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INTRODUCTION 

In this paper we construct a projective description of inductive limits of weighted spaces 

of continuous functions defined in a paracompact, not necessarily locally compact, 

topological space. The locally compact setting of this question has been extensively studied 

in [2] , [3] , [4] , [5] , [6] and [7] and in the present work we develop new techniques to 

address the weakened hypothesis situation. The paracompact setting pays off by permitting 

the extension of the theory to the class of spaces of continuous functions defined on metric 

spaces {without any other hypothesis of compactness). 

This kind of problems was first studied in [4] for the special case of echelon and 
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coechelon Kothe sequence spaces which is nothing but the study of weighted spaces of 

continuous functions defined in a discrete ( and hence locally compact) topological space. 

However the original impetus comes 1'ack to the description of inductive limits of weighted 

spaces of continuous and holomorphic maps (see [2] and [11] ) defined in topological 

spaces always assumed, at least, locally compact. More recently, [8] , has been obtained a 

projective description of weighted inductive limits of spaces of null sequences with values in 

a Fréchet space. 

The notations and results on Hausdorff locally convex spaces (1. c. s.) will be taken from 

[13] and [14] . Sometimes a l. c. s. E is assumed to have the countable neighborhood 

property (c. n. p.), i. e. for every sequence {pn}nEIN e cs(E) ( = the set of all continuous 

seminorms in E ), there exist scalars a(n) > O , n E IN , and p E cs(E) such that 

pn(x) ~ a(n)p(x) for all x E E and n E IN . The scalar field, every normed space and even 

every (DF) space have the c. n. p. (see, for instance, [9] and [15] ). 

If X is any completely regular topological spacB we denote by C(X,E) the linear space 

of all the continuous functions from X into E and by Cc(X,E) the subspace of those 

functions of C(X,E) which have compact support. 

A "weight" on the completely regular topological space X is a non-negative real valued 

upper-semicontinuous (u. s. c.) function defined on X . A system of weights in X is a 

directed upward set V of weights in X such that for al! x E X there exists v E V such 

that v(x) > O . The system of weights V on X generates the "weighted" space 

CV(X,E) := { fE C(X,E); for all p E cs(E) and v E V, q (f) := sup v(t)p(f(t)) <+ro} 
vp tEX 

and its subspace 

CV 
0
(X,E) := { f E C(X,E) ; for all p E es( E) and v E V , v(p0f) vanishes at infinity } 

The space CV(X,E) is topologized by the set of seminorms {q } E (E) EV and vp p es ,v 

then CV 
0

(X,E) is a closed subspace which is topologized with the relative topology. If v 



is a strictly positive weight and V := { .Av ; A > O } , the weighted spaces CV(X,E) and 

CV
0
(X,E) will be denoted respectively C(v)(X,E) and C(v)

0
(X,E) . Let 'Y= {vn}nEIN 

be a decreasing sequence of strictly positive weights vn on X. We consider the weighted 

inductive limits 

'YC(X,E) := ind C(vn)(X,E) 
n-: 

J;;C(X,E) := ind C(vn)
0

(X,E) 
n-> 

endowed with the usual Hausdorff inductive locally convex topology. 

Associated to the above sequence of weights 'Y = {vn} we construct its rnaxirnal 

Nachbin farnily V = V( r) of al! the u. s. ~. functions v : X----> [O , ro) such that for 

sorne sequence r > O , rn E IN , v ~ i nf r v . V is a systern of weights in X and by 
rn rn E IN rn rn 

the very definition of V we ha ve the obvious ( continuous) inclusions 

'YC(X,E) ___, CV(X,E) 

Beside the rnaxirnal Nachbin family V = V( r) associated to a decreasing sequence of 

strictly positive continuous weights 'Y= { v n} , sorne subfarnilies occasionally arise in the 

. . . 
theory. We define V:= { v E V ; v is continuous } and V := { v E V ; v > O } . If V 

is a systern of weights, the natural inclusion CV 
0
(X,E) ---1 CV 

0
(X,E) is continuous 

because V e V . But in the presence of local cornpactness, the systerns V and V are 

equivalent, i. e., for every v E V there exists w E V such that v ~ w (which obviously 

arnrnounts to the algebraic and topological identity CV 
0

(X,E) = CV 
0
(X,E) ). Indeed, 

given v E V we take rrn > O for al! rn E IN such that v < i nf r v . The function 
- rn E IN rn rn 



w := i nf r v majorizes v and it is pointwise limit of decreasing continuous functions 
mEIN mm 

on a compact neighborhood of each point of X (namely, w = 1 im ( in f rm vm)) . The 
n-1w l~m~n 

Dini's Theorem forces this convergence to be uniform on such neighborhood and, hence, w 

is continuous ( cf. [10], 3.2.18. ). 

It is not such a trivial matter the question whether V is equivalent to V ( which results 

in CV 
0

(X,E) = CV 
0

(X,E) ). In order to answer this question let us introduce the 

following condition on Y= {vn} (see [5], 0.4.): 

(V) For all n E IN there exists m > n such that v m/ v n vanishes at infinity. 

lf a completely regular topological space X possesses a decreasing sequence r = { v n} 

of strictly positive continuous weights satisfying the condition (V) then X is 

V (t) 
u-compact: as a matter of fact the compact sets Ak := { t E X ; v m ( t) ~ 1/ k } , k E IN , 

n 
ro 

satisfy Ak e Ak+l for ali k E IN , and X= U Ak (here n is any integer and m is as 
k=l 

in the condition (V) ). lf X is even a paracompact topological space then, by 

(4] Lemma 1.8. and following, for every v E V there exists v E V such that v ~ v . 

WEIGHTED SP ACES WITH P ARACOMP ACT DOMAIN 

The following result about general countable inductive limits is well known (see [1 2] 

Proposición 2.5. and [15] Observation 8.4. 7 .(b) ) and we will use it in the sequel 

PROPOSITION l. Let E = i ne En be a countable inductive limit of l. c. s. such that 
Il-1 

for every n E IN , En is dense in En+l . Then E1 (and "a fortiori" every En) is dense 

in E. 



PROOF. If U is an open neighborhood in E of sorne x E E and n E IN U {O} is such 

that x E En+l, then Un En+l is an open neighborhood of x in En+l . By hypothesis 

(Un En+l) n En= U n En is a non-void (open) set of En .Proceed step by step until 

get u n E1 ,¡ <f; • 

The following is an example of the above situation in the framework of the spaces of 

weighted continuous functions 

PROPOSITION 2. Let r = { v } be a decreasing sequence of strictly positive 
n 

continuous weights on the completely regular topological space X and Jet E be any 

l. c. s. Then for every n ¡;IN, C'.vr)
0
{X,E) is a dense subspace of C(vn+l)

0
(X,E). 

Consequently C(v1)
0

(X,E) is a dense subspace of ~C(X,E). 

PROOF. Fix f E C(vn+l)
0

(X,E) , p E cs(E) and é > O . We take a compact set 

K e X such that sup v!,+l(t)p(f(t)) ~ 
tEX\K 

vn (y) 

vn+l(y) 

Consider the function 

g ·-.-
V 

~+l rpf E C(X,E) where cp :-= in:i ( sup 
n yEK 

) . It is clear 

that g E C(vn)
0
(X,E) . Indeed if r E co{E) and él> O are fixed, we take a compact set 

él 
K1 e X such that if t E X\K1 then vn+l(t)r(f(t)) ~ ---v-"n~(-y~) 

ha ve 

s up v (t)r(g(t)) = s up v (t) 
tEX\Kl n tEX\K1 n 

sup 
yEK vn+l(y) 

cp(t)r(f(t)) ~ 

~ [ sup 
yEK 

V n (y) . 
-(-·;y] su\ v +l(t)r(f(t)) ~él. 
vn+l Y1 tEX K n 

1 

. Then we 

We will finally prove that q (g-f) ~ é . For t E K one has 
vn+lP 

V ( t) 
cp(t) = v n (t) and 

n+l 



vn+l (t) 
thus vn+l(t)p( v (t) cp(t)f(t) -f(t)) = vn+l(t) p(f(t)-f(t)) =O and for t E X\K, 

n 
V (t) 

taking in account that O < cp(t) ~ n (t) , one has 
vn+l 

vn+l(t) vn+l(t) 
vn+l(t)p( v (t) cp(t)f(t) - f(t)) = vn+l(t) ( 1 - v (t) cp(t)) p(f(t)) ~E. This 

n n 

proves the first assertion and the second one is now a consequence of the Proposition l. 

It should be noted that, under the hypothesis of local compacity on X , the "smaller" 

subspace Cc(X,E) turns out to be also dense in ~C(X,E) as it can be easily checked. 

The following is the main technical result 

THEOREM 3. Let r = (vn) be a decreasing sequence of strictly positive continuous 

weights on the paracompact topological space X and let E be a l. c. s. with the c. n. p. 

Then the inductive limit space ~C(X,E) and the weighted space CV 
0

(X,E) induce the 

same topology on their common subspace C(v1)
0
(X,E). 

"' PROOF. Let U := r ( U p B ) be a basic 0-neighborhood in 'YC(X,E) (here 
n=l n Pn o 

pn > O , pn E cs(E) and BPn := { f E C(vn)0 (X,E) ; qvnpn (f) ~ 1 } is a typical 

0-neighborhood in C(vn)
0
(X,E) ; r denotes, as usual, the absolutely convex hull and the 

closure is understood, of course, in the topology of ~C(X,E) ) . Since E possesses the 

c. n. p., there exist scalars a(n) > O , n E IN , and p E cs(E) such that pn ~ a(n)p foral! 

n E IN . We then define v := inf a(n)2np-1v E V and we construct the neighborhood in 
nEIN n n 

W := { cp E CV 
0
(X,E) ; q- ( cp) = sup v(t)p( cp(t)) < 1 } . 

vp tEX 

Take cp E W n C(v1)
0
(X,E) and consider for each n E IN the open set 



Since q- ( <p) < 1 , {U } EIN is an open cover of the paracompact topological space X, vp n n 

and we take a continuous locally finite partition of the unity {fn}nEIN oí X subordinated 

to this cover. Since <p E C(v1)
0
(X,E) and {vn}nEIN is decreasing, it follows that 

fn<p E C(vn)
0
(X,E) for ali n E IN . Furthermore for each n E IN , supp(fn) e Un and 

O~ fn ~ 1. Therefore q (2nf 'P) = sup v (t)2nf (t)p (<p(t)) ~ p , i. e., 
vnpn n tEU n n n n 

n 

(1) 

We will next prove that 

(2) 

where the convergence is assumed in the topology of 76C(X,E) . Since the partition of the 

CD 

unity {f } EIN is locally finite, the expansion sn(t) = E f (t)<p(t) converges uniformly 
n n n=l n 

on a neighborhood of each point of X , and, consequently, converges uniformly on each 

compact set of X . Let then E > O and r E cs(E) be fixed. Take a compact set K e X 

such that v 1 ( t )r( \?( t)) ~ t: for ali t E X\K and then choose an integer m
0 

E IN sucl1 that 

m 
for m ~ m , sup r(<p(t)- E f (t)<p(t)) ~ ___ E __ 

0 tEK n=l n sup v1(y) 
yEK 

. It follows that for m > m - o 

m 
sup v1(t)r(<p(t)- E fn(t)'P(t)) ~E 
tEK n=l 

(3) 

CD 

On the other hand, in view of n~l fn = 1 , one has for every m E IN 

m m 
sup v1(t)r(<p(t)- E fn(t)'P(t)) ~ sup v1(t)(l - E fn(t))r('P(t)) ~E (4) 

tEX\K n=l tEX\K n=l 



m 
From (3) and (4) we conclude that q ( cp - E f cp) ~ € for all m ~ m

0 
, i. e., 

vlr n==l n 
m 

cp == 1 im E fn cp , the limit in the topology oí · C(v1)
0

(X,E) and, "a fortioiri", in the 
~ro=l · 

topology oí ;;;c(X,E) The relations (1) and (2) yield cp E U and now the fact 

W n C(v1)
0

(X,E) e U together with the continuity oí the embeddings 

C(v1)
0

(X,E) ---+ ;;;c(X,E)--+ CV
0

(X,E) prove our result. 

REMARK l. The above theorem applies, in particular, to topological spaces X which 

are both locally compact and u-compact. A characterization oí these spaces in terms oí the 

weights oí r can be seen in [1] . 

REMARK 2. From this Theorem also results that on the subspace Cc(X,E) óí 

C(v1)
0
(X,E) , the relative topologies oí CV 

0
(X,E) and ;;;c(X,E) coincide. This 

important fact was first proved in [5] for locally compact spaces X , and the above 

Theorem 3 extends [5] , Lemma 1.1. to paracompact topological spaces. 

COROLLARY. Let X be a paracompact topological space and let E be any l. c. s. 

with the c. n. p. Then for every decreasing sequence oí strictly positive continuous weights 

r == { v n} on X , the continuous injection ?./¡ : >';;C(X,E) --+ CV 
0
(X,E) is a 

topological isomorphism into. 

PROOF. 

into. Since 

By the Theorem 3 the restriction 1/JIC(vl)o(X,E) is a topological isomorphism 

C(v1)
0

(X,E) is a dense subspace oí ;;;c(X,E) (Proposition 2), ?./¡ itself is a 

topological isomorphism into. 

The techniques developed in the Proposition 2 extend, with minor modification, to the 

following 



PROPOSITION 4. Let 'Y= {vn} be a decreasing sequence of strictly positive 

continuous weights on the completely regular topological space X and Jet V be the 

family of strictly positive and continuous elements of the maximal Nachbin family V 

associated to 'Y. Then if E is any l. c. s., for every n E IN , C(vn)
0

(X,E) is a dense 

subspace of CV 
0
(X,E) . In particular ~C(X,E) is a dense subspace of CV 

0
(X,E) . 

PROOF. Let us fix the step C(vn)
0

(X,E) and take f E CV 
0

(X,E) , v E V , p E cs(E) 

and e > O . Choose a compact set K e X such that sup v(t)p(f(t)) ~e. Since v is 
tEX\K 

strictly positive, we are allowed to consider the (continuous) function 

V (y) V 

tp := inf (sup _n __ , __!!___). Now it is routine to check (justas in the proof of Proposition 
yEK v(y) v 

2) that the continuous function g := ~ tpf is an element of C(vn)
0
(X,E) such that 

n 

qvp(f - g) ~ e . This proves the :first assertion and the second one follows obviously from it. 

MAIN RESUL TS 

If 'Y is a decreasing sequence of strictly positive continuous weights satisfying the 

condition (V) and V = V( 'Y) is its maximal Nachbin family, then CV 
0

(X,E) = 

CV 
0
(X,E) whenever X is a paracompact topological space and E any l. c. s. (see 

Introduction). Thus the Corollary of Theorem 3 and the Proposition 4 yield the following 

fundamental theorem of representation of inductive limits of weighted spaces of continuous 

functions with paracompact domain. 

THEOREM 5. Let 'Y= {vn} be a decreasing sequence of strictly positive continuous 

weights satisfying the condition (V) on the paracompact topological space X and let E 

be a l. c. s. with the c. n. p. Then ~C(X,E) is a topological dense subspace of 



Thls theorem also invites to find conditions of completeness of CV 
0

(X,E) in order to 

study the completeness of the inductive limit 7;;C(X,E) (a classical problem to deal 

with). It is known that if E is complete and X is a klR-space, then GV 
0

(X,E) is a 

complete l. c. s. (because in f v(t) > O for ali v E V and every compact set K e X ). 
tEK 

Therefore under these additional assumptions, the Theorem 5 allows us to conclude that 

CV 
0
(X,E) = CV 

0
(X,E) is the completion of 7;;C(X,E). But if the l. c. s. E is even a 

Banach space then each step C(vn)(X,E) is a Banach space and much more can be said 

by entering the theory of (DF) spaces and using the fact that quasi-complete (DF) spaces 

are complete 

THEOREM 6. Let X be a paracompact klR-space, E a Banach space and r = { v n} 

a decreasing sequence of strictly positive mntinuous weights on X satisfying the condition 

(V) . Then CV 
0

(X,E) = 7;;C(X,E) (algebraic and topologically) and this common space is 

complete. 

PROOF. In view of the representation Theorem 5, all that remains to be proved is that 

7;;C(X,E) is itself complete. This is accomplished by using a standard regularity 

argument. Indeed, under the condition (V), r C(X,E) -= 7;;C(X,E) ( algebraic and 

(LB)-space topologically) and also 

rG(X,E) = ~~d C(vn)(X,E) 

( quasi-)complete. 

the condition (V) forces the 

t.o be boundedly retractive ([3] , pg. 96) and hence 

FINAL REMARK. The representation theorems 5 and 6 have its chlef application to 

topological spaces X whlch are metrizable (metric spaces are both paracompact and klR ). 

As a matter of fact these theorems provide a projective description of inductive limits of 

weighted spaces of continuous functions defined in non-locally compact topological spaces, 

covering such an important case as the above mentioned metric setting. 
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