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1 • Introduction. The class of nuclear smooth sequence spaces A ( P) of 

infinite type (also called nuclear G .. -spaces) has been introduced and stu­

clied by T. Terzioglu [141 and it is a intermediate categorie between power 

series spaces A(<>) of infinite type and general Kóthe spaces A(P) • 

In [11] , M. S. Ramanujan introduces the notion ot' A(a)-nuclearity that 

is a natural generalization of s-nucleari ty of V. S. Brudovskii ! 1 ] and 

A. Martineau [ 8] , and he gi ves a complete account of the structure ot' spa--
' 

ces A(a) and ot· A(<l)-nuclear locally convex spaces. The class of nuclear 

Gm -spaces is strictly larger than the class ot' nuclear power series spaces 

of infinite type (cf. [3] ) • Furthermore, G.;s]'Bces enjoy additional pro­

perties descríbed mainly in [3] , [9] and (16] . 

This course is a, survey of the theory of G,,,-spaces A ( P) and the associated 

notion of A(P)-nuclearity, including such topics as uniform A(P)-nucleariy, 

and the classíc Embedding Theorem of A(P)-nuclear spaces into products ot· 

duals A(P)' 

For the notations, tenninology and the not proved results of t'heJ.general 

theory, we will refer throughout to (6] and [10] . 



2. Prelirninaries. We recall that a set P of scalar sequences 

is called a ICóthe set, if it satisfies the followinq conditions: 

For each a o P , a > O for all n , N . n-

a = (a ) 
n 

( K1 ) 

(K2) For each a , b ' P , there exists e , P such that sup (a b l <e 
n n - n 

for all n < N 

( KJ) For each n < N , there exists a< P such that a >O 
n 

The correspondinq Ki:ithe space assoc.iated to P is the vector space of 

scalar sequences 

¿: a \¡; 1 < + 00 

n n 
for all (a ) E p} 

n 

Under the natural topoloc¡y \(P) becames a complete locally convex space 

and A(P) is nuclear if and only if the followino Grothendieck-Pietsch 

criterion is satisfied: 

( K4) For each a< P , there exists 

a < b e for all n < N 
n- n n 

1 
b<P and C<l such that 

Amonq the rnost interestinq Ki:ithe spaces we find the power series spaces 

A ( cx) of infini te type, wich are the Ki:ithe spaces .1enerated by the ICcithe 

set P = { ( k "n ) : k < N} where cx = ( cx ) is assurned to be a sequence 
n n 

of real nurnbers such that O,s.cx
1

,s.cx
2

,s. ..• t 00 • The (K4) criterion is 

equivalent, for A(cx) spaces, to the followinq qrowth condition 

( K4' ) For sorne R > 1 

If ( K4') is satisfied, a is called exponent sequence and then 

( 1 ) 

(see [11] ). 

A ICóthe set P is called a power set if P satisfies the followinq 

conditions 



(G1) P is countable (We shall denote by ('\n)n the k-th sequence. 

in P) 

(G2) 1 <a. <a. 
- l<Il- 1<+1,n 

for all k , n < N 

(G3) a. <a. forall k, noN 
l<Il- 1<,n+1 

(G4) For every k < N there is j < N such that sup 
n 

2 

'len 
-1 

a. 
Jn 

The power set P is ca1led stable if it satisfies adittionally the so-called 

"stability condition" 

( GS) For every k < N there is j EN such that sup a. 
2 n k, n 

-1 
a. 

Jn 
< +oo 

The corresponding Kothe space A(P) associated to a power set P is 

a Fréchet space called smooth sequence space of infinite type or ~-space 

and it will be denoted by A(P) . If P is stable, A(P) is called also 

stable. G
00
-spaces were introduced and studied by T. Terzioqlu [1~] and 

they are a intermediate class between Kothe spaces and power series spaces 

because, as shown by E. Dubinsky and M. s. Ramanujan [3] , there exist 

G~spaces wich are not power series spaces, while every power series space 

is, obviously a G00-space. 

Conditions (G4) and (K4) together are equivalent to the following 

(G4N) For every k < N there is j < N such that 
2 -1 :La. a. <+oo 
l<n Jn 

wich is, therefore, a necessary and sufficient condition for a Goo-space 

A(P) to be nuclear. We shall call P nuclear power set in case the stronqer 

condition (G4N) is satisfaid instead condition (G4) . 

As usual we shall denote the Kothe dual of A(P) by 

( n ) for all 
n 

and the positive elements of A(P) by 

+ A (P) = ( n < A(P) n >O for all n < N } n-

E; E A(P) } 
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3. A(P)-Nuclearity. In this section we shall deal with the notion of 

•-nuclearity introduced and studied by E. Dubinsky and M. s. Rarnanujan 

[3] and V/hose methods are entirely valid into the frarnework of A(P)-nucle-­

ari ty. We start wi th the followinq 

DefLnltLon 3.1. (DubLnsky, Romonujon) Let • be a sequence spoce. A 

LLneor mop T : E ~ F between Bonach spoces LS saLd to be •-nuclear 

(resp. pseudo-•-nucLeor ) Lf there excst a sequence ¡; < A 
' a bounded 

sequence (o ) e E' 
n 

and o sequence (y ) e F 
n 

wLch satLsfLes ( < y 
n 

b >) < A 

for oLL b < F' (resp. wlch Ls bounded Ln F ) 
' such that the foLLowLng 

condLtLon hoLds 

Tx '[i;<xo>y 
n n n 

X ( E 

If P is a nuclear power set bcth definitions of A(P)-nuclearity are 

equivalent 1 as we see in the followinq 

ProposLtLon 3.2. Let P be a nucLear power set. A LLneor map 

T E ~ F Ls A(P)-nucLeor Lf and onLy Lf Lt Ls pseudo-A(P)-nucLear. 

Proof. Since ~~1 for all (~)n<P, we have A(P)c.1
1 

and thus 

X 

~ X 
1 e A(P) . We deduce that if the map T is pseudo--A(P)-nuclear , then T 

is A(P)-nuclear. Conversely, let T : E ----> F be a A(P)-nuclear map and 

i; , (an) and (yn) as in definition 3.1. The sequence -r defined by 

1/2 
-r = ¡; belonqs to A(P). Indeed, by nuclearity of A(P) , qiven k < N 
n n 

we can choose j < N such that condition (G4N) lS satisfied. We then have 

:L ~ 1 'ni L 
-1/2 1/2 

1 ¡; 11 /2 = ~ a. a. < 
n n Jn Jn n 

("L 2 -1 l 1 ;2 ( L: 1/2 
< ~ a. a. ¡i; 1) < +~ 

n Jn n Jn n 

Finally, if we define z = -r y , then 
n n n 

X ( E 
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where the sequence < z b > = ' <y b > is bounded for each b < F' ( i t is 
' . n n n 
even·sunmable) and, in view of the uniform boundedness theorem, the sequence 

(z) is bounded'in F. Thus, we conclude that T is pseudo-A(P)-nuclear. 
n· 

For each continuous linear map T between Banach spaces E and F , 

and for each n < N , we define the n-th approximation number of "' by 

where A ran1es over the set of all continuous linear maps from E 
n 

in to 

F such that A (E) has at most dimension 
n 

n . If the (decreasin1) sequence 

(a (T)) 
n 

beloff!S to a qi ven sequence space x , we shall say that T lS Of 

type x • If for sorne p > O , (a (T)p) < x , T is called of type ,P . 
n 

ProposLtLon 3.3. Let P be o nucleor power set. Eoch pseudo-A(P)-nuclear 

rnQP Ls of type A(P) 

Proof. Let Tx = L ¡; < x a > y be a representation of the pseudo-A(P)-
n n n 

nuclear map T as in definition 3.1. We have 

ro ~ 

a(T)< :Z:::¡r;,Ha.llnY·ll<ct. le! 
n i=n i i i - i=n i 

where e > O is a number which does not depend on n . Since a . > 1 
1 l -

( 1 ) 

for every 

i < N , condition (K4) of nuclearity gives in particular an index r< N such 

that, for every n < N 

n 
(n+ 1) < 
a 

¿ 
i=O 

< f::_ 
a , - i=O 
ri 

a , 
1l 

=r-1<+00 
rn 

a , 
ri 

Let k ?,r 

2 M' a <. a. 
kn- Jn 

be and by condition (G4) let us take 

for every n < N • We then have 

-1 
e E 

n=O 

') \<ni (n+1 )'\n = f 
n=O n=O 

ro 
=Z 

n=O 

n+' 
\;; \-' a a :: M 

n a rn kn 
rn 

je N and M' >o such that 

Ir, Iª· <+ro n Jn 
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since this relation is also true for k < r (see condition (G2) 1
), it toliows 

that (a. (T)) € A(P) and T is of type A(P) 
n 

The followinq theorem is a generalization of a result of G. Kóthe [5] 

about s-nuclearity of diaqonal maps in 1
1 

and supplies plenty of A(P)-nuclear 

maps in the Banach space 1
1 

. We recall that if ¡; is an element of the 

space $ of finitely non-zero sequences, there exists a unique sequence ¡; 
- -

wi th the property O..::, 'n+ 1 ~ ¡;n for a).l noN and there exists a bijection 
-

rr : N ---+ N such that / <rr(n) 1 = i; 
n 

exists a unique sequence such that 

exists an injection rr N ----,> N such 
-

for all no N • If 
- -

¡; < c - $ there 
o 

O< ¡; < ¡; for all 
n+1 - n 

n<N and there 

that rr(N) ={noN: ¡;¡!o} and 
n 

1¡;rr(n)1 = i;n for all n < N . In ei ther case we shall cal l ¡; the decreasi n 9 

rearranoement of i; • We then have 

ProposLtLon 3.4. Let 

convergLng to O , ond Let 

be Q sequence of non-negotLve numbers 

---+ L
1 

be the dLogonoL tronsformo.tLon 

D (x ) = (¡; x ) • Then the foLLowLng ossertLons ore equLvoLent 
¡; n n n 

o) o, Ls A(P)-nucLeor 

,b) i;<A(P) 

Proof. We exclude the trivial case ¡; < $ . Then let rr : N -...;¡. rr(N) be the 

bijection defininq the decreasing rearran1ement of i; and let 
1 1 

wrr 1 ----¡ 1 [rr(N)] be the isomorphism wrr(xn) = (xrr(n)) w:ith inverse 

.¡, .-1 

b)=? a). 

map D- : 
i; 

If Z o A(P) , i t is straiqhtforward to check that the dia¡onal 

i 1 [ rr(N)] ----> i 1 [ rr(N)] is A(P)-nuclear and, -thus, só is 

D =>ji i•D-·>j¡ 
i; .- i; rr 

a)==:> b). If D is A(P)-nuclear , it is of type A(P) (Proposition 3.3.) ¡; 
Therefore, 

a. (D-) = z 
n ¡; n 

D- is 
i; 

(see 

also of type A(P) . But, since 

[10] , 8.1.5.). Hence, Z < A(P) 

is decreasinq, we have 

Let E be a lcx:ally convex space and U a closed absolutely convex 

neiqhbcurhood of O in E with correspondinq qauge ~Y . As usual we shall 

denote by EU the completion of the normed space E/p (O) endowed w:ith 

the norm p
0 

. Let P be a nuclear power set. Pollowinq [J], a lcx:ally 
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convex space E is said to be A(P)-nuclear if a basis <1ll (equivalent, any 

basis) of closed absolutely convex zero neiohbourhoods in E has the fo­

llowinq property: For every U< "U. there exists V< li..l. such that V e U and 

the canonical map TVU : E --7 
V EU lS A(P)-nuclear (in view of Proposition 

3.2. is equivalent to say that TVU is pseudo-A(P)-nuclear). 

It is worth notinq that, in view of Proposition 3.2., the above definition 

is equivalent to Ra~anujan's definitioQ of A(a)-nuclearity (see [11] ) and, 

as we shall see later, to Moscatelli's definition of A-nuclearity (see [9] ). 

In order to prove this assertion, we shall need sorne properties relatives to 

nuclear Goo-spaces wich are collected in the following proposition 

ProposLtLon 3.5. Let P be Q power set. Then 
1 

o) A(P)c L 

b) A (P) Ls normQL, 

then n E A (P) 

e) lf :p Ls stable, 

there exLsts a bi..jectLon 

T = i; V n Ls defLned by 

thot LS 

A (P) 

n : N 

T 
2n-1 

Lf [, E A (P) ond 

Ls QddLtLve, that 

---> N su ch thQt 

1" = r¡ 
2n n 

1 nnl .::_ 1f,n1 for QLL n E N ' 

Ls for evef"'y ¡; ' n E A(P) 

h n (n)) E A (P) whe!"'e 

d) 1 f P Ls nuclear, A(P) Ls decreasLng rearrangement LnvarLant, that 

Ls ¡; E A (P) LmppLLes F;EA(P) 

Proof. Parts a) and b) are easy consequences of definitions. For c) , 

let ¡; , n < A(P) be, and let us prove that the sequence ' = ¡;un belonc¡s 

to A(P). If k EN , let j EN be the number given in axiom (G5). Then, there 

exists a munber c >O such that 

< 

L In 1 a. + c L I¡; 1 a. < + 00 

n n Jn n n Jn 

Finally d) is proved noting that for every ¡; <A(P) , the diagonal rnap 
1 1 D¡; : 1 ~ 1 is A(P)-nuclear and applyinq Proposition 3.4. 

In the rernainder of this paraqraph, we shall assurne that P is a stable 



¡¡uclear power set, that is P satisfies conditions (G1) , (G2) , (G3) , 

(G4N) and (G5) . 

ProposLtLon 3. 6 .. Let T E ---> F S : F --> G be contLnuous LLneor 

mQps of type l (P) (p >O) Then S •T : E -7 G Ls of type Ap/2 (P) 

Proof. Bt hypothesis 

the inequality 

and 

a (S•T) < a (T) ex (S) _< 1/2 [ex (T)
2 

+ex (S)
2

] 
2n - n n n n 

and from nonnality of A(P) we get ¡; = (ex2 (S•T)) E Ap/
2

(P) . Since 
n p/2 

n = (ex
2 

(S•T)) o A (P) 
n+1 

ex < a , again by nonnali ty we have 
2n+1 - 2n 

Finally, by Proposition 3.5. e) and d) , we conclude 

- p/2 
(ex (S•T)) = t;Un o A (P) 

n 

. Frorn 

These previous results lead to the following characterization theorem 

for A(P)-nuclear spaces 

Theorem 3.7. Let E be a LocaLLy convex space wLth basLs of cLosed 

absoLuteLy convex zero-neLghbourhoods oU. • The foLLowLng assertLons are 

equLvaLents 

1) E Ls A(P)-nucleor 

2) For each U o Cil.t there exLsts V o óU. such that Ve U and the co­

nonLcaL rnap TVU Ls pseudo-A(P)-nucLear 

3) For sorne, resp. for eoch, number p >O , the foLLowLng condLtLon Ls 

sotLsfLed : For each U o O\!. there Ls V o óll such thot V e U and the 

cononLcoL rnap TVU Ls of type AP(P) 

Proof. By [9] , I.2. Theorem 1 , we have 3)=9 2) . Equivalence 1)~ 2) 

is the Proposition 3.2. 

choose noN such that 

Finally we shall prove 
-n .. 

2 < p . By Propoq tion 

2)~ 3) . Let p >O be and 

3.3., qiven U= U o 6ll 
o 

there exist neiqhbourhoods , k = 1 , 2 , ... , n , such that 
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lJ c. u and the canonical map Tk : E ~ E is of type 
k+1 k uk+1 uk 

A(P) . If 

V = U , the canonical map 
n 

TVU = T .T • ... ·T 
o 1 n-1 

rn 
is of type A (P) be-

cause of Propcsition 3.6; Consequently Tv1J is of type AP(P) and the theo­

rem is entirely proved. 

Next we investi•1ate A( P)-nucleari ty of sequence spaces. We shall be 

mainly concerned with Kothe spaces A(Q) , where O is a l(cithe set as defined 

in parac¡raph 1 • We have the following l(cithe-Pietsch-Grothendieck cri terion 

wich comes from a corrected version dueto ~othe [5] of a theorem of Brudovskii 

about s-nuclearity of Kothe spaces A(Q) • 

Tr.eorem 3.8. Let O be a Kothe se:. A(O) \,s A(P) nuclear Lf a.nd only \,f 

LC l..s satl..sfl..ed sorne of the two foLLowl.ng equl..valent condl..tl..ons 

o) For each a< O , there ex\,sts b < O such that a. < b for a.LL n < N , 
n- n 

(here ab-1 stands for the sequence (a b-1) where ratl..os 
n n 

0/0 ore assumed to be O ) 

b) For each a.< O , there exl..sts b E O such that a < b for oll n E N 
n- n 

and the sequence (o b-1) , o ~ O , 
n n n 

can be reorronged l..nto a sequence l..n A(P) 

Prcof. The equivalence of a) and b) is a strightforward consequence of Pro­

pcsition 3.5. d) , because if n is the rearranqement of (a b - 1) , a ~O 
n n n 

belonginq to A(P), we have D<A(P). But ;; = ab-1 and the equivalence 

is proved. 

Let a o Q - $ be and let a N -4 N a strictly increasinq map such that 
a 

a ( ) ~ O for all 
ºa n 

n<N and let Ua = { < : ¿::ªni <ni ,:s 1} be a neic¡hbour-

hoocl of O in [,(Q)]u is norm-isomorphic to 
a 

(the map (¡;+U),__.(¡; ( )ª ( .) 
a ºa n ºa nJ 

beinq such an isomorphism), then the 

canonical map 

[ ' ( Q)] u can 
a 

D
1 

: 11 [ob(N)] 

T ,boQ,b>a 
ubua n- n 

be identified wi th the 

__. i 1 [o (N)] where 
a 

for all n e N , fran in to 

diagonal transformation 

T 
n 

= a b-1 
n n 

n < a (N) . Now, by Propo­
a 



sitian 3.4. D (equivalent 

- 1 e:: -

T 
Ul'Pa 

is A(P)-nuclear if and only if 

- -1 
T = ab belonqs to A(P) , and our theorem easily follows. 

V. B. Moscatelli has shown that for a qeneral sequence space ' satisfy­

ing the properties collected in Proposition 3.5., the class of A-nuclear 

spaces is closed under the for:nation of countable direct sums (see [9] , II,1, 

Lemma 1 and I,4, Theorem 5 ) . In the ~ame way, pennanence of A-nuclearity 

under the formation of product is closely related to the property c) of 

Proposition 3.5. (see [3] Lemma 2.7. and Theorem 2.9. ). Because A(P) satis­

fies the properties of the above mentioned theorems, we state without proof the 

following 

Theorem 3.9. 1 f P LS o stoble nucLeOJ' power set, every product ond every 

countoble dlrect sum of A(P)-nucleor spoces ls ~P)-nucLeor. 

4. Uniform A(P)-nuclearity. In the condition of Theorem 3.8. about A(P)­

nuclearity of Kóthe spaces we claim for a rearranoement of the sequence ab-1 

that depends on the element a. In sorne applications (see [15] ) and spe­

cially in the study of dual spaces, it is of great interest the existence of 

a "universal" permutation TI valid for every element a . This leads G. Kéithe 

to define a secjuence space A(Q) to be uniformly A(P)-nuclear if there exists 

a bijection TI : N __, N such that for each a o O , there exists b < O such 

that a < b for all n o N and 
n- n 

for sorne sequence 

We then have 

a = b c 
TI(n) TI(n) n 

(c)oA(P). 
n 

noN 

Proposltlon 4.1. lf A(O) ls unlformly A(P)-nucLear, A(O) 1.,s A(P)-nucLear. 

Proof. Let n be the "universal" bijection associated to A(Q) and let a o Q. be. 

We exclude, by trivial, the case a < ~ . Then let o : N --> N be a strictly 

increasinq sequence such that aTI(o(n)) f O for all n o N . We choose the ele-



ment b < Q qiven by uniform A(P)-nuclearity, wich satisfíes "a fortiorí" 

brr( o(n)) # O for all n < N and we finally show that 

ªrr( a(n)) 
b 

rr(a(n)) 

is a rearrangement of non-zero entries of the sequence 

nEN 

-1 
ab that belOWJS 

to A(P) . Indeed, let k EN ar1d , beirn o a increasina map we have 

¿:_ 
n 

a 
rr( o(n)) 

b rr( o(n)) 

<L:_ 
n 

ªrr(o(n)) 
b ~o(n) 

rr(o(n)) 

= L cc(n) ~o(n) 
n 

From Theorem 3.8. we now deduce that "(0) is A(P)-nuclear. 

As shown by E. Dubinsky and M. S. Ramanujan, [3] Theorem 2.7. , not every 

A(P)-nuclear space is uniformly A(P)-nuclear and in [5] , G. Kothe shows 

that if Q is countable, then \('.;I) is s-nuclear íf and only íf \(Q) is 

uniformly s-nuclear. We qive now a 1eneralízation of this result valid for 

A(P)-nuclearity that contains, as a particular case, Dubínslcy and Ramanujan's 

theorem ([3] , Theorem 2.6.) about A(a)-nuclearity. The stability of the 

sequence exponent a in the above mentioned theorem (that is sup a
2 

/a < + ~ ) 
n n 

and the stability of P (condition (G5) ) in our following theorem, are 

essentíal assumptions for the equivalence. 

In arder to preve this theorem we shall need the two following lenrnas, 

the first of wich is due to Dubinsky and Ramanujan [3] , and thus, its 

proof is omitted 

Lemmo. 4.2. (E. DubLnsky, M. S. Rarronujan) Let 6: N --> N x N be Q 

bLjectLon and • k : N ~ N , k < N , be a sequence of LnjectLons such that 

for eoch n < N there exLst k , m < N wLth 

on L.njectLon y: N---> Nx N ( y(n) = ( r
1

(n) 

n (m) = n • Then there exLst 
k 

, Y 
2 

(n)) for all n < N ) and 

o bl.jectLon rr : N __, N sotl.sf dLng the foLLowi_ng condLtLons 



b) lf , then 

e) for oLL n E N 

Lernrno 4.3. lf P LS Q stoble power set, there exlsts u bljectlon 

B : N - N x N wl.th the foLLowlng property: For euch r E N ond k E N 

there exlsts j • N such thot 

sup 
rn 

< + ~ 

Proof. Let B 
-1 k-1 

be the bijection defined by B (k rn) = 2 ( 2rn-1) . 

Given r = r EN o 
and k E N we take integers I',E N ( 1.:;.i.:;_k 

l 

by condition (GS) and nurnbers y . 
l 

a <Y. 
r. 

1
,2n - i 

l-

We then have for j = rk EN 

ªr,a-1(k rn) 
sup 

rn a. 
Jffi 

ªr,2~ 
< sup < 

rn a. 
Jffi 

a 
r. ,n 

l 

= sup 
rn 

k 
sup TI 

rn Í=1 

1 .::. i.::. k such that 

for all tlEN,1.:;_i.:;_k 

ªr,2k-1 (2rn-1) 

a. 
JITI 

< 

a r· 1 2k-i+1rn l- ' 
a k-i 
r. ,2 m 

l 

k 
< n y. 

i=1 l 

supplied 

Theorern 4.4. Let O be u countubLe Kothe set und P u stuble power set. 

lf ;(Q) l.s A(P)-nucleur, then ;(Q) l.s unlforrnly A(P)-nucleur. 

Proof. Let us denote O = { ck : k E N } . By the Grothendieck-Pietsch-:Ccithe 

criterion (TheorPJ!l 3.8.b)), for each kEN 

and an injection "k : N ~ N such that 

"k(N) = { n EN : e~ f O } and the sequence 

we can find an integer j ( k) E N 

ck < cj(k) for all n EN , 
n - n 
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DEN 

belonqs to h(P) . 

If n EN , by condition ( !:3) there exists k EN such that ck ~ O , 
n 

that is DETik(N) and, thus, there is ffiEN such that n = Tik(m). On 

the other hand, by stability of P , we can have the bijection B aiven in 

Lemma 4.3. and then we can apply Lemna 4.2. to qet the injection y and 

the bijection TI • We finally show that TI is the desired bijection in or­

der to check uniform h(P)-nuclearity of '-(O) , that is, we shall prove that 

foreach kEN, (bk( )) <A(P). 
TI n n 

If kEN, choose DEN sJch that b~(n) ~O and take now the (unique) 

integer mE N such that n(n) = Tik(m). By Lemma 4.2.c) we have 

and by Lemrna 4. 2. a) and b) ·,;e qet 

-1 -1 
n.::_B y(n).::_B (km) ( 1 ) 

Then, let (a ) E P be arbitrary, and let j EN be the number associated 
rn n 

to k and r qiven in Lemma 4.3., satisfyino 

for all m EN 

(here e is a number that does not depend on m EN) . Consequently, by 

applying (1) and axiom (G3) we have, for each n EN with b~(n) ~ O 

< 

k 
< e b ( Jª. Tik m Jm 



But each such n < N has associated a unique m < N wi th rr ( n) = rr k ( m) 

because rrk is injective. Consequently 

Since 

.._.... bk a < 
ir n(n) rn 

k 
e z: b ( )ª. m rrk m Jffi 

k 
( b ( ) ) < A ( P) , the last series is fini te and, thus, 

"km m 

The theorem is now completely proved. 

k 
(b ( )) < A(P). 

n n n 

s. Dual Spaces . It is knowm, by a result of A. Martineau [8] and V. S. 

Brudovskii [1] , that the stronq topoloqical dual of every metrizable nuclear 

locally convex space is s-nuclear. In particular, the dual space s' of the 

space s of rapidly decreasin1 sequences is s-nuclear and the question 

arises whether an analogous theore~ holds for a nuclear G.,,-space A(P) . 

Theorem 5.1. Let P ben stoble nucleQr power set. The stronq topolo­

gLcol dunl A(P)' of the nuclenr G~-spnce A(P) Ls A(P)-nuclenr. 

Proof. We recall ( see [ 5 l ) that the stronq topological dual of A ( P) 

is topologically isomorphic to >.(A+(p)) endowed with its natural topoloay 
+ 

of Kothe space. Let c <A (P) be and let b be the sequence defined by 

1 /2 + -1 
b = +e . If we show b <A (P) , then cb = b < A(P) a.r;d by Proposition 
n n 

3.5.d) we have cb-1 < A(P) . Applying now Theorem 3.8., A(P)-nuclearity of 

A(P)' is proved. Clearly bn~O and, if (~)n < P , we choose j < N given 

in condition (G'IN) . We then have 

¿:: ~b = ~~ 
ª~1/2 ª1/2 b < 

n n Jn Jn n 

(~ 
2 -1) 1 /2 (¿ e ) 1 /2 < ~ a. a. < + ~ 

n Jn n Jn n 

Consequently be A(P} and our assertion is proved. 

Under the stronqer assumption of uniform A(P)-nuclearity we have the 
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followinq sufficient condition for a Kºcithe space to have a stron1 topolooical 

dual A(P' )-nuclear. 

Theorem 5.2. Let P and P' be nuclear 

that there l.s a. sequence b E A (P') such tha.t 

power sets and Let us assume 

b - 1 
= (b - 1 ) E P . Then the 

n 

strong topoLogl.caL dua.L of each Kothe spa.ce unl.formly A(P)-nuclear l.s 

A(P' )-nuclear. 

Proof. Let >.(Q) be a ".c:he space unifomJ.y A(P)-nuclear and let 

+ rr : N --> N be the "universal" bijection associated. If ¡;E>. (O) , we can 

construct a strictly increasirn map o : N ---> N such that ¡;n i O for 

each n E o(N) . Let -r the sequence defined by 
-1 

'=i;(b_1()) n n 11 n 

If we show that +; ) -r E >. \ Q , then, the non-zero entrie,~ of the sequence 

n EN . 

( ¡;n/ 'n) can be rearrancied by means of the injection o•rr , into the sequence 

(bo(n)) wich belon<JS to A(P') because, by hypothesis 

From Theorem 3.8. we conclude that 
+ 

>. ( >. ( Q) ) , ar1d hence the stron1 dual 

>.(Q)' , is A(P')-nuclear. 

In order to prove that -r < J.+(Q) , let n E O be. By hypothesis there is 

8 E Q and e E A(P) such that 

for all n EN 

Consequently we have 

-1 -1 
n =~1; (b -1( )) n =Li;..1 ) b n n rr n n .,n n n = rr(n) . 

-1 
But (b e ) is a bounded sequence (it is even summable because, by hypothesis, 

n n 



b-l < p ) . Therefore, we can find a number M> O such that the inequality 

holds. Since, obviously, 'n.::, O , we finally qet + 
TEÁ(Q), 

CoroLLory 1. lf a ond B ore exponent sequences such thot (a /B ) 
n n 

converges to 00 , then the strong to¡:iologLcol dual of eoch Kothe spoce 

unLformly A(a)-nucleor l-S A(B)-nucleor. 

Proof. Let P = { ( k ªn) : k E N } and 

the nuclear power set associated to " ard B respecti vely. The sequence 

( 2"n) d b h · belon-1s to P an y ypothesis 

-a 
(2 n) ~ A(B) = A(P') (see the statement (1) in paraoraph 2 ) . We now 

apply the theorem. 

k 

Corollory 2. 1 f P = { (en ) n : k EN ¡ , the strong topoLogLcoL dual 

of eoch Kothe spoce unLformly A(P)-nucLeor Ls s-nucleor. 

k 
Procf. We know that s = A ( P' ) where P' = [ ( ( n+ 1 ) ) : k < N } • 

n 
The corollary easily follows from the theorem notina that (en)< P 

ard 
-n 

(e )<A(P') because for all k<N 

' -n k 
¿_ e (n+1) < +oo 
n 

Corollary 1 is also obtained by M. s. Ramanujar (see [11) Proposition 8). 

Since A(P) in Corollary 2 is not a power series space (see [3] Theorem 

2.25.), our Theorem 5.2. improves Ramarujar's result of Corollary 1, supplyinn 

a stronqer tool to investiqate s-nuclearity of dual spaces. 

6. Universal A(P)-nuclear Locally Convex Spaces. By the celebrated the2 

rem of T. Komura ard Y. Komura [4] , it is known that the Fréchet space 

s of rapidly decreasin'.l sequences is a universal qenerator for the variety 
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of nuclear locally convex spaces, in the sense that every nuclear space can 

be embedded in an I-fold topological product s1 . A further w~iversality 

theorem is due to A. Martineau ( [8] ) valid for the variety of s-nuclear 

locally conve.x spaces and in this paraqraph we have the following P.rnbeddinG 

theorem for the variety of ti_ P)-nuclear locally convex spaces 

Theorem 6.1. Let P be Q s:oble nucleQr power set Qnd Let A(P)' the 

strong topologl.col dual of A(P). A LocQLLy convex spQce E Ls A(P)-nucleor 

Lf Qnd only Lf Lt Ls topologl.colly Lsomorphl.c to o subspQce of o sul.toble 

I-fold topoLogLcoL product [A(D) •] 1 

Proof. Necessity. Let us assume that E is A(P)-nuclear. By the equi­

valence 1 <=9 2 of the Theore~ 3.7., foY' each closed absolutely ccnvex neioh­

bcurhood U of O in E , there is a closed absolutely convex neiGhbourhcxxi 

V of O such that V c. U and the canonical map Tvu ~ ---; E
0 

is pseudo-

- tl._P)-nuclear. Hence, there are sequences (.In}' A(P) , (bn) e (EV)' z- EVº 

x(U) = T (x(V)) =L.\ < x(V) b >y 
VU n n n 

XEE ( 1 ) 

From ( 1 ) we qet at once 

< x bn> =o for all n< N =9 p
0

(x) = p
0

(x(U)) =o (2) 

We next prove that for each x' E 

(<X b > ) E A(P)' 
n 

( 3) 

Indeed, let 

3.5.a), 

( ¡; ) , A+ ( P) be. Because ( b ) e V° we have, by virtue of Theorem 
n n 

Z:l<xb>ji; ~pv(x)l:i; <+~ 
n n n 

(4) 



~onsequently, the rnap 
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$ ·E ----t A(P)' u . 

$u(x) = ( < x b > ) 
n n 

given by 

XEE ( 5) 

is well defined and , obviously is a linear map. It is also continuous because 

of ( 4). 

Let oU. = [ Ui : i < I } a basis of closed absolutely convex nei:rhbourhoods 

of O in E . By the above ar'.1Ument, for each i < I we are able to define a 

continuous linear map $U. 
1 

as in (5) a.rid then we define $: E___,. [A(P) •] I 

by $(x) = ($
0
.(x))id , X<E, wich is also a continuous linear map. Moreover 
1 

is one-to-one because if $ui (x) = o for all i < I , the statenent ( 2) 

1ives Pu. (x) = O for all i < I and, consequently, x = O . Finally we show 
l 

that $ is a open map. Let U. E'll be and w = rr w. a zero nei:rhbourhood 
J id l 

in [A(P) •] 
1 

, where W. = A(P)' if i ¡l J and 
l 

( ¡, ) is the sequence in A(P) associated to u= u. 
n 

representation (1) ). All we have to show is 

Let Hxl o W be. We have 

finally c¡et 

$u (x) o w. 
. J 

J 

p (x) = p (x(U)) < L I• / / < x b > 1 p (y ) < 1 
U U - n n un-

We have thus proved x <U and the necessi ty. 

J 
and aiven in 

and, fran (1) we 

Sufficiency. From Theorems 5.1. and 3.9. we can assure that [A(P) •] 
1 

is a 

A(P)-nuclear locally convex space and, obviously, so is every subspace of 

[A(P)•] I . The theorem is now completely proved. 

In the proof of sufficiency in the last theorem , the stability of P plays 
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a praninent role as it has been pointed out by P. Spuhler [13] and by E. 

Dubinsky and M. S. Ramanujan [ 3 l , because the product of even two 

. A(P)-nuclear spaces need not be A(P)-nuclear if P fails to be stable (see 

[ 1 3] ) . 

Fran the above theorem we thus deduce that the variety J. of 
A(P) 

A(P)-nuclear locally convex spaces has the l(P)-nuclear space A(P)' as 

universal qenerator in the sense that every A(P)-nuclear locally convex space 

is topolo']ically isanorphic to a subspace of a suitable I-fold topololical 

product of spaces A(P)' . 
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