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1. Imtroduction. The class of nuclear smooth sequence spaces A(P) of

intinite type (also called nuclear G -spaces) has been introduced and stu-
died by T. Terzioglu [14] and it is a intermediate categorie between power
series spaces A(a) of infinite type and general Kothe spaces A(P) .

In 5111 , M. 8. Ramanujan introduces the notion of Af{a)-nuclearity that
is a natural generalization of s-nuclearity of V. S. Brudovskii [1] and
A. Martineau [8] , and he gives a complete account of the structure of spa-
ces Af{a) and ot #A{a)-nuclear locally convex spaces. The class of nuclear
G ~spaces is strictly larger than the class ot nuclear powgr series spaces
ot infinite type (ct. [3] ) . Furthermore, Grspaces enjoy additional pro-
perties described mainly in [3] , [9] and [16]

This course is a.survey ot the theory ot Ge=spaces A{(P) and the associated
notion ot A(P)-nuclearity, including such topics as uniform A(P)-nucleariy,
and the classic Embedding Theorem of A(P)-nuclear spaces into products of
duals A(P)*

- For the notations, terminology and the not proved results of the gereral

theory, we will refer throughout to [6] and [10]



2. Preliminaries. We recall that a set P of scalar sequences a = {an)

is called a Kothe set, if it satisfies the following conditions:

(K1) For each a;?_, a 20 for all neN
(K2) For each a , beP , there exists ceP such that sup (an an sc,
for all neN ‘

(K1) For each neN , there exists aeP such that an>O

The corresponding Kothe space associated to P is the vector space of

Scalar Sequences
A P = E = M + @ a E F‘
( ) { ( £ ) E a 'lEA ‘ < fOI" all ( ) }

Under the natural topoloqy A(P) becames a complete locally convex space
and A(P} 1s nuclear if and only if the following Grothendieck-Pietsch

criterion is satisfied:

(¥4) For each aeP , there exists beP and Cs:l1 such that

a <bc for all neN
nT— nn

Among the most interesting Kothe spaces we find the power series spaces
A(a) of infinite type, wich are the Kdthe spaces generated by the Kothe
set P = {( K0 )n : ke N} where a = (an) is assumed to be a sequence

of real numbers such that 0g a, £a. % ... T= . The (K4) criterion is

2
equivalent, for ala} spaces, to the following growth condition

(K4') For some R>1 , 3 R D < 4=

If (K4'} 1is satisfied, a 1s called exponent sequence and then

1
Ma) = {g= () : fe )% -0 (1)
n n ]
{see [11] ).
A KSthe set P 1is called a power set 1f P satisfies the following

conditions



(G1) P 1is countable (We shall denote by (akn)n the k-th sequence
| in P)
(G2) 1_5,a]m_<_a;k+3’n for atl k, neN

(G3) a]m;s_ak'nﬂ for all k , neN

) . 2 -1
F keN there is N . < 4w
(G&) or every £ je such that SHp akn aJn +

The power set P 1s called stable if 1t satisfies adittionally the so—called

"stability condition”

(G5) For every keN there is JjeN such that SH? ak,zn a}l < 4w

The corresponding Kothe space A(P) associated to a power set P is
a Fréchet space called smooth sequence space of infinite type or Ge-Space
and it will be dencted by A(P) . If P is stable, A(P) 1s calied aiso
stable. G -spaces were introduced and studied by T. Terzioqiu [14] and
they are a intermediate class between KSthe spaces and power series spaces
because, as shown by E. Dubinsky and M. S$. Ramanujan [3] , there exist
Ce—spaces wich are not power series spaces, while every power series space
is, obviously a G,-space.

Conditions {G4) and (X4) together are equivalent to the following

(G4N) For every keN there is JjeN such that 2 ain a ! < 4w

jn
wich is, therefore, a necessary and sufficient condition for a G,-space
A{P) to be nuclear. We shall caill P nuclear power set in case the stronger

condition (G4N) 1is satisfaid instead condition (G4)

As usual we shall denote the Kothe dual of A{P) by
x
AP ={n=1(n) : Fin|lg | <+= forall geA(P) }
and the positive elements of A(P) by

w'(P) = {neA(P) : n 20 forall neN )



3. A{P)-Nuclearity. In this section we shall deal with the notion of

A-nuclearity introduced and studied by E. Dubinsky and M. S. Ramanujan
[3] and whose methods are entirely valid into the framework of A(P)-nucle-

arity. We start with the following

DefintLtion 3.1. (Dublnsky, Romonujan) Let A be a sequence space. A
Linear map T : E —> F  between Banach spaces Ls sald £o be  i-nuclear
(resp. pseudo-i-nuclear } Lf Ethere erxtst a sequence E¢ . , a bounded
seguence (Qn)c E' and a sequence (grg e F uwich satisfies ( <gn 6>) e r
for all beF' (resp. wich Ls bounded Ln F ) , such that the following

conditlon holds

Tx = L& <xa >y xek
n NN

If P 1is a nuclear power set both definitions of A(P)-nuclearity are

equivalent , as we see in the fcllowing

Proposition 3.2. Let P be a nuclear power sec. A LiLnear map

T:E—>F s A(P)-nucLear Lf and onby Lf Lt is pseudo-a{P)-nucLear.

. 1 ;
Proof. Since almg;1 for ail (akn)naP , we have A{P)cl and thus
b x . .
1 ¢ A(P} . We deduce that if the map T 1is pseudo-A{P)-nuclear , then T
is A(P)-nuclear. Conversely, let T : E —— F be a A(P)-nuclear map and

£, (ah) and (yh) as in definition 3.1. The sequence < detined by

1/2
T En
we can choose jeN such that condition (G4N) is satisfied. We then have

belongs to A(P). Indeed, by nuclearity of A{(P) , given ke N

-1/2 1/2 1/2
% Hn 1Tt = % S %in %in |‘5n| =

2 -1 .1/2 ' 1/2
(L a e ) " (2 ate ) < e

n

A

Finaliy, if we define z =1 vy , then
n n-°n

Tx =§:‘r <xa> v Xe &
n n n



,whére the sequence < ) b>-= -rn<yrl b » is bounded for each beF' (it is
even ‘summable) and, in view of the uniform boundedness theorem, the sequence

‘(zn)A is bounded in F . Thus, we conclude that T is pseudo-A({P)-nuclear.

For each continuous linear map T between Banach spaces E and F ,

and for each ne N, we define the n-th approximaticn number of T by
an(T) = 1nF{JlT - Al ¥

where An ranies over the set of all continuous linear maps from E into

F  such that An(E) has at most dimension n . If the (decreasing) sequence
(an(T)) belonas to a glven sequence space x , we shall say that T 1is of
type A . If for some p>0 , (qn(T)p) e A, T 1is called of type 3P .
Proposittion 3.3. Let P be a nuclear power set. Each pseudo-A{P)-nuclear

map Ls of type A(P)

Proof. Let Tx = 2 £n< xa>y, be a representation of the pseudo-a(P)-
nuclear map T , as in definition 3.1. We have
_ - © |
o (T2 Z fethaiddyy) 20 & eyl (1)
where ¢ >0 1s a nunber which does not depend on n . Since aii >1 for every
ieN , condition {K4) of nuclearity gives in parficular an index reN such

that, ftor every nelN

n : . a..
(n+1) o 17 . 11

1=0 a . =0 a .
rn ri 1

=M< +=

Let k2*r be and by condition (&4) let us take jeN and M'>0 such that
a]i’liM'ajn tor every neN . We then have

. _‘E = @ oo ) )
T g IO glag = 3 Igl e
n=0 n=0 1=n n=0 1=0

= N+ ) 2

[gn|(n‘+‘l)a}m -2 \E’nl “on kn < Z \gnlalm S gto lgﬂlajn e

a
0 n=0 m n=0

iﬂ\ﬂa



Since this relation is aiso true for k<ry (see condition (G231), 1t toliows

that (a (T))ea(P) and T is of type A(P)

The Followinq-theorem'is a generalization of a result of G. Xothe [5]
. . . 1 . ,
about s-nuclearity of diaqonal maps in 1 and supplies plenty of A(P)-nuclear

. 1 : . .
maps in the Banach space 1 . We recall that if & 1s an element of the

space ¢ oOf finitely non-zero sequences, there exists a unique sequence ¢

with the property O_<_En+1 < En for all neN and there exists a bijection

m : N— N such that |[g 1:E for ail neN . If tEeC - ¢ there
m(n) n o
exists a unique sequence & such that 0« an _<_En for all neN and there

exists an injection v : N —> N such that n(N) ={neN: En £01} and

(gn(n)[ - En
rearrangement of £ . We then have

for all neN . In either case we shail calil E the decreasing

Proposition 3.4. Let £ = {&n) be a seguence of non—negotLye numbers
converging to 0O , ond Let DE : L,] ] Lq be the diagonal tronsformabion
Dg(xn) = (Enxn) . Then the following assertions are equivalent

o) DE Ls A{P)-nucleor

b) £ e A(P)

Proof. We exclude the trivial case £e¢ . Then let 7m : N — =(N) bethe
bijection defining the decreasing rearranjement of £ and let
1 . . . .
v 11 —3 1 [7(N)] be the isomorphism ¢ {x ) = {x ) with inverse
11 7 n w(n)’
‘l-'“_1
b)= a). If £ea(P} , it is straightforward to check that the diajcnal

map DE 1 [n(N)] — lq[n(N)] is A{P)-nuclear and, -thus, so is

D =% _j+D= -y
[ m £ L
a)=b). If DE is A(P)-nuclear , it is of type a{P) (Proposition 3.3.)
Therefore, DE is also of type A(P) . But, since E is dexreasing, we have

a (D-) =t (see [10] , 8.1.5.). Hence, €< A(P)
n g n

Let E be a locally convex space and U a closed abscolutely convex
neighbourhood of 0 in E with corresponding gauge p,. . As usual we shall
denote by E_ the completion of the normed space E/p (0) endowed with

U
the norm Py - Let P be a nuclear power set. Following [3]), a locaily



convex space E 1is said to be A(P)-nuclear if a basis @& ({(equivalent, any
basis) of closed absclutely convex zero neighbourhoods in E  has the fo-
llowing property: For every Ue @ there exists Ve d such that VcU and
the canonical map T, : E, — E_ is a(P)-nuciear (in view of Proposition

Vu v U

3.2. is equivalent to say that T is pseudo-A(P)-nuclear).

VU
It 1s worth noting that, in view of Proposition 3.2., the above definition
is equivalent to Ramanujan's definition of A(a)-nuclearity (see [11] ) and,
as we shall see later, to Moscatelli's definition of i~nuclearity (see {9] ).
In order to prove this asserticon, we shall need some properties relatives to

nuciear Ge-spaces wich are collected in the following proposition

Proposition 3.5, Let P be q power set. Then

o) A(P)c L1

by AP} Ls normal, that s Lf £ ea(P) and inﬂ\5_|gn] for all ne N ,
then ne A(P)

c) If P is stable, A(P) Us additive, that is for every £, n e AP) ,

there exists a bijecticon m : N —> N such that (x Y e A(P) uwhere

Tr(ﬂ)

= £ y T - n

T = Eun Ls defined by r2n—1 " 2n .

g) If P Uis nuclear, A{P) s decreasing rearrangement Lnvariant, that

s E£eAlP) Umpplles £eA(P)

Proof. Parts a) and b) are easy consequences of definitions. For c¢) ,
let £,n e A{P) be, and let us prove that the sequence 1 = gun belonags
to A(P). If keN , let jeN be the number given in axdom (G5). Then, there

exists a number c >0 such that

Slatan = e o+ sy 5, <
=c Zn]nn‘ ajn +c 2r;i‘l;r}iajn < e

Finally d) dis proved noting that for every ¢ ea(P) , the diagonal map

Dg : l1 —> l1 is A(P)-nuclear and applying Proposition 3.4.

In the remainder of this paragraph, we shall assume that P 1is a stable



nuclear power set, that is P satisfies conditions (G1) , (G2} , (G3) ,

(G4N) and (GS) . |

Proposition 3.6, ket T : E—F , S : F —+ (G be continuous Linear

maos of type AP(P) (p>0) . Then SeT : E — G s of type A 2(P)
. 2
Proof. Bt hypothesis (an(T) ) sAp/g(P) and (an(S)g)E AP/Q(P) From
the inequality
a (SeT) < o (T) a (S) <1/2 [a (T)° + a (5)°]
on - n n - n n
and from normality of A(P} we get ¢ = (azn(SoT)) eAp/z(P) . Since

: - - p/2
2, 4 S, 5 again by normality we have n = (aZHH(S T} e ™ (F)

Finally, by Propesition 3.%. ¢} and d) , we conclude

(« (5:T) = TUn ¢ 2P2 )

These previous results lead to the following characterization theorem

for a(P)-nuclear spaces

Theorem 3.7. Lek E be a Locally convex space wikh basis of closed
absoluktely convex zero-nelghbourhoods @A . The following assertions are
equivalents

1 E s A(P)-nuclLeor

2) For each Ue® there exists Ve @ such that Ve U and the co-

nonitcal map TV Ls pseudo-A(P)-nuclear

U
3) For some, resp. for eoch, number p>0 , the following condition iLs
sotisfied : For each Ue @ there Ls Ve 0l such thot VcU and the

cononical map T Ls of type AD(P)

vu

Proof. By [9} , I.2. Theorem 1 , we have 3)=> 2) . Equivalence 1)& 2)
is the Proposition 3.2. Finally we shall prove 2)=3 3) . Let p>0 be and
choose neN such that 2”n‘<p . By Proposition 3.3.,, qiven U = R o
there exist neighbourhocods Uke M ,k=1, 2,.-., n , such that




I
\0
i

' cal : ) \
Lk+? :;Uk and the canconical map Tk EU —> EU is of type A(P) . If
k+1 K N

Vo= Un—- , the canonlcal_map TVU = Too’l“]e vo. sl 1 is of type A~ (P} be-

cause of Proposition 3.6. Consequently T‘v”U is of type AD(P) and the theo—

rem is entirely proved.

Next we investidate A(P)-nuclearity of sequence spaces. We shall be
mainly concerned with Kothe spaces (3) , where ( 1s a Kothe set as defined
in paragraph 1 . We have the f'ollowin—g. Wthe-Pietsch~-Grothendieck criterion
wich comes from a corrected version due to Gthe [3] of a theorem of Brudovskii

about s-nuclearity of KSthe spaces {3}

Treorem 3.8. Let QO be a Kdéthe sez. »{Q) Uis A(P) nucLear Lf and only LUf
Lt Ls satbisfled some of the two followlng eguivaient conditions

o) For each Qe{)l , there exists bed such that an'bn for all neN ,

and at” ! e a(P)  (here ab™?  stands for the sequence (C\nb;q) where rotios
0/0 are assumed to be 0O )

b) For each aeQ , there exists beQ such that a <b_ forall neN

and the seguence (oﬂb:}) » O # 0 , can be rearranged iLnto a seguence Ln  A(P)

Proof. The equivalence of a) and b} is a strightforward consequence of Pro-

position 3.5. d) , because if =n 1s the rearrangement of (anbn‘j) » & #0,

belonging to AP} , we have “1'; ¢ A{P) . But .f-'j - ab""‘1 and the e@ﬁvalence
is proved.
Llet aeQ -~ ¢ be and let o : N —» N a strictly increasing map such that

aOa(n) #0 for all neN and let U, = {¢t :Zanlsn[_g?} be a neighbour-

hood of O in A(Q) . Noting that {A(Q)]U is norm-isomorphic to 11[oa(N)]
a )

(the map (&+ Ua) — (£ ) being such an isomorphism), then the

Ga(n) aca(n)

canontical map TU u

_ b a

U(Q)]U can be identified with the diaqonal transformation
a

.t 1 _ -1
D :1 [cb(N)] — {ca(N)] where t =a b~ , ne ua(N) . Now, by Propo—

, be @, bn_>.a-.\n for all neN , from IA(Q)]Ub into



sition 3.4. D_ (equivalent TUEU ) is A{P)-nuclear if and only if
a

T = ab""1 belongs to a{P) , and our theorem easily follows,

V. B. Moscatelli has shown that for a general sequence space ' » satisfy-
ing the properties collected in Proposition 3.5., the class of A-nuclear
spaces is closed under the formation of countable direct sums {see [9] , II,1,
Lemma 1 and I,4, Theorem 5 )} . In the sane way, permanence of A-nuclearity
under the formation of product is closely related to the property c) of
Proposition 3.5. {(see [3] Lemma 2.7. and Theorem 2.9. ). Because A{(P) satis—
fies the properties cof the above mentioned theorems, we state without proof the

following

Theorem 3.9. If P is a stable nucleor power set, every product and every

countable direct sum of  A{P)-nuclear spaces Ls AP)-nuclear.

4, Uniform A{P)-nuclearity. In the condition of Theorem 3.8. about A{P)-

nuclearity of Kothe spaces we claim for a rearrandement of the sequence ab™
that depends on the element a . In some applications (see [15] ) and spe-
cially in the study of dual spaces, it is of grear interest the existence of
a "universal™ permutation w valid for every element a . This leads G. KGthe
to define a sequence space i{Q) to be uniformly A(P)-nuclear if there exists
a bijection n: N —> N such that for each ae¢Q , there exists beQ such

that anf'bn for all neN and
a =b C neN

for some sequence (cn) e A(P)

We then have
Proposition 4.1. I1f a{Q) Ls uniformly A(P)-nuclear, Ar{Q) is A(P)-nuclLear.

Proof. Let n be the "universal' bijection associated to a(R) and let ace Q be.
( We exclude, by trivial, the case a ¢ ¢ ) . Then let o: N — N be a strictly

increasing sequence such that aﬂ{o(n)) #0 for all nelN , We choose the ele—




ment beQ given by uniform A(P}-nuclearity, wich satisfies "a fortiori”

b (o (n)) # O ‘for all neN and we finally show that
aﬂ(ﬂ(n)} nenN
b

m(a{n))

. . =1
15 a rearrangenent of non-zero eniries of the sequence ab that belonas

to A(P) . Indeed, let keN and, bein7 ¢ a increasing map we have

e (o Y1 (a(n)) =
Z (0 n) £ Z ( \n akc(n)

1 n(c(n)) Oy (oln))

= 2 Satn) Heoln) g % ©*°

From Theorem 3.8. we now deduce tnat i{Q) is A {P)-nuclear.

As sﬁown by E. Dubinsky and M. S. Ramanujan, [3} Theorem 2.7. , not every
A(P)-nuclear space is uniformly A(P)-nuclear and in [s] , G. KSthe shows
that if @ ds countable, then *(3) 15 s-nuclear if and only if A{Q) is
uniformly s-nuclear. Wé qive now a Jeneralization of this result valid for
A(P)-nuclearity that contains, as a particular case, Dubinsky and Ramanujan's
theorem ([3] , Theorem 2.6.) about A{a)-nuclearity . The stability of the

sequence exponent « 1n the above menticned theorem (that is sup G2n/an < 4 )

and the stability of P (condition (G5) ) 1in our follewing theorem, are
essential assumptions for the equivalence.

In order to prove this theorem we shall need the two following lemmas,
the first of wich is due %o Dubinsky and Ramanujan [3] , and thus, its

proof is omitted

Lemma. 4.2..(E. Dubinsky, M., S. Ramarnujan) Ltet B: N — NxN be q
bLjection and L N-—N , ke N, be a sequence of Lnjectlons such that
for each mneN , there exist k , me N with ﬂk(m) =n ., Then there exist
an tnjection y: N —> NxN {(y(n) = (v (n) , v.(n)) for all neN ) and

1 2
a biLjection 7 : N — N satisfying the follouwlng condltions



o) n<s lay(n) foralt neN

b} If =

1y (2 = ) enen sy () <87

(k m)

¢t wln) = ,

v () (72 (n}) for all neN

Lemmo 4.3. If P s a stable power set, there exists a bljection

g8 + N ~—> NxN with the follcuwing property: For each reN and ke N,
there exists j & N such thok :
Q -
r,B 1(!‘( m)
syp —————= < 4@
m Q.
gm

. . . - k=1
Proof. Let B8 be the bijection defined by 8 j(k m =2

Given r = r e N and keN we take integers

by condition (GS5)

2n-1) .

r.e N ( 1£1<k } supplied

and numbers Yy ( ’!gi_{k ) such that

. £ 1 1<1<
r. _,2n T i1 r.,n or all neN, 12i<k

k
2. g1 A, ok-1
r,B~"{k m) r, 2% (2m-1)
sup = <
m a. a.
Jm Jm
a k a k
< sup r,25n < sup TT ry_q,2K"1+ ™ .
m aJm = m 1= a k—i = i=1 1

Theorem 4.4. Let O be a countable Kidthe set and P o stable power set,

If x{Q) is A(P)-nuclear, then (Q)

Ls uniLformly A(P)-nuclLear.

Proof. Let us denote Q = {ck : keN } . By the Grothendieck-Pietsch-%5the
criterion (Theorem 3.8.b)) , for each keN we can find an integer j(k) eN
and an injection .Wk : N— N such that CE < ci(k) for all neN

3

nk(N) = {neN : c:i # 0 } and the sequence



k
k “r (n)
= E
P () 3(K) nel
[
me(n)

belongs to A{P)

. . ) k
If neN, by condition {(X3) there exists keN such that Cn £0,

that is nenk(N) and , thus, there is meN such that n = nk(m) . On
the other hand, by stability of P , we can have the bijection 8 aiven in
Lemmna 4.3. and then we can apply Lemn‘a 4.2, to get the injection y and
the bijection 1w . We finally show that r 1s the desired bijection in or-

der to check uniform A{P)-ruclearity of A(Q) , that is, we shall prcove that

K )& a{P)

for each keN , (b
ﬂ(n n

If keN, choose neN such that b}; £ 0 and take now the (uniqus)

{n)

integer meN such that ={(n) = nk(m). By Lemma 4.2.c} we have

nk(m) = “*1{”)“2(“))

and by Lemma 4.2. a) and b) we get

ngs—? y(n)§8_1(k m) (1)

Then, let (am)n ¢ P be arbitrary, and let je N be the nunber asscciated

to k and r given in Lemma 4.3., satisfying

<
ar*,B_q(k m = Cc ajm for ali meN
(here C 1is a number that deces not depend on me N) . Consequently, by
applying (1) and axiom (G3) we have, for each neN with b:(n} #0
k K k

bw(n)arn - bnk(

<
m)am - 1:)rrk(r11)ar,ﬁi‘1 (k m) =

K a
nk(m) Jm

LGS

Chb




But each such neN has assoclated a unique meN with «=(n) = n (m)

k
because M is injective. Consequently
Ik k
<
% P £ 0 % Py (m) g
. k . . . K
Since (b ) e a(P) , the last series is finite and, thus, (b } ¢ A(P)
nk(m) m a(n) ' n

The theorem is now completely proved.

5. Dual Spaces . It is known, by a result of A. Martineau {8] and v. S.

Brudovskii [1] , that the strona topological dual of every metrizable nuclear
locally convex space 1s S-nuclear. In particular, the dual space s' of the
space s of rapidly decreasinig sequences is s-nuclear and the question

arises whether an analogous theorem holds for a nuclear Ge-space A(P)

Theorem 5.1. Let P be a scoble nucleqr pouwer set. The strong bopolo-

glcol dual A(P)' of the nuclLear Geo-space A(P) Ls A(P)-nuclear.

Proof. We recall (see [5] ) that the strong topological dual of A(P)
is topologically isomorphic to A{AT(P)) endowed with its natural topoloqy
+
of Kothe space. Let cen (P) be and let b be the sequence defined by

1 -1 ..
bn = +cn/2 . If we show b« A+(P) , then ¢b = be dA{P) nd by Proposition

3.5.d) we have cb™' ¢ A(P) . Applying now Theorem 3.8., A(P)-nuclearity of
A(P)' 1is proved. Clearly bnzj) and, if (akn)ns P, we choose JjeN given

in condition (G4N) . We then have

-t/2 _1/2
nZ aknbn % n %n %in bn =

(> 2 a:1)1/2

n Jn 7 Jn n

IA

Consequently be A(P) and our assertion is proved.

Under the stromvjer assumption of uniform a(P)-nuclearity we have the



. following sufficient condition for a Kdthe space to have a strong topological

dual. A(P*)-nuclear.

Theorem 5.2. Let P and P' be nuclear power sets and Let us assume

| . -1 - f
that there Ls a seguence bea(P') such that b = (bnq) ¢P . Then the

strong topologlcal dual of each Kdthe space uniformly A (P)-nuclear Ls

A(P')-nuclear.

Proof. Let x(Q) be a ¥frhe space uniformiy A{P)-nuclear and let
7 : N —= N be the "universai" bijection associated. If &g ex+(o) , We can

construct a strictly increasing map o: N — N such that En £ 0 for
. . -1
each neo(N) . Let 1 the sequence defined by TS gn\b ‘1(n)} , neN .
kil

+ _ ‘ .
If we show that ter (Q) , then, the non-zero entrie: of the sequence

(En/Tn) can be rearranied by means of the injecticon oen , into the sequence

( ) wich belonas to A{P'} because, by hypothesis

B ()

% bc(n} n = f:: bc(n) %o(n) = nZ bn fn 7 for all (akn}n = P

From Theorem 3.8. we conclude that x(k+(Q)) , and hence the strong dual
A(Q)' , is A(P')-nuclear.
In order to prove that 1:A (Q) , let neQ be. By hypothesis there is

ged and cea(P) such that

aﬁ(n) = Bn(n) cn for all neN

Consequently we have

-1 - .
ZTn "n =Z£n(bﬁ_1 (n)) r1nzzgﬂ(n) bn "1 (n) :

-1
‘mZE-Cn(n) bn 8n(n) c:n

-1 . . . .
But (bn cn} is a bounded sequence (it is even summable because, by hypothesis,




b. ¢P ) . Theretore, we can find a number M>0 such that the inequality
’ < M < @
: Z:—,Tn'"n"‘ Z:Eﬂ(n) Bn(n) *

holds. Since, obviously, rngﬂ), we finally get 1« A+(Q).

Corollory 1. If a and B are exponent sequences such that (an/eﬁ)
converges to = , then the strong topologicol dual of each Kdthe space

uniformby  Afa)-nuclear Ls  A(8)-nuclear,

Proof. Let P = { (k™) : keN} and P' = {(K'n) : keN} be

the nuclear power set associated to o and 8 respectively. The seguence
a . - /B
(2 M) belonis to P and by hypothesis (2 1 'HB) —» 0 and, thus,

(Q_QH) e A{B) = A(P') (see the statement (1) in paragraph 2 } . We now

apply the theorem.

k
n
Corollory 2. If P = { (e )n T keN I , the strong topological dual

of each Kdthe space uniformly A(P)-nuclear Ls s-nuclear,

Proof. We know that s = A(P') where P' = { ((n+‘|)k)n t keN }

The corollary easily follows from the theorem noting that {en)e P
-n
)

and (e ¢ A(P') because for all keN

> e“n(n+1)k < 4=
1
Corcllary 1 is also obtained by M. S. Ramanujan (see [11] Proposition 8).
Since A(P) 1in Corcllary 2 is not a power series space (see [3] Theorem

2.25,), our Theorem 5.2. improves Ramanujan's result of Coerollary 1, supplyina

a stronger tool to investigate s-nuclearity of dual spaces.

6. Universal A(P)-nuciear Locally Convex Spaces. By the celebrated theo

rem of T. Komura and Y. Komura (4] , it is known that the Fréchet space

s of rapidly decreasing sequences is a universal generator for the variety




‘of rnuclear locally convex spaces, in the sense that every nuclear space can

L. A further universality

‘be embedded in an I-fold topoicgical product s
theorem is due to A. Martineau { [8] ) valid for the variety of s-nuclear
locally convex spaces and in this paraqraph we have the following embedding

thecrem for thevariety of XP)-nuclear locally convex spaces

Theorem 6.1. Let P be a s:zoble nuclear power set and Let A{P)' the
strong topological dual of  A(P). A Locally convex space E iLs A{P)-nuclLear
Lf and onLy Lf Lt Us topcloglcally isomorphic Lo a subspace of a sultable

I-fold topological product [a{e) ]t

Proof. Necessity. Let us assume that E is A P)-nuclear. By the equi-
valence 1 &3 2 of the Theorem 3.7., far each closed absclutely convex neigh-
bourhcod U of O in E , there is a closed absolutely convex nei-hbourhood

V of O such that VeU and the canonical map TVU : EV — EU 1s pseudo-
— A P)-nuclear. Hence, there are sejquences (An)e A(P) , (bn)c;(EV)' 2;EG°
with anﬂg1 and (yh)C'EU with pU(yn)g1 , such that

X(U) = T (x(V)) = A <x(V) b >y . XeE (1)

From (1} we get at once

<X bn> =0 for al neN = pU(x) = pU(x(U)) =0 (2)

We next prove that for each xXeE
(<Xbr]>) e AP)! (3)

Indeed, let (Er) € A+(P) be. Because (bn)c:v0 we have, by virtue of Theorem

L

3.5.a),

> lexb>le sp, (0T g <= , (4)
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Consequently, the map ot E — A(P)' given by

'¢U<k},:(<xbn>)n X e E (5)

is well defined and , obviously is a linear map. It is also continuous because

of (4).
Let OU = {Ui :1eI } a basis of closed absolutely convex neidhbourhoods

of O in E . By the above argqument, for each 1:1 we are able to define a

continucus linear map o as in (5) and then we define ¢ : E — {A(P)’]I
i

by #(x) = (s (X)) , XeE , wich is also a continuous linear map. Moreover
¢ 1is one~to-one because if ¢U-(X) =0 ftor all ieI , the statement (2)

gives p. (x) =0 for all 1e¢I and, consequently, x = O . Finally we show

U

1

that 6 is acpen map. Let Uj e be and W= 1T wi a zero neiqghbourhced
iel

AP)r it 14§ and

in [A(P)']I , where wi

W,
J

feealP) E:lknljgn‘i 1 }

(here (An) is the sequence in A(P) associated to U = UJ’ and given in

representation (1) ). All we have to show is
*{(E)NW c 9(U)

Let 4(x)eW be. We have {(<x bn>) = ¢U(x) = ¢U {(x) ewj and, from (1) we

finally get J

Py(x) = py(x(U)) £ ZIAHI | <x b>| py(v,) <1

We have thus proved x €U and the necessity.
.. I .
Sutficiency. From Theorems 5.1. and 3.9. we can assure that [a(P)'] is a
A(P)-nuclear locally convex space and, obviously, so is every subspace of

[a(P)'] 1 . The theorem is now completely proved.

In the proof of sufficlency in the 1ast thecorem , the stability of P plays



a prominent role as it.has been pointed out by P. Spuhler {13] and by E.
| Dﬁbinsky and M. S. Ramanujan [3] , because the product of even two
AA(P)—hﬁclear spacesrneed not be A(P}-nuclear if P fails to be stable (see
[13] ). | |

From the above theorem we thus deduce that the variety ”*;(P) of
A(P)-nuclear locally convex spaces has the AP)-nuclear space A(P)' as
universal generator in the sense that every a(P)-nuclear locally convex space

is topologically isomorphic to a subspace of a suitable I-fold topoloTical

product of spaces A(P)' .
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