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ABSTRACT. We give projective representations of lp which lead
to obtain embedding theorems into products of some non locally
convex spaces. We introduce infinitely many different topolo-
gies on tfd’ intermediate between the box and the inductive
topology. We give projective representations for \fd carrying
those topologies and show that, contrarily to what happens for
\p , the results for embedding Wd. into product spaces are
stromngly negative.
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Introduction.

It is.knowzthat a countable dimensional linear space
P endowed with the strongest locally convex topology is
always a subspace of an I-fold product EI whenever
card(I) > ZXD and E does not carry its Weak topology.
This result first proved in [6] by 8. Saxon does not extend
to non-countable dimensional spaces $d (d >x,) and the
investigation of embedding theorems for %3 into products
lead in a natural way to lock into the projective repfeseg

tation of several locally convex and non locally convex

topologies in md .

In the first part of the present paper we are concer
ned with the projective structure of ¢ and we show that
all kernel topologies induced by diagonal operators on zp
0< p< = do coincide on ¢ . As a consequence we extend

Saxon's theorem to many non-locally convex spaces, such

as zp O<p<l1l , Orlicz spaces, eicC.

The second part aims to describe in what extent the

above results remain valid for when d is uncounta

g
ble. We show that the Xernel topologies s induced by
diagonal operators on zp(I) (card (I} =d , O<p<w ) are
all different for different p and we obtain an explicit
projective representation of them. This family of Kernel
topologies rp carry a natural order depending on p and

it | include the box topology and the finest loca

lly p-convex topology if O<pcx<l




Concerning embedding properties of ['f)d , Z'p J into pro-
duct spaces, we prove that they depend closely on P and
d; roughly speaking, we show that [ LPd , t‘p ] is a subspace
of a large product of 3.q(I) if and only if P =q and
card I % d '

We would like finally to point out that the calculus of
the associated Banach spaces of l\O would alse follows from
its nuclearity and |7,8|, but those proofs do not provide the

form of te linking maps (and are guite harder). On the other

hand, they cannot apply to tf’d , since this space 1is rnot
nuclear with any of the topologies t‘p (Prop. 3) - when
p = 1 thisg is in [2, 10.4.2:[, and a similar argument sérves

for p = 0 -,




1. Notations and Terminology

For the general terminology on topological vector

spaces we refer throughout to (2] and [3].

X _denotes the real dr complex scalar field an .
the closed unit disk in X . As usual, for any locally

p-convex space over IK , O0<p <1 (l-convex = convex) and

any absolutely p-convex neighborhocod U of 0 in E , we
denote by EU the quotient space of E modulus the lar
gest subspace contained in U . If °y is the quofient
map then EU is always considered topologized with the

p-norm H¢UxHU = qU(x) (qU = gauge of U ) . E, is the
p—-Banach space completion of EU . If Ve U , TVU

- -~

EV — EU is the extension to the completions of the cano

nical linking map o, (x) > o,(x) , xeE .

if I is a set of cardinality d , then ﬁd is the

space direct sum @ K; when 4 1is countable we simply
T
write V¥

The so-called box. topology ~ on P, has a system

d

of O-~neighborhoods formed by the sets & Di , where Di
I

are O-neighborhoods in K . It is also well know that for

0< p <1 the finest locally p-convex topology on $d is
given as an inductive topology (namely the finest locally

p-convex topology making continuous all the inclusions

K s K )
I



2. Results for V¥

In [6], Saxon proved the following result: "Let E

be a locally convex space. Then ¢ 1is a subspace of any
X

rproduct_EI, card(I) > 2 © , if and only if E does not

carry the weak topology".

This result relies upon the locally convex structure
of E , rather than that of the ¢ . In [1], a simple
proof using polarity arguments shows that a fundamental
system of neighborhcods can be found in ¢ such that the

-associated Banach spaces are isometric to Cq -

We next give a further insight into the structure of
P . To begin with we fix some notations that will remain

valid all throughout the paper.

+ .
< = = = H
For 0 <p< we denote 1y { o (o)) € vy

a >0 for all n< IN } and we define the usual order

|~ O

o n 1iff 7 < Kdn for all neN and for some cons

n =
tant K > 0. . With respect toc this order the subset

+ + . . . .
) of & _ is cofinal in m: whatever 0<p<e (also

P
any normal seqguence space in 2; is cofinal in 2; ,

0 <p < =« ). For every o = (oil)e;L: we denote by

D, ¢ (g ) = (o_¢t ) the diagonal operator acting be
tween appropiate sequence spaces. For every os.LI and

O<p<w we define Eg = 2 and E_=c_. If o < n we
-1

consider the diagonal operator Dcdn (with d n =

(e tn )

n r1r1e_DJ) defined in E.p or in c¢_ . The families

P
[EO’ ! Dc-ln ]Geﬂ,:_, n > o

and [EU ¥ Dc-lq ]UEQI,T} _>—.0-



are projective system of topological linear spaces. With

obvious notations we will denote by proj %. and. proj.c

cest gelt+ @
o L]

‘the~ - respective projective limits of the above projec
tive systems.
Theorem 1.

If Ty is the box topeology in ¢ we have

[¢,7,,] = proje
s UeLI ©
and for every 0<p< =
(v,7,] = proj &
''b Ueli P
Proof. Let V =@® o D o {(: = ( Tﬁ'ﬂfm){jw) be an arbitra
nelv * neMN

ry rb—neighborhood of O in 9 . The gauge 9, of Vv

is c¢learly the norm

qv(x) = sup |o X

x = (x_lev
neN n n n

-
and therefore the associated Banach space ¢ is isome

V.
i = D )
tric to C, - If U e n, B, Q<nnﬂign for all neg I ,
nelN
an standard extension argument yields that the linking
A /\ * s
map TUV: @U — $V is the diagonal operator Dyty in

co . Therefore

[rme] = proj 3% = proj c

v ge gt ©
<D

and the first part is proved. For the second one let us



recall that ﬂ; is cofinal in m: for any 0O< p<= and

consequentl proj ¢ = proj c¢_ . But if ¢ , u ot
WERE Sem To Tooagh o €

the following diagram is well defined and commutes

D D
c L 2 5> ¢
o o] ol
) 6//7 \% o//ﬂ
X, <>,
L34
j& p
Therefore proj ¢. = proj & _ = proj i , the last equality
cerd selt oet”
p P o
being true again because z; is cofinal in L:
"Let us consider on 9 the linear topologies Tp )
0 <p< = defined by the system of norms {(p-norms 1f
p<1)
s -1 P}l/p
qu(X)—[Z lo ", x = (g )e v
n=1
q,,(x) = sup lc;_lani x = (g )ev
nelN
where o = (cn) ranges over z:
It VpU is the closed unit ball of the norm or
N
p-norm  q. . (0O<p< = ) , it is clear that LTI Lp if
T po +
P < @ and ¢ = Cy whatever the sequence c &€ &
@ g
Furthermore if VpY c VpU (i.e. if O<y_ <o, for all
ik TN S
ne W) , the linking map Ty v e A is the
PY p9g pY po
diagonal map D in g (if p< «) or in ¢ (if
(o7t ) P °




p = ).

Therefore, by 1its wvery definition the topoclogies

Tp have the following projective representation.
[vr ] = proj & (0<p < =)
:  oeal P _

P «] = proj ¢
’ J celi ©

and the Theorem 1 can be reformulated as follows:
Theorem la.

The box topology T in ¥ 1s equal to any of the

topologies Tp' O<ps =
In the following theorem we discuss an analogous des
cription of the finest locally p-convex topology

(O<p<1} of % in terms of Ty o

Theorem 2.

For every O0O<p<1l , the finest locally p-convex to

pelogy on ¢ 1is equal to rp

Proof. Let O be the basis of =zero neighborhoods in
9 for the finest locally p-convex topology formed by all

the sets W= r.dJ g D) where o= (0_) ranges over 2 T
" Pnew T n ”

(here r_p stands for "absolutely p-convex cover'"). Let us

denote by Qyy the p-norm gauge of W and by Bp the
closed unit ball of the p-norm | ”p of Ep . For the dia
gonal injection o o [, qw] — [zp , Hp] ,




(x) — (o7 1% )

we have clearly ¢ -1 (W)e Bp Ny . Con
versely if n = (nn)e,Bpfj 9 , then all but finitely many
n, are zero and g Inn[pil . It follows that (nncn) e W

because W is absolutely p-convex and furthermore

LI ((njo,)) = (ny) - Thus o (W) = Bpn 9 and o .1

is a topological isomorphism onto a dense subspace of gp.

We th he"l}p/\]z e vl (U D) is
av = = . = .

e us Pw peing D Pl MK

another neighborhood in ¥ with nplog for all nelN ,

then the linking map Ty o 6\ — 6\ is the diagonal
Vw v W
D - on 4 obtained extending by density the diago
g n -
. -1 + .
nal D o=t : (o, qv] — [y, qw] . Since o "nes_ it fo

llows that the finest locally p-convex topeology on ¢ has
the same projective representation as Tp.
Remark. The Theorems la and 2 supply a new proof of the
well known fact that on ¢ coincide the box topology and
the finest 1locally convex topology ([2], 4.1.4.), and we
will not distinguish them in what. follows. This is not

by far true for the non countable case as we will later

see.

We recall that a topological linear space [E ,t] is
called 'pseudo-convex'" 1if there exist a basis of zero-
neighborhoods (Uy) for v and a family (ra) of num
bers in (O,l] such that Ua is absoclutely r -convex

for every «a




Theorem 3

Let & be a pseudo-convex topological wvector space
of scalar sequences, such that 1D%A and x» 1is continuou
sly contained in & _ . Let us assume that 2 is normal
and possesses a baSis AL of O-neighborhoods satisfying

the following condition.

{c) For each U€6U- there exists v e 0l such that

if ]xnfiiyn] for all neN then qU((xn))iqv((yn,))°

Then ] is a subspace of any product AJ with

Xo
card (J) > 2

Proof. Take oe A with o >0 for all neIN (we exclu
de the interestless spaces A such that A" =¢@) . The
diagonal operator DG Poe, — C, is extended to a diago
nal operator DU : & _—> & _ and by normality of X
Dg(%) L2 S

By property (c) D_ : »_—> ) is continuous. Indeed,

for every Uedl there exists vedl such that
ay(D (& ))) = aqyllo e 1) <qule) I (€ )

and the criterion [2] Th. 6.5.4. applies. Since, by hypo
thesis the canonical inclusion A &— 5 is also continuous

we get the following continuous factorization




. . + . . .
Since x is normal, A is cofinal in x: and, thus,

using the Theorem 1la, we have 1§ =proj c¢c_cproj &_ =

_ cest oe &7t
proj ¢_ = proj i ¢ AJ where the cardinality of J 1is
gert gext _
the cardinality of a neighborhood basis of ¢ , 1i.e.
Xo : .

card (J)> 2 because ¢ 1is not metrizable. "

Applications of this result not covered by [6] are
1. A = lp > Q< p< 1
2. A = (ﬁ\ L endowed with the projective induced

C<p< 1 P

topology. This space is not even p-convex for any p< 1

but only pseudo-convex ([2] 6.10.G.)

3. A = Aiuw ,. O0<p <1 , non locally convex power se

ries seguence spaces (see [5]).
4., A = & Orlicz sequence spaces not locally convex |9].
p.

5. Any topological linear space containing subspaces as

above, ej. E =<$p(XJuu) 0<p<1, X infinite.



3. Results for ﬂd

Let us consider now the space md where d =

X
card(I)> 2 ? . We fix in the sequel such an index set I,
We define .on m.ad the topologies rp , 0 <p < = by means

of the norms (p-norms if pk'l )

- -1, p}i/p -
o0 = [Z 17t 17 x = (€0, .1 €9,

if p < » and

-1
q,,(x) = sup lo "k | x = ()7 €0g
ieT
where o = Gzi) ranges over zm(I)+

As in the countable case we have

[¢.r ] = proj 8 (1)
d P a ezm(£)+ p

[v .7 ] = proj c (I)
are GEQW(I)+

The techniques developed in Theorems 1 and 2 generali

ze to the non-countable case. We thus omit- the proof of

the following.

Theorem 4,

Let 0<p<1 be; Tp is the finest locally p-convex

topology on ¥ . T is the box-topology on 9 ,.
d @ d

In contrast with the countable case we have however



Proposition 1.

< < < < <@ < <
If O< s< r< 1< g P » then 1 “Tp_TqiTlirrS S

Moreover all these topologies are different on @d.

Proof. Let 0<g<p< = Dbe. From the relation

qu(x)iqu(X) x €& ¥, ces (I)°

we deduce t_ <t_ . In order to prove that = £ 1 we
p q p q

recall the following simple fact: 1if q < p  and

e Lm(I)+ , then the diagonal map D_ = cannot carry np(I)

into 2q(I) unless I = be countable (ip(I) is unders

tood to be cO(I) if p = =) .

Let us observe as well that the topology tp in $d

is the Kernel topology corresponding to the family of dia

gonal maps D =v : ¥ q —7 ﬁp(I) , T€ 2:(ILTherefore the
equality Tp = Tq in ﬂi would imply, by density, the
continuity of some ngz zp(I) —_ mq(I) ,crezm(z)+ But
this is impossible because I 1is uncountable, 3

We study now scme results concerning embedding of

[@d ,‘TpJ , 0<p <= , into large prcducts.

Proposition 2.
Let E be an infinite dimensional locally convex space,

If [md . rp] is a subspace of some product EJ , then E

has a basis of zero heighborhoods o such that

Fay
dim (EU)i d for every UG.QL.



Proof. We will suposse that E 1s a Banach space X . Mi
nor changes will provide the general case. Take a conti
nuous norm ¢ in [wdﬁp] (for example any qpc) and let

U be its closed unit ball. From [$d;p]c x7  we can deter

"mine a neighborhood B of ¢ in X such that

n timeg
Vi = (B x cvecasas wses x B x XJ)ﬂ‘pdC_U

it follows that (gud)V is (algebraically) a subspace of

X7, Since ¢q 1s norm we finally conclude

. . . n )
d = dim Py = d;m ($d)vxidlm X' = dim X
|
In the following corollaries we deduce some facts

contrasting strongly with the situation described in the

theorem of [6] quoted at the begining of the Section 2.

Corollary 1. Let J and A be index sets such that

card(i)3'2d . Then

a) L$cf¢p] , 0<p<= , 1is a subspace of g,p(A)J if and

only if card(4a)> d.

b) [v d’Tml is a subspace of cO(A,)J if and only if

card(a} >d.

Proposition 3. If E is a Schwartz space,
then no product of E contains [ﬁdfrp] whatever

O<p< =

Proof. Since E is a Schwartz space, the asscciated Banach

-~
spaces EU are separable,




On the other hand,
[wd , T 1 , 0<p<e , is . not a Schwartz space
.+~ because the associated Banach spaces of
[$d , rp] are isomorphic to the (non-separable) spaces

zp(I) if O<p<= or cO(I) if p ==,
Lemma.

A diagonal operator D _ : zp(I) — zp(I), 0<p< =,
(if p =« one must understand CO(I)), o e “w(I)+ , cannot

be continuously factorized through zq(I) if g # p

Proof. An operator A : Lp(I) ey mq(I) is represented by

a "matrix" (aij)(ij)e 1xy 0 the following sense:
if A((%j)) = (yi) then y; = j%gl a; 5%

Suppose p >q . It is not hard to check that the ma

trix of the operator A satisfies

(1) For each Jje&J the set of indexes 1€ I such that

a,. £ 0 1s countable,.
1]
(2) For all, but finitely many 1€ I , the set of indexes

jJ eI such that aij # O 1is countable (there is no

loss of generality assuming that this condition holds

for every 1€ 1 )
We then claim that A has the following property:
(*) The set I,={(i,j)e IxI ; aij # 0} 1is countable.

Should this not be the case, and assuming aij>

0



for uncountable (i,j) ~ , then there exists ¢ > 0 such that

for an uncountable set Mg IxI , aij >e if (i,j)e M

- Appealing to (1) and (2), we deduce that the indexes
in M need to be scattered through uncountably many rows
‘and columns of IxI . Pick then a countable set J& M

such that for all a, beJ

i l(a) = Hl(b) = a=>
and
nz(a)_;lra(b) = a =Db
{(here I, and 1@, are the respective projections of IxI
into I )
Choose next a 2 = (Zj)e.zp(IY\zq(I) with Zj> 0

iff J e HZ(J) . If Az =y , then for each pair (i,jle J

we have

Yi =§ ik k7 €23

and thus

S o9 X gy %s 8 20 gz 9.

. i : . J
iel ie Hl(J) 3en2(J)

iel

This contradiction proves (*),




Suppose now DU factorizes as DG = B*A with

A o (I L (I d B : 2 (I L . *
p( ) - q( ) an le( ) — p(I) By (*) we
can choose j € I\ Hg(Io) and define X(J)e 2p(I) as

(J) ‘ j
ka = akj ; k €I ., We then have DU{X(J)) # 0 ( note its.

j=-th compoﬁent is 9y # 0 ) but if y = A(x(j)) then

. (3)
Y. = 2  a..x = a,,
i kel ik™k ij

jé& H2(Io) . Therefore A(x(J)) = 0 which is impossible.

= 0 for all iel because

That proves our Lemma 1in the case p>g . If p< g we
then observe that B has also the corresponding property

(*) and therefore B(zq(I)) c:zp(ﬂﬁ) (IN denotes here,

of course, a countable subset of I ) . But we get again
a contradiction . because the image of DG cannot lay on
g {IN

p() %

Remark. Let us note that if p> g in the previocus Lemma,
D, cannot be even "subfactorized" through zq(I) in

the sense that there is no subspace Z«:zq(l) and opera

tor BE%E(Z,;LP(I)) such that A(s (T))cZ and D = BeA

It is also worth noticing the remarkable contrast
between this Lemma and the factorization argument used in

the proof of the Theorem 1 for the countable case.

Theorem 5.

X o
Let d>2 and 0<q<p<= be., Then [wd , rp] is

not a subspace of any product sz,q(I)J

‘ J
Proof. Let us first note that any product (ﬂq(I)) has



a basis @l of zero-negihborhoods such that for Ue®l the
/\TJ____

associated qg-Banach space (Lq(I) )U is topologically

isomorphic to zq(I) . If @(i , rp] were a subspace of
J .

mq(I) , then, recalling the projective representation of

T at the begining of this Section, we would obtain a

factorization of diagonal operators DU : 2p(I) — mp(I)

+ =T

c € & {I) through subspaces (p.) : of & (I) ,
w d Uﬂwd .

Ue AL . Such a subfactorization of D through gq(I)

is not possible according to the previous Lemma and its

subsequent remark.

As a complement of the Theorem 5, we will next prove
that its wvalldity can be extended to the following more

trivial setting:

It O<p<qg <1 (resp. O<p <1< g<<= ) then
[ﬁd , Tp] cannot be a subspace of n.q(I)J . Otherwise, by
(2] 6.6.3., ™ would be a locally g-convex topology
resp. a locally convex topology). This, in turn, implies,
by the Theorem 4, that =+ _ = = (resp. 1_ = Tl) contra

P q p
dicting the Proposition 1.

Conjecture::. We feel strongly toward the following refine

ment of the present paper ;

Theorem 5 should be true for all p £ g . This
would follow from the preceding Lemma as far as this
Lemma could be proved for subfactorizations even when

b<qg
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