Projective descriptions and embedding theorems for ψ_d

Jesús M.F. Castillo J.M. García-Lafuente

Departamento de Matemáticas Universidad de Extremadura Avda de Elvas s/n. 06071 Badajoz SPAIN

ABSTRACT. We give projective representations of ψ which lead to obtain embedding theorems into products of some non locally convex spaces. We introduce infinitely many different topologies on ψ_d , intermediate between the box and the inductive topology. We give projective representations for ψ_d carrying those topologies and show that, contrarily to what happens for ψ , the results for embedding ψ_d into product spaces are strongly negative.

AMS (1980) Class: primary: 46A05, 46A45

secondary: 46M40, 46A12

Introduction.

It is known that a countable dimensional linear space ϕ endowed with the strongest locally convex topology is always a subspace of an I-fold product E^I whenever card(I) $\geq 2^{X_0}$ and E does not carry its Weak topology. This result first proved in [6] by \$. Saxon does not extend to non-countable dimensional spaces ϕ_d (d $> \chi_o$) and the investigation of embedding theorems for ϕ_d into products lead in a natural way to look into the projective representation of several locally convex and non locally convex topologies in ψ_d .

In the first part of the present paper we are concerned with the projective structure of $~\psi~$ and we show that all kernel topologies induced by diagonal operators on $~\ell_{\rm p}$ 0 ~\omega~ do coincide on $~\psi~$. As a consequence we extend Saxon's theorem to many non-locally convex spaces, such as $~\ell_{\rm p}~$ 0 < p < 1 , Orlicz spaces, etc.

The second part aims to describe in what extent the above results remain valid for ψ_d when d is uncountable. We show that the kernel topologies τ_p induced by diagonal operators on $\ell_p(I)$ (card (I) = d , 0) are all different for different <math display="inline">p and we obtain an explicit projective representation of them. This family of kernel topologies τ_p carry a natural order depending on p and it include the box topology and the finest locally p-convex topology if 0 .

Concerning embedding properties of $[\varphi_d, \zeta_p]$ into product spaces, we prove that they depend closely on p and d; roughly speaking, we show that $[\varphi_d, \zeta_p]$ is a subspace of a large product of $l_q(I)$ if and only if p=q and card I > d.

We would like finally to point out that the calculus of the associated Banach spaces of ψ would also follows from its nuclearity and |7,8|, but those proofs do not provide the form of te linking maps (and are quite harder). On the other hand, they cannot apply to ψ_d , since this space is not nuclear with any of the topologies ζ_p (Prop. 3) – when p=1 this is in [2, 10.4.2], and a similar argument serves for $p=\omega$ –.

1. Notations and Terminology

For the general terminology on topological vector spaces we refer throughout to [2] and [3].

IK denotes the real or complex scalar field an $\mathbb D$ the closed unit disk in $\mathbb K$. As usual, for any locally p-convex space over $\mathbb K$, $0 (1-convex = convex) and any absolutely p-convex neighborhood <math>\mathbb U$ of $\mathbb O$ in $\mathbb E$, we denote by $\mathbb E_{\mathbb U}$ the quotient space of $\mathbb E$ modulus the largest subspace contained in $\mathbb U$. If $\Phi_{\mathbb U}$ is the quotient map then $\mathbb E_{\mathbb U}$ is always considered topologized with the p-norm $\|\Phi_{\mathbb U} \mathbf x\|_{\mathbb U} = q_{\mathbb U}(\mathbf x)$ ($q_{\mathbb U}$ = gauge of $\mathbb U$). $\widehat{\mathbb E}_{\mathbb U}$ is the p-Banach space completion of $\mathbb E_{\mathbb U}$. If $\mathbb V \subset \mathbb U$, $\mathbb T_{\mathbb V \mathbb U}$: $\widehat{\mathbb E}_{\mathbb V} \longrightarrow \widehat{\mathbb E}_{\mathbb U}$ is the extension to the completions of the canonical linking map $\Phi_{\mathbb V}(\mathbf x) \longmapsto \Phi_{\mathbb U}(\mathbf x)$, $\mathbf x \in \mathbb E$.

If I is a set of cardinality d , then ψ_{d} is the space direct sum $\begin{picture}(60,0)\put(0,0){\line(0,0){100}}\put(0,0){\$

The so-called box topology on \P_d has a system of 0-neighborhoods formed by the sets $\bigoplus_I D_i$, where D_i are 0-neighborhoods in $\mathbb K$. It is also well know that for $0 the finest locally p-convex topology on <math>\P_d$ is given as an inductive topology (namely the finest locally p-convex topology making continuous all the inclusions $\mathbb K \hookrightarrow \bigoplus_I \mathbb K$).

2. Results for ♥

In [6], Saxon proved the following result: "Let E be a locally convex space. Then ψ is a subspace of any product E^I , card(I) \geq 2 , if and only if E does not carry the weak topology".

This result relies upon the locally convex structure of E , rather than that of the \emptyset . In [1], a simple proof using polarity arguments shows that a fundamental system of neighborhoods can be found in \emptyset such that the associated Banach spaces are isometric to \mathbf{c}_0 .

We next give a further insight into the structure of

. To begin with we fix some notations that will remain
valid all throughout the paper.

For $0 we denote <math>\ell_p^+ = \{ \sigma = (\sigma_n) \in \ell_p ; \sigma_n > 0 \text{ for all } n \in \mathbb{N} \}$ and we define the usual order $\sigma \le \eta$ iff $\eta_n \le K\sigma_n$ for all $n \in \mathbb{N}$ and for some constant K > 0. With respect to this order the subset ℓ_p^+ of ℓ_∞^+ is cofinal in ℓ_∞^+ whatever $0 (also any normal sequence space in <math>\ell_p^+$ is cofinal in ℓ_p^+ , $0). For every <math>\sigma = (\sigma_n) \in \ell_\infty^+$ we denote by $D_\sigma: (\xi_n) \longmapsto (\sigma_n \xi_n)$ the diagonal operator acting between appropriate sequence spaces. For every $\sigma \in \ell_\infty^+$ and $0 we define <math>E_\sigma^p = \ell_p$ and $E_\sigma = c_o$. If $\sigma \le \eta$ we consider the diagonal operator $D_{\sigma^1 \eta}$ (with $\sigma^{-1} \eta = (\sigma_n^{-1} \eta_n)_{n \in \mathbb{N}}$) defined in ℓ_p or in c_o . The families $[E_\sigma^p, D_{\sigma^{-1} \eta}]_{\sigma \in \ell_\infty^+}$, $\eta \ge \sigma$ and $[E_\sigma, D_{\sigma^{-1} \eta}]_{\sigma \in \ell_\infty^+}$, $\eta \ge \sigma$

are projective system of topological linear spaces. With obvious notations we will denote by $proj\ \ell$ and $proj\ c$ $\sigma \in \ell_+^+$ the respective projective limits of the above projec tive systems.

Theorem 1.

If τ_b is the box topology in ϕ we have

$$[\psi, \tau_b] \simeq \text{proj } c_0$$
 $\sigma \in L_{\infty}^+$

and for every 0

$$[\psi, \tau_b] \simeq \underset{\sigma \in \ell_+}{\text{proj}} \ell_p$$

Proof. Let $V=\bigoplus_{n\in\mathbb{N}}\sigma_n\mathbb{D}$ (: = ($\prod_{n\in\mathbb{N}}\sigma_n\mathbb{D}$) \cap ψ) be an arbitrant v of v is clearly the norm

$$q_{\tilde{V}}(x) = \sup_{n \in \mathbb{N}} |\sigma_n^{-1} x_n| \qquad x = (x_n) \in \Psi$$

$$[\psi, \tau_b] = \underset{V}{\text{proj}} \widehat{\phi}_{V} \simeq \underset{\sigma \in \ell^{+}}{\text{proj}} c_{o}$$

and the first part is proved. For the second one let us

recall that ℓ_p^+ is cofinal in ℓ_∞^+ for any $0 and consequently <math>proj c_0 = proj c_0$. But if σ , $\mu \in \ell_p^+$, the following diagram is well defined and commutes

Therefore $proj c_0 = proj l_p = proj l_p$, the last equality $\sigma \epsilon l_p^+ = \sigma \epsilon l_p^+ = \sigma \epsilon l_p^+ = \sigma \epsilon l_p^+$ being true again because l_p^+ is cofinal in l_p^+ .

Let us consider on \emptyset the linear topologies $\tau_{\,p}$, 0

$$q_{p\sigma}(x) = \left[\sum_{n=1}^{\infty} |\sigma_n^{-1}\xi_n|^p\right]^{1/p} \qquad x = (\xi_n) \in \phi$$

if $p < \infty$ and

$$q_{\infty\sigma}(x) = \sup_{n \in \mathbb{N}} |\sigma_n^{-1} \xi_n| \qquad x = (\xi_n) \epsilon \psi$$

where $\sigma = (\sigma_n)$ ranges over ℓ_{∞}^+ .

If $V_{p\sigma}$ is the closed unit ball of the norm or p-norm $q_{p\sigma}$ (0 \infty), it is clear that $\widehat{\psi}_{V_{p\sigma}} \circ \ell_p$ if $p < \infty$ and $\widehat{\psi}_{V_{\infty\sigma}} \circ c_o$ whatever the sequence $\sigma \in \ell_{\infty}^+$. Furthermore if $V_{p\gamma} \subset V_{p\sigma}$ (i.e. if $0 < \gamma_n \le \sigma_n$ for all $n \in \mathbb{N}$), the linking map $T_{V_{p\gamma}V_{p\sigma}} : \widehat{\psi}_{V_{p\gamma}} \longrightarrow \widehat{\psi}_{V_{p\sigma}}$ is the diagonal map $D_{(\sigma_n^{-1}\gamma_n)}$ in ℓ_p (if $p < \infty$) or in c_o (if

$$p = \infty$$
).

Therefore, by its very definition the topologies $\tau_{\rm p}$ have the following projective representation.

$$[\psi,\tau_{p}] = \underset{\sigma \in \mathcal{L}_{\infty}^{+}}{\operatorname{proj}} \ell_{p} \qquad (0$$

$$[\psi, \tau_{\omega}] = \underset{\sigma \in \mathcal{L}_{\omega}^{+}}{\operatorname{proj}} c_{o}$$

and the Theorem 1 can be reformulated as follows:

Theorem 1a.

The box topology $\tau_{\, b}^{}$ in $\, \Psi \,$ is equal to any of the topologies $\, \tau_{\, p}^{}$, $0 \le p \le \, \infty \,$.

In the following theorem we discuss an analogous description of the finest locally p-convex topology (0

Theorem 2.

For every $0 , the finest locally p-convex to pology on <math display="inline">\, \, \psi \,$ is equal to $\, \tau_{\, D} \,$.

Proof. Let ${\mathfrak N}$ be the basis of zero neighborhoods in ${\mathfrak p}$ for the finest locally p-convex topology formed by all the sets ${\mathbb W} = \prod_{{\mathfrak p} \in {\mathbb N}} (\bigcup_{{\mathfrak p} \in {\mathbb N}} \sigma_{{\mathfrak p}} {\mathbb D})$ where $\sigma = (\sigma_{{\mathfrak p}})$ ranges over ${\mathfrak k}^+_{\infty}$ (here $\prod_{{\mathfrak p}}$ stands for "absolutely p-convex cover"). Let us denote by $q_{\mathbb W}$ the p-norm gauge of ${\mathbb W}$ and by ${\mathbb B}_{{\mathfrak p}}$ the closed unit ball of the p-norm $\| \cdot \|_{{\mathfrak p}}$ of ${\mathfrak k}_{{\mathfrak p}}$. For the diagonal injection ${\mathfrak p}_{{\mathfrak p}^{-1}}: [{\mathfrak p}, q_{\mathbb W}] \longrightarrow [{\mathfrak k}_{{\mathfrak p}}, \| \cdot \|_{{\mathfrak p}}]$,

 $(x_n) \longmapsto (\sigma_n^{-1}x_n) \quad \text{we have clearly} \quad \Phi_{\sigma^{-1}}(W) \subset B_p \cap \Phi \;. \; \text{Conversely if} \quad n = (\eta_n) \in B_p \cap \Phi \;, \; \text{then all but finitely many} \quad \eta_n \quad \text{are zero and} \quad \sum_n |\eta_n|^p \leq 1 \;. \; \text{It follows that} \quad (\eta_n \sigma_n) \in W \; \text{because} \quad W \quad \text{is absolutely p-convex and furthermore} \quad \Phi_{\sigma^{-1}}((\eta_n \sigma_n)) = (\eta_n) \;. \; \text{Thus} \quad \Phi_{\sigma^{-1}}(W) = B_p \cap \Phi \; \text{and} \; \Phi_{\sigma^{-1}} \; \text{is a topological isomorphism onto a dense subspace of} \; \ell_p \;. \; \text{We thus have} \quad \widehat{\Psi}_W = \left[\widehat{\psi}, q_W\right] \approx \ell_p \;. \; \text{If} \; V = \left[\widehat{\psi}, q_V\right] \quad \text{is another neighborhood in} \; \Phi \; \text{with} \; \eta_n \leq \sigma_n \; \text{for all} \; n \in \mathbb{N} \;, \; \text{then the linking map} \; T_{VW} : \; \widehat{\Psi}_V \; \longrightarrow \; \widehat{\psi}_W \; \text{is the diagonal} \; D_{\sigma^{-1}\eta} \quad \text{on} \; \; \ell_p \; \text{obtained extending by density the diagonal} \; D_{\sigma^{-1}\eta} \; \text{on} \; \ell_p \; \text{obtained extending by density the diagonal} \; D_{\sigma^{-1}\eta} : \; \left[\psi, \; q_V\right] \; \longrightarrow \; \left[\psi, \; q_W\right] \;. \; \text{Since} \; \sigma^{-1}\eta \in \ell^+_{\sigma} \; \text{it follows that the finest locally p-convex topology on} \; \Phi \; \text{ has the same projective representation as} \; \tau_n \;. \;$

Remark. The Theorems 1a and 2 supply a new proof of the well known fact that on \$\phi\$ coincide the box topology and the finest locally convex topology ([2], 4.1.4.), and we will not distinguish them in what follows. This is not by far true for the non countable case as we will later see.

We recall that a topological linear space [E , τ] is called "pseudo-convex" if there exist a basis of zero-neighborhoods (U $_{\alpha}$) for τ and a family (r $_{\alpha}$) of numbers in (0,1] such that U $_{\alpha}$ is absolutely r $_{\alpha}$ -convex for every α .

Theorem 3

Let λ be a pseudo-convex topological vector space of scalar sequences, such that $\psi_{\xi}\lambda$ and λ is continuously contained in ℓ_{∞} . Let us assume that λ is normal and possesses a basis $\mathcal M$ of 0-neighborhoods satisfying the following condition.

(c) For each $U \in \mathcal{U}$ there exists $V \in \mathcal{U}$ such that if $|x_n| \le |y_n|$ for all $n \in \mathbb{N}$ then $q_U((x_n)) \le q_V((y_n))$.

Then ψ is a subspace of any product λ^J with card (J) ≥ 2 .

Proof. Take $\sigma \in \lambda$ with $\sigma_n > 0$ for all $n \in \mathbb{N}$ (we exclude the interestless spaces λ such that $\lambda^+ = \emptyset$). The diagonal operator $D_{\sigma}: c_{0} \longrightarrow c_{0}$ is extended to a diagonal operator $D_{\sigma}: l_{\infty} \longrightarrow l_{\infty}$ and by normality of λ , $D_{\sigma}(l_{\infty}) \subset \lambda$.

By property (c) $D_\sigma: \ell_\infty \longrightarrow \lambda$ is continuous. Indeed, for every $U \in \mathcal{U}$ there exists $V \in \mathcal{U}$ such that

$$q_{\mathbf{U}}(\mathsf{D}_{\sigma}((\xi_{n}))) = q_{\mathbf{U}}((\sigma_{n}\xi_{n})) \leq q_{\mathbf{V}}(\sigma) \| (\xi_{n}) \|_{\infty}$$

and the criterion [2] Th. 6.5.4. applies. Since, by hypothesis the canonical inclusion $\lambda \hookrightarrow \ell_{\infty}$ is also continuous we get the following continuous factorization

Since λ is normal, λ^+ is cofinal in ℓ_∞^+ and, thus, using the Theorem 1a, we have $\psi \simeq \operatorname{proj} c_0 \subset \operatorname{proj} \ell_\infty = \sigma \in \ell_\infty^+$ or $\sigma \in \ell_\infty^+$ where the cardinality of J is $\sigma \in \lambda^+$ the cardinality of a neighborhood basis of ψ , i.e. $\operatorname{card}(J) \geq 2$ because ψ is not metrizable.

Applications of this result not covered by [6] are

- 1. $\lambda = \ell_p$, $0 \le p \le 1$
- 2. $\lambda = \bigcap_{0 endowed with the projective induced topology. This space is not even p-convex for any p<1 but only pseudo-convex ([2] 6.10.G.)$
- 3. $\lambda = \Lambda_{\phi}^{p}(P)$, 0< p < 1 , non locally convex power series sequence spaces (see [5]).
- 4. $\lambda = \frac{1}{\rho}$ Orlicz sequence spaces not locally convex |9|.
- 5. Any topological linear space containing subspaces as above, ej. E = $\mathcal{L}_p(X,\Omega,\mu)$ 0 < p < 1 , X infinite.

3. Results for θ_d

Let us consider now the space ϕ_d where $d=card(I)\geq 2$. We fix in the sequel such an index set I. We define on ϕ_d the topologies τ_p , 0 by means of the norms (p-norms if <math>p < 1)

$$q_{p\sigma}(x) = \left[\sum_{i \in T} |\sigma_i^{-1} \xi_i|^p\right]^{1/p} \qquad x = (\xi_i)_{i \in I} \in \emptyset_d$$

if p < ∞ and

$$q_{\infty\sigma}(x) = \sup_{i \in I} |\sigma_i^{-1} \xi_i| \qquad x = (\xi_i)_{i \in I} \in \psi_d$$

where $\sigma = (\sigma_{i})$ ranges over $\ell_{\infty}(I)^{+}$.

As in the countable case we have

$$[\psi_{\mathbf{d}'}^{\mathbf{r}}_{\mathbf{p}}] = \underset{\sigma \in \mathcal{L}_{\infty}(\mathbf{I})^{+}}{\operatorname{proj}} \psi_{\mathbf{p}}^{\mathbf{I}}$$

$$[\psi_{d}, \tau_{\infty}] = \underset{\sigma \in k_{\infty}(I)^{+}}{\operatorname{proj}} c_{o}(I)$$

The techniques developed in Theorems 1 and 2 general $\underline{\underline{i}}$ ze to the non-countable case. We thus omit the proof of the following.

Theorem 4.

Let $0 be; <math>\tau_p$ is the finest locally p-convex topology on ψ_d . τ_∞ is the box-topology on ψ_d .

In contrast with the countable case we have however

Proposition 1.

If 0< s< r< 1< q< p< $_{\infty}$, then $\tau_{\infty} \leq \tau_{p} \leq \tau_{q} \leq \tau_{1} \leq \tau_{s} \leq \tau_{s}$. Moreover all these topologies are different on ψ_{d} .

Proof. Let $0 < q < p \le \infty$ be. From the relation

$$q_{p\sigma}(x) \le q_{q\sigma}(x)$$
 $x \in \phi_d$ $\sigma \in \ell_{\infty}(I)^+$

we deduce $\tau_p \leq \tau_q$. In order to prove that $\tau_p \neq \tau_q$ we recall the following simple fact: if q < p and $\sigma \in \ell_\infty(I)^+$, then the diagonal map D_σ cannot carry $\ell_p(I)$ into $\ell_q(I)$ unless I be countable $(\ell_p(I))$ is understood to be $c_0(I)$ if $p = \infty$).

Let us observe as well that the topology τ_p in \emptyset_d is the Kernel topology corresponding to the family of diagonal maps $D_{\sigma^{-1}}: \emptyset_d \longrightarrow {}^{\ell}_p(I)$, $\sigma \in {}^{\ell}_{\infty}(I)$. Therefore the equality $\tau_p = \tau_q$ in \emptyset_d would imply, by density, the continuity of some $D_{\sigma^{-1}}: {}^{\ell}_p(I) \longrightarrow {}^{\ell}_q(I)$, $\sigma \in {}^{\ell}_{\infty}(I)^+$. But this is impossible because I is uncountable.

We study now some results concerning embedding of $[\;\psi_d\;,\;\tau_p\;]\;,\;0$

Proposition 2.

Let E be an infinite dimensional locally convex space. If $[\phi_d, \tau_p]$ is a subspace of some product E^J , then E has a basis of zero neighborhoods $\mathcal U$ such that $\dim (\hat{\Xi}_U) \geq d$ for every $U \in \mathcal U$.

Proof. We will suposse that E is a Banach space X . Minor changes will provide the general case. Take a continuous norm q in $[\phi_{\mathbf{d}^{,\tau}p}]$ (for example any $\mathbf{q}_{p\sigma}$) and let U be its closed unit ball. From $[\phi_{\mathbf{d}^{,\tau}p}] \subset X^J$ we can determine a neighborhood B of O in X such that

$$V := (B \times \dots \times B \times X^{J}) \cap \phi_{d} \subset U$$

it follows that $\left(\phi_d\right)_V$ is (algebraically) a subspace of x^n . Since q is norm we finally conclude

$$d = \dim \psi_d = \dim (\psi_d)_V \leq \dim X^n = \dim X$$

In the following corollaries we deduce some facts contrasting strongly with the situation described in the theorem of [6] quoted at the begining of the Section 2.

Corollary 1. Let J and Λ be index sets such that $\operatorname{card}(J) \geq 2^d$. Then

- a) $[\psi_{d^{j,\tau_p}}]$, $0 , is a subspace of <math>\ell_p(\Lambda)^J$ if and only if $card(\Lambda) \ge d$.
- b) $[\psi_{\bar{d}}, \tau_{\infty}]$ is a subspace of $c_0(\Lambda)^J$ if and only if $card(\Lambda) > d$.

Proposition 3. If E is a Schwartz space, then no product of E contains $[\psi_d, \tau_p]$ whatever 0 .

Proof. Since E is a Schwartz space, the associated Banach spaces \widehat{E}_{ij} are separable.

On the other hand,

 $\left[\psi_{\rm d}\ ,\,\tau_{\rm p}\right]\ ,\,0<{\rm p}\le \infty\quad ,\,\,{\rm is}\quad {\rm not}\quad a\ {\rm Schwartz\ space}$ because the associated Banach spaces of $\left[\psi_{\rm d}\ ,\,\tau_{\rm p}\right]\quad {\rm are\ isomorphic\ to\ the\ (non-separable)\ spaces}$ $\ell_{\rm p}({\rm I})\quad {\rm if}\quad 0<{\rm p}<\infty\quad {\rm or\ c_{\rm o}(I)\ if\ p=\infty}\ .$

Lemma.

A diagonal operator $D_{\sigma}: \ell_p(I) \longrightarrow \ell_p(I), \ 0 (if <math>p = \infty$ one must understand $c_0(I)$), $\sigma \in \ell_{\infty}(I)^+$, cannot be continuously factorized through $\ell_q(I)$ if $q \ne p$.

Proof. An operator $A: \ell_p(I) \longrightarrow \ell_q(I)$ is represented by a "matrix" $(a_{ij})_{(ij) \in IxI}$ in the following sense:

if
$$A((x_j)) = (y_i)$$
 then $y_i = \sum_{j \in I} a_{ij}x_j$

Suppose p > q . It is not hard to check that the matrix of the operator A satisfies

- (1) For each $j \in J$ the set of indexes $i \in I$ such that $a_{i,j} \neq 0$ is countable.
- (2) For all, but finitely many $i \in I$, the set of indexes $j \in I$ such that $a_{ij} \neq 0$ is countable (there is no loss of generality assuming that this condition holds for every $i \in I$).

We then claim that A has the following property:

(*) The set $I_0=\{(i,j)\in IxI \; ; \; a_{i,j}\neq 0\}$ is countable. Should this not be the case, and assuming $a_{i,j}>0$

for uncountable (i,j) , then there exists $\epsilon>0$ such that for an uncountable set M c IxI , $a_{i,j}>\epsilon$ if (i,j) ϵ M

Appealing to (1) and (2), we deduce that the indexes in M need to be scattered through uncountably many rows and columns of IxI. Pick then a countable set $J \subset M$ such that for all a, b $\in J$

$$\pi_1(a) = \pi_1(b) \implies a = b$$

and

$$\pi_2(a) = \pi_2(b) \implies a = b$$

(here π_1 and π_2 are the respective projections of I×I into I).

Choose next a $z=(z_j)\in l_p(I)\backslash l_q(I)$ with $z_j>0$ iff $j\in I_2(J)$. If Az=y, then for each pair $(i,j)\in J$ we have

$$y_i = \sum_{k} a_{ik} z_k > \epsilon z_j$$

and thus

$$\sum_{i \in I} |y_i|^q \ge \sum_{i \in \pi_1(J)} |y_i|^q > \varepsilon^q \sum_{j \in \pi_2(J)} |z_j|^q =$$

$$= \varepsilon^q \sum_{i \in I} |z_j|^q = + \infty$$

This contradiction proves (*).

Suppose now D_{σ} factorizes as $D_{\sigma} = B \cdot A$ with $A: \ell_p(I) \longrightarrow \ell_q(I)$ and $B: \ell_q(I) \longrightarrow \ell_p(I)$. By (*) we can choose $j \in I \setminus I_2(I_{\sigma})$ and define $x^{(j)} \in \ell_p(I)$ as $x_k^{(j)} = \ell_{k,j}$, $k \in I$. We then have $D_{\sigma}(x^{(j)}) \neq 0$ (note its j-th component is $\sigma_j \neq 0$) but if $y = A(x^{(j)})$ then $y_i = \sum_{k \in I} a_{ik} x_k^{(j)} = a_{ij} = 0$ for all $i \in I$ because $j \notin I_2(I_{\sigma})$. Therefore $A(x^{(j)}) = 0$ which is impossible. That proves our Lemma in the case p > q. If p < q we then observe that B has also the corresponding property (*) and therefore $B(\ell_q(I)) \subset \ell_p(IN)$ (IN denotes here, of course, a countable subset of I). But we get again a contradiction because the image of D_{σ} cannot lay on $\ell_p(IN)$

Remark. Let us note that if p>q in the previous Lemma, D_{σ} cannot be even "subfactorized" through $\ell_q(I)$ in the sense that there is no subspace $Z c \ell_q(I)$ and operator $B \in \mathcal{L}(Z, \ell_p(I))$ such that $A(\ell_p(I)) c Z$ and $D_{\sigma} = B \cdot A$

It is also worth noticing the remarkable contrast between this Lemma and the factorization argument used in the proof of the Theorem 1 for the countable case.

Theorem 5.

Let $d\ge 2$ and $0< q< p\le \infty$ be. Then $\left[\psi_d^{}$, $\tau_p^{}\right]$ is not a subspace of any product $\,\ell_q^{}(I)^J$.

Proof. Let us first note that any product $(l_q(I))^J$ has

a basis $\mathcal M$ of zero-negihborhoods such that for $U\in\mathcal M$ the associated q-Banach space $(\widehat{\imath_q(I)^J})_U$ is topologically isomorphic to $\imath_q(I)$. If $[\emptyset_d, \tau_p]$ were a subspace of $\imath_q(I)^J$, then, recalling the projective representation of τ_p at the begining of this Section, we would obtain a factorization of diagonal operators $D_\sigma: \imath_p(I) \longrightarrow \imath_p(I)$ of $\varepsilon \imath_{\infty}(I)^+$ through subspaces $(\widehat{\psi_d})_{U\cap\psi_d}$ of $\imath_q(I)$, $U \in \mathcal M$. Such a subfactorization of D_σ through $\imath_q(I)$ is not possible according to the previous Lemma and its subsequent remark.

As a complement of the Theorem 5, we will next prove that its validity can be extended to the following more trivial setting:

If $0 (resp. <math>0) then <math>\left[\psi_{d}, \tau_{p}\right]$ cannot be a subspace of $\ell_{q}(I)^{J}$. Otherwise, by [2] 6.6.3., τ_{p} would be a locally q-convex topology (resp. a locally convex topology). This, in turn, implies, by the Theorem 4, that $\tau_{p} = \tau_{q}$ (resp. $\tau_{p} = \tau_{1}$) contradicting the Proposition 1.

Conjecture: We feel strongly toward the following refinement of the present paper:

Theorem 5 should be true for all $p \neq q$. This would follow from the preceding Lemma as far as this Lemma could be proved for subfactorizations even when p < q .

REFERENCES

- [1] J.M. García-Lafuente. A note on spaces containing c_0 , Math. Japonica 33, 1, (1988).
- [2] H. Jarchow. Locally Convex Spaces, B.G. Teubner Stuttgart. 1981.
- [3] G. Köthe. Topological Vector Spaces I, Springer Berlin 1969.
- [4] J. Lindenstrauss; L. Tzafriri. Classical Banach Spaces I. Springer 1977.
- [5] J. Prada Blanco. Local Convexity in sequences spaces. Math. Nachr 98(1980) 21-26.
- [6] S. Saxon. Nuclear and Product spaces, Baire-like spaces and the strongest locally convex topology. Math. Ann. 197(1972), 87-196.
- [7] S.A. Saxon. Embedding nuclear spaces in products of an arbitrary Banach space. Proc. Amer. Math. Soc. 34(1972) 138-140.
- [8] M. Valdivia. Nuclearity and Banach spaces. Proc. Edimburgh Math. Soc. 20, 3(1976-77) 205-209.
- [9] L. Waelbroeck. Summer School on topological vector spaces. Lecture Notes in Mathematics 331. Springer Berlin (1973).