost of a collective operation, despite of the fact that the total amount of bytes

sent by the root process is close to m. LogGP has the same behavior but including

an additional cost per stage related to the latency of the point-to-point operations. In

contrast, on τ–Lop each stage explicitly shows its own contention and overhead, which

raises accuracy and expressiveness.
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Figure 4.20 shows the average proportional error of the Binomial Scatter algorithm for

increasing number of processes in the Lusitania machine. LogGP error is high, but

remains constant for the range of processes. lognP gives a very low error, owing to

two factors: the first is the low contention of the algorithm, even lower than Binomial

broadcast, and the second, as explained in section 4.1, is the fact that lognP measures

the overhead parameter value directly from the point-to-point MPICH cost, and later

uses it to predict the Scatter cost. While, τ–Lop offers a slightly higher cost.

4.5 Other collective algorithms

We provide next a survey of the cost modeling of several well-known algorithms which

are commonly used in the implementation of MPI collective operations. Some of them

have been proposed to improve the performance of collective operations in specific ar-

chitectures, or under specific conditions such as the number of involved processes, and

might not be found in mainstream MPICH and Open MPI libraries. Notwithstanding

these algorithms are visited to provide further insights into the modeling capabilities of

τ–Lop.

4.5.1 Neighbor Exchange

The Neighbor Exchange algorithm proposed in [65] for the MPI Allgather collective

operation was designed to exploit the piggy-backing feature of the TCP/IP protocols.

The algorithm operates in P/2 stages with an even number of processes, and data is

interchanged between nearest neighbor rank numbers. Initially, each process p copies m

bytes from the input to the output buffer with offset p×m. In the first stage, a process

with rank p interchanges a message of size m with the rank p + 1. In each of the rest

of the stages, an even p rank interchanges 2m bytes with the p − 1 and p + 1 ranks

alternately. The algorithm is similar to the Ring Allgather, except that it executes in

half of the stages and doubles the message size per stage. The cost is:

ΘNeigh(m) = c(m,P ) +
[
P ‖Tsr(m)

]
+

(
P

2
− 1

)[
P ‖Tsr(2m)

]
(4.25)
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Considering the definition of Tsr operation in (3.6), the expression (4.25) expands to:

ΘNeigh(m) = c(m,P ) + P ‖
(
o(m) + 2L(m, 1)

)
+

(
P

2
− 1

)(
P ‖

(
o(2m) + 2L(2m, 1)

))
= c(m,P ) + o(m) + 2L(m,P ) +

(
P

2
− 1

)(
o(2m) + 2L(2m,P )

)
= c(m,P ) +

P

2
o(2m) + (P − 1) 2L(m,P )

(4.26)

Note that, for clarity, we simplify o(m) +
(
P
2 − 1

)
o(2m) = P

2 o(2m), with a minimum

impact in the cost. If segmented messages are considered for Tsr in (3.7), (4.25) becomes:

ΘNeigh(m) = c(m,P ) + P ‖
(
o(m) + 2 k L(S, 1)

)
+

(
P

2
− 1

)
P ‖

(
o(2m) + 2 k L(2S, 1)

)
= c(m,P ) + o(m) + 2 k L(S, P ) +

(
P

2
− 1

)(
o(2m) + 2 k L(2m,P )

)
= c(m,P ) +

P

2
o(2m) + (P − 1) 2 k L(S, P )

(4.27)

LogGP formulation for segmented messages is:

TLogGPNeigh (m) = δ m+ TLogGPp2p (m) +

(
P

2
− 1

)
TLogGPp2p (2m)

= δ m+
P

2

(
L+ 2 o+ (S − 1)G

)
+ (P − 1) (k − 1)

(
g + (S − 1)G

) (4.28)

Finally, lognP cost is:

T
logn P
Neigh (m) = om + T

logn P
exch (m) +

(
P

2
− 1

)
T
logn P
exch (2m)

= om + 2 o+

(
P

2
− 1

)
2 2 o = om + (P − 1) 2 o

(4.29)

LogGP cost includes the local copy and divides up the equation (4.28) in a latency

related part, dependent on the number of stages (P/2), and the bandwidth related part

dependent on the size of the messages sent. lognP fails in providing expressivity in

(4.29), reducing it to 2P transfers. τ–Lop takes into account, again, the initial copy,

and the fixed and variable parts of the cost, including the fact that all P processes stress

the communication channel at a time in each stage.
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4.5.2 Dissemination

Dissemination algorithm for the MPI Allgather is proposed in [8]. It executes in log2 P

stages, similar to the Recursive Doubling algorithm discussed in section (4.2), but with

less stages if the number of processes is not a power of two. In the stage i, a process

p sends 2im bytes to the process (p + 2i)%P , and receives the same amount of data

from (p−2i)%P . As the data sent and received could be non-contiguous, usually a local

temporal buffer is used, and local copies are needed between the local and the output

buffer. In an stage i, a total of 2i− 1 processes need to make a local copy of 2im bytes,

leading τ–Lop to estimate a cost of:

ΘDissm(m) = c(m,P ) +

dlog2(P )e−1∑
i=0

[
P ‖Tsr(2

im) + c
(

2im, 2i − 1
)]

(4.30)

Again, expression (4.30) is extended for short and segmented messages. Considering

short messages in (3.1), the cost is:

ΘDissm(m) = c(m,P ) +

log(P )−1∑
i=0

[
o(2m) + 2L(2im,P ) + c

(
2im, 2i − 1

)]

= c(m,P ) + logP o(m) +

log(P )−1∑
i=0

[
2i+1 L(m,P )

]
+

log(P )−1∑
i=0

[
2i c
(
m, 2i − 1

)]

= c(m,P ) + logP o(m) + (P − 1) 2L(m,P ) +

log(P )−1∑
i=0

[
2i c
(
m, 2i − 1

)]
,

(4.31)

while segmented messages in (3.2) lead to:

ΘDissm(m) = c(m,P ) +

log(P )−1∑
i=0

[
o(21m) + 2 k, L(2i S, P ) + c

(
2im, 2i − 1

)]

= c(m,P ) + logP o(m) +

log(P )−1∑
i=0

[
2i+1 k L(S, P )

]
+

log(P )−1∑
i=0

[
2i c
(
m, 2i − 1

)]

= c(m,P ) + logP o(m) + (P − 1) 2 k L(S, P ) +

log(P )−1∑
i=0

[
2i c
(
m, 2i − 1

)]
(4.32)
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LogGP cost is modeled as:

TLogGPDissm (m) = δ m+

dlog2(P )e−1∑
i=0

[
2i δ m+ TLogGPp2p

]

= δ m+

log2(P )−1∑
i=0

[
2i δ m

]
+

dlog2(P )e−1∑
i=0

[
TLogGPp2p

]
= P δm+ logP

(
L+ 2 o+ (S − 1)G

)
+ (P − 1) (k − 1)

(
g + (S − 1)G

)
(4.33)

Finally, lognP cost is modeled with segmented messages as:

T
logn P
Dissm(m) =

dlog(P )e−1∑
i=0

[
2 o(2im) + om(2im)

]
= (P − 1) 2 o+ (P − 1) om

(4.34)

The three models represent the local copies and the variable part of the expressions as

dependent on the number of processes. LogGP and τ–Lop include the fixed part as

dependent on the logarithm in base 2 of P . However, τ–Lop provides with more infor-

mation about the algorithm behavior by including the concurrency in the expressions,

affecting to the local copies and transfers.

4.5.3 Bruck

Bruck algorithm [66] is used in MPICH to implement efficiently the MPI Allgather when

the size of messages is small. The algorithm could be used as well for implementing the

MPI Alltoall and MPI Barrier collective operations. It requires a per-process temporal

buffer and three phases. The first phase is a local copy of the message of m bytes in

the input buffer to the temporal buffer. The second is composed of log2 P stages; in the

stage i a process p sends a message of size 2im bytes to the process p+ 2i, and receives

from the process p − 2i a message of the same size. The messages are received in the

temporal buffer unordered. In the last phase, a process copies from the temporal buffer

to the output buffer the P m bytes received in the correct order. The three phases are

reflected in the following definition:

ΘBruck(m) = c(m,P ) +

dlog(P )e−1∑
i=0

[
P ‖Tsr

(
2im

)]
+ c (P m,P )

= (P + 1) c(m,P ) +

dlog(P )e−1∑
i=0

[
P ‖Tsr

(
2im

)] (4.35)
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The short messages cost is represented as:

ΘBruck(m) = (P + 1) c(m,P ) +

dlog(P )e−1∑
i=0

[
P ‖

(
o(2im) + 2L(2im, 1)

)]
= (P + 1) c(m,P ) + logP o(m) + (P − 1) 2L(m,P ),

(4.36)

while the segmented messages cost is:

ΘBruck(m) = (P + 1) c(m,P ) +

dlog(P )e−1∑
i=0

[
P ‖

(
o(2im) + 2 k L(2i S, 1)

)]
= (P + 1) c(m,P ) + logP o(m) + (P − 1) 2 k L(S, P )

(4.37)

In LogGP, the cost of the algorithm with segmented messages is:

TLogGPBruck (m) = δ m+

dlog(P )e−1∑
i=0

[
L+ 2 o+ (S − 1)G+ (k − 1)

(
g + (S − 1)G

)]
+ P δm

= (P + 1) δ m+ logP
(
L+ 2 o+ (S − 1)G

)
+ (P − 1) (k − 1)

(
g + (S − 1)G

)
(4.38)

lognP models the cost as:

T
logn P
Bruck (m) = om(m) +

dlog(P )e−1∑
i=0

2 o(2im) + om(2im)

= P om + (P − 1) 2 o

(4.39)

As discussed in previous sections, the overhead is referred to the message size for clarify-

ing, and the transfer cost om for local copies is introduced in the modeling to represent

local memory copies or transfers. Again, the concurrency represented by τ–Lop makes

a difference comparing this algorithm and, for instance, the Dissemination algorithm in

the former section. While, the costs of LogGP and lognP are almost identical in both

algorithms.

4.5.4 Pairwise Exchange

In the Total Exchange or Complete Exchange collective operation, referred as MPI Alltoall

in MPI, each of the P processes contributes with a buffer of m bytes. The buffer is split

in m/P blocks. The process with rank p sends the block in the position j to the process

with rank j. A process p receives a block from a process k in the position k of its output

buffer. The Pairwise Exchange is an algorithm implementing this operation. It requires
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P − 1 stages, after a previous local copy of the local block to the output buffer. In a

stage i, rank p sends the block of m/P bytes to p+ i, and it receives a block from p− i,
with wraparound. All processes communicate at the same time, leading to a cost of:

Θpexch(m) = c

(
m

P
,P

)
+ (P − 1)×

[
P ‖ Tsr

(
m

P

)]
(4.40)

Note that for a complete exchange of a buffer of size m, the blocks have size m/P .

Regarding τ–Lop, the costs for short and segmented messages are:

Θpexch(m) = c

(
m

P
,P

)
+ (P − 1)×

P ‖ (o(m
P

)
+ 2L

(
m

P
, 1

))
= c

(
m

P
,P

)
+ (P − 1) o

(
m

P

)
+ (P − 1) 2L

(
m

P
,P

) (4.41)

Θpexch(m) = c

(
m

P
,P

)
+ (P − 1)×

P ‖ (o(m
P

)
+ 2 k L

(
S

P
, 1

))
= c

(
m

P
,P

)
+ (P − 1) o

(
m

P

)
+

(P − 1)

P
2 k L (S, P )

(4.42)

LogGP models the algorithm as a local copy in addition to the P − 1 stages performing

segmented point-to-point message transmissions, with the cost:

TLogGPpexch = δ
m

P
+ (P − 1)× TLogGPp2p

= δ
m

P
+ (P − 1)

(
L+ 2o+ (S − 1)G+ (k − 1)

(
g + (S − 1)G

))
= δ

m

P
+ (P − 1)

(
L+ 2o+ (S − 1)G

)
+ (P − 1) (k − 1)

(
g + (S − 1)G

)
(4.43)

Similarly, lognP models the cost as:

T
logn P
pexch = om + (P − 1)× T logn P

p2p = om + (P − 1) 2 o (4.44)

Note that om and o refers to a message of size m/P in a Total Exchange operation of

m bytes. The three models estimate the cost similarly with respect to the size of the

messages sent and the local copies. However, the difference in the modeling comes again

in the representation of the concurrency by τ–Lop, which gives a more realistic picture

of the behavior of the algorithm.
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4.6 The Open MPI COLL SM Broadcast algorithm

This section develops a cost study of a collective algorithm not implemented based on a

graph of point-to-point transmissions between pairs of processes, but on shared memory

transfers performed by a group of processes concurrently. The goal of the section is

twofold:

• Showing the capabilities of τ–Lop to model complex scenarios at a transfer level,

rather that at the higher, already discussed, point-to-point transmission level.

• Showing how τ–Lop overcomes the limitations of other models.

The Open MPI Broadcast algorithm implemented in the collective SM (shared memory)

component of the library is built based on what we term collective transfer construct.

The algorithm operates as a tree of degree g (known as binary tree for g = 2), instead

of as a Binomial tree, and it is applied to all the message sizes. The height of a tree of

degree g of P processes is h(P ) = dlogg
(
(g − 1)P + 1

)
e. Level i has gi processes. Data

communication is not based on message transmissions between pairs of processes, but

on using a memory zone which is shared by all the processes involved in the operation.

Specifically, a parent process broadcasts data to its g children through an intermediate

buffer, composed by segments of S = 8 KB. Look at Figure 4.21, a non-full tree of

degree g = 2, with P = 8 processes, user buffers of k = 4 segments (marked as u), and

shared intermediate two-segment buffers (marked as b). Given a parent process Pp and

a child Pc, child Pc copies every segment from his father’s intermediate buffer bp, first

to its own intermediate buffer bc, and then to its own user buffer uc. The idea of this

approach is that parent and child transfers progress in parallel in pipeline. Thus, child

transfers from P1 to P3 and from P1 to P4 progress, with some delay, in parallel with

the parent transfers from P0 to P1.

As the concept of transmission disappears from the algorithm, cost terms T vanish from

its τ–Lop prediction, which has to be formulated directly in terms of the lower level

transfer costs L, a change that does not contribute to expressiveness. Nevertheless, the

algorithm has a pipeline behavior, fully detailed in Figure 4.22. Three sections can be

identified in the pipeline, the head, the body and the tail, with respective costs ΘH , ΘB

and ΘT , so that ΘSM (m) = ΘH + ΘB + ΘT .

An analytical transfer-based expression of the cost can be obtained from this pat-

tern with τ–Lop, though not necessarily as directly and elegantly as from the former

transmission-based expressions. It can be shown, for instance, that if g = 2, the body

is a repetition of k − 2 two-stage blocks of identical cost when log2(P ) is even. Hence
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Figure 4.21: Buffering layout of the Open MPI COLL SM Broadcast algorithm in a
non-full binary tree of P = 8 processes. Each involved process Pi has its user buffer ui
divided into k = 4 segments uij , 0 ≤ j < k. In addition, Pi owns an intermediate buffer
bi (in gray) of two segments bij , 0 ≤ j < 2, in shared memory, used to communicate to
his children. Numbers inside the segments are temporal labels. Label n denotes that
the segment is written in the pipeline step n. Segment b00, for instance, is written in
stage 1 and again in stage 5. Segments b01, u10, u20 and b30 are written concurrently

at stage 3.

Figure 4.22: Evolution of the eleven stages pipeline produced by Figure 4.21. Time
runs to the right. Each cell shows the source and destination buffers the stage involves
in the top half, and its cost in the bottom half. The total cost of the stage 4, for
instance, is L(S, 21) ‖L(S, 22) ‖L(S, 20) = L(S, 21 + 22 + 20) = L(S, 7). The cost of the

operation is the sum of the costs of all the stages.

ΘB = (k − 2)(ΘB0 + ΘB1), where ΘB0 and ΘB1 are the costs of the first and second

stages of the block. A stage ΘB0 has to be added when log2(P ) is odd (as is the case of

Figure 4.22); so, ΘB = (k− 2)(ΘB0 + ΘB1) + (log2P mod 2)ΘB0 . Figure 4.22 illustrates

that, on a full tree, ΘB0(m) =
h(P )−1
‖
i=0

L
(
S, gi

)
and ΘB1(m) =

h(P )
‖
i=1

L
(
S, gi

)
.

LogGP and lognP , transmission-based models, just cannot represent the cost of this

algorithm. As an approximation, the LogGP cost would be TLogGPSM = h(P ) ×(
2 o+ L+ (S − 1)G+ (k − 1)

(
g + (S − 1)G

))
. lognP could predict the cost as
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Figure 4.23: Average proportional error of the three performance models estimations
on the Open MPI COLL SM broadcast algorithm in the Lusitania machine. The
message size ranges between 8 KB and 16 MB on an increasing number of processes P

involved in the operation.

T
logn P
SM = h(P ) × (2 o), simply by multiplying the height of the binary tree with the

cost of a point-to-point message. Of course, neither of the two formulas can draw a

picture of the concurrent pipeline behavior of the algorithm. Figure 4.23 shows the av-

erage proportional error of the models in Lusitania. For some reason, the performance

of the Open MPI implementation of the algorithm degrades for P > 64, which leads to

a noticeable error on τ–Lop. It is also to be noted that with LogGP, the error varies

erratically with P . The LogGP results are, therefore, considered unreliable.

Figure 4.24 shows in detail the performance predictions in the Metropolis multi-core

platform, while Figure 4.25 shows the proportional error. As it can be seen, τ–Lop

provides with an accurate estimation for all the range of the messages, except for the

larger ones, where the measured performance of the algorithm degrades unexpectedly,

raising the error in lognP and τ–Lop models. However, LogGP partially fits this change,

although its estimation error for the range of messages is globally too high.

4.7 Reduction

A reduction operation involves not only communication, but also computation on the

communicated data. τ–Lop models reduction introducing the γ parameter. It represents

the computation time in the execution of a collective operation, and its value is highly

dependent on several factors, some of them enumerated below:
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Figure 4.24: Bandwidth estimation of the three performance models on the Open
MPI COLL SM Broadcast algorithm in the Metropolis machine for P = 8 processes.
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Figure 4.25: Proportional error of the three models on the Open MPI COLL SM
Broadcast algorithm in the Metropolis multi-core machine for P = 8.

• As the rest of parameters, it is highly related to the platform, the speed of the

processor and the capabilities of the architecture. For instance, the possibility

of leaving the communication to the network hardware while computation is per-

formed makes γ difficult to measure.

• Data types of the operands in the operation, their sizes and the hardware to operate

them (e.g. floating point units).

• The cache layout of the data to operate and the software mechanisms to extract

performance from computation (e.g. data tiling techniques).
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sizes in the Metropolis platform. The message, whose size m is shown at the right, is
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benchmark, executed with data out of L3 cache.

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 4 8

T
im

e
 (

µ
s
)

τ

Gamma function γ(m,τ) (Large messages)

64 KB
128 KB
256 KB

512 KB

1 MB

2 MB
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sizes in the Metropolis platform. The message, whose size m is shown at the right, is
composed of float elements. These measurements have been obtained from a micro-

benchmark, executed with data out of L3 cache.

Despite of these drawbacks in estimating γ, in the author’s view, the parameter is

needed for representing the computation time, which usually accounts for an important

fraction of the total cost of reduction operations. Furthermore, the consideration of

the contention in accessing the operands for computing could be a key factor in the

correct estimation of the cost of a reduction operation. Figure 4.26 and Figure 4.27

show the impact of the contention in the addition of two vectors of float type elements

in the Metropolis platform, for increasing number of processes. We implemented a
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micro-benchmark to obtain the times shown, which operates two vectors of size m bytes

composed of elements of a given datatype. For instance, in a vector of m = 512 KBytes of

float elements there will be 512KB/sizeof(float) = 128K-float elements. The vectors

are initially out of the L3 cache, in main memory. As a consequence, the computation

time is an upper bound for γop(m).

The MPI standard defines the MPI Reduce collective operation, which operates the

elements provided in the input buffer of each process and returns the combined result

in the output buffer of the root. This section models four algorithms of the MPI Reduce

operation used in different MPI libraries. The first algorithm is a Binomial tree used

for small messages in MPICH. The second is a combined Reduce-Scatter and Gather

operations for long messages. The third is an algorithm that exploits shared memory.

It is used in the COLL SM component of Open MPI. The last is an algorithm designed

and implemented in AzequiaMPI, taking advance of its shared memory environment.

The costs of the algorithms are evaluated in the Metropolis platform.

4.7.1 MPICH Binomial Tree reduction algorithm

MPICH implements a Binomial tree algorithm for small messages (m ≤ 2 KBytes),

similar to that used in the Broadcast collective operation (see section 4.1). The algorithm

builds the binomial tree from down to top. Every message transmission entails a reduce

operation on reception. The intermediate results accumulate in every stage until reaching

the root process. The cost of the algorithm is modeled applying short point-to-point

messages definition in (3.1), because the operation is done for sizes smaller than a

segment (2 KBytes < S). Note that computation cost γ is defined and represented

as dependent on the number of involved processes:

ΘBin(m) =

dlog2(P )e−1∑
i=0

[
2i ‖T (m) + γop(m, 2

i)
]

(4.45)

lognP does not model reduction operations. Even in the case of being defined, the term

γop(m) would only be dependent on the message size, as it does not consider the effect

of the concurrent access to memory. Hence, the reducing cost in lognP is introduced by

adding computation to the cost of a Binomial tree in (4.6), leading to the cost of:

T
logn P
BinRed = log(P )

(
2 o+ γop

)
(4.46)

In LogGP, γ symbol has been used to represent the cost of computing the elements of

a vector of size m bytes (see [29] and [13]). Based on the Binomial tree algorithm, the
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Figure 4.28: Cost estimations of the MPICH Binomial tree algorithm for the
MPI Reduce collective with P = 8 and γMPI SUM (m, τ) on float elements in the

Metropolis platform.

cost is:

TLogGPBinRed = log(P )
(
L+ 2 o+ (m− 1)G+ γ m

)
(4.47)

Figure 4.28 shows the execution time of the Binomial tree reduction algorithm on the

message sizes ranging in 4 Bytes < m ≤ 2 KBytes, with P = 8 and the predefined com-

putation operation MPI SUM applied to MPI FLOAT type elements. Figure 4.29

shows the proportional error of the estimations. This algorithm works for short mes-

sages, so the concurrency is low. However, added to the computation, contention leaves

its footprint in the figures. lognP predicts lower execution time than τ–Lop, raising the

error in the estimation. LogGP shows an erratic behavior for short messages in shared

memory. The mean proportional error thrown by τ–Lop is 1.35, while it is 1.75 in lognP

and 4.88 in LogGP.

4.7.2 MPICH Reduce-Scatter plus Gather algorithm

For message sizes of m > 2 KBytes, MPICH uses a Reduce algorithm which acts in two

phases. The first one performs a Reduce-Scatter operation (ΘRS) that concentrates the

computation. The second phase collects the generated partial results of each process

executing a Gather operation ΘGth. The total cost is represented as ΘRSG(m):

ΘRSG(m) = ΘRS(m) + ΘGth

(
m

P

)
(4.48)

Following, the algorithms used in both phases are discussed.
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Figure 4.29: Proportional error in the modeling of the Binomial tree algorithm for
the MPI Reduce collective with P = 8 and γMPI SUM (m, τ) on float elements in the

Metropolis platform.

The Reduce-scatter operation is implemented using several algorithms depending on the

size of the message. For up to m = 512 Kbytes, a Recursive Halving algorithm is used,

performing the computation in each stage. This algorithm is the inverse of the Recursive

Doubling (see Figure 4.7). The initial message size is m, and it halves in each stage. P

processes communicates in each stage using the Send-receive operation defined in (3.7).

The ΘRS cost is similar to that in (4.9) adding computation on the received data using

the γ parameter, that is:

ΘRS(m) =

dlog2(P )e−1∑
i=0

P ‖ (Tsr ( m

2i+1

)
+ γop

(
m

2i+1
, 1

)) =

=

dlog2(P )e−1∑
i=0

[
P ‖

(
o(m) +

2 k

2i+1
L(S, 1)

)
+ γop

(
m

2i+1
, 1

)]

= logP o(m) +

dlog2(P )e−1∑
i=0

(
k

2i
L(S, P ) + γop

(
m

2i+1
, P

))
(4.49)

In the second phase, the Gather operation is implemented by an inverse Binomial Scatter

tree, i.e., from leaves to the root (see Figure 4.19). It departs from a message of size

m/P , which doubles in each stage, however, the concurrency halves, leading to a cost
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of:

ΘGth

(
m

P

)
=

dlog2(P )e−1∑
i=0

 P

2i+1
‖T

(
2im

P

)
=

dlog2(P )e−1∑
i=0

 P

2i+1
‖

(
o

(
m

P

)
+

2i k

P
L(S, 2)

)
= log2(P ) o

(
m

P

)
+

dlog2(P )e−1∑
i=0

(
2i k

P
L

(
S,
P

2i

))
(4.50)

Considering the difference between o(m) and o(m/P ) as negligible, the cost of the

Reduce-Scatter algorithm for segmented messages results in:

ΘRSG(m) = 2 logP o(m) +

dlog2(P )e−1∑
i=0

(
k

2i
L(S, P ) + γop

(
m

2i+1
, P

))

+

dlog2(P )e−1∑
i=0

(
2i k

P
L

(
S,
P

2i

)) (4.51)

Finally, although it is not evaluated here, for larger messages (m > 512 KBytes), the

algorithm used for the Reduce-scatter phase in MPICH is a Pairwise Exchange, modeled

in section 4.5.4. The computation cost is added in each phase to the definition (4.42)

for segmented messages. The result is:

ΘRedPE(m) = c

(
m

P
,P

)
+ (P − 1)×

P ‖ (o(m
P

)
+ 2 k L

(
S

P
, 1

))
+

(
γop

(
S

P
, 1

))
= c

(
m

P
,P

)
+ (P − 1) o

(
m

P

)
+

(P − 1)

P

(
2 k L (S, P ) + γop (S, P )

)
(4.52)

LogGP models the algorithm based on the Recursive Doubling algorithm modeled in

(4.11), adding the cost of the computation and the Binomial tree Gather cost (the same

as Scatter), as:

TLogGPRSG = 2 logP
(
L+ 2 o+ (S − 1) G

)
+ 2

P − 1

P
(k − 1)

(
g + (S − 1) G

)
+
P − 1

P
γ m

(4.53)
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Figure 4.30: Modeling of the Reduce-Scatter plus Gather algorithm for the MPICH
implementation of the MPI Reduce with P = 8 and γMPI SUM (m, τ) on float elements

in the Metropolis platform.
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Figure 4.31: Proportional error in the modeling of the Reduce-Scatter plus Gather
algorithm for the MPI Reduce collective operation with P = 8 and γMPI SUM (m, τ)

on float elements in the Metropolis platform.

As well, based on the Recursive Doubling cost in (4.12), and the Binomial Scatter cost

in (4.24), lognP models the algorithm cost as:

T
logn P
RSG = om + (P − 1) (2 o+ γ) +

P − 1

P
2 o (4.54)

Figure 4.30 shows the bandwidth estimation for the models with respect to the algorithm

execution in MPICH. Due to the complexity of the modeling of this algorithm, the

models do not show a good prediction of the cost. They fail specially in short messages,

as Figure 4.31 clarifies, however, τ–Lop error is quite lower than that of LogGP and
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Figure 4.32: Open MPI COLL SM Reduce with P = 4 processes and root 0 executing
the iteration k = 2. First, the processes 1 to 3 copy their segments to the intermediate
buffer (with cost L(S, 3)). After that, the root process, first copies the segment of
the process with highest rank (3) to its output buffer (with cost L(S, 1)), and then it

operates in inverse rank order with the rest of the segments ((P − 1)× γop(S, τ)).

lognP . The contention cost in this algorithm, with only P = 8 processes, is not enough

to the contention modeling makes a significant difference in long messages. LogGP

estimation is unexpectedly good, in spite of it does not behave good in other similar

algorithms. The mean proportional error of applying τ–Lop in the size range of messages

is 1.48, while it raises to 2.50 with LogGP and to 1.68 with lognP .

4.7.3 Open MPI SM Reduce algorithm

Open MPI COLL SM algorithm implementing the Reduce operates in three stages. The

three stages are repeated k times, where m = k × S. Figure 4.32 shows the k = 2

iteration of the algorithm with P = 4 processes. In the first stage, each process moves

a segment of size S = 8 KBytes, the size of the segment, to a common memory area.

The cost of this stage under τ–Lop is L(S, P − 1) because all the processes except the

root perform the copy concurrently. In the second stage, the root copies the segment

from the process P − 1 to its output buffer. The cost of this stage is of L(S, 1). Finally,

the root takes the segments one by one in inverse rank order. The root operates each

segment to that in the output buffer in terms of the operation specified in MPI Reduce.

This last stage has a cost of (P − 1) γop(S, 1). The total cost is:

ΘRedSM (m)= k ×
[
L(S, P − 1) + L(S, 1)+(P − 1)γop(S, 1)

]
(4.55)

In lognP , the cost is modeled as:
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Figure 4.33: Open MPI COLL SM Reduce cost estimations together with the real
cost with P = 8 and γMPI SUM (m, τ) on float elements.
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Figure 4.34: Mean proportional error in the modeling of the Open MPI COLL SM
MPI Reduce with P = 8 and γMPI SUM (m, τ) on float elements.

T
lognP
RedSM = 2 o+ (P − 1) γop, (4.56)

meaning the total amount of bytes in the transfers (2 o), and the P − 1 operations

performed by the root on the messages of size m from each process.

The cost under LogGP is modeled as the addition of two point-to-point transmissions

defined in (2.2) and the cost of the computation:

TLogGPRedSM = 2× TLogGPp2ps
+ (P − 1) γ m (4.57)

Figure 4.33 compares the application of the models to the experimental execution time
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in terms of bandwidth obtained in Open MPI COLL SM Reduce. As it can be seen,

the LogGP prediction is far from real values, mainly owing to the fact that the cost

expression is an effort for applying the unsuitable LogGP model to an algorithm based

on transfers rather than in message transmissions. τ–Lop fits better the real cost in the

Open MPI Reduce because it considers the concurrency cost, as Figure 4.34 shows. The

mean proportional error of τ–Lop on the sizes of Figure 4.34 is 1.24, while it rises to

1.81 in lognP and to 3.37 in LogGP.

4.7.4 AzequiaMPI Reduce algorithm

AzequiaMPI library implements each MPI rank as a thread, therefore, in shared memory

all ranks have direct access to the user buffers of the other ranks. AzequiaMPI uses a

four-stage reduction algorithm that does not require data movement because the P

threads operate directly on the receive buffer provided by the root in MPI Reduce.

At the first stage every non-root thread puts the address of its send buffer at the disposal

of the rest by first sending it to root, which receives them in sequence. Next, the root

broadcasts a vector with the P addresses using a Binomial tree, with size P × maddr

bytes. This is an Allgather operation whose cost is:

ΘAllgth(maddr) = (P − 1) Tp2p(maddr) +

dlog2(P )e−1∑
i=0

[
2i ‖Tp2p (P ×maddr)

]
Note that all transmissions are non-segmented in AzequiaMPI, except tiny messages

that come through intermediate buffers for decoupling sender and receiver in the com-

munication. Indeed, the cost of a point-to-point transmission is Tp2p = o(m) + L(m, 1)

in shared memory, because of the fact that data are directly copied from the sender

buffer to the receiver buffer.

At the second stage root broadcasts using a Binomial tree the address of its receive

buffer, which holds the output vector of MPI Reduce, with a cost of:

ΘBcast(maddr) =

dlog2(P )e−1∑
i=0

[
2i ‖Tp2p (maddr)

]
During the third stage, every thread operates the data on its original send buffers. To

this end every send buffer is chopped into P segments. Thread Pi applies the operation

on the P segments i. Figure 4.35 illustrates the set-up of the approach.

Tcomp(m) = P × γop
(
m

P
,P

)
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Figure 4.35: Representation of the computation phase (Tcomp) of the AzequiaMPI
Reduce algorithm for P processes. Si is the send buffer of process Pi. R is the receive
buffer of root. Si and R are chopped into P segments Sij and Rj for 0 ≤ j < P . Process
Pi,∀i, for (1 ≤ j < P ) in increasing order of j, applies the operation Op between the

elements of Sji and S0i, storing the result in S0i. Finally Pi copies S0i to Ri.

Non-root threads notify root at the last stage that the receive buffer is finished with a

Binomial tree synchronization operation. In this operation, the message size is m = 0,

leading to a cost of:

Θsync(0) =

blogg(P )c−1∑
i=0

[
2i ‖T (0)

]

The total cost of MPI Reduce is then:

ΘAzqMpi(m) = ΘAllgth(m) + ΘBcast(m) + Tcomp(m) + Θsync(0) (4.58)

Figure 4.36 shows the application of the models to AzequiaMPI Reduce algorithm. τ–

Lop gives in (4.58) a mean proportional error of 1.22. For the lognP model the formula

(P −1) o(maddr)+log(P ) o(P maddr)+log(P ) o(maddr)+(P −1) γ is applied, taking into

account the different message sizes in the transfers and computation. As shown in the

figure, the resulting error rate is higher, and the mean proportional error raises to 1.69.

LogGP has not enough capabilities to represent correctly this type of algorithms based

exclusively on transfers. It was showed in the former section 4.7.3 for the Open MPI

Reduce algorithm, and hence, it is omitted here from the discussion.

Below some discussion points are raised. The AzequiaMPI algorithm minimizes data

communication because it can afford an in situ calculation approach, working directly

on the user space buffers provided by each thread. Figure 4.37 shows how MPI Reduce

produces differences in the cost estimation done by τ–Lop and lognP , attributable to the

fact that this algorithm entails concurrency in each stage. The figure also shows that

τ–Lop looses precision modeling the reduction operation in AzequiaMPI with respect to

Open MPI, carrying a quite pessimistic prediction. This is explained by the fact that

parameter γ was built as a ”worst case” cost estimation, i.e., with the elements on the
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Figure 4.36: Modeling of AzequiaMPI Reduce algorithm with P = 8 and
γMPI SUM (m, τ), on float type elements.
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Figure 4.37: Mean proportional error of the modeling of the AzequiaMPI Reduce
algorithm with P = 8 and γMPI SUM (m, τ), on float type elements.

vectors to operate out of the cache. This fact speeds up the real Reduce operation with

respect to the modeled one.

4.8 Conclusions

The main contribution of τ–Lop discussed in this chapter is its ability to model con-

current transmissions in channels that are shared by all the processes implied in the

communication. That results in an improvement of the accuracy of the cost estima-

tions and the representation of a diversity of MPI collective algorithms implemented
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in both process-based MPICH and Open MPI libraries, and thread-based AzequiaMPI

library, including algorithms with computational costs. The reasons for the poor fit in

this domain of the more representative models, LogGP and lognP , are described. The

most important is that the contention cost influence in the overall communication cost

is significant, specially in more elaborated algorithms than simple Binomial trees.

In addition, the concurrent transfer concept allows the representation of sophisticated

communication techniques used by current implementations of MPI in shared memory,

such as message segmentation and collective operations not based on point-to-point

operations. It is shown that the expressivity of the cost expressions of the collective

operations is key, for instance, in the comparison of a Total Exchange (All-to-all) and

the Binomial Scatter operations. LogGP, for instance, erroneously assigns both the same

cost. More examples will be shown in the next chapters.





Chapter 5

Modeling MPI collective

algorithms in hierarchical

multi-core clusters

Modern high performance computing systems are composed of nodes with a significant

number of cores per node connected by high performance networks. Obtaining as much

performance as possible from such machines requires to consider the hierarchy of com-

munication channels imposed by the difference in the channels bandwidth, in addition

to the contention effects due to the sharing of the resources.

Furthermore, related to the contention is the assignation of the ranks to the processes

deployed over the system processors (virtual topology or mapping). Assumed a multi-

core cluster with a hierarchical organization of communication channels based on their

performance, the mapping of processes could improve or aggravate the contention effect.

The contribution of this chapter is the application of the τ–Lop model, which was initially

developed to model the behavior of collective algorithms in shared-memory nodes, to

hierarchical multi-core clusters. The model extension proposes a new approach to the

representation and analysis of parallel algorithms in that architectures, with a focus on

MPI collectives. In addition, the extension captures the way the virtual topology defined

by the algorithm maps onto the physical topology of the machine. This ability provides

a more realistic representation of the algorithm, leading to a better cost prediction.

75
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5.1 Modeling hierarchical platforms with current models

LogGP and lognP partially address the hierarchy modeling by adding new parameters

to support the representation of the hierarchical communications, as in LogGPH [40]

and mlognP [42], extensions of the LogGP and lognP respectively. This section revisits

LogGPH and mlognP . They are later used in cost evaluations compared to τ–Lop.

Multi-core clusters are addressed through the discussion of key algorithms implementing

MPI collective operations.

LogGPH supports the representation of hierarchical architectures by a set of parameter

values for each communication channel. Considering two communication channels, as

shared memory and network, the latency parameter, for instance, is represented as L0 for

shared memory latency, and L1 for network latency. The definition of the parameters,

although estimated per-channel, is the same as in LogGP.

mlognP extends lognP by considering the hierarchy of communication channels in a

system. In mlognP , the cost of a message transmission is the sum of the costs of its

individual transfers, each through its specific communication channel. mlognP formally

characterizes this cost with six parameters:

o : overhead, the amount of time the processor is engaged during the transmission or

reception of a contiguous message through a communication channel.

l : latency, the additional processor time when the message is not contiguous in memory.

g : gap, minimum interval of time between consecutive receptions of two messages.

P : the number of processes.

m : the number of different channels in the system.

n : is a vector with one component per communication channel, indicating the number

of transfers between two processes along the message path1. It is the fundamental

contribution of mlognP over lognP .

The cost of a transmission through the channel c is the sum of the costs of its individual

transfers2:

T cp2p =

nc−1∑
j=0

(
ocj + lcj

)
, c ∈ {0, 1, · · · ,m− 1} (5.1)

1Note that the message path of a transmission can involve transfers in different communication
channels. However, the term channel is used for clarity to refer to the whole transmission.

2For convenience, a superscript c to indicate the component of the vector n is used, instead of the
most common index notation n[c]. The vector n has m components, as it can be deduced from the
parameter definition, i.e., c ∈ {0, . . . ,m− 1}.
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Figure 5.1: Concept of message transmission in 2 log{2,3} P . The message transmis-
sion through the shared memory channel is done in two transfers (already shown in
Figure 5.1). The network channel needs three transfers. PS and PR are the sender and

receiver processes respectively.

Thus, the overhead parameter takes a different value depending on the communication

channel. Figure 5.1 shows an example of an architecture with two channels, shared

memory and network, used to communicate processes intra and inter-node, that is,

m = 2. The vector indicating the number of transfers per communication channel is n =

{2, 3}. In the shared memory channel (c = 0), a transmission needs two transfers n0 = 2,

going through an intermediate buffer. In the network channel (c = 1) a transmission

needs three transfers n1 = 3, because the message is copied from the source process to

the network interface card (NIC), transmitted through the network to the destination

NIC and being finally copied to the target process. Definition (5.1) is specified using

tailored 2log{2,3}P model to represent the cost of a transmission in shared memory as:

T 0
p2p =

n0−1∑
j=0

o0j = o00 + o01 = omw (5.2)

Note that, in shared memory, the two transfers have the same cost, and their addition is

represented originally as omw (middleware overhead). In the network channel, the first

and last transfers have the same cost, whose join contribution is represented as o′mw.

The intermediate transfer, between NICs, progresses through the network and its cost

is o′net:

T 1
p2p =

n1−1∑
j=0

o1j = o10 + o11 + o12 = o′mw + o′net (5.3)
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5.2 Modeling algorithms in hierarchical platforms with

τ–Lop

This section evaluates the τ–Lop capability to model three algorithms widely used in MPI

collective operations in a multi-core cluster: Binomial tree, Ring and Recursive Doubling.

The accuracy, scalability and expressiveness of τ–Lop in modeling these algorithms are

compared to that of LogGPH and mlognP on a multi-core cluster.

Each algorithm involves P processes, ranked in the range 0 . . . P − 1, deployed over

the multi-core cluster. Two communication channels are considered, shared memory

and network. The algorithms statically establish a communication graph between the

ranks, and execute in a sequence of stages, where the number of involved processes and

the message size may change along them. Considering that the mapping of processes

to the system processors determines the used communication channels, the algorithm

performance highly depends on the chosen mapping. Experimental work is conducted

in Metropolis, a multi-core cluster using Ethernet (see section 7.1).

Unless otherwise stated, this thesis considers processes deployed in Sequential mapping,

that is, the process with rank i runs in the processor i%Q of the node i ÷ Q, with Q

the number of cores per node or, in simple words, processes fill each node before going

to the next one. Nevertheless, modeling under other mappings is straightforward. M

represents the number of nodes in the cluster.

5.2.1 Binomial Tree

In the Binomial tree algorithm a process named root broadcasts a message of size m to

the rest of the processes. As introduced in section 4.1, in the first stage, the root sends

the message to the process with rank root + P/2. The algorithm recursively continues

with both processes acting as roots of their respective sub-trees with P/2 processes. The

number of stages is the height of the tree (dlog2(P )e). The number of sending processes

doubles in each stage, whereas the message size remains constant.

LogGPH and mlognP estimate the algorithm cost as the height of the tree multiplied

by the cost of a point-to-point transmission. Figure 5.2 shows the generated message

transmissions in a theoretical multi-core cluster composed of P = 16 processes disposed

in Sequential mapping on M = 4 nodes. As can be distinguished, the number of stages

transmitting data through the network channel is log2(M), while the number of stages

with data transmissions through shared memory is log2(Q), with Q = P/M the number
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Figure 5.2: A Binomial tree with P = 16 processes (root = 0) deployed in M = 4
nodes with Sequential mapping. Transmissions through used communication channels
are shown, shared memory (dotted line) and network (bold line). M#j indicates the

destination node of each transmission.

of processes in each node. Adding both costs, the LogGPH estimation is:

TBin,LogGPH = log2M · T 1
LogGPH + log2Q · T 0

LogGPH (5.4)

Note that T 1
LogGPH 6= T 0

LogGPH , because the values of the L, o and G parameters are

different in each communication channel (as proposed in the LogGPH model), making

the mapping of processes a key factor in the performance of algorithms in a multi-core

cluster.

The mlognP modeling of the cost is:

TBin,mlognP = log2M · (o′mw + o′net) + log2Q · omw (5.5)

The contention generated by the algorithm highly depends on the deployment of the

processes in the system. Take as an example the last stage (s#3) of Figure 5.2, where

two transmissions arrive concurrently to each node. Unlike LogGPH and mlognP , τ–Lop

captures this fact, and hence it better models the impact of mapping and its effects on

the contention of the algorithm. The cost of the Binomial tree will be represented as:

ΘBin(m) =

dlog2(P )e−1∑
i=0

[
Cmapi

‖T cp2p(m)
]

(5.6)

T cp2p(m) is the cost of a point-to-point transmission through the communication channel

c, and is defined in (3.1,3.2) for shared memory and in (3.3) for the network. Cmapi is

the maximum number of concurrent transmissions through the communication channel

used in the stage i, determined by the process mapping (map).
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Figure 5.3: Estimation of the cost of a Binomial tree compared to the real cost
of MPICH in terms of bandwidth. The number of processes is P = 32, deployed

sequentially on M = 4 nodes.

Based on the analysis of Figure 5.2, definition (5.6) can be developed as follows. In

the first stage (s#0), there is a point-to-point transmission through the network, with

cost 1 ‖T 1
p2p(m). In the second stage (s#1) there are two transmissions again progressing

through the network. As the Sequential mapping causes that their respective destination

nodes to be different (M#3 and M#1), no contention takes place, and cost is 1 ‖T 1
p2p(m)

(as assumed in section 3.5). The third stage (s#2) has four transmissions in shared

memory, scattered in different nodes, with the cost 1 ‖T 0
p2p(m). In the last stage (s#3),

there are two concurrent shared memory transmissions in each node, therefore, CSEQ3 =

2 and the stage cost is 2 ‖T 0
p2p(m). The total cost will be:

ΘBin(m) = 2T 1
p2p(m) + T 0

p2p(m) + 2 ‖T 0
p2p(m) (5.7)

Figure 5.3 shows the execution time in terms of bandwidth of the Binomial tree used

by the MPI Bcast collective operation of MPICH, for the increasing message sizes and

P = 32 processes distributed sequentially in M = 4 nodes. The MPICH measured

bandwidth is compared to the estimations derived from (5.4), (5.5) and (5.7).

LogGPH does not show a good accuracy in this configuration, while the difference be-

tween mlognP and τ–Lop is small, because the Sequential mapping causes a minimal

contention in this algorithm. In the range of long messages, however, τ–Lop shows a

slightly better fit.

Figure 5.4 reinterprets the Figure 5.3 to show the proportional error (see section 7.6) in

the estimation of the cost by models with respect to the real MPICH measured value.
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Figure 5.5: Average proportional error in the cost estimation of a Binomial tree with
increasing number of processes per node in the test platform.

mlognP and τ–Lop have a similar error, near to the optimum value µ = 1.

Figure 5.5 represents the mean proportional error in the range of message sizes of Fig-

ure 5.4 for increasing number of processes. The cost estimation of the Binomial shows a

scalable behaviour, that is, error does not grow with the number of processes, because

of the minimal contention of the algorithm in the test platform.
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Figure 5.7: Ring algorithm short message (no segmented) transmission of sequentially
mapped processes with transfers in node M#0 deployed.

5.2.2 Ring

This section evaluates the Ring algorithm, introduced in section 4.3. It is composed of

an initial local copy and P − 1 stages. Each process makes the initial copy of m bytes

from its input to its output buffer, with offset p×m. In each stage, the process with rank

p sends to the process with rank (p+1) mod P the m bytes received in the output buffer

in the previous stage. The number of processes and the message size remain constant

along the stages.

Figure 5.6 represents the intra- and inter-node transmissions generated by the algorithm

under Sequential mapping. The LogGPH and mlognP models estimate the cost of a

stage as the most expensive addition of a send and a receive carried out by a process,

which in the figure corresponds to the addition of a send through the network and a

receive in shared memory (for instance, see the process 3 transmissions). Ignoring the
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negligible cost of the initial local copy, the algorithm cost in LogGPH will be:

TRing,LogGPH(m) = (P − 1)×
[(
L0 + 2 o0 + (m− 1)G0

)
+
(
L1 + 2 o1 + (m− 1)G1

)]
(5.8)

Similarly, in mlognP , according to (5.2) and (5.2), the cost will be:

TRing,mlognP (m) = (P − 1)×
(
omw + o′mw + o′net

)
(5.9)

As the Sequential mapping divides evenly the network transmissions among the nodes

(see Figure 5.6), the algorithm communication pattern avoids contention in the network

channel. Nevertheless, contention in shared memory affects the final cost of the algo-

rithm, and the impact grows with the increase of the number of processes per node Q.

In each stage, a rank sends a message to the next rank and receives a message from the

previous rank by invoking the MPI Sendrecv operation, with cost represented as Tsr(m).

Furthermore, the destination and the source rank of both transmissions can be in the

same or different node, therefore, transmissions could progress through shared memory

or network. τ–Lop models the Ring algorithm as follows:

ΘRing(m) = (P − 1)×
[
Cmap ‖Tsr(m)

]
, (5.10)

where Cmap is the maximum number of concurrent transmissions in each stage. In the

Sequential mapping of Figure 5.6, detailed in Figure 5.7, Cmap will have the same value

along all stages, CSEQ = Q. How will Tsr(m) be affected by CSEQ? Next, departing

from the generic cost expression (5.10), two scenarios are discussed that lead to different

cost depending on the message size.

For short messages segmentation is not a concern. As represented in Figure 5.7, the

first transfer of a process, either to the NIC or to the intermediate buffer, progresses

through shared memory, hence, the transfer cost will be L0(m,Q). Next, a network

transfer of one process per node starts while the rest of processes (Q − 1) finish their

communication through shared memory. The cost of these transfers is represented as

max{L0(m,Q − 1), L1(m, 1)}. Q − 1 transfers contend in shared memory, while one

transfer progresses through the network. Note that L1(m, 1) � L0(m,Q − 1) in the

platform evaluated, with Q = 8 (see section 7.1.2). This analysis may change according

to the network technology and the number of processes per node, given Sequential

mapping. Finally, the last transfer is done by only a receiver process per node from

the network (represented as rank P0 in Figure 5.7). Thus, the total cost will be:

ΘRing(m) = (P − 1)×
[
L0(m,Q) + L1(m, 1) + L0(m, 1)

]
(5.11)
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Figure 5.8: Estimation of the cost of Ring Allgather with several models, compared
to the real MPICH measurements in terms of bandwidth. The number of processes is

P = 32, deployed on M = 4 nodes.

For long messages, each stage is composed of two separate transmissions, which do not

intersperse their transfers. The first is in shared memory, as a segmented message trans-

mission by all processes inside each node, hence with cost Q ‖ 2 k L0(S, 1) (see expression

(3.7)). The second is a point-to-point transmission performed through the network by

a single process in each node, hence without contention, with cost of 1 ‖T 1
p2p(m). The

total cost ignoring the overhead will be as follows:

ΘRing(m) = (P − 1)×
[
Q ‖ 2 k L0(S, 1) + 1 ‖T 1

p2p(m)
]

= (P − 1)×
[
2 k L0(S,Q) + 2L1(m, 1)

] (5.12)

Figure 6.4 shows the executing time in terms of the bandwidth of the Ring algorithm

implemented in the MPI Allgather collective operation of MPICH in the Metropolis

platform. The measured value is compared to (5.8), (5.9) and (5.11, 5.12). Although

the impact of contention on the cost is small in the Ring algorithm with Sequential

mapping, because it occurs in shared memory, τ–Lop better fits the real measurements

than mlognP , especially for long messages. The difference slightly increases with respect

to the Broadcast in Figure 5.3, due to the stronger shared memory contention. Figure 5.9

shows the proportional error made by the models as compared with the real MPICH

measurements.

Figure 5.10 shows the proportional error for the range of message sizes in previous figure,

for the increasing number of processes. The modeling of the cost of the Ring algorithm

with transmissions, which are progressing concurrently through the two channels, is a

complex task. All models underestimate the shared memory contention influence, due
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Figure 5.10: Average proportional error of the Ring for increasing number of processes
deployed on M = 4 nodes.

to the fact that, compared to network transmissions, the shared memory cost is low.

The cost will become significant when the number of processes per node Q increases.

5.2.3 Recursive Doubling

The Recursive Doubling Allgather algorithm (RDA), discussed previously in section

4.2, is used in collectives such as MPI Allgather and MPI Bcast. The involved processes

contribute with a message of size m and receive from the rest of processes P−1 messages,

ordered by rank in the reception buffer, for a total of P ×m bytes. The algorithm is

executed in log2(P ) stages when the number of processes is a power of two. In stage i,
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Figure 5.11: Stages of the Recursive Doubling algorithm with P = 16 processes
deployed sequentially in M = 4 nodes. A double-headed arrow represents a message
interchange of the size specified (m, 2m, 4m and 8m), whose cost is modeled in τ–Lop
as Texch. The number of concurrent interchanges between nodes in the inter-node s#2

and s#3 stages is shown in parenthesis.

the process with rank p exchanges 2im bytes with the process with rank p ⊕ 2i. The

initial local copy of the m-byte message takes place in each process, from the input to the

output buffer. The number of processes communicating in each stage remains constant

in this algorithm, whereas the message size doubles.

In a multi-core cluster with Sequential mapping, it holds that the log2(Q) initial stages

communicate processes in the same node while the rest of stages (log2(M)) communicate

processes in different nodes, giving a total cost of TRDA,LogGPH = T 0
RDA,LogGPH +

T 1
RDA,LogGPH . Based on definition (4.10), the cost is:

T 0
RDA,LogGPH = log2Q ·

(
L0 + 2 o0 −G0

)
+ (Q− 1) mG0 (5.13)

T 1
RDA,LogGPH = log2M ·

(
L1 + 2 o1 −G1

)
+ (M − 1) QmG1 (5.14)
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Like LogGPH, the mlognP model estimates the cost as the addition of the costs of the

intra-node and inter-node stages:

TmlognP =

logQ−1∑
j=0

omw +

logP−1∑
j=logQ

(o′mw + o′net)

= (Q− 1) omw + (M − 1)Q (o′mw + o′net)

(5.15)

Figure 5.11 shows, per stage, the pattern of communication of RDA in a system with

P = 16 processes sequentially mapped in M = 4 nodes. The figure suggest that in

the inter-node stages this pattern saturates links between pairs of nodes due to the

occurrence of Q = 4 concurrent transmissions. As LogGPH and mlognP do not model

this contention, their cost estimation will be very optimistic. τ–Lop models the algorithm

cost as follows3:

ΘRDA(m) =

dlog2(P )e−1∑
i=0

[
Cmapi

‖T cexch(2im)
]

(5.16)

Cmapi represents the maximum number of concurrent transmissions in the stage i given

the process mapping map. In each stage, two processes interchange a message using an

Exchange operation (Texch).

Applied to the case of Figure 5.11, expression (5.16) takes the following form:

ΘRDA(m) = CSEQ0
‖T 0

exch(m) + CSEQ1
‖T 0

exch(2m)

+ CSEQ2
‖T 1

exch(4m) + CSEQ3
‖T 1

exch(8m)

The first two stages are executed independently in each node, with two concurrent intra-

node interchanges, which makes CSEQ0 = CSEQ1 = 2. As discussed in section 3.6, the

cost of the Exchange operation is T 0
exch(m) = o0(m) + 2L0(m, 2). The inter-node stages

include four concurrent transmissions involving two nodes, so that CSEQ2 = CSEQ3 =

4, because four transmissions arrive to the node NIC concurrently. The cost of the

Exchange operation in the network is T 1
exch(m) = o1(m) + 2L0(m, 1) + L1(m, 1), also

discussed in section 3.6. As a result, the cost will be as follows:

ΘRDA(m) = 2 o0(m) + 2 o1(m)+

+ 2 ‖ 2L0(m, 2) + 2 ‖ 2L0(2m, 2)

+ 4 ‖
[
2L0(4m, 1) + L1(4m, 1)

]
+ 4 ‖

[
2L0(8m, 1) + L1(8m, 1)

]
(5.17)

3Note that he Tsr operation could be used to model the RDA algorithm as well, as CSEQ
i

‖Tsr, and
Tsr between each P = 2 processes.



Chapter 5. Extending τ–Lop to multi-core clusters 88

Applying the linearity principle defined in section 3.3, the expression (5.17) is simplified

to:

ΘRDA(m) = 2 o0(m) + 2 o1(m)+

+ 2L0(m, 4) + 4L0(m, 4)

+ 8L0(m, 4) + 4L1(m, 4)

+ 16L0(m, 4) + 8L1(m, 4),

finally resulting in the cost:

ΘRDA(m) = 2 o0(m) + 2 o1(m) + 30L0(m, 4) + 12L1(m, 4)

Figure 5.12 shows the cost, in terms of bandwidth, of the RDA algorithm implemented

in the MPI Allgather collective of MPICH, for a range of increasing message size and

P = 32 processes deployed in M = 4 nodes, and hence Q = 8. The measured cost is

compared to the estimations (5.13,5.14), (5.15) and (5.16). One interesting conclusion

can be made for long messages, when we can ignore the latency cost. In this case,

the LogGPH cost becomes 7mG0 + 24mG1, mlognP 7 omw + 24 (o′mw + o′net) and

the τ–Lop cost 62L0(m, 8) + 24L1(m, 8). Let us have a look to the network costs in

these expressions, higher than the shared memory costs, and with a 24 factor in all

models. The main difference between them is the contention, only captured by τ–Lop.

The contention in the network depends on the Q = 8 argument, which impacts the

performance and limits the algorithm scalability. The contention effect in the RDA

algorithm with Sequential mapping in a multi-core cluster is high in both channels,

which makes the LogGPH and mlognP cost predictions substantially lower than the

real-life measurements.

Figure 5.13 shows the proportional error in the estimation of the models against the real

values observed in MPICH. The error made by τ–Lop is markedly lower in the whole

range of message sizes, near to the optimum value µ = 1. Finally, Figure 5.14 shows the

proportional error through the range of message sizes in the previous figure for a growing

number of involved processes P . The error of the τ–Lop estimation remains constant

with P , whereas the error of the other models increases remarkably. In summary, the

ability of τ–Lop to capture the effect of the contention in the channels (specially in

network) for concurrent transfers provides the model with an accuracy that scales well

with the number of the involved processes.
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Figure 5.12: Estimation of the cost of Recursive Doubling Allgather with several
models, compared to the MPICH measured cost in terms of bandwidth. The number

of processes is P = 32, deployed on M = 4 nodes.
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Figure 5.13: Proportional error of the Recursive Doubling cost estimation for a range
of medium and large message lengths. The number of processes is P = 32, deployed on

M = 4 nodes.

5.3 Conclusions

The algorithms discussed in this chapter, being fairly common, have been chosen be-

cause their complexity significantly exceeds that of the algorithms evaluated in previous

related works. We analyze them under three models in hierarchical platforms. LogGPH

extension of the LogGP model is a representative of the broadly used linear models. They

base on network-related latency and bandwidth parameters, and estimate the cost of an

algorithm as the cost of the longest path of the involved point-to-point transmissions.

mlognP , an extension of the lognP model, changes previous view of the point-to-point



Chapter 5. Extending τ–Lop to multi-core clusters 90

1.0

5

10

15

20

25

4 8 16 32

A
v
e
ra

g
e
 µ

# Processes

RDA Average Proportional Error

LogGPH
mlognP
τ - Lop

Figure 5.14: Average proportional error of the Recursive Doubling for increasing
number of processes deployed on M = 4 nodes.

transmission as the cost unit modeled using network parameters and breaks it into data

transfers progressing through the hierarchy of communication channels.

τ–Lop, initially conceived to model communication in shared channels, also models

the impact of the uneven performance communication channels on multi-core clusters.

Notwithstanding, its representation of the cost is, in the author’s view, both simple and

generic, and extensible to cover hardware specific technologies details.

This chapter reveals that overlooking the representation of the contention leads to un-

acceptable estimation errors. It also shows how the mapping of processes has a decisive

impact on the cost of the algorithm, making clear that it needs to be modeled to provide

an accurate prediction.

Although the algorithms have been evaluated under Sequential mapping, the Round

Robin mapping4 is commonly used as well, and leads to different cost estimations, as it

will be extensively discussed in the next chapter. For instance, Round Robin mapping is

detrimental to the Binomial and Ring algorithms, while it improves the performance of

the Recursive Doubling. Rico et al. [23] supply a study of the influence of the mapping

on the cost of collective algorithms. As an example, the average proportional error

of the Binomial tree algorithm under Round Robin mapping is shown in Figure 5.15.

Under round robin mapping, the network contention in the algorithm grows with the

increase of the number of processes in last stages. It can be seen that the error in the

estimation of the mlognP model increases with P , while τ–Lop error remains nearly

constant. LogGPH cost estimation behaves erratic, and hence its error. The scalability

has been demonstrated to be influenced by the number of cores per node, in addition

4Round Robin mapping places a rank p in the node p%M .
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Figure 5.15: Mean proportional error of the Binomial tree under the Round Robin
mapping of processes, for increasing number of processes deployed on M = 4 nodes.

to the number of nodes in a cluster. τ–Lop estimation error does not depend on the

number of processes, hence showing higher scalability.

In summary, in the author’s view a transfer-based model with the capacity of model

contention and communication heterogeneity as τ–Lop, offers a higher analysis capacity

to drive algorithm optimization, as well as accurate and scalable cost predictions.





Chapter 6

Analysis capabilities of τ–Lop

This chapter shows the analysis capabilities of τ–Lop through two cases of study.

The first case of study compares two common algorithms modeled in shared mem-

ory: Binomial tree and Recursive Doubling, when used in the implementation of the

MPI Scatter and the MPI Allgather collective operations respectively. Such compari-

son give deeper insights in the effect of the contention in the shared memory commu-

nication channel, already discussed in chapter 4. Although both algorithms execute in

the same number of stages, the former has a significantly lower cost because in each

stage the number of transmissions progressing concurrently is smaller, resulting in lower

contention.

The second case of study discusses the Ring algorithm when it is used in the MPI Allgather

collective operation in a multi-core cluster. Its cost is estimated for two common map-

pings under LogGPH, mlognP and τ–Lop models. The ability of a model to capture

the mapping influence on the cost (introduced in the conclusions of chapter 5) is an im-

portant issue. A sensitive model must provide with mechanisms to decide the optimal

mapping of an algorithm in a given platform.

6.1 Case study 1: Comparing the costs of the Binomial

Scatter and Recursive Doubling Allgather algorithms

This section goes into detail about the influence of the contention in the performance

of algorithms, and clarifies some shortcomings in the cost expressions made by current

models. As a conduit example, two common collective operations are evaluated: a

Scatter and an Allgather. The algorithm for Scatter is a Binomial tree, and the Recursive

Doubling for Allgather. The shared memory communication channel is considered, and

93
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segmented point-to-point messages are used in the modeling. First, the algorithms are

modeled under LogGP, and then, τ–Lop is used to compare their costs.

The Scatter Binomial tree executes in dlog2(P )e stages (see section 4.4), the height of

the tree, as shown in Figure 4.18 and Figure 4.19. P is considered as power of two

for simplicity. Note that the number of concurrent transmissions doubles in each stage,

while the size of the message halves, so that the amount of data moved keeps constant

along the stages.

Under LogGP, the total cost for the Binomial Scatter is calculated as the cost of the larger

path from the root process to a leaf. The cost of a point-to-point segmented message

transmission is defined in (2.2), and simplified for clarity in the following form1:

Tp2pS = L+ 2 o+ (S − 1)G+ (k − 1) (g + (S − 1)G)

≈ L+ 2 o+ S G+ (k − 1) (g + S G)

The total cost of the Binomial Scatter algorithm is the addition of the point-to-point

transmissions costs of each stage, as shown in the Table 6.1.

Table 6.1: Binomial Scatter in LogGP

Stage Message Size Cost

1 m/2 L+ 2o+ S G+ ((k − 1)/2) (g + S G)
2 m/4 L+ 2o+ S G+ ((k − 1)/4) (g + S G)
3 m/8 L+ 2o+ S G+ ((k − 1)/8) (g + S G)

. . .
log2 P m/2log2 P L+ 2o+ S G+ ((k − 1)/P ) (g + S G)

Scatter log2 P (L+ 2o+ S G) +
total cost +((P − 1)/P ) (k − 1) (g + S G)

As Figure 4.18 illustrates, the number of stages is log2(P ), and the message size halves

in each stage. In the table 6.1, the addition of the fixed parts of the point-to-point costs

is log2(P )× (L+ 2 o+ S G), while the variable parts addition is:(
k − 1

2
+
k − 1

4
+
k − 1

8
+ . . .+

k − 1

P

)
× (g + S G) =

(k − 1)×
(

1

2
+

1

4
+

1

8
+ . . .+

1

P

)
× (g + S G) =

(k − 1)×
(
P − 1

P

)
× (g + S G)

For its part, as introduced in section 4.2, the Recursive Doubling also completes in

dlog2(P )e stages, as shown in Figure 4.7 and Figure 4.8. In comparison to the Scatter,

1Only one communication channel is considered, shared memory, and hence superscripts are not used
in this section.
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Table 6.2: Recursive Doubling Allgather in LogGP

Stage Message Size Cost

1 m/P L+ 2o+ S G+ (1 (k − 1)/P ) (g + S G)
2 2m/P L+ 2o+ S G+ (2 (k − 1)/P ) (g + S G)
3 4m/P L+ 2o+ S G+ (4 (k − 1)/P ) (g + S G)

. . .
log2 P 2logP−1m/P L+ 2o+ S G+ ((k − 1)/2) (g + S G)

Allgather log2 P (L+ 2o+ S G)+
total cost +((P − 1)/P ) (k − 1) (g + S G)

the initial size of the message is m′ = m/P , doubling at each stage. Table 6.2 shows the

Allgather cost modeling in LogGP, with log(P ) stages and P concurrent transmissions

in each stage.

Interestingly, both operations have the same cost under LogGP, a definitely inaccurate

result. The whole amount of data moved is quite different: log2 P · (m/2) bytes in the

Scatter versus (P − 1) ·m bytes in the Allgather, as can be deduced from Figure 4.18

and Figure 4.7, a fact that LogGP is unable to represent.

Next, the modeling and comparison of both algorithms are carried out with τ–Lop.

Departing from the point-to-point segmented transmission defined in (3.2), the Binomial

Scatter algorithm cost under τ–Lop defined in (4.20) is reproduced here for convenience:

ΘBinSct(m) = logP o(m) +

logP−1∑
i=0

[
k

2i+1
L
(
S, 2i+1

)]
(6.1)

The factor k
2i+1 shows clearly the decreasing of the message size per stage, while the 2i+1

parameter of L shows the increasing of the contention in the Binomial tree.

The cost of the Recursive Doubling algorithm was discussed in the section 4.2, for

a message of size m (see definition (4.9)). The cost modeling is reproduced next for a

message of size m/P , which corresponds to the size of the message used in the invocation

of the MPI Allgather, compared to m in the MPI Scatter :

ΘRDA

(
m

P

)
=

logP−1∑
i=0

[
P ‖Tsr

(
2i
m

P

)]

=

logP−1∑
i=0

P ‖(o(m) +
2i+1 k

P
L (S, 1)

)
=

logP−1∑
i=0

[
o(m) +

2i+1 k

P
L (S, P )

]

= log(P ) o(m) +

logP−1∑
i=0

[
2i+1 k

P
L (S, P )

]
(6.2)
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For (6.1) and (6.2), they can be further expanded as (the overhead is omitted for clarity):

ΘBinSct(m) =
k

2
L(S, 2) +

k

4
L(S, 4) + · · ·+ k

P
L(S, P ) (6.3)

ΘRDA

(
m

P

)
=

2 k

P
L(S, P ) +

4 k

P
L(S, P ) + · · ·+ P k

P
L(S, P )

= 2 k
P − 1

P
L(S, P )

Introducing additional contention in the Binomial Scatter (6.3) in all the stages except

in the last one, an upper bound for ΘBinSct(m) is obtained:

Θ′BinSct(m) =
k

2
L(S, P ) +

k

4
L(S, P ) + · · ·+ k

P
L(S, P )

= k
P − 1

P
L(S, P )

Now, we have that

ΘRDA

(
m

P

)
= 2 Θ′BinSct(m) > 2 ΘBinSct(m), (6.4)

that shows that the cost of RDA (ΘRDA) exceeds more than twofold that of the Binomial

Scatter (ΘBinSct).

Figure 6.1 shows both RDA and Binomial Scatter costs measured in the Lusitania plat-

form for different number of processes. The relative average costs (ΘRDA(m)/ΘBinSct(m))

for the range of the message sizes shown are 2.61 for P = 32, 2.83 for P = 64 and 3.02

for P = 128, increasing with the number of processes because of the difference in the

contention between operations. For any m and P , RDA cost more than doubles that of

Scatter, what confirms the τ–Lop prediction in (6.4).

As a conclusion, this case of study illustrates why the modeling of the cost of a collective

operation has to take into account the contention of the processes in accessing the

communication channel, also in a NUMA architecture as Lusitania. As LogGP ignores

this issue, it makes errors like giving the same cost estimation on two quite different

collective algorithms with the same number of stages. Regarding the lognP model,

the cost modeling of both collectives in definitions (4.12) for RDA and (4.24) for the

Binomial Scatter, shows that the RDA cost is near P times higher than Scatter, a result

far from being correct:

TRDA
TBinSct

=
om + (P − 1) 2 o

P−1
P 2 o

≈ P (6.5)
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Figure 6.1: MPICH performance of Binomial Scatter tree and Recursive Doubling
Allgather with different number of processes P in the Lusitania machine.
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6.2 Case study 2: Comparing the costs of different map-

pings for the Ring Allgather algorithm

Parallel algorithms implementing collective operations schedule a communication graph

between the ranks involved in the operation. Thus the process mapping determines

the channels used for message transmissions over the multi-core cluster, and hence the

contention in such channels. This section shows the capabilities of models to capture the

mapping effect in the overall cost. As a conduit example, we discuss the Ring algorithm

when used in the MPI Allgather collective operation.

The Metropolis platform with the shared memory and network channels is considered

(see section 7.1.2). Two commonly used mappings are evaluated. Sequential mapping

deploys processes on cores in a way that a rank p runs in the node p ÷Q while Round

Robin mapping runs a process p in the node p%M .

The section 5.2.2 discussed the cost of the Ring algorithm under Sequential mapping,

showed in Figure 5.7, and reproduced at the right side of the Figure 6.2. The algorithm

executes in P − 1 stages. In each stage, a process with rank p invokes the MPI Sendrecv

operation for communicating with the nearest ranks. The destination and the source

ranks of both point-to-point transmissions composing the Send-receive could be in the

same or in different nodes, therefore, transmissions could progress through shared mem-

ory or network. Under Sequential mapping, P15 receives from process P14 through shared

memory and then sends through the network to P0, while P5 transmits only through

shared memory. LogGPH models the cost of a stage as the cost of the most expensive

Send-receive, that considering Q ≥ 2, is the addition of a shared memory and a network

transmissions. Hence:

TSEQRing = (P − 1)×
[(
L+ 2 o+ (m− 1)G

)
+

+
(
L1 + 2 o1 + (m− 1)G1

)] (6.6)

where L is the latency of shared memory and L1 that of the network, and likely for o

and G. The cost for large messages approaches to (P −1)m
(
G+G1

)
, with the latency

and the overhead costs negligible. G1 � G, i.e. the cost of the transmission of a byte is

higher through the network than through shared memory, as can be seen in section 7.2.

Under Round Robin mapping (see left side of the Figure 6.3) all the messages travel

through the network. Hence, each process sends and receives a message of size m with

the cost:

TRRRing = (P − 1)× 2×
(
L1 + 2 o1 + (m− 1)G1

)
(6.7)



Chapter 6. Analysis capabilities of τ–Lop 99

0 1

2 3

M#0

15 14

13 12

M#3

9 8

11 10

M#2

M#1

4 5

6 7

SEQ

P15 P0 P1

NIC Buffer

NIC

M#3 M#0

o (m)

L (m,Q)

L (m,1)

L (m,1)

0

0

1

1

Figure 6.2: The Ring algorithm with P = 16 processes in M = 4 nodes with Sequen-
tial mapping, and a message transmission of P0 deployed at right side.

The cost for long messages approaches to (P − 1) 2mG1, nearly doubling (6.6), the

Sequential mapping cost. Although LogGPH provides useful extensions to LogGP to

reflect different communication channels in the system, an important fact is that under

LogGPH both cost expressions (6.6) and (6.7) are independent of the number of processes

per node Q, as showed later, a non plausible result.

mlognP follows a similar approach. The costs for Sequential and Round Robin mappings

are:

TSEQRing = (P − 1)×
(
omw + o′mw + o′net

)
(6.8)

TRRRing = (P − 1)× 2×
(
o′mw + o′net

)
(6.9)

Again, a cost modeling independent of the number of processes in a node.

As LogGPH and mlognP , τ–Lop models the Send-receive operation (Tsr) as the ad-

dition of two point-to-point transmissions. The cost of each individual transmission

depends on the channel it progresses and on the contention it suffers, this derived from

the process mapping and represented by Cmap in definition (5.10). Besides, the Ring

algorithm behavior can be analyzed at transfer level. As discussed in section 5.2.2,

the cost of the Ring algorithm under Sequential mapping is ΘSEQ
Ring(m) = (P − 1) ×[

L0(m,Q) + L1(m, 1) + L0(m, 1)
]
. Note that Q affects only to shared memory trans-

fers.

The behavior under Round Robin mapping is shown at the right size of the Figure 6.3.

The three transfers composing the transmission progress concurrently for the Q processes

in each node, leading to:

ΘRR
Ring(m) = (P − 1)×

[
L0(m,Q) + L1(m,Q) + L0(m,Q)

]
(6.10)
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Figure 6.3: Ring algorithm with P = 16 processes in M = 4 nodes with Round Robin
mapping, and a message transmission of P0 deployed at right side with the costs of the

concurrent transfers under τ–Lop.

Comparing both Sequential and Round Robin mappings, the difference of their costs is:

ΘRR
Ring −ΘSEQ

Ring = (P − 1)×
[(
L0(m,Q)− L0(m, 1)

)
+
(
L1(m,Q)− L1(m, 1)

)]
The difference is the contention in the channels, determined by the number of processes

per node Q, a fact not represented neither in LogGPH/mlognP nor in any other model.

Figure 6.4 shows the execution costs in terms of the bandwidth of the Sequential and

Round Robin mappings of the Ring algorithm implemented in the MPI Allgather col-

lective operation in MPICH. The number of processes is P = 32, deployed in M = 4

nodes.

In Figure 6.4, the upper plot shows the Sequential mapping cost figures. Here the

influence of contention on the total cost is relatively small, due to it occurs in the faster

shared memory channel. Notwithstanding, τ–Lop achieves a better fit than LogGPH

and mlognP in long messages, where the contention effects increase. In any event, to

determinate the impact of the shared memory contention on the total cost is a complex

issue. The LogGPH and mlognP models underestimate this fact, leading to an increase

in the estimation error in platforms with a high Q.

Bottom plot shows that, under Round Robin mapping, the algorithm communication

pattern saturates the links between nodes with Q concurrent transmissions. MPICH

long messages performance decreases sixfold in Metropolis with only M = 4 nodes and

Q = 8 cores per node. As LogGPH does not model the contention derived cost, its cost

estimation is very optimistic. The cost nearly halves in the Round Robin mapping, as

can be deduced from the estimations in definitions (6.6) and (6.7), with shared memory
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Figure 6.4: Estimation of the cost of the Ring Allgather with LogGP, mlognP and
τ–Lop models, compared to real MPICH measured cost bandwidth. The number of
processes is P = 32, deployed on M = 4 nodes under two mappings, Sequential (above)

and Round Robin (below).

transmission cost negligible. mlognP costs from definitions (6.8) and (6.9) slightly vary

between mappings, because the term omw has a low influence in the total cost. While,

τ–Lop estimation remains close to the real value. It captures the high contention effect

in the Ethernet link in the modeling of the costs ΘSEQ
Ring and ΘRR

Ring. Note that an increase

in Q will lead to a wider error in LogGPH and mlognP , while τ–Lop shows itself more

scalable. The development of the models leads to identical conclusions for all the range

of message sizes, including the segmentation of messages in shared memory, as can be

deduced from the performance in the figures.
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6.3 Conclusions

This chapter discusses the analysis capabilities of τ–Lop through two cases of study

involving common algorithms which are present in implementations such as MPICH or

Open MPI.

The first example shows the influence of the contention on the representation of the cost

of algorithms. The bandwidth of shared channels shrinks when several transmissions

progress in parallel. τ–Lop represents concurrent transmissions through a shared com-

munication channel using a simple but still powerful notation, with the overall result

of improving the cost prediction. It is shown that two algorithms as different as the

Binomial Scatter and the Recursive Doubling Allgather are allocated the same cost by

LogGP, while it is quite different in practice, as τ–Lop predicts.

The second example discusses the influence of the process mapping on the cost of an

algorithm. Such mapping decides the channels used for communicating in the multi-

core cluster, and hence, it has a high impact on the cost of the algorithm. A model has

to capture the algorithms behavior derived from the mapping, to gain scalability and

accuracy in their cost estimations.

In the author’s view, a transfer-based model as τ–Lop offers a higher analysis capacity

derived from a meaningful representation of the cost of the algorithms, that leads to a

good accuracy of the cost prediction.



Chapter 7

Parameters measurement

An analytical model represents the cost of collective algorithms as a combination of the

parameters of the model. Therefore, a correct measurement of the parameters is key to

achieving accurate predictions. For measuring the parameters of LogGPH in the test

platforms we follow the methodology proposed in [32], and in [42] for mlognP . The

chapter contributes with a methodology for estimating the parameters of τ–Lop. First

of all, the testing platforms are described.

7.1 Test platforms and software

The experimental work of this thesis has been carried out in two different platforms:

Lusitania and Metropolis. Lusitania is used to represent and estimate the cost of algo-

rithms in shared memory, under the contention effects. The multi-core cluster Metropolis

is also used to evaluate the contention in networks and, in addition, to estimate the im-

pact of mapping in the cost of the algorithms.

7.1.1 Lusitania

The Lusitania platform is a ccNUMA HP Superdome sx2000 machine installed at the

Extremadura Supercomputing Center (CenitS) in Trujillo, Spain. It consists of 64 Dual-

Core Intel Itanium2 Montvale 9140N processors. Each core has a private 9MB L3 cache,

that make up a total of 128 cores, split into 16 UMA nodes. Lusitania is used as an

SMP test platform due to similar intra-UMA and inter-UMA communication channels

performance. The operating system is GNU/Linux 2.6.16, and the compiler used was

GCC version 4.1.2.

103
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7.1.2 Metropolis

The experimental platform Metropolis, installed at the Escuela Politécnica, in Cáceres,

Spain, consists of four nodes connected by 10 Gigabit Ethernet Intel 82574L adapters

through a 10 GbE switch Dell PowerConnect 8024F. Each node has two 2.4 GHz Intel

Xeon E5620 (Nehalem) processors, making a total of eight cores per node, hyperthread-

ing disabled. The cache figures are 12MB of shared L3, 256KB of L2 and 32 KB of

Harvard L1. The operating system is GNU/Linux 2.6.32 and the compiler used was

GCC version 4.4.6.

7.1.3 Software

The IMB (Intel MPI Benchmark) suite [58] version 3.2 is used to obtain the execution

time and bandwidth data, by invoking the MPI point-to-point and collective operations

in the MPI libraries and measuring their execution time and bandwidth. The measure-

ments of a collective are based on a high number of executions, and the time measured

is the time from the beginning of the collective to the moment when the last process

ends its execution. NetPipe [67] version 3.7 is used to measure the time of point-to-point

message transmissions and memory copies in the cases specified in this thesis. Both tools

provide with the execution time data of communication operations. Note that, whatever

benchmarking tools used for communication time measurement, they all require to deal

with issues as cache effects and buffer reuse, to ensure the accuracy and reproducibility

of such measurements ([14, 68, 69]).

MPICH version 1.4.1p1 and Open MPI version 1.7 are used as the reference MPI im-

plementations. While MPICH is used upon Nemesis for the collective operations based

on point-to-point messages, Open MPI is used mainly for the shared memory collective

algorithms based on intermediate memory mapped to the processes involved using its

SM component. Although not included in this document, Open MPI Tuned compo-

nent implementing point-to-point based collectives has been evaluated, showing similar

results than MPICH collectives cost predictions.

7.2 LogGPH and lognP parameter estimation

For estimating the parameters of the LogGP model we follow the widely used proce-

dure described by Kielmann et al. in [32]: First, the MPI LogP Benchmark is used

for estimating the values of the parameters of the Parametrized LogP (PLogP) model,

introduced at the end of the section 2.1. After that, a simple conversion table from
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Table 7.1: Conversion from PLogP to LogGP parameter values.

LogGP Parameter PLogP Parameter

L L+ g(1)− os(1)− or(1)

o
(
os(1) + or(1)

)
/2

g g(1)

G g(m)/m, for a large m value

PLogP to LogGPH parameter values is applied. The table is provided in work [32] and

reproduced in table 7.1.

Following, we discuss the MPI LogP Benchmark procedure to measure the parameters

of the PLogP model: the overhead in the sender os(m) and receiver or(m), the latency

L and the gap per message g(m). The overhead in the sender os(m) is measured as

the average time of sending messages of size m. The overhead in the receiver or(m) is

measured using Round Trip messages1, that is, the processor Pi sends a message of size

0 to the processor Pj , and receives a message of size m as the response. The processor

Pi posts the receive after a time enough for the response message has reached it. The

overhead or(m) is exclusively the time measured for the posted receive. Both overheads

are based on a high number of repetitions, and average is taken.

Regarding the gap per message parameter g(m), the MPI PLogP benchmark provides

with two methods of measuring it: direct and optimized, described in [32]. The direct

method is expensive because of the high number of messages used. The optimized

method is based on sending only one message, but it has been demonstrated as highly

inaccurate by Lastovetsky and Dongarra [70]. In the direct method, Round Trip Time

(RTT) of sets of increasing number of messages is measured until changes in g(m) is

under 1%, when channel saturation is assumed to be reached. The saturation of the

channel makes the network latency negligible with respect to the bandwidth. If the set

of n messages sent for a size m has a completion time of sn(m), then the gap per message

is calculated as g(m) = sn(m)/n.

Finally, the Latency parameter L is determined from the RTT of a message of size 0 as:

RTT (0) = 2× (L+ g(0)) =⇒ L =
RTT (0)

2
− g(0) (7.1)

Table 7.2 shows the LogGPH parameters yielded for the shared memory channel in

Lusitania and for the shared memory and network channels in Metropolis. Times are

provided in µsecs.

Following the instructions of the mlognP authors in [42], the Parametrized Round Trip

Time (PRTT) defined in [71] is used to measure the o′net time for a range of message

1A Round Trip message is composed of a point-to-point message and the response from the receiver.
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Table 7.2: LogGPH parameter values (µsecs) in Lusitania (shared memory) and
Metropolis (shared memory and network).

Parameter Lusitania SM Metropolis SM Metropolis NET

L 0.500 1.683 32.986

o 0.350 0.1095 2.8775

g 0.120 1.649 4.841

G 0.0009890 0.0001923 0.0092

sizes. The PRTT(n,d,m) time for a set of n messages sent, a delay of d between message

transmissions and the size of message m, is used to calculate the network overhead as:

PRTT (n, 0,m) = 2× o′net

Then, standard blocking MPI Send and MPI Recv are used to measure the Round Trip

Time in shared memory RTTshm and network RTTnet, and to infer omw and o′mw as:

RTTshm(m) = 2× omw =⇒ omw =
RTTshm(m)

2

RTTnet(m) = 2×
(
o′mw + o′net

)
=⇒ o′mw =

RTTnet(m)

2
− o′net

7.3 τ–Lop parameters

The methodology for measuring the τ–Lop parameters is introduced by Rico and Dı́az

in [20], and improved by Rico et al. in [23]. The authors devise an operation Ringcτ (m)

to solve the complex issue of ensuring the contention of τ processes in the estimation

of the transfer time parameter Lc(m, τ) for a range of message sizes. The operation is

executed in shared memory to obtain the transfer time L0(m, τ). Then, the operation

execution in the network together with the shared memory transfer time are used to

figure out the network transfer time L1(m, τ).

A linear regression method is proposed here for improving the accuracy of the measure-

ments of the transfer time Lc parameter. It is used for all the range of message sizes, but

it is specially interesting for short messages. The short messages measurements usually

have a lower accuracy, and the contention is complex to ensure, and indeed it has not a

high influence in the final parameter value.

7.3.1 Overhead (o)

oc(m) is the time elapsed from the invocation of the operation until the effective data

transmission starts through the channel c. The overhead time is assumed not be affected



Chapter 7. Parameters measurement 107

by the contention in the channels. It includes the software stack and protocol times.

Most MPI libraries implement two protocols for message passing, with an important im-

pact in the overhead value. They are called eager and rendezvous and perform regardless

of the communication channel. They are used for short and large messages respectively.

When the message size reaches a threshold size H, the send primitive switches from

eager to rendezvous. The value of H is implementation dependent. For instance, in

MPICH the Ethernet/TCP network protocol default threshold is HTCP = 128KB. The

protocols work as follows. Eager requires no handshake between sender and receiver,

hence data is sent as soon as possible. In the rendezvous protocol, before the data

transmission starts, the sender process sends a RTS (Request to Send) message to the

receiver, which responds with a CTS (Clear to Send) acknowledgment message when

ready to receive. Waiting for this notification avoids the sender to flood the receiver.

Our goal is to estimate the overhead in the shared memory and network channels tak-

ing into account that it depends on the protocol used. In practice, libraries such as

MPICH and Open MPI do not provide noticeable difference in the overhead value in

shared memory whatever be the message size. The reason is that they have a common

communication mechanism for the whole range of message sizes.

The two operations shown in Figure 7.1 are used to measure the overhead parameter.

Both operations are applicable to MPICH, Open MPI and AzequiaMPI libraries. In both

operations, messages of size m = 0 are used, hence with a transfer cost of Lc(0, 1) = 0.

The first operation is RTT c, shown at the left side of the Figure 7.1. It is used to

estimate the shared memory overhead o0(m) for the whole range of messages, and the

network overhead o1(m) under the eager protocol, i.e., for message sizes m < HTCP .

τ–Lop models the cost of the RTT c operation using a Round Trip message composed

of two point-to-point message transmissions. The cost of each message transmission is

the addition of the overhead and the sequence of s transfers to reach the destination, as

defined in (3.4). The cost of the operation is:

RTT c(0) = 2×

oc(m) +

s−1∑
j=0

Lcj(0, 1)

⇒ oc(m) =
RTT c(0)

2
(7.2)

The Pingc operation, shown at the right side of the Figure 7.1, is used to estimate the

overhead in the network o1(m) under the rendezvous protocol (m ≥ HTCP ). The MPI

Standard defines the synchronous point-to-point MPI Ssend primitive, which forces the
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Figure 7.1: RTT c and Pingc operations to measure the overhead oc(m) parameter
under eager and rendezvous communication protocols respectively. Both operation can
be used in shared memory and network communication channels, although, in practice,

in shared memory the eager protocol is used exclusively.

use of the rendezvous protocol in a network message transmission, leading to a cost of:

Pingc(0) = oc(m) +

s−1∑
j=0

Lcj(0, 1)⇒ oc(m) = Pingc(0) (7.3)

A high number of iterations in both operations are executed and the average time is

used.

RTT c operation is not used for the rendezvous protocol because of the following reason.

At the right side of the Figure 7.1, the RTT c operation would add a second point-to-

point response message by the process Pj . However, it can start such response message

sending the RTS before the process Pi finishes the reception of the CTS. The overlapping

of both messages would lead to a wrong overhead estimation.

7.3.2 Shared memory Transfer Time (L0)

The communication between processes in shared memory progresses through shared

intermediate buffers, so data needs two transfers to reach the destination buffer, as

discussed in section 3.4.1.

A Ring0τ operation is defined as the sending and receiving of a message of size m between

adjacent processes arranged in a ring of τ processes ([20, 21]). MPI Sendrecv, with cost

defined in (3.6) and (3.7) for short and segmented messages respectively, is used to exe-

cute the Ring operation. Every call to MPI Sendrecv by process Pi entails a transmission

to process Pi+1, and a transmission from process Pi−1, and then a wait operation until

both complete. The wait provides a synchronization point in each transmission, which

ensures that the τ processes transfer data concurrently.
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When m ≤ S, no segmentation takes place and the operation cost will be:

Ring0τ (m) = o0(m) + 2L0(m, τ)⇒

L0(m, τ) =
Ring0τ (m)− o0(m)

2

(7.4)

When m > S, messages are segmented and sent as a sequence of k segments of size S,

with k = m/S. Every process sends k segments and in turn receives k segments, so the

cost will be:

Ring0τ (m) = o0(m) + 2 k L0(S, τ)⇒

L0(S, τ) =
Ring0τ (m)− o0(m)

2 k

(7.5)

The size of a segment is S = 8KB in both MPICH and Open MPI unless another value

is specified. As a consequence f modeling around L0(S, τ), only messages up to size

S need to be measured using the Ring0τ operations. This is as well the case for the

LogGP model, however, in lognP the overhead parameter has to be estimated for the

whole range of messages, because it is unable of capturing such a low level feature of

the transmission as it is the segmentation.

7.3.3 Network Transfer Time (L1)

As discussed in section 3.4.3, the message transmission between processes through the

Metropolis Ethernet network consists of three intermediate transfers. The first and the

last will progress through shared memory, hence with a cost already estimated in (7.4)

and (7.5).

A Ring1τ operation is set up to measure the network transfer time L1 ensuring concurrent

access of τ processes to the channel. An example of the operation for τ = 3 is shown in

Figure 7.2. 2 τ processes are mapped in a Round Robin fashion in two nodes, so that even

and odd processes will run in different nodes. Ring1τ operation has two stages. First,

each even processes Pi sends to odd processes Pi+1 a message through the network, and

then each even process Pi receives from the odd processes Pi−1, resulting in the following

cost:

Ring1τ (m) = 2×
[
o1(m) + 2L0(m, τ) + L1(m, τ)

]
⇒

L1(m, τ) =
Ring1τ (m)

2
− o1(m)− 2L0(m, τ)

(7.6)

As the overlap of the copying to the NIC internal buffer and transmission through the

network is unavoidable, it is not considered in the cost because of its random behavior,
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Figure 7.2: The Ring1τ operation used to estimate the L1(m, τ) parameter for message
of size m and τ = 3. 2 τ = 6 processes are mapped in Round Robin in two nodes.
In the first stage, even processes send to odd processes, and in the second stage the

communications revert.

as assumed in section 3.5. The message segmentation mechanism is not used for trans-

missions though a TCP network, so definition (7.6) can be applied for the whole range

of message sizes m in MPICH, Open MPI and other libraries.

7.3.4 Computing time (γ)

As showed in the section 4.7, the computing time has a high influence in collective

operations as MPI Reduce. The γop(m, τ) parameter represents the computation time in

the execution of a collective operation, and its value depends on the operation performed,

the types of the operands, the size of the message and other hardware and software

factors. For measuring this parameter a micro-benchmark has been developed, using as a

base the IMB. It works by creating τ processes operating on arrays of sizem concurrently,

without communication. The operation op to apply is one of the MPI Standard pre-

defined operations that can be used in the reduction collectives. Extensions to cover

the user-defined operations allowed by the Standard are direct. Barrier synchronization

makes all processes to start the computation at the same time, to ensure the concurrency.

We ensure the computed data is out of L3 cache, hence, providing an upper bound value

for the parameter. This configuration meets the usual one in the reduction operations,

where the data is received out of cache at the time of applying the operation.

The concurrency of the computing affects to the performance, as showed in Figure 4.26

and Figure 4.27 for the MPI SUM operation (addition) applied to arrays of increased

number of float operands.
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7.3.5 Packing and unpacking time (p)

Non-contiguous data are represented by a type map in the MPI standard. Current

MPI implementations pack these data in a contiguous buffer before the transmission

according to its type map and, once arrived, the buffer is unpacked, mostly under the

same map. The MPI standard provides with user packing and unpacking operations as

well. τ–Lop considers that the packing cost is attributable to the collective operation

(see section 3.4), which follows the common behavior of MPI libraries such as MPICH

and Open MPI.

τ–Lop assumes the error in the cost derived from the transmission of part of the message

during the packing algorithm. This issue is highly dependent on the library and hard

to measure in practice, and it has not been addressed in any previous work. This

thesis only considers contiguous messages. Therefore, the local costs associated with

packing/unpacking of non-contiguous messages are not addressed.

7.4 Improving the accuracy in the L(m, τ) estimation

The discussed Ringcτ operation has been used to measure the Lc parameter in each

communication channel c. This method of estimating L has shown itself accurate enough

in modeling the complex collectives studied in this thesis, as shown in previous sections.

Nevertheless, even higher accuracy in the estimation of Lc can be achieved by applying a

linear regression procedure, specially for short messages. Besides Ringcτ , linear regression

procedure can involve the measurements done for other collectives. The target Lc terms

will appear now in more than one equation and the best fitting value can be obtained.

Expression (7.4) Ring0τ (m) = o0(m) + 2L0(m, τ) can be put as Ring0τ (m) − o0(m) =

2L0(m, τ). Moving τ between 1 and 4, for instance, we can express the method used to

determine L0(m, τ) as the trivial linear system
Ring0τ=1(m)− o(m)

Ring0τ=2(m)− o(m)

Ring0τ=3(m)− o(m)

Ring0τ=4(m)− o(m)

 =


2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2




L0(m, 1)

L0(m, 2)

L0(m, 3)

L0(m, 4)

 , (7.7)

which we express in a vector form as dm − om = Rm lm. Vector dm contains the data

obtained after measuring the execution times of the Ringcτ (m) operations. The system

has P equations and P unknowns, four in this case. Matrix Rm contains the coefficient

of the Lc(m, τ) in the column of number τ .
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Beyond Ringcτ (m) operation, we know that the Binomial broadcast operation has a cost

of Θ0
bcast(m) = 2 o0(m) + 2L0(m, 1) + 2L0(m, 2) (see section 5.2.1). It is possible to

enrich the former linear system (7.7) with this equation, so that:

Ring0τ=1(m)− o(m)

Ring0τ=2(m)− o(m)

Ring0τ=3(m)− o(m)

Ring0τ=4(m)− o(m)

Θ0
bcast(m)− 2 o(m)


=



2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

2 2 0 0




L0(m, 1)

L0(m, 2)

L0(m, 3)

L0(m, 4)



The method of ordinary least squares can be used to find an approximate solution to

this overdetermined system of P + 1 equations and P unknowns. It is well known

that such solution is obtained from the problem of finding the lm which minimizes

‖(dm − om)−Rm lm‖2.

Note that this is just an example. More and different equations can be added to the

problem of estimating the parameters of τ–Lop. This methodology is mainly aimed at

getting a higher level of accuracy in cost estimation of different applications, by adding

the execution time of collectives actually invoked by the applications. This expected

overall improvement in modeling the communication costs of applications comes hence

at the expense of running benchmarks for their collectives.

7.5 On the estimation of Lc(m, τ): Further issues and de-

scription of the software tool.

This section addresses some issues which lead to inaccuracies in the estimation of the

transfer time parameters. As well, we propose a tool for estimating the overhead and

transfer time parameters based on the operations described in section 7.3.

Current memory systems are faster in reading than in writing. This difference is sur-

prising, because from the perspective of the physical DRAM memory module, load and

store operations take approximately the same amount of time. Writes take about twice

as long as reads, because of prefetching and the way the cache is integrated into the

memory subsystem. For instance, the authors’ tests show that the read bandwidth

overcomes the write bandwidth by a factor of 1,5 in Lusitania. Similarly, according to

Molka et al. [72], the read bandwidth doubles the write bandwidth in the Nehalem ar-

chitecture, a figure confirmed by the author’s tests. This means that the cost L(S, τ) of

transferring a segment from its user send buffer to the intermediate buffer (read) would
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k m l(k,4) L(8k, 4)

(segments) (bytes) (ns) (ns)

1 8192 3793 3793

2 16384 7666 3822

... ... ... ...

8192 67108864 31205259 3809
12288 100663296 47056028 3829

Figure 7.3: The broadcast approach to the estimation of L(S, τ). The figure illustrates
the case τ = 4. Messages of three segments were used (k = 3). Note that l(k, 4) was
measured in successive iterations (the average was taken). L(S, 4) was obtained from the
hypothesis of l(k, 4) = kL(S, 4), so that L(S, 4) = l(k, 4)/k. This setup was created by
the command ”./taulop -bcast -off cache -local 2 8 4”. For better precision, L(S, τ) was
estimated for growing k (the figure illustrates the case k = 3), and so the final L(S, τ)
figure is the average of all them. Table below shows the output of the command, with
a row per each value of k. Column l in the first entry, for instance, shows the cost of
broadcasting a buffer of size m = 8 KB (or k = 1). It is really the average of a loop of

262144 broadcasts, a number great enough to minimize the measurement error.

be half the cost from the intermediate buffer to the user receive buffer (write). Introduc-

ing these hardware dependent issues in τ–Lop would make the model over-detailed, and

hence difficult to understand and use. However, keeping τ–Lop simple entails a degree

of indetermination in the characterization of L(S, τ).

A suitable experimental design is essential to perform any parameter estimation, and to

this end the software tool tauLop [73] was developed. It produces a variety of concurrent

transfer setups, measures their performance and calculates L(m, τ) from the obtained

data. Each adopted setup, however, leads to different estimations, and so three of them

are discussed next. To guide the exposition, the goal is the determination of L0(8KB, 4).

The first setup is based on Figure 7.3, a broadcasting between τ processes (τ = 4).

tauLop creates this specific scenery by invoking the command ¨$ ./tauLop -bcast -

off cache -local 2 8 4¨. One needs to note the -bcast parameter. Parameter -local

binds processes to cores, so that P0, acting as root, is bound to core 0 of NUMA 0.
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Figure 7.4: The ping approach to the estimation of L(S, 4).

Non-root processes first fill the rest of the cores of NUMA 0, and then the NUMAs 1, 2,

3, etc. The pair of parameters [2,8] after -local means that the transfers are performed

through an intermediate buffer of two segments, each of size S = 8 KB. The last param-

eter 4 starts four threads. Finally, the parameter -off cache keeps the send and receive

user buffers out of cache, with the goal of determining L as the cost of a transfer between

main memory (the user buffer) and L3 cache (the intermediate segments). Both send

and intermediate buffers are allocated in the NUMA 0. Each receiving buffer was allo-

cated to the NUMA where its corresponding process runs. The key issue of this setup

is that Figure 7.3 assumes that l(k, τ) = kL(S, τ), so that L(S, τ) = l(k, τ)/k. This

broadcast scenery should perform as an upper bound on the estimation of L(S, τ). The

τ−1 simultaneous copies from the shared intermediate segments in NUMA 0 to the τ−1

receiving user buffers in NUMA 0, 1, 2, etc, end up exhausting the bandwidth of NUMA

0. Effectively, L(S, τ) grows linearly with τ having a steep slope. It is to be noted that

this broadcast technique is inefficient and hence not adopted for collective operations in

current MPI implementations, that opt for hierarchical arrangements2. In other words,

it characterizes the behavior of τ–Lop under these rather extreme conditions.

The second approach to estimate L(S, τ) was based on a pair of concurrent message

transmissions (τ = 4) (see Figure 7.4), started by the command ¨$ ./tauLop -ping -

off cache -local 2 8 4¨. This time, the figure states that l(k, τ) = kL(S, τ) for every

k, so that L(S, τ) = l(k, τ)/k. The couples of processes first fill the NUMA 0 and then

populate successive NUMA nodes. All buffers were allocated to the NUMA where their

corresponding couple runs. On this occasion, no inter-NUMA communication takes

2The broadcast of Figure 5.2 is an example. Let it be supposed that processes 0 to 7 run in the
NUMA 0 and processes 8 to 15 in NUMA 1. Once the inter-NUMA message transmission of stage 1 is
done, both NUMAs work in parallel with just internal communication.
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Figure 7.5: The ring approach to the estimation of L(S, 4).

place, again an unrealistic situation, this time at the opposite extreme to −bcast. An-

other problem with -ping arrangement is that it lacks synchronization between couples.

As a result, it becomes impossible to assure that couples run synchronized along the

time frame of Figure 7.4, and thus the measurements are invalidated.

The third configuration was based on a ring of four processes (τ = 4) created by

the command ¨$ ./tauLop -ring -off cache -local 2 8 4¨ (Figure 7.5). Note the

parameter −ring. The figure states that l(k, τ) = 2kL(S, τ) for every k, so that

L(S, τ) = l(k, τ)/2k. Synchronization on the access to main memory is ensured by

each pulsation of the ring: a transfer from the user buffer to the intermediate segment

shared with the right neighbor, followed by a second transfer from the intermediate

segment shared with the left neighbor to the user segment just copied out.

The foregoing discussion on the application of the taulop tool, for instance, has gener-

ated three different versions of L(S, τ), and many more are possible; so, which of them

is the best of all? The -ring approach offers a good mix of intra- and inter-NUMA com-

munication and reliability of measurements, and so the authors chose that method to

obtain L(S, τ). Regardless of the present results, it is evident that each choice favors the

accuracy of some algorithms to the detriment of others. For example, options −bcast
and −ping could be useful in particular collective algorithms. It was detected here that

−bcast results achieve better accuracy on modeling the cost of Open MPI SM broadcast,

because that algorithm is built upon the same type of collective transfers used in τ–Lop.

However, −ring configuration was used throughout this presentation. Figure 7.6 shows

the estimations of L0(8KB, τ) obtained in the target platforms.
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Figure 7.6: Estimations of L(S, τ) in Metropolis and Lusitania machines under three
considered approaches.

7.6 Comparing the models with the Proportional

Error µ

The utility of a model is determined largely by the accuracy achieved in the estimation

of its parameters, which results in the correct prediction of the cost of the operations.

Several error metrics exist to express the accuracy of an estimation with respect to the

real measurement. Usually, Relative error is used in the literature, based on the distance

between estimate and real values. Lets call ρ to the Relative error of an estimated value

e with respect to the real value r. It is defined [74] as:

ρ =
|e− r|
r

(7.8)

The concept of relative error as an expression of error suffers an anomaly outlined

hereafter. Figure 7.7 illustrates this point with an example. The first estimated value is

e, with a Relative error with respect to the measured value r of ρ = 1. For the estimated
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Figure 7.7: Example of the Relative error ρ of two estimated values with respect to
their respective real measurements.

value e′, the Relative error with respect to r′ is ρ′ = 0.5. Therefore, ρ� ρ′, even though

the distance and proportion among estimated and real values are equal.

This fact has an impact in the communication performance modeling evaluation. A

model that underestimates the cost of an algorithm will give a lower Relative error than

a model that overestimates it in the same proportion. For this reason this thesis discards

the Relative error and uses an error measurement based on the proportion between real

and estimated values, which reflects the accuracy of the measures in a more meaningful

way. We define the Proportional error µ of a estimated value e with respect to the real

value r as:

µ =
max(r, e)

min(r, e)
(7.9)

Under the hypothesis that both e and r are positive numbers, the Proportional error is

always greater than 1, equal when there is no error. Regarding the example in Figure 7.7,

Proportional errors will be identical (µ = µ′ = 2) because their predictions fail in the

same proportion.

In this thesis, the Proportional error is applied to sets of estimated values obtained from

different models in order to compare them, and with the real values. Being times, real

and estimated values are positive numbers. The procedure is as follows. In starting from

two sets of discrete values R and EM , where R represents the measured communication

times, and EM represents the estimated values by a model M for an operation:

R = {r0, r1, r2, ..., rn−1}

EM = {eM0 , eM1 , eM2 , ..., eMn−1}
(7.10)
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That is, ri is the measured value for the message size i, and eMi is the estimated value

for the message size i by the model M of an operation. The proportion between the set

of measured and estimated values is defined as:

µM = {µM0 , µM1 , µM2 , ..., µMn−1},

with each component µMi as the Proportional error of the estimated value with respect

to the real measurement for the message size i, defined in (7.9). However, neither the

Proportional nor the Relative errors give information about which range of values (R or

EM ) is higher, and it needs to be provided in each context.

The Average Proportional error of the model M for the whole range of message sizes in

the set µM is:

µ̄M =

∑n−1
i=0 µ

M
i

n
(7.11)

There is a simple relation between Relative and Proportional error that allows the con-

version from one to the other. Lets us consider the Relative error ρ defined in (7.8) of

a single estimated value e with respect to the real value r, and the Proportional error µ

defined in (7.9) for the same pair. We have two cases: e > r and e < r. Note that when

e = r no error applies, that is, the Relative error is 0 and the Proportional error is 1.

1. If e > r, then µ = e/r, and then:

ρ =
e− r
r

=
(µ r)− r

r
= µ− 1 (7.12)

And then:

µ = ρ+ 1 (7.13)

2. If e < r, then µ = r/e, and then:

ρ =
r − e
r

=
r − (r/µ)

r
= 1− 1

µ
(7.14)

So that:

µ =
1

1− ρ
(7.15)

7.7 Conclusions

A simple methodology for estimating the τ–Lop parameters has been proposed. The

overhead is estimated in the shared memory and network channels taking into account
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the protocol time. We defined two simple operations for estimating the overhead un-

der the two widely used protocols in MPI communications, eager and rendezvous. The

estimation of the transfer time parameter is solved through the definition of a Ring

operation, that ensures the synchronization, and hence the contention of the processes

in the access to the channel. This operation can be executed in shared communication

channels as shared memory, as well as in multi-core clusters. Ring provides with a rea-

sonable good accuracy, that can be improved by a simple linear regression procedure

described in the chapter. This procedure is specially indicated for predicting the cost

of algorithms communicating short messages, because of the complexity in ensuring the

concurrency in the measurement of the transfer time. In addition, in an application

with a set of known collective algorithms, the linear regression procedure can be en-

riched with the execution times of these algorithms for improving the accuracy of the

communication cost prediction. The computation time parameter is estimated through

a micro-benchmark as an upper bound of the time of concurrent processes operating

arrays of values of different datatypes.

Finally, the definition of the Proportional error provides with more meaningful infor-

mation about the accuracy of the predictions than the broadly used Relative error.

We show that the Proportional error does no change when a model underestimates or

overestimates the real values in the same proportion. Besides, conversion equations are

provided between both errors.
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Conclusions and future work

Modern HPC platforms demand better communication performance models able of cap-

turing their growing complexity, in particular the heterogeneity of the communication

channels and the increasing number of cores per node. This work proposes τ–Lop, a for-

mal model that predicts the cost and helps in the optimization of the communications

in such systems, with focus on the collective operations defined in the MPI standard.

The limitations of the precedent models in the multi-core arena have been identified and

the way they are overcome with τ–Lop demonstrated.

τ–Lop provides with two key contributions with respect to the previous stand out. First,

τ–Lop is able to capture the impact of the bandwidth shrink in shared channels when

several transmissions progress in parallel, with the overall result of improving the accu-

racy of the cost estimation. Indeed, this work reveals that overlooking the representation

of the contention leads to unacceptable estimation errors. τ–Lop is able to represent such

concurrent transmissions through a simple but still powerful notation. As an example,

it has been formally demonstrated that the Binomial Scatter algorithm is at least twice

cheaper than Recursive Doubling Allgather, while LogGP model assigns them equal cost.

In practice, the programmers of current MPI libraries often choose between collective

algorithms based on these wrong predictions.

The second contribution of τ–Lop is the modeling of the influence of the process mapping

on the cost of an algorithm, due to a hierarchy of communications based on channels

of uneven performance. A given mapping determines the channels used by a collective

algorithm in the multi-core cluster, and under-representing it in a model leads to wrong

cost predictions. For instance, it has been shown that the cost of the Ring algorithm

in a small cluster could vary up to six-fold with opposite mappings. Previous models

do not capture correctly the cost of the mapping because such cost is affected by the

121
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contention, in addition to the communication channels used by the processes executing

the algorithm.

Algorithm analysis under τ–Lop is compared to other representative models in shared

memory (Lusitania) and in multi-core hierarchical (Meropolis) platforms. LogGP and

its extension LogGPH models are representative of the broadly used postal models which

use network-related latency and bandwidth parameters, and estimate the cost of an algo-

rithm as the cost of the longest path of the involved point-to-point transmission. lognP

and its extension mlognP models change the approach of the point-to-point transmis-

sions models using middleware-related parameters and introduce a decomposition on

transfers through the communication channels hierarchy. However, LogGP and lognP

main limitation is the modeling of algorithms as the largest path for a process transmis-

sions.

In the author’s view, τ–Lop offers a more faithful picture of an algorithm behavior

based on the concept of concurrent transfers and a simple but still powerful notation

for representing their cost. Indeed, the expressive power of τ–Lop makes possible the

representation of the sophisticated communication techniques underlying current imple-

mentations of MPI in shared memory, such as collective transfers or message segmenta-

tion. As a result, τ–Lop offers a higher analysis capacity, resulting in a more scalable

and accurate cost prediction. The accuracy of τ–Lop was evaluated by applying it to a

diversity of MPICH and Open MPI algorithms. The algorithms discussed, being fairly

common, have been chosen because their complexity significantly exceeds that of the

algorithms evaluated in previous related works, and they cover a wide spectrum of the

known collective communication techniques, specially in shared memory.

Finally, an exhaustive methodology for estimating the τ–Lop parameters is proposed. It

is based in a Ring operation ensuring the processes contention in the access to the channel

for measuring the transfer time. The accuracy in the estimation of this parameter

can be improved by a linear regression procedure, specially in short messages, where

contention and accuracy in the measurements is harder to achieve, due to the fact that

synchronization costs are significant enough to be ignored. The overhead parameter

is estimated using two defined operations, which are used for each combination of a

communication channel and protocol. The tauLop software for parameter estimation

based on the former operations is just a seminal work on this issue, which needs further

contributions, application to other platforms and, most important, new insights.

The Proportional error is formally defined and it is used in place of the more common

Relative error in the comparison of the algorithm costs. In the author’s view, it provides

with more meaningful information on the error derived from the estimation of the models.
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As well, the conversion of the Proportional error to the Relative error and vice-versa is

provided.

Current work focus on the prediction of the cost of communications in scientific hybrid

applications on heterogeneous platforms. High performance heterogeneous computing

platforms include processing elements with different missions, for instance, a combina-

tion of multi-core CPU and GPUs. The performance goal in this kind of platforms is

maximize the computing load balancing. However, the communication cost optimization

in this kind of platforms is addressed experimentally. τ–Lop has been applied in this

field to facilitate the optimization of the communications of the, now widespread, hybrid

applications running on heterogeneous platforms.





Appendix A

Estimation of the communication

cost of hybrid applications in

heterogeneous platforms

Ensuring the efficient increase in the performance of modern HPC systems, in terms of

both cost and energy consumption, is the main cause for high performance computing

becoming heterogeneous. The systems composed of nodes with multi-core processors and

accelerators, and communicating through uneven performance communication channels,

are mainstream. Scientific applications running on these heterogeneous computing plat-

forms usually include a set of kernels. A kernel is a representative piece of code inside

the application, as matrix multiplication and Fourier transform.

A hybrid application is composed of kernels targeted for being executed by a set of

processes running on processors of different types. Hence, each process has different

performance capabilities. Achieving the optimal performance of such hybrid scientific

applications requires to unevenly distribute each kernel workload between the processes.

The optimization goal is the overall computational load balancing, avoiding faster pro-

cesses to wait for slower ones at synchronization or communication points. Such uneven

distribution of a kernel workload affects to the global communication performance. The

reason is that it introduces imbalances in the communication, because each process has

to communicate a different volume of data. A holistic formal approach to the perfor-

mance optimization in heterogeneous platforms has not attracted much attention in the

literature, probably due to its complexity.

In practice, specially for large multi-kernel applications, the communication optimiza-

tion is usually carried out through a set of thorough tests of a shortened version of the

125



Appendix A. Estimation of the cost of applications in heterogeneous platforms 126

application (for instance, individual kernels) on a subset of the target platform. This

approach has two main drawbacks: the first is the use of quite expensive computational

resources for testing, and the second is that often it is not possible to correctly ex-

trapolate estimations from such simplification of the application and the platform. We

introduce a model-based methodology for the estimation of the communication cost of

hybrid applications on heterogeneous platforms. The costs are derived from, first, a

given distribution of the workload to the processes, and second, the process mapping

on the platform, which decides the channels used for their communication. This analyt-

ical approach, based on the τ–Lop model, offers the advantage of drastically reducing

the experimental use of the resources and contributes to clarify hidden issues in the

communications.

The rest of the appendix is organized as follows. Section A.1 reviews some of the ap-

proaches to the performance optimization of applications in heterogeneous platforms,

focusing on computational load balancing. Section A.2 provides with assumptions in

τ–Lop in order to model communication in heterogeneous platforms. Section A.3 intro-

duces the SUMMA matrix multiplication algorithm, the kernel evaluated on the platform

described in the section A.4. Section A.5 performs the communication modeling in two

different layouts of processes and compares both configurations. Section A.6 proposes

mapping related optimizations. Finally, section A.7 concludes.

A.1 Related work on performance optimization on hetero-

geneous platforms

Two main approaches face the problem of optimizing the performance of applications on

heterogeneous platforms. The first is to characterize the application as a graph and apply

techniques of graph partitioning. The second is to characterize the application processes

with a performance model and to distribute the computation among the processes in

proportion to their performance.

Graph partitioning is a technique extensively used to achieve computation and communi-

cation optimization. The application is modeled as a graph composed of a set of vertices

representing the computation, and a set of edges representing the communication de-

pendencies between vertices. Both vertices and edges can be labeled with a weight. The

graph is partitioned in subsets of the same amount of vertices. The computation in each

subset is assigned to a process. The partitioning objective is minimizing the number of

edges connecting the vertices subsets, and hence, minimizing the communication. In-

deed, alternative partition objectives can be introduced. For instance, minimizing the
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volume of the communication in graph with weighted edges, or the number of messages.

As well, the partitioning of the vertices in subsets can be non-homogeneous, using a

pre-specified different fraction of the total number of vertices (or weights) per vertices

subset.

Methods to accomplish the partition problem are generally classified in combinational

[84, 85], spectral [86–88], multilevel [89–91] and geometric [92, 93], with an extensive

number of algorithms in the literature. A problem of the graph partitioning methods

is that computation and communication are represented as a constant (weights in the

graph). The user is responsible of in advance providing the computation and communi-

cation weights. Aubanel and Wu [94] propose to incorporate the latency cost in addition

to the transmission rate usually characterizing the communication volume in the graph

edges. There exist several tools implementing graph partition algorithms as METIS

[95, 96], JOSTLE [97, 98] and SCOTCH [99, 100].

In addition to the graph partitioning problem, it is the mapping of the resultant graph to

the underlying non-homogeneous platform to achieve optimal performance communica-

tions. Pellegrini discusses different methods for solving this problem in [101]. Related to

the mapping problem, the matching of the communication pattern of an application to

the underlying hierarchical network represented as a tree is accomplished by the Jeannot

et al. TreeMatch algorithm [102].

The second approach faces the problem of the distribution of the application workload

among the processes on the heterogeneous platform. The computational load balancing

is formulated as a partitioning problem [70]. It departs from n independent compu-

tational units of equal size. A computational unit is kernel dependent. In a matrix

multiplication, for instance, the computational unit can be the computation of an el-

ement in the resultant matrix. The goal is to distribute these n computational units

among a set of p (p < n) processes1 P = {P0, P1, . . . , Pp−1}, in a way that the workload

is best balanced. The processes are characterized by S = {s0, s1, . . . , sp−1}, where si is

the speed of the process Pi, a positive constant indicating the number of computational

units it performs by time unit. Such modeling of the performance of a process is referred

as Constant Performance Model.

Lets suppose N = {n0, n1, . . . , np−1}, with ni the number of computational units as-

signed to the process Pi. Each process Pi has an execution time ti = ni
si

. The execution

time of the application is given by the slower process as maxp−1i=0 ti. An optimal workload

distribution minimizes this expression. Beaumont et al [75] develops an algorithm for

1Although usually the problem is defined in terms of processors, we define it in terms of processes,
which can be single or multi-threaded.
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Figure A.1: Outline of the FuPerMod procedure for 2D partitioning and distribution
of workload between processes in an application. The inputs to FuPerMod are the
configuration file (layout and type of the processes) and the benchmark code. The
output is the file containing the partition and distribution of the data for the processes.

achieving optimal load balancing using a Constant Performance Model and applies it to

the example of matrix multiplication and the ScaLAPACK library [76].

A key point is to determine the speed of a process. It depends on several factors,

including physical and software, as the memory size and hierarchy, processor type, size

of the application, processor clock rate or even the operating system and its paging policy.

These factors overwhelm the representation of the speed as a constant. For instance, a

fast process can become slower if the amount of the data it processes exceeds the size of

the cache memory. Lastovetsky and Reddy [77, 78] propose a Functional Performance

Model (FPM), that is the speed of a process represented by a continuous function of

the task size. The task size is defined as one or more application specific parameters

characterizing the amount and layout of the data stored and computed by the processes

during the execution of a kernel. For instance, regarding the matrix multiplication of

two square matrices of size x× x, the parameter characterizing the task size is x, which

defines the amount of data stored as 3 × x2 and the amount of operations to do as(
x+ (x− 1)

)
× x2 ≈ 2x3.

The speed of a process Pi is represented as a real function of the task size si(x), and hence

the speed of a process depends on the size of the problem to solve. The partition problem

is reformulated with the speeds of the p processes as S = {s0(x), s1(x), . . . , sp−1(x)}.
The algorithm discussed by Lastovetsky and Reddy in [77] achieves ni

si(x)
≈ const. This

means that the algorithm distributes the computational units among the processes in

proportion of their speeds for an specific task size x, i..e., an optimal load balancing.

FuPerMod [79, 80] is a software tool that implements the whole procedure of workload

partition and distribution for a set of processes running on a heterogeneous platform.

Figure A.1 shows the FuPerMod procedure. First, FuPerMod generates the per-process
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Functional Performance Model2 executing a benchmarking code3 provided by the user.

The user also provides with a description of the layout of the processes and their assigned

resources in the platform. Afterwards, FuPerMod performs the kernel data partitioning

and assignation to the processes [81–83] following a geometrical approach [77]. For

instance, following with the matrix multiplication example, a 2D partitioning of the

matrices is generated from the FPMs of the processes.

Departing from a specific layout of processes with their workload assigned, a formal

model can be used for estimating the cost of the application in heterogeneous platforms.

Chan et al. [103] propose a specific performance model that predicts execution times of

iterative mesh-based applications running on heterogeneous multi-core clusters. Ogata

et al. [104] propose a model for the optimization of a FFT library on a GPU/CPU het-

erogeneous platform. The performance model divides the FFT computation into subsets

and predicts the execution time of each step for a particular GPU/CPU combination

of the workload distribution. Garćıa et al. [105] propose a model for the partition and

evaluation of different schedules of the kernel composing and application in order to

maximize the resource exploitation and reduce the global execution time. More generic

communication performance models as LMO [53] are specifically designed for heteroge-

neous platforms (see section 2.3.3), although other models as τ–Lop can be adapted to

accomplish this task, as we will see in the next section.

The communication performance modeling using τ–Lop along this appendix departs

from a balanced workload achieved using the FuPerMod tool. The goal of this appendix

is to evaluate the impact in the communication cost of different workload distributions

and layouts of a set of processes running a kernel in a platform, minimizing the testing

time.

A.2 Extensions of τ–Lop for heterogeneous

communication modeling

As mentioned above, our methodology estimates the communication cost of hybrid ap-

plications on heterogeneous platforms. It addresses data parallel applications4 which

execute by repeating two stages: computation and communication. The communication

modeling using τ–Lop departs from the assumption that all processes arrive at the same

time to the communication stage (this requires to balance the computation stage using

2A table of real values representing the speed of the process for the different task sizes.
3The FPM reflects the speed of a process in executing a particular kernel, thus the benchmarking

code has to be as similar to the kernel code as possible.
4Applications which allow the parallel processing of the data distributed among a set of processes.
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a partitioning mechanism as a Functional Performance Model). τ–Lop is then used to

predict the communication cost for the specific workload distribution and the layout of

the processes in the platform5.

τ–Lop was initially conceived to model the cost of collective operations executing on

systems with hierarchical organization of the communication channels. It provides cost

expressions in the forms n ‖T c(m) and T c(m1) + T c(m2), where T (m) is the cost of a

point-to-point message transmission between two processes. The first represents the cost

of n concurrent transmissions of a message of size m through a communication channel

c. The second represents the cost of a sequence of two transmissions of different message

sizes through the same communication channel. More complex cost expressions, as

those in the form T c1(m1) ‖T
c2(m2) for any c1 and c2 communication channels, appear

commonly in the modeling of communications in heterogeneous environments. Though

τ–Lop allows to further subdivide a message transmission into smaller units known

as transfers, the cost expressions are discussed at transmission level to simplify the

exposition and focus on the main ideas. The decomposition of the transmissions in

individual transfers is required in some modeling situations, at the expense of increasing

the modeling complexity. Following, we extend τ–Lop with a set of assumptions to

cover the evaluation of this type of expressions with the purpose of adapting the model

to heterogeneous environments.

A1 A sequence of transmissions through the same communication channel has the cost

of a transmission of the sum of the message sizes.

T c(m1) + T c(m2) + T c(m3) = T c(m1 +m2 +m3) (A.1)

This is an extension of the transfers linearity principle (see section 3.3) applied to

transmissions. The modeling assumes the error of disregarding the overhead costs

of the added transmissions.

A2 Two message transmissions through the same communication channel progress

concurrently during the transmission time of the shorter:

T c(m1) ‖T
c(m2) = 2 ‖T c(m1) + T c(m2 −m1),m2 ≥ m1 (A.2)

A3 Two transmissions progressing through different communication channels do not

interfere. The total cost is the maximum of their costs:

T c1(m1) ‖T
c2(m2) = max{T c1(m1), T

c2(m2)} (A.3)

5We use the term configuration for the combination of a workload distribution and a layout of
processes in a heterogeneous platform along this appendix.
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A4 A process sends two messages sequentially, with a total cost of:

T c1(m1) + T c2(m2) (A.4)

If c1 = c2, A1 can be applied. In the reception, there are not assumptions about

sequentiality, due to the capabilities of the hardware technology, for instance, using

remote memory access.

Derived from the previous assumptions, complex expressions usually appearing in the

modeling procedure are transformed as

[
T c0(ma) + T c1(mb)

]
‖
[
T c0(mc) + T c1(md)

]
=[

T c0(ma) ‖T
c0(mc)

]
+
[
T c1(mb) ‖T

c1(md)
]
,

(A.5)

i.e., two concurrent sequences of transmissions through different communication channels

have the cost of the sequence of transmissions contending in the communication channels.

Then, assumption A2 can be applied to simplify each resulting sequence of transmissions.

As well,

[
T c0(ma) ‖T

c1(mb)
]

+
[
T c0(mc) ‖T

c1(md)
]

=

max{T c0(ma), T
c1(mb)}+max{T c0(mc), T

c1(md)},
(A.6)

i.e., a sequence of concurrent transmissions through different channels has the cost of

the addition of the maximum cost of the transmissions, hence applying assumption A3.

A.3 The SUMMA algorithm: a matrix multiplication

kernel

The Scalable Universal Matrix Multiplication Algorithm (SUMMA) [106] is a state-of-

the-art computational kernel which is present in many scientific applications. It can be

found, for example, in the numerical linear algebra ScaLAPACK library. We discuss it

here as a prototype of other kernels widely used in HPC applications.

The SUMMA algorithm computes the dense matrix multiplication C = A × B. For

simplicity, square matrices are supposed. Elements of the matrices are grouped in blocks

of size b× b elements, and a block is the unit of computation and communication. The

granularity of the block size is dependent on the system and it is adjusted prior to the

multiplication. It remains constant for the whole algorithm execution. As a result, the

size of the matrices is N ×N blocks.
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Figure A.2: Matrix multiplication with the SUMMA algorithm in a homogeneous
platform. The number of processes is P = 16 in a grid layout. The matrix size is
N × N blocks, with N = 24. A rectangle of 6 × 6 blocks is assigned to each process
(elements are not showed). The figure shows the k−th iteration in the execution of
the algorithm. Processes with blocks in the pivot block column (pbc) of matrix A (P1,
P5, P9 and P13) and pivot block row (pbr) of matrix B (P4, P5, P6 and P7) transmit
their blocks to the rest of processes. For instance, in the iteration showed k, process P5

sends its part of the pbc to the processes in the same row (P4, P6 and P7), and process
P6 sends its part of the pbr to the processes in the same column (P2, P10 and P14).

Let us suppose a homogeneous system. The blocks are distributed evenly between the

processes following a 2D arrangement. Each process is assigned with a rectangle of

blocks of the same size of each matrix. Figure A.2 shows an example for P = 16

processes arranged in a grid. The size of the matrices is N × N , with N = 24 blocks.

Each process is assigned with a rectangle of 6×6 blocks of each matrix. This assignation

balances the computational load, and also the communication volume of each process.

The SUMMA algorithm executes in N number of iterations. In each iteration k, the

processes compute partial results for all of its assigned blocks of the matrix C. The

process owning the block ci j , computes in the iteration k ci j = ci j + ai k × bk j . As a

consequence, the process has to receive the k− th column block of the matrix A and

the k−th row block of the matrix B. After N iterations, each block will have the value

ci j =
∑N−1

k=0 ai k × bk j .

Thus, each iteration k is composed of 3 stages:

1. The processes owning the k-th pivot block column (pbc) of the matrix A send

the blocks to the processes in the same row. A broadcast operation on a per-

row communicator can be used for the communication. The processes owning the

blocks in the pbc are the roots of the broadcasts in each row.

2. The processes owning the k-th pivot block row (pbr) of the matrix B send the

blocks to the processes in the same column. A broadcast operation on a per-

column communicator can be used for the communication. The processes owning

the blocks in the pbr are the roots of the broadcasts in each column.
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Figure A.3: Matrix multiplication with the SUMMA algorithm on a heterogeneous
platform. The number of processes is 7. A rectangle of different size is assigned to
each process. The figure shows an iteration in the execution of the algorithm. Pbc in
the matrix A and pbr in the matrix B are transmitted to the rest of processes. For
instance, process P1 sends its part of the pbc to the processes in the same row (P0, P2

and P5), and then it sends its part of the pbr to the processes in the same column (P4).

3. Pi updates the blocks in its assigned rectangle of the matrix C.

The communication performance could be improved using non-blocking communication

operations, allowing the overlapping of communication and computation. In addition,

other improvements have been proposed, as the HSUMMA (Hierarchical SUMMA) algo-

rithm by Hasanov et al. [107], which proposes a hierarchical approach for the algorithm

communications.

In heterogeneous platforms, the number of blocks assigned to each process depends on

its speed. Hence, the size of the rectangles assigned to the processes is not homogeneous,

and the communication pattern changes. Figure A.3 shows an example. Following the

2D matrix geometrical partitioning algorithm ([108]), processes are arranged in columns

of the same width. The communication of the pbc is achieved using point-to-point

communication. Broadcasting is not possible because the amount of blocks sent to each

processes in the same row is different. Nevertheless, the communication of the pbr can

be achieved using broadcasts.

A.4 The heterogeneous test platform

Following, the communication cost of the SUMMA algorithm is evaluated on a hetero-

geneous test platform called Fermi. It is equipped with two nodes, each connected to

two GPUs. Each node has 2×six-core Intel Xeon E5649 processors running at 2.53 GHz.

Each GPU is a NVidia Tesla M2075 (dual-slot S2070 module). Nodes are connected by

a QDR Infiniband (40 Gbps) and an Ethernet (1-GBit) networks.
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Figure A.4: Process deployment labeled as Config1. Node M = 0 has two processes
running on GPUs, a multi-threaded process running on four cores and a multi-threaded
process running on a socket with six cores. On node M = 1, two six-core multi-threaded

processes execute. GPUs in node M = 1 are not used.
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Figure A.5: Process deployment labeled as Config2. Node M = 0 has one process
running on a GPU, a multi-threaded process running on five cores and a multi-threaded
process running on a socket with six cores. Node M = 1 replicates the same layout of

the node M = 0. Note that one GPU in each node is not used.

Operating system is CentOS 6.5, and a number of libraries are used for computation

and communication. A process uses the function dgemm of the Intel MKL library to

compute a rectangle of double precision elements. In the GPUs, cuBlas library is used

with the same purpose. Open MPI 1.8.1 is used for communicating the processes in

the application. Column communication uses the MPI Bcast broadcasting function.

Row communication uses the point-to-point non-blocking primitives MPI Isend and

MPI Irecv. Non-blocking communication is used to minimize the wait times of the

processes in the application due to the imbalances in the kernel execution.

FuPerMod utility is used for the 2D partitioning of the matrices based on a Functional

Performance Model. The number of processes is P = 6, disposed in two configurations.

Config1 is shown in Figure A.4, and Config2 is shown in Figure A.5. The goal is to
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demonstrate that their modeling using τ–Lop provides with valuable information on the

cost of the communications for comparing them. Note that both configurations contain

multi-threaded, single-threaded and GPU processes. They run in two nodes and two

GPUs, with slight differences in the mapping and resources used by the processes.

Two channels are considered in the cost modeling, intra-node and inter-node, respec-

tively involving communications through shared memory (c = 0) and network (c = 1).

FuPerMod is used as well to compute the kernel execution time. The standard deviation

of the execution time measured in each configuration is always under 1.35 %.

A.5 Matrix multiplication communications modeling

This section uses τ–Lop to model the communication cost of the SUMMA algorithm

running on the two configurations described in section A.4. The procedure to obtain a

balanced data partition using FuPerMod is described in section A.1, and summarized in

Figure A.1. FuPerMod executes the user provided benchmark for the layout of processes

described in a configuration file. Such file includes the number, type and mapping

of the processors composing the hybrid application. We repeat the procedure for the

two configurations (Config1 and Config2 ) described in section A.4 (Figure A.4 and

Figure A.5). Benchmarking is based either on a subset or a similar code of that executed

by the kernel. In this work, the SUMMA algorithm through a range of matrix sizes

is used as a benchmarking code. Resultant FPMs are then used to generate the 2D

partition of the matrices. FuPerMod assigns the resulting rectangles to the processes.

The test matrices have a size of N ×N blocks, with N = 256. Each block has a size of

b× b double precision elements, with b = 64.

A.5.1 Config1 modeling

The FuPerMod input configuration file for Config1 is:

# conf_file Configuration 1. P = 6

node0 0 10 gpu id=0

node0 1 11 gpu id=1

node0 2 6-9 cpu OMP_NUM_THREADS =4

node0 3 0-5 cpu OMP_NUM_THREADS =6

node1 0 0-5 cpu OMP_NUM_THREADS =6

node1 1 6-11 cpu OMP_NUM_THREADS =6

The file contains a line per process, with the node where the process executes, the rank

inside the node and the type of processor. In the case of multi-threaded processes,
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Config1 partition (N=256, b=64)
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Figure A.6: Config1 resultant partition for matrices A, B and C, and assignation
to the P = 6 processes, with b = 64 and N = 256. White rectangles are assigned to
processes running on the node 0, while grey rectangles correspond to processes on the

node 1. Ci represents the number of blocks (width) of the i column.

OMP NUM THREADS is used to indicate the number of threads of the process.

After the execution of the FuPerMod procedure described before, the resulting matrices

partition is shown in the Figure A.6. Note that the partition is the same for matrices

C, A and B and only one is represented.

The costs of the communications for the SUMMA algorithm is the addition of the

transmissions of the pbc of the matrix A and the pbr of the matrix B for each one of

the N iterations. Both column and row communications are evaluated separately, and

finally their costs are added.

A.5.1.1 Block row communication

Figure A.6 allows to visualize the processes which will interchange the pbc data of the

matrix A. The communication is among processes in the same row. The communication

cost is discussed per column. Table A.1 details the number of blocks of the pbc trans-

mitted in an iteration of the C0 = 149 blocks on the first column. Processes P4 and P5

Table A.1: Config1 column C0 transmissions.

Sender Receiver Blocks Channel

P4 P0 81 T 1

P4 P1 58 T 1

P5 P1 22 T 1

P5 P2 58 T 1

P5 P3 37 T 1

send their respective parts of the pbc to the rest of the processes. The transmissions
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of both processes progress concurrently through the network communication channel,

shrinking the available bandwidth. Process P4 sends to P0 and P1 its part of the pbc.

The cost of the communications performed per iteration by P4 is T 1(81) + T 1(58), that

reduces to T 1(139) applying the A1 assumption in the section A.2. The corresponding

communication cost of the process P5 is T 1(22) + T 1(58) + T 1(37) = T 1(117). The first

column total communication cost is:

C0 ×
[
T 1(139) ‖T 1(117)

]
= C0 ×

[
2 ‖T 1(117) + T 1(22)

]
(A.7)

Note that definition (A.7) is simplified using the assumption A2. The communication

cost of the pbc for each of the C1 = 256− 149 = 107 iterations in the second column is

represented in the table A.2.

Table A.2: Config1 column C1 transmissions.

Sender Receiver Blocks Channel

P0 P4 81 T 1

P1 P4 58 T 1

P1 P5 22 T 1

P2 P5 58 T 1

P3 P5 37 T 1

The transmissions of the processes progress concurrently. Only the process P1 has two

sends in sequence, to processes P4 and P5, with cost T 1(58) + T 1(22) = T 1(80). The

second column communication cost of the C1 = 107 blocks is:

C1 ×
[
T 1(81) ‖T 1(80) ‖T 1(58) ‖T 1(37)

]
=

C1 ×
[
4 ‖T 1(37) + 3 ‖T 1(21) + 2 ‖T 1(22) + T 1(1)

] (A.8)

Note that assumption A2 is repeatedly applied to simplify the definition (A.8). The

total cost for the row communication stage is:

C0 ×
[
2 ‖T 1(117) + T 1(22)

]
+

C1 ×
[
4 ‖T 1(37) + 3 ‖T 1(21) + 2 ‖T 1(22) + T 1(1)

]
=

4 ‖T 1(37C1) + 3 ‖T 1(21C1) + 2 ‖T 1(117C0 + 22C1) + T 1(22C0 + 1C1) =

4 ‖T 1(3589) + 3 ‖T 1(2247) + 2 ‖T 1(19787) + T 1(3385)

(A.9)

A.5.1.2 Block column communication

Figure A.6 allows to visualize the processes that communicate pbr by columns. The

columns have the same width, so the matrix B column communications are achieved
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using the MPI Bcast collective operation. A communicator is created for each column

and the transmissions in the columns progress concurrently. We use the Binomial tree

algorithm for the broadcast. The root (sender) process for the broadcast changes with the

displacement of the pbr, so the cost of the collective operation can change significantly.

The communication cost is discussed per column. The first column is formed by two

processes in the same Node 1, thus the broadcast derives in a point-to-point transmission,

not affected by the root change. The message size is C0 = 149 blocks. The final cost for

the N = 256 iterations is:

N × T 0(C0) (A.10)

A broadcast with P = 4 processes is executed in the second column. All communications

progress through the shared memory in the Node 0. The Binomial tree cost changes with

the root process during the displacement of the pbr. The cost is discussed next in a per

root basis.

For the first R0 = 81 rows, root process is P0. It sends a message of size C1 = 107

blocks to the process P1, and then a message of the same size to the process P3 while

the process P1 sends to the process P2. Both transmissions progress concurrently. The

cost is:

R0 ×
[
T 0(C1) + 2 ‖T 0(C1)

]
(A.11)

When the root is P1 the binomial tree deployment changes, although the cost is similar.

P1 sends to P0, and then to process P2 in concurrence with the send of P0 to P3. The

cost for the R1 = 80 blocks is:

R1 ×
[
T 0(C1) + 2 ‖T 0(C1)

]
(A.12)

The same procedure is applied to calculate the cost of the R2 = 58 blocks with P2 as

root:

R2 ×
[
T 0(C1) + 2 ‖T 0(C1)

]
(A.13)

Finally, the last R3 = 37 blocks with P3 as root has a cost of:

R3 ×
[
T 0(C1) + 2 ‖T 0(C1)

]
(A.14)

The total cost for the second column communication is the addition of the costs, with

N = R0 +R1 +R2 +R3:

N ×
[
T 0(C1) + 2 ‖T 0(C1)

]
(A.15)
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For the matrix B, the total cost of the column communications is:

N ×
[
T 0(C0)

]
‖N ×

[
T 0(C1) + 2 ‖T 0(C1)

]
=

N ×
[
T 0(C0) ‖

(
T 0(C1) + 2 ‖T 0(C1)

)]
Using the assumption A2, and the fact that C0 > C1, the cost is simplified to:

N ×
[
2 ‖T 0(C1) + T 0(C0 − C1) ‖

(
2 ‖T 0(C1)

)]
=

N ×
[
2 ‖T 0(C1) + 3 ‖T 0(C0 − C1) + 2 ‖T 0(C1 − (C0 − C1))

]
=

N ×
[
2 ‖T 0(C1) + 3 ‖T 0(C0 − C1) + 2 ‖T 0(2C1 − C0)

]
=

Summing up the terms, the cost becomes:

N ×
[
3 ‖T 0(C0 − C1) + 2 ‖T 0(3C1 − C0)

]
=

3 ‖T 0(N C0 −N C1) + 2 ‖T 0(3N C1 −N C0) =

3 ‖T 0(10752) + 2 ‖T 0(44032)

(A.16)

The total cost of the kernel communication is the addition of the row (A.9) and column

(A.16) costs:

3 ‖T 0(10752) + 2 ‖T 0(44032)+

4 ‖T 1(3589) + 3 ‖T 1(2247) + 2 ‖T 1(19787) + T 1(3385)
(A.17)

The measured execution time in seconds for the Config1 is shown in table A.3. Total

time includes the computation and communication time, and the volume is the addition

of the size of the messages sent by all process in MBytes.

Table A.3: Config1 measured performance (in seconds)

Network Total time Comm. time Comm. Volume

Ethernet 332.80 99.66 4952

Infiniband 310.22 75.30 4952

Note that the communication time using the Infiniband network is lower than in Ethernet

(about 22 seconds), reducing the total execution time in almost the same time difference.

Thus, an improvement in the communication cost directly results in an improvement of

the total execution cost, because the computational cost remains constant.
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Config2 partition (N=256, b=64)

P0

124

P1

0

P2

152

P3

221

P4

0

146 P5

134

C0 C1 C2

Figure A.7: Config2 partition and assignation to the P = 6 processes, with b = 64
and N = 256. White rectangles are assigned to processes running on the node 0, while

grey rectangles correspond to processes on the node 1.

A.5.2 Config2 modeling

The methodology of cost estimation introduced in the former section is applied here for

the Config2 layout shown in Figure A.5. The FuPerMod input configuration file is:

# conf_file Configuration 2. P = 6

node0 0 11 gpu id=0

node0 1 6-10 cpu OMP_NUM_THREADS =5

node0 2 0-5 cpu OMP_NUM_THREADS =6

node1 0 0-5 cpu OMP_NUM_THREADS =6

node1 1 6-10 cpu OMP_NUM_THREADS =5

node1 2 11 gpu id=0

The partition of the matrices A, B and C, and the assignation of the rectangles of blocks

to the processes is represented in Figure A.7.

A.5.2.1 Block row communication

Pbc data transmissions are discussed by columns in the matrix A. There are three

columns with C0 = 124, C1 = 97 and C2 = 35 blocks. Table A.4 details the data

transmissions between processes in each row for the first column C0. Processes P1 and

P4 perform their own transmissions in sequence. The cost of the transmissions of P1

is T 0(134) + T 1(158). Process P4 transmissions cost is T 0(116) + T 1(104). The total

cost for the C0 = 124 blocks of the first column, taking into account the concurrency of

communications, is:

C0 ×
[(
T 0(134) + T 1(158)

)
‖
(
T 0(116) + T 1(104)

)]
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Table A.4: Config2 column C0 transmissions.

Sender Receiver Blocks Channel

P1 P0 134 T 0

P1 P3 146 T 1

P1 P5 12 T 1

P4 P2 104 T 1

P4 P3 6 T 0

P4 P5 110 T 0

Using the definition (A.5), the cost becomes:

C0 ×
[(
T 0(134) ‖T 0(116)

)
+
(
T 1(158) + T 1(104)

)]
Finally, applying the A2 assumption, the cost will be:

C0 ×
[
2 ‖T 0(116) + T 0(18) + 2 ‖T 1(104) + T 1(54)

]
=

2 ‖T 0(116C0) + T 0(18C0) + 2 ‖T 1(104C0) + T 1(54C0)
(A.18)

The second column C1 transmissions are represented in the table A.5. Processes P0 and

Table A.5: Config2 column C1 transmissions.

Sender Receiver Blocks Channel

P0 P1 134 T 0

P0 P3 134 T 1

P5 P1 12 T 1

P5 P2 104 T 1

P5 P3 18 T 0

P5 P4 110 T 0

P5 transmissions contend for the communication channel. P0 communication cost per

block is T 0(134) + T 1(134). P5 communication cost is T 0(128) + T 1(116). Then, the

total cost for the C1 = 97 blocks of the second column is:

C1 ×
[(
T 0(134) + T 1(134)

)
‖
(
T 0(128) + T 1(116)

)]
=

C1 ×
[(
T 0(134) ‖T 0(128)

)
+
(
T 1(134) ‖T 1(116)

)]
=

C1 ×
[
2 ‖T 0(128) + T 0(6) + 2 ‖T 1(116) + T 1(18)

]
=

2 ‖T 0(128C1) + T 0(6C1) + 2 ‖T 1(116C1) + T 1(18C1)

(A.19)

The third column communications are represented in table A.6. P3 transmissions cost

per block is T 0(24) +T 1(280). P2 transmission cost per block is T 1(208). The total cost
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Table A.6: Config2 column C2 transmissions.

Sender Receiver Blocks Channel

P3 P0 134 T 1

P3 P1 146 T 1

P3 P4 6 T 0

P3 P5 18 T 0

P2 P4 104 T 1

P2 P5 104 T 1

of the C2 = 35 blocks of the third column is:

C2 ×
[(
T 0(24) + T 1(280)

)
‖T 1(208)

]
=

C2 ×
[
2 ‖T 1(208) + T 1(72) + T 0(24)

]
=

2 ‖T 1(208C2) + T 1(72C2) + T 0(24C2)

(A.20)

The total cost for the block row communications is the addition of the costs of the three

columns, that is C0 + C1 + C2, and hence:

2 ‖T 0(116C0) + T 0(18C0) + 2 ‖T 1(104C0) + T 1(54C0)+

2 ‖T 0(128C1) + T 0(6C1) + 2 ‖T 1(116C1) + T 1(18C1)+

T 0(24C2) + 2 ‖T 1(208C2) + T 1(72C2) =

2 ‖T 0(116C0 + 128C1) + T 0(18C0 + 6C1 + 24C2)+

2 ‖T 1(104C0 + 116C1 + 208C2) + T 1(54C0 + 18C1 + 72C2) =

2 ‖T 0(26800) + T 0(3654) + 2 ‖T 1(31428) + T 1(10962)

(A.21)

A.5.2.2 Block column communication

The broadcast collective operations in each column of the matrix B progress concur-

rently. Note that in the Config2 each of the column communication progresses through

the network channel and involves two processes per column, so they derive in point-to-

point transmissions.

The first column have a communication cost of N × T 1(C0), the second column has a

cost of N × T 1(C1), and the third column cost is N × T 1(C2). The total cost including

the contention of the columns is:

N ×
[
T 1(C0) ‖T

1(C1) ‖T
1(C2)

]
=

N ×
[
T 1(124) ‖T 1(97) ‖T 1(35)

]



Appendix A. Estimation of the cost of applications in heterogeneous platforms 143

Applying the A2 assumption, the cost becomes:

N ×
[
3 ‖T 1(35) + 2 ‖T 1(62) + T 1(27)

]
=

3 ‖T 1(35N) + 2 ‖T 1(62N) + T 1(27N) =

3 ‖T 1(8960) + 2 ‖T 1(15872) + T 1(6912)

(A.22)

The Config2 total communication cost is the addition of the row (A.21) and column

(A.22) costs:

2 ‖T 0(26800) + T 0(3654) + 3 ‖T 1(8960) + 2 ‖T 1(47300) + T 1(17874) (A.23)

The measured cost for this configuration is shown in the table A.7. As in Config1, the

difference in the communication time between network types is directly reflected in the

total execution time.

Table A.7: Config2 measured performance (in seconds)

Network Total time Comm. time Comm. Volume

Ethernet 366.29 148.32 6144

Infiniband 314.55 98.91 6144

A.5.3 Comparing the costs of both configurations

This section compares the cost of the Config1 and Config2 layouts exclusively from the

models generated. The measurement of the parameters of τ–Lop in the target platform

is not carried out. The goal is to find out from a formal analysis which is the more

efficient layout.

Cost expression (A.16) shows that Config1 has not network communication in the pbc

communication. This fact leads to the hypothesis that the cost of the Config1 is lower

than that of the Config2. We call Ccfg1 to the cost of the Config1 layout, and Ccfg2 to

the cost of the Config2 layout. The hypothesis could be expressed as Ccfg2 > Ccfg1, that

is:[
2 ‖T 0(26800) + T 0(3654) + 3 ‖T 1(8960) + 2 ‖T 1(47300) + T 1(17874)

]
>[

3 ‖T 0(10752) + 2 ‖T 0(44032) + 4 ‖T 1(3589) + 3 ‖T 1(2037) + 2 ‖T 1(19567) + T 1(3375)
]

(A.24)
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Subtracting the terms in the same channel and contention factor, i.e., applying n ‖T c(m1)−
n ‖T c(m2) = n ‖T c(m1 −m2):

T 0(3654) + 3 ‖T 1(6923) + 2 ‖T 1(27733) + T 1(14499) >

3 ‖T 0(10752) + 2 ‖T 0(17232) + 4 ‖T 1(3589)
(A.25)

Because of n ‖T c1(m1)− n ‖T c0(m2) ≥ n ‖T c1(m1 −m2),∀c1 ≥ c0 and m1 > m2. This

fact allows to simplify the terms 2 ‖T 1(27733) − 2 ‖T 0(17232) ≥ 2 ‖T 1(10501). And

then:

T 0(3654) + 3 ‖T 1(6923) + 2 ‖T 1(10501) + T 1(14499) >

3 ‖T 0(10752) + 4 ‖T 1(3589)
(A.26)

From the axiom in definition (3.5) in section 3.5, it is derived than an upper limit for

4 ‖T 1(3589) is T 1(3589× 4). Then:

T 0(3654) + 3 ‖T 1(6923) + 2 ‖T 1(10501) + T 1(14499) >

3 ‖T 0(10752) + T 1(14356) =⇒

T 0(3654) + 3 ‖T 1(6923) + 2 ‖T 1(10501) + T 1(143) > 3 ‖T 0(10752)

(A.27)

Finally, n1 ‖T
c(m1) + n2 ‖T

c(m2) ≥ n2 ‖T
c(m1 + m2),∀n1 ≥ n2, i.e. a lower limit is

chosen, and then:

T 0(3654) + 2 ‖T 1(17424) + T 1(143) > 3 ‖T 0(10752) (A.28)

In the evaluated architecture, with T 1 � T 0, even in presence of concurrency, the direct

conclusion is that the hypothesis is correct.

A.6 Comparing different mappings for a configuration

The layout of processes shown in Figure A.7 poses the performance issue of the inter-

node communication of the pbc in matrix A. The cost can be reduced by a simple change

in the layout in the third column. By changing the order of the P3 and P2 processes, the

inter-node communication could be reduced in favor of the more efficient intra-node one.

The new Config2 mod layout of processes is shown in Figure A.8. While, the column

communication cost of the pbr in matrix B will not change. This section evaluates this

new layout of processes Config2 mod compared to the Config2, and gives experimental

values that confirm the prediction. The goal is to apply the modeling methodology to

evaluate the cost based on the mapping.
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Config2_mod partition (N=256, b=64)

P0P1 P2

0

P3

221

104

P4
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146 P5

124

134

C0 C1 C2

Figure A.8: Config2 mod partition and assignation to the P = 6 processes, with
b = 64 and N = 256. White rectangles are assigned to processes running on the node
0, while grey rectangles correspond to processes on the node 1. P2 and P3 processes

layout is changed with respect to Config2.

A.6.1 Block row communication

Again, the row communication is modeled separately by columns for the matrix A. Table

A.8 details the interchange of data between processes in the row communication for the

first column C0. The cost per block of the transmissions of P1 is T 0(238) +T 1(54). The

Table A.8: Config2 mod column C0 transmissions.

Sender Receiver Blocks Channel

P1 P0 134 T 0

P1 P2 104 T 0

P1 P3 42 T 1

P1 P5 12 T 1

P4 P3 110 T 0

P4 P5 110 T 0

process P4 transmission cost is T 0(220). The total cost for the C0 = 124 blocks of the

first column, having into account the concurrency of communications, is:

C0 ×
[(
T 0(238) + T 1(54)

)
‖T 0(220)

]
=

C0 ×
[(
T 0(238) ‖T 0(220)

)
+ T 1(54)

]
=

2 ‖T 0(220C0) + T 0(18C0) + T 1(54C0)

(A.29)

Note that definitions (A.5) and (A.6) are applied for simplifying definition (A.29).

The second column transmissions are represented in the table A.9. The P4 per block

communication cost is T 0(238) + T 1(30). The per block P5 communication cost is
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Table A.9: Config mod column C1 transmissions.

Sender Receiver Blocks Channel

P0 P1 134 T 0

P0 P2 104 T 0

P0 P3 30 T 1

P5 P1 12 T 1

P5 P3 122 T 0

P5 P4 110 T 0

T 0(232) + T 1(12). Then, the total cost for the C1 = 97 blocks of the second column is:

C1 ×
[(
T 0(238) + T 1(30)

)
‖
(
T 0(232) + T 1(12)

)]
=

C1 ×
[(
T 0(238) ‖T 0(232)

)
+
(
T 1(30) ‖T 1(12)

)]
=

C1 ×
[
2 ‖T 0(232) + T 0(6) + 2 ‖T 1(12) + T 1(18)

]
=

2 ‖T 0(232C1) + T 0(6C1) + 2 ‖T 1(12C1) + T 1(18C1)

(A.30)

The third column communications is represented in table A.10. The P2 per block com-

Table A.10: Config mod column C2 transmissions.

Sender Receiver Blocks Channel

P2 P0 104 T 0

P2 P1 104 T 0

P3 P0 30 T 1

P3 P1 42 T 1

P3 P4 110 T 0

P3 P5 122 T 0

munication cost is T 0(208). The P3 per block communication cost is T 0(232) + T 1(72).

The total cost of the C2 = 35 blocks of the third column is:

C2 ×
[
T 0(208) ‖

(
T 0(232) + T 1(72)

)]
=

C2 ×
[(
T 0(208) ‖T 0(232)

)
+ T 1(72)

]
=

C2 ×
[
2 ‖T 0(208) + T 0(24) + T 1(72)

]
=

2 ‖T 0(208C2) + T 0(24C2) + T 1(72C2)

(A.31)



Appendix A. Estimation of the cost of applications in heterogeneous platforms 147

Total communication for the row communication is the addition of the costs for the

three columns in (A.29), (A.30) and (A.31), and hence:

2 ‖T 0(220C0) + T 0(18C0) + T 1(54C0)+

2 ‖T 0(232C1) + T 0(6C1) + 2 ‖T 1(12C1) + T 1(18C1)+

2 ‖T 0(208C2) + T 0(24C2) + T 1(72C2) =

2 ‖T 0(220C0 + 232C1 + 208C2) + T 0(18C0 + 6C1 + 24C2)+

2 ‖T 1(12C1) + T 1(54C0 + 18C1 + 72C2) =

2 ‖T 0(57064) + T 0(3654) + 2 ‖T 1(1164) + T 1(10962)

(A.32)

A.6.2 Block column communication

The column communication does no change with respect to the Config2 in the definition

(A.22), because the communication is achieved in columns with the same processes in

each column. Hence, the total cost of the matrix multiplication communication for the

Config2 mod is the addition of the row (A.32) and column (A.22) communication costs:

2 ‖T 0(57064) + T 0(3654) + 2 ‖T 1(1164) + T 1(10962)+

3 ‖T 1(8960) + 2 ‖T 1(15872) + T 1(6912) =

2 ‖T 0(57064) + T 0(3654) + 3 ‖T 1(8960) + 2 ‖T 1(17036) + T 1(17874)

(A.33)

Experimental cost values for this configuration are shown next:

Table A.11: Config2 mod measured performance (in seconds)

Network Total time Comm. time Comm. Volume

Ethernet 348.75 131.73 6144

Infiniband 314.46 99.23 6144

Note that the number of bytes transmitted is the same of that in Config2. The difference

between both layouts affects only to the channels used for communicating the data.

Following, formal comparison of both layout is developed. Let Ccfg2 be the cost of

Config2 communications and C′cfg2 the cost of Config2 mod. The departing hypothesis

is that Ccfg2 > C′cfg2, that, from the definitions (A.23) and (A.33), becomes:

2 ‖T 0(26800) + 2 ‖T 1(47300) > 2 ‖T 0(57064) + 2 ‖T 1(17036) =⇒

2 ‖T 1(30264) > 2 ‖T 0(30264)
(A.34)
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Note that, due to the change in the communication channel but not in the configuration,

the number of blocks sent is the same, but through a different channels. The fact is

captured by the modeling procedure. From the expression (A.34) the improvement of

the communication performance is demonstrated.

A.7 Conclusions

This appendix introduces an on-going work on the communication performance modeling

of hybrid applications. The target platforms are heterogeneous clusters for parallel com-

puting composed of multi-core processors and accelerators connected by a hierarchical

network.

The execution cost of a hybrid application on a heterogeneous platform highly depends

on the distribution of the workload between the processes. The processes have to be

assigned with an amount of computation in proportion to their different performance

capabilities. Also, the communications have a significant influence in the final cost. The

uneven computational load balancing carries out an unbalance in the communications,

because some processes have to communicate a higher volume of data. In addition,

due to the uneven communication channels, the deployment of the processes on the

platform impacts the overall cost because it establishes the channel used by a process

for communicating with the rest.

An extensive amount of work have been done in load balancing of computation and op-

timization of communications for parallel processing. These problems have been faced

using Graph Partitioning techniques and more recently using Functional Performance

Models. The FPMs better describe the performance of a process by integrating perfor-

mance characteristics of both the platform and the application. However, FPMs lack

of the capability of accurately including the communication cost in the optimization

procedure. The τ–Lop model is applied to fill this gap. The model is extended to het-

erogeneous platforms under some basic and meaningful assumptions. The performance

modeling methodology departs from a load balanced scenery using FPMs. The workload

distribution between the processes conceptually transforms the heterogeneous system in

homogeneous, in which processes balances their capabilities with the different assigned

workloads. τ–Lop estimates the communication cost for a given process distribution in

the platform, and it compares different layouts in order to choose that of minimum cost.

The SUMMA matrix multiplication kernel, representative for many HPC kernels, has

been evaluated and the estimations of the cost of communications using τ–Lop match
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the real execution costs. Application of the performance modeling methodology to other

data parallel kernels is direct.

Our current work is focused on covering two open issues. The first is the estimation of the

parameters in a heterogeneous platform. Such estimation will follow the methodology

described in chapter 7. The parameter estimation will allow to quantitatively compare

the estimated cost with the real value to fully asses the utility and adaptability of the

model in heterogeneous computing. Nevertheless, this point is not important in the cases

in which the goal is to find the best layout of processes in a platform comparing the cost

expressions. The second issue is the implementation of the cost modeling procedure to

automatically estimate the cost associated to the execution of a kernel for an specific

layout of processes in a heterogeneous platform.
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