Prajective descriptions and embedding theorems for φ_{d}

Jesûs M.F. Castille
J.M. García-Lafuente

Departamento de Matemáticas
Universidad de Extremadura
Avda de Elvas s/n. 06071 Badajoz
SPAIN

Abstract

We give projective representations of φ which lead to obtain embedding theorems into products of some non locally convex spaces. We introduce infinitely many different topologies on φ_{d}, intermediate between the box and the inductive topology. We give projective representations for φ_{d} carrying those topologies and show that, contrarily to what happens for φ, the results for embedding φ_{d} into product spaces are strongly negative.

AMS (1980) Class: primary: 46A05, 46A45 secondary: 46M40, 46A12

Introduction.

It is known that a countable dimensional linear space \downarrow endowed with the strongest locally convex topology is always a subspace of an I-fold product E^{I} whenever $\operatorname{card}(I) \geq 2^{X_{0}}$ and E does not carry its weak topology. This result first proved in [6] by Saxon does not extend to non-countable dimensional spaces $\psi_{d}\left(d>x_{0}\right)$ and the investigation of embedding theorems for φ_{d} into products lead in a natural way to look into the projective represen tation of several locally convex and non locally convex topologies in φ_{d}.

In the first part of the present paper we are concer ned with the projective structure of ψ and we show that all kernel topologies induced by diagonal operators on ℓ_{p} $0<p<\infty$ do coincide on φ. As a consequence we extend Saxon's theorem to many non-locally convex spaces, such as $\ell_{p} 0<p<1$, Orlicz spaces, etc.

The second part aims to describe in what extent the above results remain valid for φ_{d} when d is uncounta ble. We show that the kernel topologies τ_{p} induced by diagonal operators on $\ell_{p}(I)(\operatorname{card}(I)=d, 0<p \leq \infty)$ are all different for different p and we obtain an explicit projective representation of them. This family of kernel topologies τ_{p} carry a natural order depending on p and it include the box topology and the finest loca lly p-convex topology if $0<p \leq 1$.

Concerning embedding properties of $\left[\varphi_{d}, \zeta_{p}\right]$ into product spaces, we prove that they depend closely on p and d; roughly speaking, we show that $\left[\varphi_{d}, \zeta_{p}\right]$ is a subspace of a large product of $l_{q}(I)$ if and only if $p=q$ and card $I \geqslant d$.

We would like finally to point out that the calculus of the associated Banach spaces of φ would also follows from its nuclearity and $|7,8|$, but those proofs do not provide the form of te linking maps (and are quite harder). On the other hand, they cannot apply to φ_{d}, since this space is not nuclear with any of the topologies \succ_{p} (Prop. 3) - wher $\mathrm{p}=1$ this is in $[2,10.4 .2]$, and a similar argument serves for $p=\infty$.

1. Notations and Terminology

For the general terminology on topological vector spaces we refer throughout to [2] and [3].

IK denotes the real or complex scalar field an \mathbb{D} the closed unit disk in $I K$. As usual, for any locally p -convex space over $\mathrm{IK}, 0<\mathrm{p} \leq 1$ (1-convex = convex) and any absolutely p-convex neighborhood U of O in E, we denote by E_{U} the quotient space of E modulus the lar gest subspace contained in U. If Φ_{U} is the quotient map then E_{U} is always considered topologized with the p-norm $\left\|\Phi_{U} x\right\|_{U}=q_{U}(x) \quad\left(q_{U}=\right.$ gauge of $\left.U\right) \cdot \widehat{E_{U}}$ is the p -Banach space completion of E_{U}. If $\mathrm{V} \subset \mathrm{U}, \mathrm{T}_{\mathrm{VU}}$: $\widehat{E}_{V} \longrightarrow \widehat{E}_{U}$ is the extension to the completions of the cano nical linking map $\Phi_{V}(x) \longmapsto \Phi_{U}(x), x \in E$.

If I is a set of cardinality d, then ψ_{d} is the space direct sum $\underset{I}{\oplus} \mathbb{K}$; when d is countable we simply write $甲$.

The so-called box topology on ${ }^{\varphi} \mathrm{d}$ has a system of O-neighborhoods formed by the sets ${ }_{I}^{\oplus} D_{i}$, where D_{i} are O-neighborhoods in \mathbb{K}. It is also well know that for $0<p \leq 1$ the finest locally p-convex topology on φ_{d} is given as an inductive topology (namely the finest locally p-convex topology making continuous all the inclusions $\mathbb{K} \subset \underset{\mathrm{I}}{\oplus} \mathbb{K}$) .

2. Results for φ

In [6], Saxon proved the following result: "Let E be a locally convex space. Then φ is a subspace of any product E^{I}, card(I) $\geq 2^{X_{O}}$, if and only if E does not carry the weak topology".

This result relies upon the locally convex structure of E, rather than that of the φ. In [1], a simple proof using polarity arguments shows that a fundamental system of neighborhoods can be found in φ such that the associated Banach spaces are isometric to c_{0}.

We next give a further insight into the structure of Q. . To begin with we fix some notations that will remain valid all throughout the paper.

For $0<p \leq \infty$ we denote $\ell_{\mathrm{p}}^{+}=\left\{\therefore \sigma=\left(\sigma_{\mathrm{n}}\right) \in \ell_{\mathrm{p}}\right.$; $\sigma_{n}>0$ for all $\left.n \in \mathbb{Z}\right\}$ and we define the usual order $\sigma \leq n$ iff $\eta_{n} \leq K \sigma_{n}$ for all $n \in \mathbb{N}$ and for some cons tant $K>0$. With respect to this order the subset e_{p}^{+}of e_{∞}^{+}is cofinal in e_{∞}^{+}whatever $0<p<\infty$ (also any normal sequence space in ℓ_{p}^{+}is cofinal in ℓ_{p}^{+}, $0<p \leq \infty)$. For every $\sigma=\left(\sigma_{n}\right) \in \ell_{\infty}^{+}$we denote by $D_{\sigma}:\left(\xi_{n}\right) \longmapsto\left(\sigma_{n}{ }^{\xi}\right)$ the diagonal operator acting be tween appropiate sequence spaces. For every $\sigma \in \ell_{\infty}^{+}$and $0<p<\infty$ we define $E_{\sigma}^{p}=\ell_{p}$ and $E_{\sigma}=c_{0}$. If $\sigma \leq \eta$ we consider the diagonal operator $D_{\sigma^{-1} \eta}$ (with $\sigma^{-1} \eta=$ $\left.\left(\sigma_{n}^{-1} n_{n}\right)_{n \in \mathbb{N}}\right)$ defined in ℓ_{p} or in c_{o}. The families $\left[E_{\sigma}^{\mathrm{P}}, D_{\sigma}^{-1} \eta\right]_{\sigma \in \ell_{\infty}^{+}, \eta \geq \sigma} \quad$ and $\left[E_{\sigma}, D_{\sigma}^{-1} \eta\right]_{\sigma \in \ell_{\infty}^{+}, \eta \geq \cdot \sigma}$
are projective system of topological linear spaces. With obvious notations we will denote by $\underset{\sigma \in \ell_{\infty}^{+}}{\operatorname{proj}} \ell_{\mathrm{p}}$ and $\underset{\sigma \in \ell_{\infty}^{+}}{\mathrm{pr}} \mathrm{c}_{\mathrm{o}}$ the ; respective projective limits of the above projec five systems.

Theorem 1.

If ${ }^{\tau_{b}}$ is the box topology in φ we have

$$
\left[\varphi, \tau_{b}\right] \simeq \underset{\sigma \in \ell_{\infty}^{+}}{\operatorname{proj}} c_{o}
$$

and for every $0<p<\infty$

$$
\left[\varphi, \tau_{b}\right] \simeq \underset{\sigma \in \ell_{\infty}^{+}}{\operatorname{proj}} \ell_{p}
$$

Proof. Let $V=\underset{n \in \mathbb{N}}{\oplus} \sigma_{n} \mathbb{D}:\left(:=\left(\prod_{n \in \mathbb{N}} \sigma^{\mathbb{D}}\right) \cap \varphi\right)$ be an arbitral ry τ_{b}-neighborhood of 0 in p. The gauge q_{V} of V is clearly the norm

$$
q_{v}(x)=\sup _{n \in \mathbb{N}}\left|\sigma_{n}^{-1} x_{n}\right| \quad \therefore \quad \ldots \quad x=\left(x_{n}\right) \in \phi
$$

and therefore the associated Banach space $\widehat{\varphi}_{V}$ is isome trice to c_{0}. If $U=\underset{n \in \mathbb{N}}{\oplus} \eta_{n} . \mathbb{D}, 0<n_{n} \leq \sigma_{n}$ for all $n \in \mathbb{N}$, an standard extension argument yields that the linking map $T_{U V}: \widehat{\varphi}_{U} \longrightarrow{\widehat{\varphi_{V}}}$ is the diagonal operator $D_{\sigma^{-1}} \eta$ in c_{0}. Therefore
and the first part is proved. For the second one let us
recall that ℓ_{p}^{+}is cofinal in ℓ_{∞}^{+}for any $0<p<\infty$ and consequently $\underset{\sigma \in \ell_{\infty}^{+}}{\operatorname{proj}} c_{o}=\underset{\sigma \in \ell_{p}^{+}}{\operatorname{proj}} c_{0}$. But if $\sigma, \mu \in \ell^{+}{ }_{p}$, the following diagram is well defined and commutes

Therefore $\underset{\sigma \in \ell_{p}^{+}}{\operatorname{proj}} c_{o}=\underset{\sigma \in \ell_{p}^{+}}{\operatorname{proj}} \ell_{p}=\underset{\sigma \in \ell_{\infty}^{+}}{\operatorname{proj}} \ell_{p}$, the last equality being true again because ℓ_{p}^{+}is cofinal in ℓ_{∞}^{+}.

Let us consider on φ the linear topologies ${ }^{\tau} p$, $0<p \leq \infty \quad$ defined by the system of norms (p-norms if $\mathrm{p}<1$)

$$
q_{p \sigma}(x)=\left[\sum_{n=1}^{\infty}\left|\sigma_{n}^{-1} \xi_{n}\right|^{p}\right]^{1 / p} \quad x=\left(\xi_{n}\right) \epsilon \varphi
$$

if $\mathrm{p}:<\infty$ and

$$
q_{\infty \sigma}(x)=\sup _{n \in \mathbb{N}}\left|\sigma_{n}^{-1} \xi_{n}\right| \quad x=\left(\xi_{n}\right) \in \emptyset
$$

where $\sigma=\left(\sigma_{\mathrm{n}}\right)$ ranges over ℓ_{∞}^{+}.
If $V_{p o}$ is the closed unit ball of the norm or p-norm $q_{p \sigma}(0<p \leq \infty)$, it is clear that $\widehat{\varphi_{V_{p \sigma}}} \widehat{\rho}_{p}$ if $p<\infty$ and ${\widehat{\psi_{V_{\infty \sigma}}}}^{~_{~}} c_{0}$ whatever the sequence ${ }_{\sigma} \in \ell_{\infty}^{+}$. Furthermore if $V_{p \gamma} \subset V_{p \sigma}$ (i.e. if $0<\gamma_{n} \leq \sigma_{n}$ for all $n \in \mathbb{N}$), the linking map $T_{V_{p r}} V_{p \sigma}: \widehat{\hat{V}_{p r}} \longrightarrow{\widehat{\varphi_{V}}}_{V_{p \sigma}}$ is the diagonal map $D_{\left(\sigma_{n}^{-1} \gamma_{n}\right)}$ in $\ell_{p}($ if $p<\infty)$ or in c_{o} (if
$p=\infty$).

Therefore, by its very definition the topologies ${ }^{\tau} p$ have the following projective representation

$$
\begin{gathered}
{\left[\psi_{,} \tau_{p}\right]=\operatorname{proj}_{\alpha \in \ell_{\infty}^{+}}^{\ell} p \quad(0<p<\infty)} \\
{\left[\psi, \tau_{\infty}\right]=\underset{\sigma \in \ell_{\infty}^{+}}{\operatorname{proj}_{0}}}
\end{gathered}
$$

and the Theorem 1 can be reformulated as follows:

Theorem 1a.

The box topology τ_{b} in ψ is equal to any of the topologies $\tau_{p}, 0<p \leq \infty \quad$.

In the following theorem we discuss an analogous des cription of the finest locally p-convex topology $(0<p \leq 1)$ of \quad in terms of τ_{p}.

Theorem 2.

For every $0<p \leq 1$, the finest locally p-convex to pology on φ is equal to ${ }^{\tau} p$.

Proof. Let $\because \mathcal{U}$ be the basis of zero neighborhoods in ψ for the finest locally p-convex topology formed by all the sets $W=\Gamma_{p_{n \in \mathbb{N}}}\left(\bigcup_{n} \mathbb{D}\right) \quad$ where $\sigma=\left(\sigma_{n}\right)$ ranges over ℓ_{∞}^{+} (here Γ_{p} stands for "absolutely p-convex cover"). Let us denote by q_{W} the p-norm gauge of W and by B_{p} the closed unit ball of the p-norm $\left\|\|_{p}\right.$ of ℓ_{p}. For the dia gonal injection $\Phi_{\sigma^{-1}}:\left[\varphi, q_{W}\right] \rightarrow\left[\ell_{p},\| \|_{p}\right]$,
$\left(\mathrm{x}_{\mathrm{n}}\right) \longmapsto\left(\sigma_{\mathrm{n}}^{-1} \mathrm{x}_{\mathrm{n}}\right)$ we have clearly $\quad \Phi_{\sigma^{-1}}(W) \subset \mathrm{B}_{\mathrm{p}} \cap \varphi \cdot \mathrm{Con}$ versely if $n=\left(n_{n}\right) \in B_{p} \cap \varphi$, then all but finitely many η_{n} are zero and $\sum_{n}\left|n_{n}\right|^{p} \leq 1$. It follows that $\left(n_{n} \sigma_{n}\right) \in W$ because W is absolutely p-convex and furthermore $\Phi_{\sigma^{-1}}\left(\left(\eta_{n} \sigma_{n}\right)\right)=\left(\eta_{n}\right)$. Thus $\quad \Phi_{\sigma^{-1}}(W)=B_{p} \cap \varphi$ and $\Phi_{\sigma}{ }^{-1}$ is a topological isomorphism onto a dense subspace of ${ }^{\ell} \mathrm{p}$. We thus have $\left.\widehat{\psi}_{W}=\widehat{\left[\gamma, q_{W}\right.}\right] \approx_{p}$. If $V=\left\lceil_{p}\left(\bigcup_{n \in \mathbb{N}}{ }_{\eta_{n}} \mathbb{D}\right)\right.$ is another neighborhood in \downarrow with ${ }^{\eta_{n}} \leq \sigma_{n}$ for all $n \in \mathbb{N}$, then the linking map $\mathrm{T}_{\mathrm{VW}}: \widehat{\varphi}_{\mathrm{V}} \longrightarrow{\widehat{\varphi_{\mathrm{W}}}}$ is the diagonal $D_{\sigma}{ }^{-1} \eta$ on ℓ_{p} obtained extending by density the diago nal $D_{\sigma^{-1}}^{\eta}:\left[\psi, q_{V}\right] \longrightarrow\left[\varphi, q_{W}\right]$. Since $\sigma^{-1} \ell_{\infty}^{+}$it fo llows that the finest locally p-convex topology on ψ has the same projective representation as ${ }^{\tau} p$.

Remark. The theorems 1 a and 2 supply a new proof of the well known fact that on φ coincide the box topology and the finest locally convex topology ([2], 4.1.4.), and we will not distinguish them in what follows. This is not by far true for the non countable case as we will later see.

We recall that a topological linear space [E, T] is called "pseudo-convex" if there exist a basis of zeroneighborhoods (U_{α}) for τ and a family $\left(r_{\alpha}\right)$ of num bers in $(0,1]$ such that U_{α} is absolutely r_{α}-convex for every α.

Theorem 3

Let λ be a pseudo-convex topological vector space of scalar sequences, such that ${ }^{\varphi} \underset{\neq}{\lambda}$ and λ is continuou sly contained in .. ℓ_{∞}. Let us assume that λ is normal and possesses a basis $\mathbb{O L}$ of $0-$ neighborhoods satisfying the following condition.
(c) For each $u \in \mathbb{U}$ there exists $v \in \mathbb{U}$ such that if $\left|x_{n}\right| \leq\left|y_{n}\right|$ for all $n \in \mathbb{N}$ then $q_{U}\left(\left(x_{n}\right)\right) \leq q_{V}\left(\left(y_{n}\right)\right)$.

Then \downarrow is a subspace of any product λ^{J} with $\operatorname{card}(J) \geq 2^{X_{0}}$.

Proof. Take $\sigma \in \lambda$ with $\sigma_{\mathrm{n}}>0$ for all $\mathrm{n} \in \mathbb{N}$ (we exclu de the interestless spaces λ such that $\lambda^{+}=\varnothing$). The diagonal operator $D_{\sigma}: c_{0} \longrightarrow c_{0}$ is extended to a diago nal operator $D_{\sigma}: \ell_{\infty} \longrightarrow \ell_{\infty}$ and by normality of λ, $D_{\sigma}\left(\ell_{\infty}\right) \subset \lambda \quad$.

By property (c) $D_{\sigma}: \ell_{\infty} \longrightarrow \lambda$ is continuous. Indeed, for every $U \in \mathbb{O U}$ there exists $V \in \mathbb{U}$ such that

$$
q_{U}\left(D_{\sigma}\left(\left(\xi_{n}\right)\right)\right)=q_{U}\left(\left(\sigma_{n} \xi_{n}\right)\right) \leq q_{V}(\sigma)\left\|\left(\xi_{n}\right)\right\|_{\infty}
$$

and the criterion [2] Th. 6.5.4. applies. Since, by hypo thesis the canonical inclusion $\lambda<\ell_{\infty}$ is also continuous we get the following continuous factorization

Since λ is normal, λ^{+}is cofinal in ℓ_{∞}^{+}and, thus, using the Theorem 1a, we have $\varphi \underset{\sigma \in \ell_{\infty}^{+}}{\operatorname{proj}} c_{0} \subset \underset{\sigma \in \ell_{\infty}^{+}}{\operatorname{proj}} \ell_{\infty}=$ proj $\ell_{\infty}=\operatorname{proj} \lambda \subset \lambda^{J}$ where the cardinality of J is $\operatorname{pe\lambda }^{+}{ }^{\infty} \quad \sigma \in \lambda^{+}$
the cardinality of a neighborhood basis of 9 i.e. $\operatorname{card}(J) \geq 2^{X_{0}}$ because φ is not metrizable.

Applications of this result not covered by [6] are

1. $\lambda=\ell_{p}, \quad 0<p<1$
2. $\lambda=\bigcap_{0<p<1} \ell_{p}$ endowed with the projective induced topology. This space is not even p-convex for any $p<1$ but only pseudo-convex ([2] 6.10.G.)
3. $\lambda=\Lambda_{\Phi}^{\mathrm{p}}(\mathrm{P})$, $0<\mathrm{p}<1$, non locally convex power se ries sequence spaces (see [5]).
4. $\lambda=\ell_{\rho}$ Orlicz sequence spaces not locally convex $|9|$.
5. Any topological linear space containing subspaces as above, ej. $E=\mathscr{L}_{p}(X, \Omega ; \mu) \quad 0<p<1, X$ infinite.

3. Results for ${ }_{d}$

Let us consider now the space ${ }^{\varphi}{ }_{d}$ where $d=$ $\operatorname{card}(I) \geq 2^{x_{0}}$. We fix in the sequel such an index set I. We define on φ_{d} the topologies $\tau_{p}, 0<p \leq \infty$ by means of the norms (p-norms if $p<1$)

$$
q_{p \sigma}(x)=\left[\sum_{i \in I}\left|\sigma_{i}^{-1} \xi_{i}\right|^{p}\right]^{1 / p} \quad x=\left(\xi_{i}\right)_{i \in I} \in \psi_{d}
$$

if $p<\infty$ and

$$
q_{\infty \sigma}(x)=\sup _{i \in I}\left|\sigma_{i}^{-1} \xi_{i}\right| \quad x=\left(\xi_{i}\right)_{i \in I} \in \varphi_{d}
$$

where $\sigma=\left(\sigma_{i}\right)$ ranges over $\ell_{\infty}(I)^{+}$.
As in the countable case we have

$$
\begin{aligned}
& {\left[\varphi_{d^{\prime} p^{\tau}}\right]=\underset{\sigma \in \ell_{\infty}(I)^{p r o j}}{ }+\ell_{p}(I)} \\
& {\left[\varphi_{d^{\prime}}^{\tau_{\infty}}\right]=\underset{\sigma \in \ell_{\infty}(I)^{+}+c_{o}(I)}{ }}
\end{aligned}
$$

The techniques developed in Theorems 1 and 2 generali ze to the non-countable case. We thus omit the proof of the following.

Theorem 4.

Let $0<p \leq 1$ be; $\tau \quad$ is the finest locally p-convex topology on $\psi_{d} \cdot \tau_{\infty}$ is the box-topology on φ_{d}.

In contrast with the countable case we have however

Proposition 1.

If $0<\mathrm{s}^{<} \mathrm{r}<1<\mathrm{q}<\mathrm{p}<\infty$, then $\tau_{\infty} \leq \tau_{\mathrm{p}} \leq \tau_{\mathrm{q}} \leq \tau_{1} \leq \tau \mathrm{r}^{\leq \tau} \mathrm{S}$. Moreover all these topologies are different on φ_{d}.

Proof. Let $0<q<p \leq \infty$ be. From the relation

$$
q_{p \sigma}(x) \leq q_{q \sigma}(x) \quad x \in \psi_{d} \quad \sigma \in \ell_{\infty}(I)^{+}
$$

we deduce $\tau_{\mathrm{p}} \leq \tau_{\mathrm{q}}$. In order to prove that $\tau_{\mathrm{p}} \neq{ }^{\tau}{ }_{q}$ we recall the following simple fact: if $q<p$ and $\sigma \in \ell_{\infty}(I)^{+}$, then the diagonal map D_{σ} cannot carry $\ell_{p}(I)$ into $\ell_{q}(I)$ unless I be countable ($\ell_{p}(I)$ is under tood to be $c_{o}(I)$ if $p=\infty$).

Let us observe as well that the topology ${ }^{\tau}{ }_{p}$ in ϕ_{d} is the Kernel topology corresponding to the family of diag goral maps $D_{\sigma}-1: \psi_{d} \longrightarrow \ell_{p}(I), \sigma \in \ell_{\infty}^{+}(I)$. Therefore the equality $\tau_{p}={ }^{\tau}{ }_{q}$ in φ_{d} would imply, by density, the continuity of some $D_{\sigma^{-1}}: \ell_{p}(I) \longrightarrow \ell_{q}(I), \sigma \in \ell_{\infty}(I)^{+}$. But this is impossible because I is uncountable.

We study now some results concerning embedding of $\left[\psi_{\mathrm{d}}, \tau_{\mathrm{p}}\right], 0<\mathrm{p} \leq \infty$, into large products.

Proposition 2.

Let E be an infinite dimensional locally convex space. If $\left[\varphi_{d}, \tau_{p}\right]$ is a subspace of some product $E{ }^{J}$, then E has a basis of zero neighborhoods \mathscr{U} such that $\operatorname{dim}\left(\hat{E}_{U}\right) \geq d$ for every $U \in \Omega l$.

Proof. We will suposse that E is a Banach space X. Mi nor changes will provide the general case. Take a conti nuous norm q in $\left[\phi_{d^{\prime}} \tau_{p}\right]$ (for example any $q_{p_{\sigma}}$) and let U be its closed unit ball. From $\left[\varphi_{d^{\tau}}{ }_{p}\right] \subset X^{J}$ we can deter mine a neighborhood B of O in X such that

$$
V:=(B \times \cdots \cdots \cdots \cdots \times \underbrace{n \text { times }} \quad X^{J}) \cap_{\varphi_{d}} \subset U
$$

it follows that $\left(\varphi_{d}\right)$ is (algebraically) a subspace of x^{n}. Since q is norm we finally conclude

$$
\mathrm{d}=\operatorname{dim} \varphi_{\mathrm{d}}=\operatorname{dim}\left(\varphi_{\mathrm{d}}\right)_{\mathrm{V}} \leq \operatorname{dim} \mathrm{X}^{\mathrm{n}}=\operatorname{dim} \mathrm{X}
$$

In the following corollaries we deduce some facts contrasting strongly with the situation described in the theorem of [6] quoted at the begining of the Section 2 .

Corollary 1. Let J and Λ be index sets such that $\operatorname{card}(\mathrm{J}) \geq 2^{d}$. Then
a) $\left[. \psi_{d P} \tau_{p}\right], 0<p<\infty$, is a subspace of $\ell_{p}(A)^{J}$ if and only if $\operatorname{card}(A) \geq d$.
b) $\left[\varphi_{d}, \tau_{\infty}\right]$ is a subspace of $c_{o}(\Lambda)^{J}$ if and only if $\operatorname{card}(\Lambda) \geq d$.

Proposition 3. If E is a Schwartz space, then no product of E contains $\left[\varphi_{d}, \tau_{p}\right]$ whatever $0<\mathrm{p} \leq \infty \quad$.

Proof. Since E is a Schwartz space, the associated Banach spaces \widehat{E}_{U} are separable.

On the other hand,
$\left[\psi_{d}, \tau_{p}\right], 0<p \leq \infty$, is not a Schwartz space because the associated Banach spaces of $\left[\varphi_{d}, \tau_{p}\right]$ are isomorphic to the (non-separable) spaces $\ell_{p}(I)$ if $0<p<\infty$ or c_{o} (I) if $p=\infty$.

Lemma.

A diagonal operator $D_{\sigma}: \ell_{p}(I) \longrightarrow \ell_{p}(I), 0<p \leq \infty$, (if $p=\infty$ one must understand $c_{o}(I)$), $\sigma \in \ell_{\infty}(I)^{+}$, cannot be continuously factorized through $\varepsilon_{q}(I)$ if $q \neq p$.

Proof. An operator $A: \ell_{p}(I) \longrightarrow \ell_{q}(I)$ is represented by a "matrix" $\left(a_{i j}\right)(i j) \in \operatorname{IxI}$ in the following sense:

$$
\text { if } A\left(\left(x_{j}\right)\right)=\left(y_{i}\right) \quad \text { then } \quad y_{i}=\sum_{j \in I} a_{i j} x_{j}
$$

Suppose $p>q$. It is not hard to check that the ma trix of the operator A satisfies
(1) For each $j \in J$ the set of indexes $i \in I$ such that $a_{i j} \neq 0$ is countable.
(2) For all, but finitely many $i \in I$, the set of indexes $j \in I$ such that $a_{i j} \neq 0$ is countable (there is no loss of generality assuming that this condition holds for every $i \in I$).

We then claim that A has the following property:
(*) The set $I_{0}=\left\{(i, j) \in I x I ; a_{i j} \neq 0\right\}$ is countable. Should this not be the case, and assuming $a_{i j}>0$
for uncountable (is) , then there exists $\varepsilon>0$ such that for an uncountable set $M \subset I x I, a_{i j}>\varepsilon \quad$ if $(i, j) \in M$

Appealing to (1) and (2), we deduce that the indexes in M need to be scattered through uncountably many rows and columns of Ix . Pick then a countable set J \mathcal{M} such that for $a 11 \quad a, b \in J$

$$
\Pi_{1}(a)=\Pi_{1}(b) \Rightarrow a=b
$$

and

$$
\Pi_{2}(a)=\Pi_{2}(b) \Rightarrow a=b
$$

(here Π_{1} and Π_{2} are the respective projections of $I \times I$ into I) .

Choose next a $z=\left(z_{j}\right) \epsilon_{\ell_{p}}(I) \ell_{\ell_{q}}(I)$ with $z_{j}>0$ iff $j \in \Pi_{2}(J) \cdots$ If $A z=y$, then for each pair (icj) $\in J$ we have

$$
y_{i}=\sum_{k} a_{i k} z_{k}>\varepsilon z_{j}
$$

and thus

$$
\begin{gathered}
\sum_{i \in I}\left|Y_{i}\right|^{q} \geq \sum_{i \in \pi_{1}(J)}\left|y_{i}\right|^{q}>\varepsilon^{q} \sum_{j \in \pi_{2}(J)}\left|z_{j}\right|^{q}= \\
=\varepsilon^{q} \sum_{i \in I}\left|z_{j}\right|^{q}=+\infty
\end{gathered}
$$

This contradiction proves (*).

Suppose now D_{σ} factorizes as $D_{\sigma}=B^{\bullet} A$ with $A: \ell_{p}(I) \longrightarrow \ell_{q}(I)$ and $B: \ell_{q}(I) \longrightarrow \ell_{p}(I)$. By (*) we can choose $j \in I \backslash \Pi_{2}\left(I_{0}\right)$ and define $x^{(j)} \in \ell_{p}(I)$ as $x_{k}^{(j)}=\delta_{k j}, k \in I$. We then have $D_{\sigma}\left(x^{(j)}\right) \neq O$ (note its j-th component is $\sigma_{j} \neq 0$) but if $y=A\left(x^{(j)}\right)$ then $y_{i}=\sum_{k \in I} a_{i k} x_{k}^{(j)}=a_{i j}=0$ for all $i \in I$ because $j \notin \pi_{2}\left(I_{0}\right)$. Therefore $A\left(x^{(j)}\right)=0$ which is impossible. That proves our Lemma in the case $p>q$. If $p<q$ we then observe that B has also the corresponding property (*) and therefore $B\left(\ell_{q}(I)\right) \subset \ell_{p}(\mathbb{N})(\mathbb{N}$ denotes here, of course, a countable subset of I) . But we get again a contradiction because the image of D_{σ} cannot lay on $\ell_{\mathrm{p}}(\mathbb{N})$

Remark. Let us note that if $p>q$ in the previous Lemma, $D_{\sigma} \quad$ cannot be even "subfactorized" through $\ell_{q}(I)$ in the sense that there is no subspace $Z \subset \ell_{q}(I)$ and opera tor $B \in \mathscr{L}\left(Z, \ell_{p}(I)\right)$ such that $A\left(\ell_{p}(I)\right) \subset Z$ and $D_{\sigma}=B \cdot A$

It is also worth noticing the remarkable contrast between this Lemma and the factorization argument used in the proof of the Theorem 1 for the countable case.

Theorem 5.

Let $d \geq 2^{X_{0}}$ and $0<q<p \leq \infty$ be. Then $\left[\psi_{d}, \tau_{p}\right]$ is not a subspace of any product $\ell_{q}(I)^{J}$.

Proof. Let us first note that any product $\left(\ell_{\mathrm{q}}(\mathrm{I})\right)^{\mathrm{J}}$ has
a basis $Q($ of zero-neginborhoods such that for $U \in \mathcal{U}$ the associated q-Banach space ${\widehat{\left(\ell_{q}(I)^{J}\right)}}_{U}$ is topologically isomorphic to $\ell_{q}(I)$. If $\left[\ell_{d}, \tau_{p}\right]$ were a subspace of $\ell_{q}(I)^{J}$, then, recalling the projective representation of ${ }^{\tau} p$ at the begining of this Section, we would obtain a factorization of diagonal operators $D_{\sigma}: \ell_{p}(I) \longrightarrow \ell_{p}(I)$ $\sigma \in \ell_{\infty}(I)^{+}$through subspaces $\widehat{\left.\varphi_{d}\right) \cup \cap \varphi_{d}}$ of $\ell_{q}(I)$, $u \in \Omega$. Such a subfactorization of D_{σ} through $\ell_{q}(I)$ is not possible according to the previous Lemma and its subsequent remark.

As a complement of the Theorem 5, we will next prove that its validity can be extended to the following more trivial setting:

If $0<\mathrm{p}<\mathrm{q}<1$ (nesp. $0<\mathrm{p}<1 \leq \mathrm{q} \leq \infty$) then $\left[\varphi_{d}, \tau_{p}\right]$ cannot be a subspace of $\ell_{q}(I)^{J}$. Otherwise, by [2] 6.6.3., ${ }^{\tau} p$ would be a locally q-convex topology (resp. a locally convex topology). This, in turn, implies, by the Theorem 4, that ${ }^{\tau}{ }_{p}={ }^{\tau}{ }_{q}\left(\right.$ resp. $\tau_{p}=\tau_{1}$) contra dicting the Proposition 1.

Conjecture: We feel strongly toward the following refine ment of the present paper:

Theorem 5 should be true for all $p \neq q$. This would follow from the preceding Lemma as far as this Lemma could be proved for subfactorizations even when $\mathrm{p}<\mathrm{q}$.

REFERENCES

[1] J.M. García-Lafuente. A note on spaces containing c_{0}, Math. Japonica 33, 1, (1988).
[2] H. Jarchow. Locally Convex Spaces, B.G. Teubner Stuttgart. 1981.
[3] G. Köthe. Topological Vector Spaces I, Springer Berlin 1969.
[4] J. Lindenstrauss; L. Tzafriri. Classical Banach Spaces I. Springer 1977.
[5] J. Prada Blanco. Local Convexity in sequences spaces. Math. Nachr 98(1980) 21-26.
[6] S. Saxon. Nuclear and Product spaces, Baire-like spaces and the strongest locally convex topology. Math. Ann. 197(197?), 87-196.
[7] S.A. Saxon. Embedding nuclear spaces in products of an arbitrary Banach space. Proc. Amer. Math. Soc. 34(1972) 138-140.
[8] M. Valdivia. Nuclearity and Banach spaces. Proc. Edimburgh Math. Soc. 20, 3(1976-77) 205-209.
[9] L. Waelbroeck. Summer School on topological vector spa ces. Lecture Notes in Mathematics 331. Springer Berlin (1973).

