ON THE THREE SPACE PROBLEM FOR COUNTABLE BARRELLEDNESS J.N. GARCIA LAFUEHTE IOLANDA MELENDEZ UNIVERSIDAD DE EXTREMADURA

ABSTRACT:

Let F be a closed subspace of a Hausdorff locally convex space E such that F and the Hausdorff quotient E/F en joy a property (M). Does the whole space E enjoy (M)?.

This problem is called "the three-space-problem" and it is a common problem in the framework of twisted exact se quences (see [3]). It is been already considered by several authors, e.g. [PB], [4].

In the present paper we shall provide a negative answer to the problem for \mathbb{P} -quasi-barrelledness, $\mathbb{P} \in \mathcal{X}_0, \mathbb{I}_{\infty}, \mathbb{C}_{\infty}, \mathbb{C}_0$ and for df spaces. We shall also supply a thoroughly positive answer for \mathbb{I}_{∞} -barrelledness and a partial affirmative answer for \mathbb{C}_0 -barrelledness. Clasification A.M.S. (1980): 46A07.

Our first two examples are modifications of constructions in [4] (see also [PB, 8.3.47]).

Let F be an infinite dimensional Frechet-Montel space admitting continuous norm. We set E:=F' and we consider [E, f(E,F)] (Note that [E, f(E,F)] is a non-normable bornological DF-space). By [4] there exists a fundamental sequence of bounded sets $B_n \mid n \in \mathbb{N}$ in E and a countably-codimensional dense subspace $L \subset E$ such that

a) $[B_n]$ is dense in E and dim $[B_{n+1}] \setminus [B_n] \mid \ge n$ for all $n \in \mathbb{N}$.

b) dim $[(L + [B_n]) / L] \le n$ for every n $\in \mathbb{N}$.

Let \mathcal{T}_o be the projective topology on E, with respect to the linear maps

 $q:E \longrightarrow |E/L, I|$

where δ is any normed topology in E/L. Then, by |2|, $\mathbb{T}_{0}|L=$ = $\mathcal{M}(E,F)|L$ and $\mathbb{T}_{0}/L=\delta$.

Proposition.

With all the previous notations. i) (L, $\mathcal{T}_{\circ}|L$) is a barrelled space. ii) (E/L, \mathcal{T}_{\circ}/L) is a normed space. iii) (E, \mathcal{T}_{\circ}) is not c_o-quasi-barrelled.

Proof.

i) and ii) are consequences of the preceding considerations iii). The proof will be complete if we show that (E, \mathcal{T}_{0}) has a fundamental sequence of bounded sets and yet it is not a df space. By b), there must exist finite dimensional linear subspace $M_{n} \subset L$ such that $L + [B_{n}] = Lo M_{n}$, and we may assume $M_{n} \subset M_{n+1}$, $\forall_{n} \in \mathbb{N}$.

Let C_n be a bounded zero-neighbourhood in M_n , $n \in \mathbb{N}$ We choose them so that $C_n \subset C_{n+1}$, $\forall_n \in \mathbb{N}$. We claim that $(H_n:=(B_n \cap L)+(n,C_n))_{n \in \mathbb{N}}$ constitutes a fundamental sequence of bounded sets in (E, \mathcal{T}_o) . Let B be any bounded set in (E, \mathcal{T}_o) (hence it is $\mu(E,F)$ -bounded) then there exists

 $n_o \in \mathbb{N}$: $B \subset B_n \subset L + [B_n] = L \oplus M_n$, $\bigvee_{n \in \mathbb{N}} (M_n, n \ge n_o)$

Thus, there is me N. mano: BcB / L+m.Cm.

Suppose $|E, C_0|$ is a df space then for every bounded zero neighbourhood B in $|E/L, C_0/L|$, by |(J), 12.4.8|, there exists $n \in \mathbb{N}$ such that $B \subset \overline{q(H_n)}$. Whence $[q(H_n)]$ is dense in $|E/L, C_0/L|$ and consequently $[B_n] + L$ is dense in $|E, C_0|$ which contradicts that L is closed in $|E, C_0|$ and dim $|(L+[B_n])/L|$ is finite.

As a corollary we establish the main results of the paper.

Theorem.

The three-space problem fails for \mathbb{P} -quasi-barreliedness where $\mathbb{P} \in \{\mathcal{X}_{0}, 1_{\infty}, c, c, f\}$.

Since (E, C,), (L, $C_n(L)$, and (E(L, C_n, L) possess fundamental sequences of bounded sets, we also infer, from the above counterexample the following result:

Proposition.

The three-space problem does not hold for df-spaces.

Next we provide another counterexample for the classess of \mathbb{P} -quasi-barrelled spaces, $\mathbb{IP} \in \{1_{\infty}, c\}$.

Let $|E, \zeta|$ be a barrelled Hausdorff locally convex space containing a dense linear subspace L of countably infinite codimension such that every bounded set in $|E, \zeta|$ has finite-dimensional linear span. (see [1]). Take the Hausdorff locally convex topology \overline{G} , on E such that $\overline{G}_0|L=\overline{G}|L, \overline{G}_0, L=\overline{Y}$ being any prefixed normed topology on E.L.

Proposition.

Under the above assumptions,

i) (L, \overline{u}, L) is barrelled.

ii) (E.L. ζ_{0} , L) is normable.

iii) (E, ζ_{2}) is non-P-quasi-barrelled. $\mathbb{P} \ge 1_{\infty}$, c γ .

Proof.

iii)

It suffices to show $|E, Z_o|$ is non-P-barrelled. No te that every P-quasi barrelled space whose bounded sets have finite-dimensional linear spans is a P-barrelled space, $P \in \{L_{\infty}, c\}$. Assume $|E, Z_o|$ is P-barrelled, $P \in \{1_{\infty}, c\}$, then $|E/L, Z_o/L|$ would also be P-barrelled $P \in \{L_{\infty}, c\}$ and applying theorem 1.1 in |6| and |PB.3.2.8|, it would carry the finest locally convex topology, contradicting $\overline{\zeta_o}/L=\delta$.

We finally supply a thoroughly, positive answer for $1_{\sigma\sigma}$ -barrelledness and a partial one for c_o-barrelledness.

Theorem.

Let E be a Hausdorff locally convex space. Let L be a closed linear l_{∞} -barrelled subspace of E such that E/L is l_{∞} -barrelled. Then E is l_{∞} -barrelled.

Proof.

Let $f_n \in \mathbb{N}$ be a $\mathcal{G}(E', E)$ -bounded sequence in E'. Then $\left(f_{n} \mid L\right)_{n \in \mathbb{N}}$ is $\mathcal{G}(L', L)$ -bounded and hence L-equicontinuous in L'. By Hahn-Banach, we construct for every $n \in \mathbb{N}$, an extension $g_n \in E'$ of the mapping $f_n | L \in L'$, so that $\{g_n\}_{n \in \mathbb{N}}$ CE' is E-equicontinuous. Thus $(g_n - f_n) | L=0$, $\forall_n \in \mathbb{N}$ and we can define $h_n \in (E/L)': h_n(Q(x)) = (g_n - f_n)(x) \quad \forall x \in E \quad (Q \text{ being the})$ quotient mapping Q:E $\longrightarrow E/L$). So $\{h_n\}_{n \in \mathbb{N}}$ is a G(L, E/L)-bounded (hence E/L-equicontinuous) set. Since the transposed mapping of Q, Q^{t} : L[°]:= (E/L)' ----- E' maps equicontinuous sets into equicontinuous sets and Q^T is invective, we conclude $\int g_n - f_n \int n \epsilon$ (and consequently TN $\int f_n | n \in \mathbb{N}$ is E-equicontinuous.

An identical proof holds for the following partial positive answer for c_{σ} -barrelledness.

Proposition.

Let E be a Hausdorff locally convex space. Let L be a closed linear c_o -barrelled subspace of E such that E/L is l_{∞} -barrelled. Then E is c_o -barrelled.

Acknowledgement. The author express **their** gratitude to J. Bonet and S. Dierolf for their valuable help and inte<u>r</u> est.

REFERENCES.

- AMEMIYA, I.; KOMURA, I. Uber nicht vollständige Montelräu me. Math. Ann. 177 (1968) 273-277.
- [2] DIEROLF, S. A note on the lifting of linear and locally convex topologies on a quotient space. Collect. Math. 31 (1980), 193-198.
- [3] DOMANSKI, P. On the splitting on twisted sums and the three-space problem for local convexity. Studia Math. 82(1985), no. 2, 155-189.
- J JARCHOW, H. Locally convex spaces. Stuttgart reyoner 1981
- [PB] PEREZ CARRERAS, P.; BONET, J. Barrelled locally convex spaces. North Holland, Amsterdan, New York, Oxford, Tokyo 1987.
- [4] ROELCKE, W.; DIEROLF, S. On the three-space problem for topological vector spaces. Collect. Math. 32, 13-35, (1981).
- [5] SAXON, S.; LEVIN, M. Every countable-codimensional subspace ce of a barrelled space is barrelled. Proc. Amer. Math. Soc., 91-96, (1971).
- [0] SAXON STEPHEN, A. Nuclear and Product spaces, Baire-like spaces, and the strongest locally convex topology; Math. Ann. 197, 87-106 (1972).

J.N.Garcia Lafuente Yolanda Meléndez

Dpto. de Matemáticas Facultad de Ciencias Universidad de Extremadura BADAJOZ-ESPAÑA