On the Completion of (LF)-Spaces

By

J. M. García-Lafuente*, Badajoz

(Received 7 March 1986; in revised form 9 June 1986)

Abstract. Once the existence of metrizable (LF)-spaces was discovered, the problem whether the completion of an (LF)-space is or is not an (LF)-space was answered in the negative, because no (LF)-space can be a Fréchet space. However, some (non-metrizable) (LF)-spaces are complete, e.g. the classical Köthe's strict (LF)-spaces. In this paper we will carry out a thorough study of the completeness of (LF)-spaces stressing upon the stable completion properties of (LB)-spaces. A basic tool for handling this problem is an Open Mapping Theorem for completions of (LF)-spaces, which is also proved in the present paper.

1. Introduction and Preliminary Results. In [8], Saxon and Narayanaswami partition the class of all the (LF)-spaces into three mutually disjoint, non-empty classes, denoted (LF)₁-spaces or (LF)-spaces of type i (i = 1, 2, 3) (see definitions below). (LF)₁-spaces include the well known class of strict (LF)-spaces, while (LF)₃-spaces are those (LF)-spaces which are metrizable (the first example of a metrizable (LF)-space is due to A. Grothendieck [2]; these spaces were later on studied in [5], [7] and [8]).

Certain completeness properties of (LF)-spaces depend upon the type of the space. For example, no (LF)₃-space is complete, because no (LF)-space can be Fréchet, while many (LF)₁-spaces are complete, for example all strict (LF)-spaces. We will prove that (LB)-spaces exhibit a fair behaviour with respect to the completion, while the remaining (LF)-spaces are, in general, not stable for complete hulls.

For the general theory of (LF)-spaces, we follow throughout [3], §19. We recall that a Hausdorff locally convex space \((E, \tau)\) is an

* This research, supported by a Fulbright-MEC fellowship, was carried out during the author’s visit at the University of Maryland while on leave from the University of Extremadura. The author is grateful to Professor S. A. Saxon for very helpful conversation and, especially, for calling his attention to the problem of completions of (LF)-spaces.
(LF)-space if there exists a strictly increasing sequence \(\{(E_n, \tau_n)\}\) of Fréchet spaces, called a defining sequence for \(E\), such that \(E = \bigcup E_n\) and \(\tau_{n+1} \leq \tau_n\) for every \(n \in \mathbb{N}\) and \(\tau\) is the finest Hausdorff locally convex topology on \(E\) such that \(\tau|_{E_n} \leq \tau_n\) for all \(n \in \mathbb{N}\). We write \((E, \tau) = \lim (E_n, \tau_n)\). If each space \(E_n\) is a Banach space, the (LF)-space \(E\) is called an (LB)-space. If \(\tau_{n+1}|_{E_n} = \tau_n\) for every \(n \in \mathbb{N}\), the (LF)- or (LB)-space is said to be strict.

1.1. Definition. An (LF)-space \(E\) is said to be of type \(i\) or an (LF)
space \((i = 1, 2, 3)\), if it satisfies the following condition (i):

(1) \(E\) has a defining sequence \(\{E_n\}\) such that no \(E_n\) is dense in \(E\).

(2) \(E\) is not metrizable and it has a defining sequence \(\{E_n\}\) such that some \(E_n\) is dense in \(E\).

(3) \(E\) is metrizable.

The disjointness of the three classes is readily seen: Since any two defining sequences for an (LF)-space are equivalent we have \((\text{LF})_1 \cap (\text{LF})_2 = \emptyset\); \((\text{LF})_2 \cap (\text{LF})_3 = \emptyset\) is obvious; \((\text{LF})_1 \cap (\text{LF})_3 = \emptyset\) follows from the fact that every metrizable, barrelled space is Baire like (cf. [6] Corollary 2.5.).

In the sequel, \(\varphi\) will denote a countable-dimensional linear space endowed with the finest locally convex topology.

2. Open Mapping Theorem for (LF)-Spaces. In this Section we will make use of the classical Pták’s Open Mapping Theorem to deduce a similar theorem for completions of (LF)-spaces. The following lemma is obvious.

2.1. Lemma. If \((E_1, \Gamma_1)\) and \((E_2, \Gamma_2)\) are Fréchet spaces continuously included in a Hausdorff topological space, then the locally convex topology \(\Gamma\) on \(E_1 \cap E_2\) with neighborhood basis \(\{U \cap V; U \in \Gamma_1, V \in \Gamma_2\}\) is Fréchet.

2.2. Theorem. Let \(\Psi\) be an (LF) topology on the completion \((\tilde{E}, \tilde{\tau})\) of the (LF)-space \((E, \tau)\), such that the identity map \(I: (\tilde{E}, \Psi) \to (\tilde{E}, \tilde{\tau})\) is continuous. Then \(I\) is a topological isomorphism.

Proof. Let us assume that \((E, \tau) = \lim (E_n, \tau_n)\) and \((\tilde{E}, \Psi) = \lim (\tilde{E}_j, \Psi_j)\) for Fréchet spaces \(E_n, \tilde{E}_j (n, j \in \mathbb{N})\). Fix \(n \in \mathbb{N}\). Since \(E_n \subset \tilde{E}_j, E_n \bigcup (E_n \cap \tilde{E}_j)\) and, therefore, there exists \(j \in \mathbb{N}\) such that \(H = \bigcup \).
On the Completion of (LF)-Spaces

117

\(E_n \cap F_j \) is a dense and barrelled subspace of \((E_n, \tau_n) \) (let us note that \(E_n \), being Fréchet, is a \((db)\)-space, see [4]). By hypothesis, \(E_n \) and \(F_j \) are continuously included in the (Hausdorff) space \((\tilde{E}, \tilde{\tau}) \). By means of the Lemma 2.1., \(H \) is endowed with a Fréchet topology \(H' \). Since \(\Gamma \geq \tau_n|_H \), Pták’s Open Mapping Theorem applied to the identity map \((H, \Gamma) \to (H, \tau_n|_H) \) yields \(\Gamma = \tau_n|_H \). We deduce that \(H \) is closed in \((E_n, \tau_n) \), that is \(H = E_n \subset F_j \). We also deduce that the inclusion map \((E_n, \tau_n) \to (F_j, \Psi_j) \) is continuous and, thus, \((E_n, \tau_n) \leftrightarrow (\tilde{E}, \Psi) \) is continuous as well. Since \(n \in \mathbb{N} \) was arbitrarily fixed, we conclude that the canonical immersion \((E, \tilde{\tau}) \leftrightarrow (\tilde{E}, \Psi) \) is continuous. Extending by continuity to the completions, we prove the continuity of the identity \((\tilde{E}, \tilde{\tau}) \to (\tilde{E}, \Psi) \).

3. Completion of (LF)-Spaces. While it is true that the completion of an \((LF)_2\)-space is never an \((LF)_1\)-space (because it is a Fréchet space), the completion of an \((LF)_1\)-space or an \((LF)_2\)-space can be an \((LF)_1\)-space. As a matter of fact, any strict \((LF)_1\)-space is a complete \((LF)_1\)-space ([3], 19.5.3.) and the \((LB)_2\)-spaces \(\lim_{n} \) of type 2 defined by SAXON and NATAYANASWAMI in [7] are complete as well. However, we will show in the next examples that the completion of an \((LF)_i\)-space, \(i = 1, 2 \), is not, in general, an \((LF)_i\)-space.

3.1. Example. Let \(E = \lim E_n \) be a complete \((LF)_2\)-space. For each \(n \in \mathbb{N} \) we define \(F_n = E_n \times E_n \times \ldots \) endowed with the (Fréchet) product topology denoted by \(\Psi_n \). The \((LF)_1\)-space \((E, \Psi) = \lim (F_n, \Psi_n) \) is a dense, proper subspace of \(E \times E \times \ldots \) because of its “diagonal” construction. Using the fact that \(E \) is of type 2 it is easy to prove that \(\Psi \) is the relative topology induced in \(F \) by the product topology of \(E \times E \times \ldots \). We first observe that \((E, \Psi) \) is not metrizable, because \(E \) is not metrizable. Since \(E \) is of type 2, some \(F_n \) is dense in \(E \times E \times \ldots \) and hence also in \(F \). So \((F, \Psi) \) is a \((LF)_2\)-space and its completion is \(E \times E \times \ldots \) which is not an \((LF)_2\)-space because no infinite product of \((LF)_1\)-spaces is an \((LF)_2\)-space.

3.2. Example (P. Pérez-Carreras) Let \(F \) be the non-complete \((LF)_2\)-space described in Example 3.1. Then obviously \(F \times \varphi \) is an \((LF)_1\)-space. The completion \(\tilde{F} \times \varphi \) of \(F \times \varphi \) is not an \((LF)_2\)-space because it has a quotient \(\tilde{F} \) which is neither an \((LF)_2\)-space nor a Fréchet space.
We will now study separately the completion of \((LB)_1\)-spaces and \((LB)_2\)-spaces (note that \((LB)\)-spaces of type 3 do not exist because no \((LB)\)-space is metrizable). The following lemma will be needed:

3.3. Lemma

Let \(E\) be a normed space with closed unit ball \(B\) and let \(F\) be a Hausdorff complete locally convex space such that \(E\) is continuously included in \(F\). If \(\tilde{B}\) is the closure of \(B\) in \(F\), the linear span \(F_0 = \text{sp}(\tilde{B})\) is a Banach space under the norm topology for which \(\tilde{B}\) is the closed unit ball.

Proof. Since \(F\) is complete and the canonical injection \(E \hookrightarrow F\) is continuous, \(\tilde{B}\) is a complete bounded disk in \(F\). Therefore the norm gauge of \(\tilde{B}\) defines on \(F_0\) a Banach topology ([3] 18.4.4.) with closed unit ball equal to \(\tilde{B}\).

If \(\tilde{E}\) is the completion of \(E\) and \(H \subset E\), we will denote in the sequel by \(\tilde{H}\) and \(\tilde{H}\) the closures of \(H\) in \(E\) and in \(\tilde{E}\) respectively.

3.4. Theorem

The completion of an \((LB)_1\)-space is an \((LB)_1\)-space.

Proof. For each \(n \in \mathbb{N}\), let \((E_n, \tau_n)\) be a Banach space with closed unit ball \(B_n\), such that \((E, \tau) = \lim_n (E_n, \tau_n)\) is an \((LB)_1\)-space. Let \((\tilde{E}, \tilde{\tau})\) be the completion of \((E, \tau)\). We can assume, without loss of generality, that \(B_n \subset B_{n+1}\) for every \(n \in \mathbb{N}\) (change, if necessary, \(B_n\) by a suitable multiple of \(B_n\)). By Lemma 3.3., \(F_n = \text{sp}(\tilde{B}_n)\) becomes a Banach space for a topology \(\Psi_n\), for which \(\tilde{B}_n\) is the closed unit ball. Furthermore, for each \(n \in \mathbb{N}\)

\[
\tilde{\tau}|_{F_n} \leq \Psi_n. \tag{1}
\]

Indeed, if \(V\) is a closed 0-neighborhood in \(\tilde{\tau}\), \(V \cap E_n \in \tau_n\) and, consequently, \(\lambda B_n \subset V \cap E_n\) for some \(\lambda > 0\). Since \(F_n \subset \tilde{E}_n\) we deduce \(\lambda \tilde{B}_n \subset V \cap F_n\) and (1) is proved.

Let \(F = \bigcup F_n\). If for some \(m \in \mathbb{N}\) \(F_m = F\), then \(\tilde{E}_m \supset F_m \supset E\) and \(\tilde{E}_m = E \cap \tilde{E}_m = E\) contradicting that \(E\) is of type 1. Therefore, a strictly increasing subsequence \(\{F_{n_j}\}_{j \in \mathbb{N}} \subset \{F_n\}_{n \in \mathbb{N}}\) can be chosen such that \(F = \bigcup F_{n_j}\). We rename this subsequence as \(\{F_n\}\) again and define the \((LB)\)-space \((F, \Psi) = \lim_n (F_n, \Psi_n)\) which is (algebraically) a linear subspace of \(\tilde{E}\). The absolutely convex hull \(U = \Gamma B_n = \bigcup B_n\) is a neighborhood of 0 in \((E, \tau)\), and, in particular, is absorbing in \(E\). By [1], Theorem 2, for every \(\varepsilon > 0\)
On the Completion of (LF)-Spaces

\[\tilde{U} \subset (1 + \epsilon) \bigcup_{n \in \mathbb{N}} \tilde{B}_n \subset (1 + \epsilon) \bigcup_{n \in \mathbb{N}} F_n = F. \] \hspace{1cm} (2)

Since \(\tilde{U} \) is a \(\tilde{r} \)-neighborhood of 0 in \(\tilde{E} \), we deduce that \(\tilde{E} = \text{sp}(\tilde{U}) \subset F \) and, hence, \(\tilde{E} = F \).

By (1) the inclusion map \((F_n, \Psi'_n) \hookrightarrow (\tilde{E}, \tilde{r})\) is continuous for every \(n \in \mathbb{N} \). Thus, the identity map \((F, \Psi') \rightarrow (\tilde{E}, \tilde{r})\) is continuous and by Theorem 2.2. it is a topological isomorphism. We have, hence, proved that \((\tilde{E}, \tilde{r})\) is an (LB)-space. If for some \(n \in \mathbb{N}, \tilde{F}_n = \tilde{E} \), one easily gets \(\tilde{E}_n = E \) which is impossible because \(E \) is of type 1. So \((\tilde{E}, \tilde{r})\) is of type 1.

3.5. Theorem.

**The completion of an (LB)

3.5. Theorem. The completion of an (LB)\(_2\)-space is either an (LB)\(_2\)-space or a Banach space.

Proof: We keep all the notations of the Theorem 3.4. but that \((E, r)\) is now of type 2. If for some \(m \in \mathbb{N}, \tilde{F}_m = F \), then the relation (2) yields now \(\tilde{U} \subset F_m \). \(\tilde{U} \) being a \(\tilde{r} \)-neighborhood of 0 in \(\tilde{E} \), we deduce that \(\tilde{E} = F_m \) and the Open Mapping Theorem applies to conclude \(\tilde{r} = \Psi'_m \), that is \((\tilde{E}, \tilde{r})\) is a Banach space. Otherwise, there exists a strictly increasing subsequence \(\{F_n\}_{j \in \mathbb{N}} \subset \{F_n\}_{n \in \mathbb{N}} \) such that \(F = \bigcup_j F_n \).

We then proceed as in the proof of the Theorem 3.4. to conclude that \((\tilde{E}, \tilde{r})\) is an (LB)-space. Since some \(E_n \) is dense in \(E \), some \(F_n \) is dense in \(\tilde{E} \) and \((\tilde{E}, \tilde{r})\) is of type 2.

3.6. Remark.

The Theorems 3.4. and 3.5. have nontrivial applications because non-complete (LB)$_1$- and (LB)$_2$-spaces do exist. Indeed, the (LB)-space \(E \) of [3] 31.6. is an example of a non-complete (LB)$_2$-space. The topological product of this space \(E \) and \(\varphi \) is an (LB)$_1$-space that is not complete, because the closed subspace \(E \) of \(E \times \varphi \) is not complete. Since every strict (LF)-space is complete, \(E \times \varphi \) supplies as well an example of a non-strict (LB)$_1$-space.

Acknowledgement. The author is indebted to the referee for several suggestions which contributed to improve the final version of the manuscript.

References

J. M. García-Lafuente
Department of Mathematics
University of Maryland
College Park, MD 20742, U.S.A.

Current Address:
Departamento de Matemáticas
Universidad de Extremadura
E-06071 Badajoz, Spain