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DEPARTAMENTO DE TECNOLOGÍA DE LOS COMPUTADORES Y DE LAS

COMUNICACIONES

Conformidad de los Directores:

Fdo: Fdo:
Dr. Antonio Plaza Miguel Dr. Jun Li

2017



ii

ii



Resumen

Las imágenes hiperespectrales proporcionan una rica fuente de información a la hora

de reconocer objetos con caracteŕısticas espectrales similares asociadas a materiales

diferentes en la superficie de la Tierra. La elevada dimensionalidad espectral de

las imágenes hiperespectrales introduce importantes desaf́ıos a la hora de abordar

su clasificación. En particular, estas imágenes proporcionan información espectral

muy detallada que permite realizar una caracterización muy precisa, pero que

también introduce gran redundancia que complica el análisis desde un punto de vista

computacional y algoŕıtmico. En este sentido, las técnicas tradicionales para selección de

bandas y extracción de caracteŕısticas normalmente seleccionan las bandas espectrales

más representativas de la imagen o bien proyectan la imagen original en un subespacio,

de forma que puede perderse información relevante para el proceso de clasificación,

incluyendo información f́ısica. Con esta limitación en mente, en el presente trabajo

de tesis doctoral hemos desarrollado un conjunto de nuevas técnicas de clustering

que pueden utilizarse para particionar espectralmente la imagen con carácter previo

al proceso de clasificación. Por un lado, consideramos caracteŕısticas intŕınsecas de

los datos hiperespectrales, tales como la gran correlación espectral existente entre las

bandas de la imagen o las caracteŕısticas f́ısicas del instrumento utilizado para obtener

la imagen hiperespectral. Por otra parte, también hemos desarrollado un nuevo método

de particionamiento espectral guiado por las clases presentes en la escena, el cual utiliza

técnicas de selección de bandas para construir un sistema de clasificación múltiple que

emplea múltiples particiones relevantes a las diferentes clases. Además de la redundancia

espectral causada por la elevada dimensionalidad de las imágenes en este dominio, otro

importante obstáculo en el proceso de clasificación es la presencia de ṕıxeles mezcla.

Estos ṕıxeles suelen ubicarse en los bordes de los diferentes objetos presentes en la escena,

introduciendo importantes problemas en el proceso de clasificación. La presencia de ruido

y ṕıxeles anómalos agrava la situación, impidiendo la generación de mapas de clasificación

homogéneos y con contornos bien definidos como seŕıa deseable. Para resolver este

problema, en el presente trabajo de tesis doctoral proponemos nuevas técnicas capaces

de particionar la imagen hiperespectral en el dominio espacial mediante la utilización

del concepto de superṕıxel, que ha sido ampliamente utilizado en la literatura para

incrementar la precisión en la clasificación. Sin embargo, en la literatura no se ha

propuesto hasta la fecha un método capaz de integrar de forma natural la información

espacial en el proceso de clasificación mediante sobresegmentación, debido a que el

proceso resulta altamente costoso desde el punto de vista computacional. Para abordar
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este problema e incorporar de forma sencilla la información proveniente de múltiples

particiones espaciales en el proceso de clasificación, hemos desarrollado un nuevo método

que permite realizar este proceso (NP-complejo) mediante una técnica de relajación

lineal, que aproxima el problema original en un dominio variable compacto. De esta

forma, resulta mucho más sencillo construir funciones convexas con información a priori,

que ofrecen un mayor grado de flexibilidad a la hora de incluir información espacial

(proveniente de superṕıxels) en el modelo de clasificación. Además, en la presente tesis

doctoral también exploramos la posibilidad de explotar y validar esta nueva estrategia

en el contexto de problemas que involucran datos obtenidos mediante múltiples sensores

para la observación remota de la tierra, incluyendo tanto sensores hiperespectrales como

sensores de tipo LiDAR.

Palabras Clave: Observación remota de la Tierra, imágenes hiperespectrales,

clasificación, particionamiento espectral y espacial, clustering, superṕıxels, múltiples

sensores.
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Abstract

Remotely sensed hyperspectral images provide a rich source of information for recognizing

objects that exhibit representative spectral signatures associated with different materials

on the surface of the Earth. The high spectral dimensionality of hyperspectral

images poses important challenges for data interpretation. It provides detailed spectral

information which can uncover relevant information about materials, but it also

presents huge spectral redundancy complicating the analysis from a computational and

algorithmic standpoint. Traditional feature selection/extraction techniques either select

only the relevant bands that are believed to carry most of the information in the

hyperspectral image or transform the original image into a feature space, thus discarding

spectral bands and the associated physical information. Having this challenge in mind,

in this thesis we have developed a set of new clustering techniques that can be used

for spectral partitioning prior to hyperspectral image classification. On the one hand,

we consider the intrinsic characteristics of the hyperspectral data, such as the high

correlation among the spectral bands as well as the distinct characteristics that are

driven by the imaging spectrometer. On the other hand, we have also designed a new

class-oriented spectral partitioning framework which exploits band selection techniques

in order to construct a multiple classifier system with partitioned band subgroups that

are relevant to different classes. Apart from the aforementioned spectral redundancy

that is caused by the high spectral dimensionality of hyperspectral images, another

important challenge in the analysis of hyperspectral data is the presence of mixed

pixels. These pixels are usually present along the boundaries of different objects, leading

to huge challenges in labeling problems. The presence of noise and trivial, isolated

pixels also hinders greatly the obtainment of smooth and well-contoured classification

maps, which are usually desired. Taking these issues into account, in this thesis we

deal with the problem via partitioning the three-dimensional hyperspectral cube data

in the spatial (image) domain by superpixelizing techniques that have been proven

successful in promoting classification performance. However, a straightforward using

of over-segmented superpixels has been seldom explored, since it leads to a very complex

(NP-hard) problem due to its discrete nature. In order to reinforce the information

of spatial partitions into the classification model, we have attacked the aforementioned

NP-hard problem via a linear relaxation technique, which approximates the original

problem into a compact variable domain. Thus, it turns much easier to construct convex

prior functions that provide more flexibly while including rich information (such as over-

partitioned superpixels) into the classification model. Furthermore, in this thesis we have
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also exploited and validated this strategy in the context of multi-source remote sensing

data classification scenarios involving both hyperspectral and LiDAR data.

Keywords: Remote sensing, hyperspectral imaging, image classification, spectral

and spatial partitioning, clustering superpixels, multi-source problems.

vi



Acknowledgement

This thesis work has been developed with the support of the Chinese Scholarship Council

(CSC) of the Ministry of Education of the People’s Republic of China. The applicant

was awarded a four years scholarship for the development of this thesis work. CSC is

gratefully acknowledged for this outstanding support.

I would like to express my great appreciation and gratitude to my advisors, Profs.

Antonio Plaza and Jun Li, for their continuous support, motivation and patience during

these four years. This guidance helped me significantly in my research and in the writing

of this thesis. Meanwhile, I also would like to express my gratitude to Prof. José Bioucas-
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would like to thank all my friends in Cáceres and Lisbon, including David, Mayra, José,

Milad, Lina, Zhiqi, Dongyan, Hongpan, Maria, Joshin, Miguel, Filipe, Alva, Christovao,

etc. for their great companionship and support.

I would like to send my special appreciation and thanks to my family, my parents

and my sisters for supporting me spiritually throughout writing this thesis, and to my

girlfriend Hong Wang for her gentle, empathetic and beautiful company.



viii

viii



Contents

1 Introduction 3

1.1 Context and Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Spectral Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 Spatial Partitioning / Superpixelization . . . . . . . . . . . . . . . 9

1.1.3 Synergistic Analysis of Multi-Source Remote Sensing Data . . . . 12

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Main Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 15

2 Spectrometer-Driven Spectral Partitioning 19

2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Spectral Band Clustering using Adaptive Affinity Propagation

Spectral Partitioning (AAP-SP) . . . . . . . . . . . . . . . . . . . 23

2.3.2 Spectral Band Clustering using Spectrometer-Driven Spectral

Partitioning (SD-SP) . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Comparison of AAP-SP and SD-SP . . . . . . . . . . . . . . . . . 25

2.3.4 Multiple Classifier System (MCS) . . . . . . . . . . . . . . . . . . . 27

2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Hyperspectral Data Sets . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Comparison of Spectral Partitioning Results . . . . . . . . . . . . . 30

2.4.3 Experiments with the AVIRIS Indian Pines data . . . . . . . . . . 30

2.4.4 Experiments with the DAIS7915 Pavia City Center scene . . . . . 34

2.5 Summary and future directions . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Class-oriented Spectral Partitioning 39

3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Related work and motivations . . . . . . . . . . . . . . . . . . . . . 41

3.3 Class-oriented spectral partitioning method . . . . . . . . . . . . . . . . . 42

3.3.1 Proposed spectral partitioning strategy . . . . . . . . . . . . . . . 42

3.3.2 Band selection algorithms . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.3 Classifier ensemble strategy . . . . . . . . . . . . . . . . . . . . . . 45



x CONTENTS

3.3.4 Classification with rejection . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Hyperspectral images used in experiments . . . . . . . . . . . . . . 48

3.4.2 Experiments with real hyperspectral data . . . . . . . . . . . . . . 49

3.5 Summary and future directions . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Convex Formulation with Superpixels 69

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 Maximum a posteriori segmentation . . . . . . . . . . . . . . . . . 73

4.3.2 Convex relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.3 Spatial regularizers . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1 SALSA Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.2 Optimization with respect to z . . . . . . . . . . . . . . . . . . . . 78

4.4.3 Optimization of the split variables with Moreau proximity

operators (MPO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.4 Optimization of Vectorial Total Variation . . . . . . . . . . . . . . 79

4.4.5 Optimization of Graph Total Variation . . . . . . . . . . . . . . . . 80

4.4.6 SegSALSA-VTV-GTV . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.1 Experimental results with hyperspectral images (HSIs) . . . . . . . 83

4.5.2 Experimental results with high spatial resolution images (VHR) . 86

4.6 Summary and future directions . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Multi-Source Spectral-Spatial Classification based on Superpixels 93

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Convex formulation with spatial information . . . . . . . . . . . . 95

5.3.2 Feature extraction and superpixelization . . . . . . . . . . . . . . . 96

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Summary and future directions . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Conclusions and Future Research Lines 101

A Publications 103

A.1 International Journal Papers . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.2 Peer-reviewed International Conference Papers . . . . . . . . . . . . . . . 105

Bibliography 108

x



List of Figures

1.1 Graphical representation of a hyperspectral image as a three-dimensional

image cube. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Correlation matrix and band segments of hyperspectral data. . . . . . . . 8

1.3 Graphical illustration of the advantages of spatial information in

hyperspectral image classification. . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Synergistic remote sensing with LiDAR in addition to hyperspectral imaging. 13

1.5 Flowchart illustrating the organization of this thesis. . . . . . . . . . . . . 16

2.1 Four spectrometers in the AVIRIS system (reproduced from [1]). . . . . . 22

2.2 Proposed framework for spectral partitioning and classification of

hyperspectral data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Comparison between the two spectral partitioning strategies: AAP-SP

and SD-SP, using the AVIRIS Indian Pines and the DAIS 7915 Pavia City

Center datasets. In plots (a) and (c), the x-axis denotes the wavelengths

in micrometers, while the y-axis is the cluster labels obtained by AAP

clustering. Each band cluster is denoted by a unique color and bar height.

The letters: A, B, C and D represent the four spectrometers of the AVIRIS

system, denoting the spectral partitions adopted by SD-SP. The horizonal

blue lines between the vertical dashed lines denote the boundaries of

band groups. Similarly, the numbers: 1, 2, 3, 4 and 5 represent the five

spectrometers of the DAIS 7915 system. . . . . . . . . . . . . . . . . . . . 26

2.4 The AVIRIS Indian Pines data set collected over Northwestern Indiana in

June 1992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 The DAIS 7915 Pavia City Center data set collected over the city of Pavia,

italy, in 2001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Spectral signatures of the pixel at spatial location (100,100) in the

original AVIRIS Indian Pines data (a), and spectral signatures obtained

after spectral partitioning with R-SP (b), AAP-SP (c) and SD-SP (d)

and band reassignment for the AVIRIS Indian Pines data. Spectral

signature of the pixel at spatial location (100,100) in the original DAIS

7915 Pavia City Center data (e), and spectral signatures obtained after

spectral partitioning with R-SP (f), AAP-SP (g) and SD-SP (h) and band

reassignment for the DAIS 7915 Pavia City Center data. . . . . . . . . . . 31



xii LIST OF FIGURES

2.7 Some of the classification maps obtained by the proposed classification

framework (with the original spectral information (a) and with R-SP (b),

AAP-SP (c) and SD-SP (d) spectral partitioning) for the AVIRIS Indian

Pines scene. Spatial smoothness of labels are also regularized by MRF

(e-h) in order to promote the classification performance. In all cases, only

320 training samples were used as input of the basic classifier MLRsub. . . 32

2.8 Overall classification accuracies as a function of the number of training

samples obtained by the proposed classification framework (with the

original spectral information and with R-SP, AAP-SP and SD-SP spectral

partitioning) for the AVIRIS Indian Pines scene. The solid lines represent

the average of 50 Monte Carlo runs, while the colored area around the

lines represent the standard deviation around the mean. . . . . . . . . . . 34

2.9 Some of the classification maps obtained by the proposed classification

framework (with the original spectral information and with R-SP, AAP-

SP and SD-SP spectral partitioning) for the DAIS 7915 Pavia City Center

scene. Spatial smoothness of labels are also regularized by MRF (e-h)

in order to promote the classification performance. In all cases, only 90

training samples (10 per class) were used. . . . . . . . . . . . . . . . . . . 36

2.10 Overall classification accuracies as a function of the number of training

samples obtained by the proposed classification framework (with the

original spectral information and with R-SP, AAP-SP and SD-SP spectral

partitioning) for the DAIS 7915 Pavia City Center scene. The solid lines

represent the average of 100 Monte Carlo runs, while the colored area

around the lines represent the standard deviation around the mean. . . . 37

3.1 Flowchart of the proposed class-oriented spectral partitioning prior to

classification approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Experimental hyperspectral data sets along with their ground-truth and

average spectral signatures per class. . . . . . . . . . . . . . . . . . . . . . 48

3.3 Spectral partitions obtained by our presented spectral partitioning

(SP) method from the ROSIS Pavia University data. Our method

incorporates two band selection algorithms: SNR (a) and BDM-LCMV

(b), respectively. The spectral partitions obtained by SP-AAP are

displayed in (c). In all the plots, the x-axis denotes the set of original

spectral bands, while the y-axis represents the group of selected bands

(each horizontal line displays one group of selected bands). . . . . . . . . 49

xii



LIST OF FIGURES xiii

3.4 Classification maps (with rejection) obtained by the proposed classification

framework, using the original spectral information (a,g), with the 20

selected bands by using SNR (b,h) and BDM-LCMV (c,i) algorithms, and

with the spectral partitions obtained by our proposed spectral partitioning

(SP) approach implemented with SNR (d,h) and BDM-LCMV (e,k and

the SP-AAP method (f,l) for the ROSIS Pavia University data. The

percentage in the parenthesis denotes the proportion of pixels remaining

after rejection. Maps (a-f) are obtained with the SVM classifier, while

(g-l) are obtained with the MLR classifier. In all cases, a total of 3921

randomly selected training samples were used for training and the rest used

for testing. The maps are displayed with partial pixels rejected in order

to obtain a 90% classification accuracy for the remaining ones. Note that

the overall accuracies for the unrejected pixels of each map are calculated

by considering the labeled test samples, with the training samples excluded. 53

3.5 Nonrejected accuracies (A) and classification qualities (Q) as a function of

rejected fractions with the ROSIS Pavia University data set. These plots

correspond to the results in Table 3.1. . . . . . . . . . . . . . . . . . . . . 54

3.6 Classification OAs (as a function of rejections) obtained by our proposed

classification framework with the ROSIS Pavia University data, after being

supported by the rejected pixels of the classifier using the original spectral

information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Overall classification accuracies (as a function of the number of training

samples) obtained by the proposed classification framework (with the

original spectral information and with SP-SNR, SP-BDM-LCMV and SP-

AAP) for the ROSIS Pavia University scene. The solid lines represent the

average of 20 Monte Carlo runs, whereas the colored area around the lines

represent the standard deviation around the mean. Plots (a) is obtained

using the SVM classifier and (b) is obtained using the MLR classifier. . . 55

3.8 Spectral partitions obtained by our presented spectral partitioning (SP)

method from the AVIRIS Indian Pines data. Our method incorporates two

band selection algorithms: SNR (a) and BDM-LCMV (b). The spectral

partitions obtained by SP-AAP are displayed in (c). In all plots, the x-axis

denotes the set of original spectral bands, while the y-axis represents the

group of selected bands (each horizontal line displays one group of selected

bands). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.9 Statistics of nonrejected accuracies A and classification qualities Q of the

classifications as a function of rejected fractions with the AVIRIS Indian

Pines data. These plots correspond to the results in Tables 3.3, 3.4. . . . 59

xiii



xiv LIST OF FIGURES

3.10 Classification maps (with rejection) obtained by the proposed classification

framework, using the original spectral information (a,g), with the 60

selected bands by using SNR (b,h) and BDM-LCMV (c,i) algorithms, and

with the spectral partitions obtained by our proposed spectral partitioning

(SP) approach implemented with SNR (d,h) and BDM-LCMV (e,k)

and the SP-AAP method (f,l) for the AVIRIS Indian Pines data. The

percentage in the parenthesis denotes the proportion of pixels remaining

after rejection. In all cases, a total of 640 randomly selected training

samples were used for training and the rest used for testing. The maps are

displayed with partial pixels rejected in order to obtain a 90% classification

accuracy for the remaining ones. Note that the overall accuracies for the

unrejected pixels of each map are calculated by considering the labeled

test samples, with the training samples excluded. . . . . . . . . . . . . . . 60

3.11 Classification OAs (as a function of rejections) obtained by our proposed

classification framework with the AVIRIS Indian Pines data, after being

supported by the rejected pixels of the classifier using the original spectral

information. Note that plot (a) is obtained from one Monte Carlo run in

Table 3.3, while plot (b) is obtained from one Monte Carlo run in Table

3.4. In both cases, the selected run is close to the statistical average. . . . 61

3.12 Overall classification accuracies (as a function of the number of training

samples) obtained by the proposed classification framework (with the

original spectral information and with SP-SNR, SP-BDM-LCMV and SP-

AAP) for the AVIRIS Indian Pines scene. The solid lines represent the

average of 20 Monte Carlo runs, whereas the colored area around the lines

represent the standard deviation around the mean. Plots (a) is obtained

using the SVM classifier and (b) is obtained using the MLR classifier. . . 62

3.13 Spectral partitions obtained by our presented spectral partitioning (SP)

method from the HYDICE DC Mall data set. Our method incorporates

two band selection algorithms: SNR (a) and BDM-LCMV (b). The

spectral partitions obtained by SP-AAP are displayed in (c). In all plots,

the x-axis denotes the set of original spectral bands, while the y-axis

represents the group of selected bands (each horizontal line displays one

group of selected bands). . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xiv



LIST OF FIGURES xv

3.14 Classification maps (with rejection) obtained by the proposed classification

framework using the original spectral information (a,g), the 40 selected

bands by using SNR (b,h) and BDM-LCMV (c,i) algorithms, the spectral

partitions obtained by our proposed approach implemented with SNR (d,j)

and BDM-LCMV (e,k), and the SP-AAP method (f,l) for the HYDICE

Washington DC mall data. The number in the parenthesis denotes the

proportion of pixels remaining after rejection. In all cases, a total of 2%

randomly selected training samples were used for training. The maps are

displayed with partial pixels rejected in order to obtain a 97% classification

accuracy for the remaining ones. Note that the overall accuracies for the

unrejected pixels of each map are calculated by considering the labeled

test samples, with the training samples excluded. . . . . . . . . . . . . . . 64

3.15 Statistics of nonrejected accuracies A and classification qualities Q of

the classifications as a function of rejected fractions with the HYDICE

Washington DC Mall scene. These plots correspond to the results in Table

3.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.16 Classification OAs (as a function of rejections) obtained by our proposed

classification framework with the HYDICE Washington DC mall data,

after being supported by the rejected pixels of the classifier using the

original spectral information. Note here that the plots of both figures

(a),(b) are obtained, respectively, from the same one Monte Carlo run of

Table 3.6 that is close to the statistical average. . . . . . . . . . . . . . . . 65

3.17 Overall classification accuracies (as a function of the number of training

samples) obtained by the proposed classification framework (with the

original spectral information and with SNR, BDM-LCMV band selection

methods and the AAP spectral partitioning method) for the HYDICE

Washington DC mall scene. The solid lines represent the average of 20

Monte Carlo runs, whereas the colored areas around the lines represent the

standard deviation around the mean. Plots (a) and (b) are respectively

obtained by using SVM and MLR classifiers. . . . . . . . . . . . . . . . . 66

4.1 Experimental framework for our proposed method with respect to

hyperspectral and multispectral remote sensing image data sets. . . . . . 82

4.2 Experiments with hyperspectral data. First row lists the ROSIS Pavia

University dataset: (a) HSI RGB composite, (b) ground-truth reference,

(c) magnitude map, (d) multiple over-segmented partitions/superpixels,

(e) class legends. The second row shows the results (f-j) of the AVIRIS

Salinas dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xv



xvi LIST OF FIGURES

4.3 Classification maps of two HSI datasets: ROSIS Pavia University and

AVIRIS Salinas. Top row (the ROSIS Pavia University dataset) shows: (a)

ground-truth, (b) MLR classification, (c) majovity voting, (d) graph-cut

and (e) discontinuity preserving relaxation. Extra results of the proposed

method are displayed in the 2nd and 3rd rows with varying parameter

values (λ1, λ2× cj , for j = {1, · · · , 3}, overall accuracy). In the 4th to 6th

rows, corresponding results of the AVIRIS Salinas dataset are also showed. 89

4.4 The MSI datasets. First row lists the QB Zurich3 dataset: (a) MSI RGB

composite, (b) ground-truth reference, (c) magnitude map, (d) multiple

over-segmented partitions/superpixels. Second row lists the corresponding

maps(e-h) of the QB Zurich6 dataset. . . . . . . . . . . . . . . . . . . . . 90

4.5 Segmentation maps of two QuickBird Zurich v1.0 MSI datasets: Zurich3

and Zurich6. Top row (the Zurich3 dataset) lists: (a) ground-truth,

(b) MLR classification, (c) majovity voting, (d) graph-cutt and (e)

discontinuity preserving relaxation. Results of the proposed method are

displayed in the 2nd and 3rd rows with varying parameter values (λ1,

λ2 × cj , for j = {1, · · · , 3}, overall accuracy). In the 4th to 6th rows,

corresponding results of the Zurich6 dataset are also showed. . . . . . . . 91

5.1 Importance of spatial information in a very high resolution image. . . . . . . . . . . 94

5.2 Block diagram of the proposed method. . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 The CASI hyperspectral data set collected over the city of Houston in

2013 and a corresponding LiDAR data collected over the same area. . . . 99

5.4 Classification results obtained by different methods using the CASI

hyperspectral data and the corresponding LiDAR data. . . . . . . . . . . 100

xvi



Table Index

1.1 List of acronyms used in this thesis. . . . . . . . . . . . . . . . . . . . . . 18

2.1 List of abbreviations used in this chapter . . . . . . . . . . . . . . . . . . 20

2.2 Description of the imaging spectrometers in the AVIRIS system. . . . . . 26

2.3 Description of the imaging spectrometers in the DAIS 7915 system.

The third spectrometer covers two different spectral ranges. The fifth

spectrometer is given by a single band (at 20000 nanometers) which

provides the value of celsius temperature multiplied by 10. . . . . . . . . . 27

2.4 Overall, average and individual class accuracies [%] and κ statistic

obtained by the proposed classification framework (with the original

spectral information and with R-SP, AAP-SP and SD-SP spectral

partitioning) for the AVIRIS Indian Pines scene data. In all cases, only

320 training samples were used. . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 McNemar’s test for the different classification results obtained from the

AVIRIS Indian Pines data set. . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Overall, average and individual class accuracies [%] and κ statistic

obtained by the proposed classification framework (with the original

spectral information and R-SP, with AAP-SP and SD-SP spectral

partitioning) for the DAIS 7915 Pavia City Center scene data. In all

cases, only 90 training samples (10 per class) were used. . . . . . . . . . . 35

2.7 McNemar’s Test for different classification results with the DAIS 7915

Pavia City Center scene data . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Overall, average and individual class accuracies [%] and κ statistic

obtained by the presented classification framework implemented using the

SVM and MLR with the band selection algorithms: SNR and BDM-

LCMV, for the ROSIS Pavia University scene. The SP-AAP spectral

partitioning method is also included for comparison. Here, use the

accepted pixel subset of the spectral partition approaches while using the

rejected pixel subset of the original classifier. The results obtained using

the original spectral information and the spectral bands selected by using

the SNR and BDM-LCMV are also included. In all cases, 3921 training

samples have been used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Processing times of different methods for ROSIS Pavia University scene. . 55



xviii TABLE INDEX

3.3 Overall, average and individual class accuracies [%] and κ statistic

obtained by the presented classification framework implemented using

the SVM with the band selection algorithms: SNR and BDM-LCMV, for

the AVIRIS Indian Pines scene. The results obtained using the original

spectral information and the spectral bands selected by using the SNR and

BDM-LCMV are also included. SP-AAP is also included for comparison.

In all cases, only 640 randomly selected training samples have been used. 57

3.4 Overall, average and individual class accuracies [%] and κ statistic

obtained by the presented classification framework implemented using

the MLR with the band selection algorithms: SNR and BDM-LCMV, for

the AVIRIS Indian Pines scene. The results obtained using the original

spectral information and the spectral bands selected by using the SNR and

BDM-LCMV are also included. SP-AAP is also included for comparison.

In all cases, only 640 randomly selected training samples have been used. 58

3.5 Processing times of different methods for the AVIRIS Indian Pines scene. 62

3.6 Overall, average and individual class accuracies (OA, AA, CAs)[%] and κ

statistic obtained by the presented classification framework implemented

using the SVM with the band selection algorithms: SNR and BDM-

LCMV, for the HYDICE Washington DC Mall scene. The results obtained

using the original spectral information and the spectral bands selected

by using the SNR and BDM-LCMV are also included. SP-AAP is also

included for comparison. In all cases, only 2% randomly selected training

samples from the labeled reference data have been used. . . . . . . . . . . 63

3.7 Processing times of different methods with HYDICE Washington DC mall

scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Overall, average and individual class accuracies [%] and κ statistic

obtained by the presented classification framework implemented using the

MLR classifier in comparison with the state-of-the-art methods, majority

voting (MVS), Graphcut and discontinuity preserving relaxation (DPR).

In particular, we set the parameter of the proposed method λ1 = 5,

λ2 × cj = 2, for j = {1, · · · , 3}. The averages are and corresponding

standard deviations are calculated under 20 monte carlo runs. In all cases,

only 30 randomly selected training samples per class have been used for

the ROSIS Pavia University data set. . . . . . . . . . . . . . . . . . . . . . 84

xviii



TABLE INDEX 1

4.2 Overall, average and individual class accuracies [%] and κ statistic

obtained by the presented classification framework implemented using the

MLR classifier in comparison with the state-of-the-art methods, majority

voting (MVS), Graphcut and discontinuity preserving relaxation (DPR).

In particular, we set the parameter of the proposed method λ1 = 5,

λ2 × cj = 5, for j = {1, · · · , 3}. The averages are and corresponding

standard deviations are calculated under 20 monte carlo runs. In all cases,

only 15 randomly selected training samples per class have been used for

the AVIRIS Salinas data set. . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Overall, average and individual class accuracies [%] and κ statistic

obtained by the presented classification framework implemented using the

MLR classifier in comparison with the state-of-the-art methods, majority

voting (MVS), Graphcut and discontinuity preserving relaxation (DPR).

In particular, we set the parameter of the proposed method λ1 = 4,

λ2 × cj = 2, for j = {1, · · · , 3}. The averages are and corresponding

standard deviations are calculated under 20 monte carlo runs. In all cases,

200 randomly selected training samples per class have been used for the

Zurich3 data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Overall, average and individual class accuracies [%] and κ statistic

obtained by the presented classification framework implemented using the

MLR classifier in comparison with the state-of-the-art methods, majority

voting (MVS), Graphcut and discontinuity preserving relaxation (DPR).

In particular, we set the parameter of the proposed method λ1 = 4,

λ2 × cj = 2, for j = {1, · · · , 3}. The averages are and corresponding

standard deviations are calculated under 20 monte carlo runs. In all cases,

200 randomly selected training samples per class have been used for the

Zurich6 data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

1



2 TABLE INDEX

2



Chapter 1

Introduction

1.1 Context and Motivations

The work developed in this thesis is part of the actual research lines of the Hyperspectral

Computing Laboratory (HyperComp) research group at the Department of Technology

of Computers and Communications, University of Extremadura, Spain. This work is

focused on the development of new clustering techniques prior to hyperspectral image

classification.

Hyperspectral imaging, a discipline related with both spectroscopy and photography,

collects hundreds of images at different wavelength channels for the same area on

the surface of the Earth. The pixel in a hyperspectral image is thus a high-

dimensional vector, comprising observations spanning from the visible to the infra-red

region of the electromagnetic spectrum. Common applications of hyperspectral image

processing include target detection, material/class identification, information retrieval

and extraction, etc. Physically, different materials and objects present distinct spectral

reflectance characteristics, and they can be distinguished via their associated spectral

signatures [2]. In fact, the ability to identify the spectral signatures of the observed image

objects provides the potential to distinguish them in the same scene. Since hyperspectral

images provide narrow spectral bands, they can provide information that is much more

detailed than multispectral images (with typically tens of bands), very high spatial

resolution images, etc. With hyperspectral images, a very accurate discrimination of

different materials is hence possible, making it possible for instance to distinguish between

the same at different growing seasons. A hyperspectral image is generally represented as

a three-dimensional data cube, with two spatial dimensions and one spectral dimension

(see Fig. 1.1). Hyperspectral images have been widely exploited in many different fields,

including environmental monitoring, agriculture, disaster tracking, material recognition,

disease diagnosis, among many others [3]. In Earth observation, hyperspectral images

provide a rich source of information that has been exploited in many different contexts,

including ecology, environmental science, geoinformatics, etc. Besides, hyperspectral

data have also been exploited in the context of multi-temporal, multi-sensor and multi-

resolution problems [4–6].
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Figure 1.1: Graphical representation of a hyperspectral image as a three-dimensional
image cube.

When it comes to specific applications, hyperspectral images have been widely used

in (but not limited to) the following processing tasks:

• Image labeling. Image labeling has been one of the most important methods

trying to interpret hyperspectral images via the assignment of different classes

or categories (labels) to pixels. Given a set of hyperspectral pixel vectors, labeling

consists of assigning a label to each pixel of the image by different criteria or

models [7]. Several techniques have been developed for this purpose. Clustering,

as an unsupervised method, takes the advantage of the intrinsic characteristics

of the hyperspectral data itself to recognize and categorize the most similar or

closest samples into multiple cliques. In this case, it is also called image spatial

partitioning/segmentation when the pixel homogeneity in the spatial domain is

also considered [8–10]. Supervised classification, on the other hand, intends to

identify the land cover classes present in the entire image by using a set of

previously available and highly representative training samples for each land cover

type [3, 7]. Semi-supervised classification and active learning techniques are also

often considered in order to deal with complicated situations, especially when the

training samples are limited [11]. Finally, change detection can also be considered

as a labeling problem (often in a binary scenario). This technique has been widely

for multi-temporal data analysis [12,13].

• Object detection. Automatic extraction of man-made objects, such as buildings,

roads [14], anomalous targets, marine oil spills [15], civilian search and rescue (such

as airplane wreckage) [16, 17], target monitoring after earthquakes [18], hurricane

disasters [19], and so forth, is of paramount importance for supporting human

activities. Object detection can often be performed with one-class classification,

also known as unary classification, which can be viewed as a particular case of the

labeling problem where only some parts of a hyperspectral image are concerned as

4
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single, unified class. The classifier adopted in this case needs to learn from a training

set containing only the objects of that class single class, which makes it a more

difficult problem. Generally, the developed techniques and algorithms mainly focus

on artificially generating the samples of the background class then performing a

binary semi-supervised classification process. On the other hand, when the a priori

information of a camouflaged object or background is unavailable, unsupervised

object detection has also been widely explored and used [20–22]. In this scenario,

feature selection techniques and images of multi-temporal observations play an

important role [20,22,23].

• Information retrieval. Taking advantage of features such as spectral signatures,

texture, locations, spatial adjacency and so forth, information retrieval is aimed at

measuring and estimating the presence, significance and quantity of some specific

materials or targets. For example, spectral unmixing has been one of the most

widely used techniques for information retrieval in order to estimate the possible

presence of several materials (along with their significance or abundance) in each

pixel of the hyperspectral image [24]. Importantly, the application of information

retrieval techniques greatly depends on the availability of pre-processing methods

such as atmospheric correction [25], image deblurring and denoising [26] or feature

extraction [27].

• Multi-source data fusion. Fusing multiple sources of remotely sensed data

represents one of the most widely used techniques that aim to improve the

interpretation of remote sensing imagery [28]. The complementary use of multi-

spatial, multi-temporal and multi-sensor data exhibits the potential to broaden the

horizons of remote sensing technology, while taking advantage of the increased

availability of remotely sensed data sets collected from different sources. For

the case of hyperspectral imagery, very high spatial resolution images [29], light

detection and ranging (LiDAR) data [30] and passively-obtained images [31, 32]

provide complementary information and features that can be exploited in the

analysis of the data.

Other relevant techniques for hyperspectral image exploitation concern areas such as

atmospheric radiation transfer modeling, compressive sensing and data storage, parallel

analysis and computation, etc. These areas are very important but not addressed in

detail in this document due to space considerations. Also, we must note that there are

also other categorization of available hyperspectral data processing techniques [3]. In

this regard, the aforementioned categories consider only a sample of available techniques

while many others are available in both theoretical and practical scenarios. A common

approach in all these techniques for hyperspectral data exploitation is the analysis of

the three-dimensional structure of hyperspectral data data cubes (see Fig. 1.1), which

presents some important challenges.

With the increase of spectral dimensionality, hyperspectral imagery provides the

possibility to analyze in diagnostic detail the features associated with specific materials

and thus easily recognize them and/or distinguish the differences among them. However,

5
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the relevant information for such purpose may live in the features corresponding to a

few limited bands [33]. This high dimensionality property also imposes great challenges

in order to build linear and non-linear analysis models, since the useful features are

often hidden by some irrelevant spectral bands. Computationally and theoretically, the

complexity of many problems usually increases dramatically in such high dimensional

spectral space. This problem is often called the curse of dimensionality [34], or the

Hughes phenomenon. The presence of spectrally mixed pixels is also an important

challenge for the successful recognition of land objects. Although the mixture problem

can be seen as a sophisticated one that can be influenced by the scanning way of the

imaging instrument (sample-wise, band-wise or block-wise), it can be tackled using

approximations such as the linear mixture model. Another important concern in

hyperspectral image analysis is the fact that acquiring labels of ground objects largely

relies on field work. Hence, the collection of labeled data has been quite time-consuming

and expensive, leading to an imbalance between the high spectral dimensionality of

the data and the limited availability of labeled training samples [35]. As mentioned in

previous contexts, this thesis work develops new techniques that intend to address some

of the problems mentioned before, particularly in the context of classification problems.

In order to deal with the aforementioned problems, we propose innovative solutions that

can be categorized in the following main groups.

1.1.1 Spectral Partitioning

In order to deal with the high dimensionality of hyperspectral data, researchers are

searching for ways to solve hyperspectral analysis problems in a much lower dimensional

space. In a reduced spectral space, a number of traditional image analysis techniques

can be adopted readily. For this purpose, many hyperspectral dimensionality reduction

methods have been developed in recent years. Traditional dimensionality reduction

is usually performed by screening and selecting the bands/features of much lower

spectral dimension that are most relevant to specific problems. By this means, the

redundant information is ruled out and discarded for the subsequent data analysis tasks.

Dimensionality reduction techniques can be divided into two main categories: band

selection and feature extraction, depending on whether the original information in the

hyperspectral data cube is transformed into a feature space or not.

1.1.1.1 Feature extraction

In this context, feature extraction techniques are generally more flexible and widely used,

including well-known approaches in the literature such as principal component analysis

(PCA) [36], independent component analysis (ICA) [37], manifold learning (ML) [38] and

subspace-based approaches [39]. Other techniques, such as wavelet transformations [40],

best-bases feature extraction [41], kernel nonparametric weighted feature extraction [42],

have also been widely explored and widely successful. Feature extraction takes advantage

of the high correlation among the hyperspectral bands that exhibit redundancy of

information [3] (see the correlation matrix map in Fig. 1.2). By transforming the original

6
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data into a lower dimensional feature space, the original problems can be tackled in a more

simple way by exploiting the much lower dimensionality. However, feature extraction

generally transforms the original information after projecting the data into a certain

feature space, which may be a challenge for certain applications that require meaningful

spectral signatures according to their physical interpretation [43,44].

1.1.1.2 Band selection

Band selection, on the other hand, takes advantage of the fact that a small number of the

spectral bands often convey the most relevant information of the hyperspectral image.

As a result, band selection indends to select the most useful bands from the original

set of spectral bands, in supervised or unsupervised fashion. Here, the main concern is

how to select the most informative, representative and significant bands from the initial

set of hundreds of bands available. As a result, band selection is a tool of choice in

cases in which some specific bands of the hyperspectral data are particularly relevant

for the problem at hand [45]. Many algorithms and techniques have been developed

for hyperspectral dimensionality reduction, such as the projection pursuit (PP) [46],

principal component analysis (PCA) [47], independent component analysis (ICA) [48],

spectral angle mapper (SAM) [49], minimum misclassification canonical analysis (or

Fisher’s discriminant analysis) (MMCA), etc. Other methods also use some specific

criteria to perform band selection, such as using high-order moments for band ranking,

divergence, decorrelation [50], using gene selection with support vector machine (SVM)

methods based on recursive feature elimination (RFE) [51], and so forth. As opposed to

feature extraction, band selection reduces the spectral dimensionality while, at the same

time, retains their original physical meaning.

As a matter of fact, the discriminative information that a classifier can exploit in order

to provide good discriminative performance may often live in weak features/bands that

are usually discarded or lost after a certain feature transformation or the application of

a band selection technique. The relevance of a spectral band for classification also highly

varies depending on specific practical demands. Hence, it can be often challenging to

decide which are the most appropriate bands for specific applications.

1.1.1.3 Alternative solutions explored in this thesis

With the aforementioned issues in mind, in this thesis we explore the role of spectral

partitioning as an alternative to the aforementioned methods. In fact, spectral

partitioning has been widely used in recent developments (including the ones presented

in this work), aiming mainly at rearranging the original spectral bands of a hyperspectral

image into multiple band subsets with lower dimensionality [52–54]. Spectral partitioning

is thus similar to band selection in the sense that it can retain the original physical

information of the original data. However, as opposed to band selection, spectral

partitioning does not necessarily discard most of the original spectral bands to achieve

lower dimensionality [54]. Instead, spectral partitioning generates several groups of band

subsets from the original spectral bands, so that each band subset is a so-called spectral

partition or cluster, containing a much lower number of spectral bands as compared with

7
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Figure 1.2: Correlation matrix and band segments of hyperspectral data.

the original hyperspectral image. As a result, the union of multiple subsets can make

up to the full original image [55], which means that the full information present in the

original scene is exploited in the process. As a result, the benefits of spectral partitioning

can be highly relevant in the following contexts: 1) some specific applications require

maintaining all the original features after dimensionality reduction, especially the original

physical meaning of the spectral bands; 2) in supervised scenarios, such as classification,

the class-dependent information often lives in weak features/bands that may be discarded

by traditional dimensionality reduction techniques; and 3) spectral partitioning is

designated to effectively provide multiple views of the original hyperspectral image by the

obtained multiple band subgroups, which allow us to exploit the full spectral information

in the original hyperspectral scene while circumventing the issues related with the curse

of the dimensionality. It is also worth noting that spectral partitioning is particularly

appealing for multi-classifier systems or ensemble learning scenarios. In other words, the

spectrally partitioned band subgroups are capable of generating distinct perspectives or

views that may potentially provide diversity to different classifiers for ensemble learning

purposes [56, 57]. Band selection can also be viewed as a special case of spectral bi-

partitioning, in which the unselected band partitions are discarded in the subsequent

analysis tasks.

In the hyperspectral remote sensing community, the idea of spectral partitioning was

first used in [52]. In order to improve the performance of PCA, the segmented principal

component analysis technique described in the aforementioned work was developed in

order to partition the dataset spectrally into a number of distinct spectral partitions, each

of which contains a number of highly correlated bands. One of the characteristics of the

partitioning strategy adopted in this work is that the extracted features are well defined

from the principal components of each band subset, which are highly correlated. Hence,

8
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researchers have adapted this segmented PCA for different tasks, such as parallelized

compression of hyperspectral imagery [53] or mapping invasive plant species [58]. In

addition, spectral partitioning has been also exploited in the framework of classification.

In the work [59], a multi-hypothesis-prediction procedure is explored based on spectral

partitioning to generate multiple hypotheses. The classification performance is shown

to be significantly enhanced, especially under small training sample size constraints and

noise corruption. Another advantage is that the analysis of the multiple partitions can

be conducted in parallel. It should be noted, however, that in some cases [60] spectral

partitioning techniques may not be appropriate for parallel implementation because the

calculations made for each hyperspectral pixel would need to originate from several

processing elements, thus requiring intensive inter-processor communication. Still, in

other cases [61], the efficiency of image analysis can be enhanced via spectral-domain

partitioning. In the work [62], band clustering-based spectral partitioning has been

investigated for dimensionality reduction of hyperspectral image fusion and classification.

In the classification scenario, the partitioning of the spectral data into smaller subspaces

ensures that no relevant information is discarded, thus allowing for the interpretation

of the data via multiple classifiers using limited training samples [63, 64]. Since the

dimensionality of each subspace is much smaller than the dimensionality of the original

feature space, each classifier is well conditioned.

Despite the successful application of spectral partitioning to different hyperspectral

imaging problems, most of the techniques developed for this purpose focus on the

advantages for dimensionality reduction purposes. In turn, a detailed exploration

regarding the differences and connections among the partitioned multiple band subgroups

have been seldom investigated in context of hyperspectral classification. In addition,

the diversity provided by the different classifiers can be exploited by multiple classifier

systems [57]. This intuitive rationale stems from the fact that the ensemble output of

multiple classifiers will provide no substantial differences if all the involved classifiers

obtain the same estimation. As a result, the diversity brought by the multiple

perspectives provided by the spectral partitions is of great significance to explore and

investigate alternative ways to improve classification performance. This is in fact one

of the main ideas explored by the new spectral partitioning techniques presented in this

thesis work.

1.1.2 Spatial Partitioning / Superpixelization

As mentioned previously, the imbalance between the high spectral dimensionality and the

limited availability of labeled samples results in great challenges for hyperspectral image

classification, often leading to ill-posed problems. In addition, the presence of mixed

pixels in the local domain also makes it a difficult task to correctly label the image using

only the spectral information. Spatial information, coming from the image domain,

has been investigated and demonstrated to be highly useful in the task of improving

hyperspectral image labeling tasks [65] (see Fig. 1.3).

To provide a simple example of the advantages that spatial information can bring

to hyperspectral classification problems, we can think of a classification outcome in

9
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Figure 1.3: Graphical illustration of the advantages of spatial information in
hyperspectral image classification.

which spurious points or cliques are present in the obtained result. With the help of

spatial information, this situation can be potentially improved as illustrated graphically

in Fig. 1.3. In order to exploit spatial and spectral information, spectral-spatial

classification has been widely explored, resulting in a plethora of methods and techniques

that jointly combine these two sources of information. The key aspect of these methods

is to exploit the high correlation of neighboring pixels in hyperspectral images. Note that

there already several types of techniques regarding how to include spatial information

into the image labeling models.

1.1.2.1 Spatial pre-processing and post-processing

One paradigm for taking advantage of the spatial information is to directly make use of

the fact the pixels in local neighboring areas share very high similarity/correlation and

thus probably also share the same class labels. On the one hand, pre-processing [66]

based on spatial filtering has been successfully exploited in spectral unmixing [67],

classification [68] and change detection [69], etc. The spatial filtering operation is

able to effectively decrease the influence of noise and outliers, thus uniforming and

reshaping the spectral signatures of neighboring pixels. Besides traditional spatial

filters such as the Sobel and Robert operators, morphological operators have also been

developed considering the spatial characteristics of an object with respect to its shape

and size [70–73]. By separating the image into targets and background, morphological

operators are capable of better delineating the contour of certain land objects and

10
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retaining their boundaries, and also allowing for a multiscale analysis of the objects based

on structuring element filters of different size and shape [71]. Besides, others techniques

in the spatial domain can be considered [74, 75]. On the other hand, post-classification

is also an important strategy to improve the effectiveness of classification. Classical

techniques include median value filtering or majority voting, among many others [76].

While pre-processing techniques mainly aim at reshaping the objects in order to better

train a classifier, post-processing techniques mainly intend to refine the classification

result after it has been already obtained. However, the pre-processing of the image

may compromise the generalization ability of the classifier by oversmoothing the spectral

signatures associated to the training samples. In turn, post-processing technique pursues

a more naive and straightforward exploitation of spatial information after the classifier

has obtained an output.

1.1.2.2 Segmentation

Unsupervised segmentation or spatial clustering techniques have also been widely used to

improve hyperspectral image classification. The presence of well-contoured objects with

precisely located boundaries may allow for a better classification without the need for

changing the original spectral signatures of the training pixels. In line with this, several

auhors have presented techniques for identifying spatial structures in the hyperspectral

image by performing unsupervised segmentation such as watershed, partitional clustering

and hierarchical segmentation (HSEG), and others [10,77,78]. From this standpoint, the

image segmentation/partitioning techniques can also be treated as a special case of post-

processing techniques.

1.1.2.3 Alternative solutions explored in this thesis

In recent years, the concept of superpixel (which refers to a small image segment) has

inspired a family of new methods that exploit the spatial information for hyperspectral

classification. The pixels comprising a superpixel are generally believed to share highly

similar characteristics, which makes them good candidates to share the same label

labeling problems. However, as opposed to normal segments, superpixels generally depict

only a part of a land object instead of fully describing it. This greatly reduces the risk

of misclassification.

Despite these important advantages, the inclusion of spatial information that comes

from image spatial partitions has been mostly conducted in the form of post-classification

processing [65,79,80]. The inclusion of spatial information by these means is usually not

straightforward [81–83]. Consequentially, an over-usage of the segments or superpixels

often leads to high accuracy but unsatisfactory classification maps. Although the

classification statistics can be high (mainly driven by the large objects whose labels

are collected far away from the boundaries), the boundaries of different objects may not

be sharply delineated and small-sized objects may be undermined by the large ones in

the final classification map. Intrinsically, a straightforward use of spatial information

usually leads to a discrete optimization problem that is NP-hard due to its discrete

nature. Many techniques and algorithms have been developed to deal with this problem.

11
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Graph-cut [84] algorithms attack the discrete optimization labeling problem via cutting

the graph of neighboring pixels while pursuing a minimum function energy. In contrast

to the methods and techniques that belong to post-processing of classification, graph-cut

algorithms also consider the cost of changing the image labels in the spatial domain. In

the binary cases, an optimal solution can be obtained with graph-cuts, which have been

widely used in applications like foreground/background recognition, object detection,

etc. Apart from binary cases, this is a very difficult problem in multi-class labeling

scenarios whose solution can only be approximated. In the works [68, 85, 86], graph-

cut algorithms via α-expansion and α-β swap have exhibited significant advantages for

promoting label consistency of adjacent pixels, minimizing the boundary length of objects

and providing good approximation of optimal solutions. Methods based on graph-cut

algorithms actually include the spatial information via the Potts model, which assumes a

Gibbs distribution [87] towards the labels of neighboring pixels. Considering the discrete

nature of the hyperspectral image labeling problem, it is still very difficult to include

the spatial information that comes from superpixels, textures and gradients. In this

context, techniques like the tree re-weighted scheme [88], belief propagation [89], robust

higher order potential [90] in discrete optimization, as well as the primal-dual schema for

Markov random field optimization [91,92] in the compact domain, have been also widely

investigated and shown to be effective in tackling these problems in recent years. In this

thesis work, we intend to explore and attack the spectral-spatial hyperspectral imagery

classification problem using superpixels, aiming to utilize the spatial information in a

straightforward manner under a convex optimization scheme.

1.1.3 Synergistic Analysis of Multi-Source Remote Sensing Data

As explained in the previous subsection, the improvements in classification that can

be gained through the use of superpixels strongly depend on the effectiveness of

the superpixelization process for hyperspectral data. The characterization of spatial

information is therefore of fundamental importance in this context [93]. However,

delineation of object edges in hyperspectral images is a difficult task due to the presence

of mixed pixels [93,94].

To address this issue, several studies have been carried out in the literature [19,

30, 95, 96] analyzing the possibility of integrating data from multiple remote sensing

instruments, including hyperspectral sensors as well as LiDAR sensors. These two

kinds of sensors, with their different peculiarities and characteristics, can provide

complementary information for specific problems, allowing for instance to tackle difficult

problems such as the classification of different tree species or the estimation of biophysical

parameters [30]. Assisted by the rich source of spatial information provided by the LiDAR

data, challenging problems for hyperspectral imaging can now be tackled, including the

acquisition of pigments of different plant species [97] as well as their bio-diversities [98],

bio-masses [99] and so on. This is because the land objects with similar spectral signatures

can often be distinguished by resorting to the LiDAR data by exploiting additional

characteristics such as different elevations, number of point returns, density of points, etc.

In addition, the LiDAR data are able to better depict the objects in three-dimensional

12



1.1 Context and Motivations 13

Figure 1.4: Synergistic remote sensing with LiDAR in addition to hyperspectral imaging.

space. Inspired by the aforementioned developments, in this thesis work we develop

new strategies to complementarily take advantage of hyperspectral and LiDAR data,

thus promoting the confidence of a classifier and the spatial regularization of the final

classification map under a convex optimization mechanism.

In the literature, the synergistic use of LiDAR and optical data has been shown

able to advance the state-of-the-art classification methods [100, 101]. In these studies,

the LiDAR data have been used to improve image segmentation techniques [100],

morphological filters [101], extended attribute profiles [102], among many others [103]. In

general, the synergistic usage of these multiple-sensor datasets is performed by band-wise

stacking of the rasterized elevation map of the LiDAR data (as well as other previously

extracted textural and morphological features) onto the original hyperspectral image

data. However, this strategy introduces some problems. First of all, the very large

number of spectral bands of the hyperspectral data may easily dominate the (more

limited) number of features provided by the LiDAR data. The distinguishing information

of classes, that often lives in weak features coming from the LiDAR data, can be easily

13
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ruled out by the largest available number of hyperspectral features (which may be

redundant and/or irrelevant to the classification). On the other hand, an overuse of

features coming from the LiDAR data may obscure the spectral details coming from the

hyperspectral data, which are also required for a successful classification. To address

these relevant issues, in this thesis work we propose a new strategy for balanced and

synergistic exploiation of both hyperspectral and LiDAR data. Specifically, we use both

hyperspectral and LiDAR data to better train a classifier using their complementary

information, emphasizing the role of the LiDAR data in spatial information extraction in

order to better delineate object boundaries, and adequately exploiting the rich spectral

information coming from the hyperspectral data after noise reduction.

1.2 Objectives

The main goal of this thesis work is to develop new methods and techniques for spectral

and spatial partitioning and/or clustering of hyperspectral images for classification

purposes. The new spectral partitioning methods developed in this work consider that

relevant features for classification may often live in weak features or bands that should

not be discarded in the process. As opposed to traditional methods for dimensionality

reduction like band selection and feature extraction, we do not select only a small number

of the most informative features/bands while discarding all others. This is because it is

very difficult to determine in advance which are the most relevant features/bands that

can best train a classifier. As a result, one of our main contributions in this work is to use

spectral partitioning as an efficient mechanism to generate multiple perspectives or views

(via different spectral partitions of the original image), in order to take advantage of all

the original spectral information present in the hyperspectral data. This is achieved by

constructing multiple classifier systems based on intelligently derived spectral partitions,

designed with the ultimate goal of achieving a more robust classification estimation. The

diversity among the spectral partitions is thus mainly explored and discussed for this

purpose in this thesis work. The thesis also intends to naturally include the spatial

information that comes from superpixels into the classification scenario. This is also a

highly innovative contribution, which involves the development of a convex optimization

strategy that is specifically developed to involve multiple superpixelizations as a graph

total variation that reinforces the label consistency in the spatial domain. Following

this convex optimization process, an instance of spectral-spatial classification using

multi-source remote sensing data (hyperspectral+LiDAR) is also developed as a novel

contribution of this work. Overall, our newly developed strategies for spectral and spatial

partitioning based hyperspectral image classification are expected to introduce significant

contributions to the state-of-the-art in the field of hyperspectral imaging research. In

order to achieve this general objective, we need to address a number of specific objectives

which are listed below:

1. To acquire the background knowledge about hyperspectral analysis in remote

sensing, specifically in the field of spectral partitioning in order to establish

14
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innovative techniques for dimensionality reduction able to tackle the high-

dimensional nature of hyperspectral data cubes in the spectral domain. We

specifically focus on the understanding of spectral correlation and divergence of the

data cube, as well as on the development of new techniques for spectral partitioning

prior to classification.

2. To develop new classification techniques based on multiple classifier systems

by exploring the diversity among different classifiers when applied to multiple

spectral partitions that provide different views of the original hyperspectral

data. The information relevance and the confidence of the classifier will be

analyzed and evaluated experimentally with the ultimate goal of measuring the

ensemble performance of multiple classifiers based on different spectral partitioning

techniques.

3. To design new strategies for the inclusion of spatial information that comes

from over-segmented superpixels in order to improve classification performance.

We specifically focus on constructing a new convex optimization approach that

considers the cost of modifying the class labels associated to neighboring pixels. We

sidestep the discrete optimization labeling problem and include spatial information

as a prior to the classifier.

4. To develop new and fast superpixelization schemes for hyperspectral imagery and

exploit these techniques in different applications related to hyperspectral image

classification.

5. To design an effective multi-source remote sensing data classification technique

based on the integration of hyperspectral and LiDAR data to better exploit

spatial information in combination of spectral information. The newly designed

approach should be able to exploit the most relevant spectral information

coming from the hyperspectral data and the spatial information coming from

the hyperspectral+LiDAR data, in order to fully exploit the spectral and spatial

partitioning techniques introduced by this thesis work.

1.3 Main Contributions of the Thesis

The main contributions of this thesis work are summarized in Fig. 1.5, in which

the relationship between the different chapters is highlighted. The thesis can be

divided into three main parts according to the main goals summarized above. One

part of the thesis is devoted to the introduction of spectral partitioning techniques

prior to hyperspectral image classification, especially those considering the spectral

correlation and spectrometer characteristics for dimensionality reduction (Chapters 2 and

3). Another part of the thesis is dedicated to the inclusion of spatial information that

comes from over-segmented superpixels in image labeling problems (Chapter 4). Finally,

another part of the thesis is devoted to the development of strategies for synergistically

exploiting multi-sensor (hyperspectral and LiDAR) data for improved spatial and spectral

15
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Figure 1.5: Flowchart illustrating the organization of this thesis.

characterization (Chapter 5). Chapter 6 concludes the thesis with remarks and hints

at plausible future research lines. The individual contributions of each chapter are

summarized below.

• Chapter 2 introduces two new spectral partitioning methods [54, 56] which create

multiple views of the original hyperspectral data by considering band correlation

and the characteristic of the imaging spectrometer, respectively. The proposed

spectral partitioning methods are evaluated in classification problems using a

variety of hyperspectral data collected by different spectrometers, demonstrating

their capacity to outperform other state-of-the-art classifiers.

• Chapter 3 introduces a new class-oriented spectral partitioning strategy that

considers the class-dependent information in hyperspectral band partitioning [55].

The new spectral partitioning strategy presented in this chapter is more

classification oriented as compared with the ones introduced in Chapter 2. Again,

16



1.3 Main Contributions of the Thesis 17

the performance of the newly introduced spectral partitioning method is validated

using real hyperspectral datasets.

• Chapter 4 introduces an innovative convex formulation for hyperspectral image

spectral-spatial classification based on superpixels [104]. In the proposed

framework, the superpixel concept is formulated as a graph total variation

regularizer, in order to naturally include the spatial information resulting from

the adjacent pixels comprising a superpixel. By this means, an arbitrary number

of superpixelizations can be simultaneously considered in the same classification

process. This method is also shown experimentally to be able to produce state-of-

the-art classification results when compared to other methods. In addition, we also

show that the newly proposed method can also be used to provide prior information

to a wide range of image labeling problems.

• Chapter 5 introduces an effective scheme that exploits both hyperspectral and

LiDAR data in order to better model the classifier presented in Chapter 4 and

provide refined superpixelizations with the support of the LiDAR data [105]. Our

experiments, conducted with real hyperspectral and LiDAR data sets collected over

the same area, indicate that the newly proposed method is highly effective in terms

of classification performance.

• Chapter 6 summarizes the main contributions of this thesis work and the research

lines that will be explored in the future.

To conclude this chapter, Table 1.1 provides a list of all the acronyms that have been

used the preparation of this thesis document. The thesis also includes an appendix with

the main publications resulting from this research, which include several journal citation

reports (JCR) papers and presentations in prestigious international conferences in the

field.

17
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Table 1.1: List of acronyms used in this thesis.

Acronyms

AAP Adaptive Affinity Propagation
AAP-SP AAP-Driven Spectral Partitioning

AP Affinity Propagation
ADMM Alternating Direction Method of Multipliers
ARES Airborne Reflective Emissive Spectrometer

AVIRIS Airborne Visible Infra-Red Imaging Spectrometer
BS Band Selection

DAIS Digital Airborne Imaging System
EAP Extended Attribute Profile
FFT Fast Furior Transformation

FPGA Field Programmable Gate Arrays
GPU Graphics Processing Unit
GTV Graph Total Variation

HYDICE Hyperspectral Digital Imagery Collection Experiment
HySime Hyperspectral Subspace Identification by Minimum Error

HSI Hyperspectral Image
ICA Independent Component Analysis
LDA Linear Discriminant Analysis

LiDAR Light Detection and Ranging
LMM Linear Mixture Models

LP Linear Program
MAP Maximum a Posteriori
MCS Multiple Classifier System
MPO Moreau Proximity Operators
MLR Multinomial Logistic Regression

MMAP Marginal Maximum a posteriori
MNF Minimum Noise Fraction
MRF Marcov Random Field
MSI Multispectral Image

NP-hard Non-Deterministic Polynomial Hard
PCA Principal Component Analysis

ROSIS Reflective Optics System Imaging Spectrometer
R-SP Random Spectral Partitioning
SLIC Simple Linear Iterative Clustering
SAD Spectral Angle Distance

SALSA Split Augmented Lagrangian Shrinkage Algorithm
SD-SP Spectrometer-Driven Spectral Partitioning
SNR Signal-to-Noise Ratio
SP Spectral Partitioning

SUNSAL Spectral Unmixing by Splitting and Argumented Lagrangian
SVD Singular Value Decomposition
SVM Support Vector Machine
VTV Vectorial Total Variation
USGS United States Geological Survey
VCA Vertex Component Analysis
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Chapter 2

Spectrometer-Driven Spectral
Partitioning

2.1 Summary

Classification is an important and widely used technique for remotely sensed

hyperspectral data interpretation. Although most techniques developed for hyperspectral

image classification assume that the spectral signatures provided by an imaging

spectrometer can be interpreted as a unique and continuous signal, in practice this signal

may be obtained after the combination of several individual responses obtained from

different spectrometers. In this chapter, we propose a new spectral partitioning strategy

prior to classification which takes into account both the physical design of the imaging

spectrometer system for partitioning the spectral bands collected by each spectrometer

and the band correlation, and resamples them into different groups or partitions. The

final classification result is obtained as a combination of the results obtained from each

individual partition by means of a multiple classifier system. The proposed strategy not

only incorporates the design of the imaging spectrometer into the classification process,

but also circumvents problems such as the curse of dimensionality given by the unbalance

between the high number of spectral bands and the generally limited number of training

samples available for classification purposes. This concept is illustrated in this chapter

using two different imaging spectrometers: the Airborne Visible Infra-Red Imaging

Spectrometer, operated by NASA, and the Digital Airborne Imaging System, operated

by the German Aerospace Center. Experimental results indicate the effectiveness of the

proposed spectral partitioning strategy with respect to classification improvements on the

order of overall accuracy when compared with state-of-the-art spatial-spectral classifiers

with very limited training samples.

2.2 Introduction

Imaging spectroscopy (also called hyperspectral remote sensing) has experienced

significant developments in recent years [3]. Currently, many sensors onboard airborne
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Table 2.1: List of abbreviations used in this chapter

AVIRIS Airborne Visible/infra-red Imaging Spectrometer
ARES Airborne Reflective Emissive Spectrometer
DAIS Digital Airborne Imaging System
HyMap Hyperspectral Mapper
LDA Linear discriminant analysis
HySime hyperspectral subspace identification with minimum error
MNF Minimum noise fraction
PCA Principal component analysis
MLR Multinomial logistic regression
SVM Support vector machine
MRF Markov random field
MLRsub Subspace-based MLR
MCS Multiple classifier system
AP Affinity propagation
AAP Adaptive affinity propagation
R-SP Random spectral partitioning
AAP-SP AAP-driven spectral partitioning
SD-SP Spectrometer-driven spectral partitioning

and spaceborne platforms are available, and these instruments keep collecting data

from different locations on the surface of the Earth [7]. Hyperspectral data have

been useful in many applications, including disaster monitoring, natural resources

exploitation, environmental applications, etc. [106–108]. With the increasing spatial,

spectral and temporal resolutions of imaging spectrometers, the extremely high

dimensionality and size of the data have become important concerns for hyperspectral

data interpretation [109]. Among several techniques for hyperspectral image analysis,

classification has been a very important research topic for interpreting hyperspectral

data [110], in which the main challenges have been given by the unbalance between the

high dimensionality of the data and the limited number of training samples generally

available a priori [111].

In the following, we provide a description of the state-of-the-art in classification

and spectral partitioning. Although supervised classification techniques such as the

SVM [112] or MLR [86] have been shown to be quite successful for the interpretation

of hyperspectral data (even in the presence of limited training samples), some

techniques have taken advantage of dimensionality reduction [52, 113, 114] or subspace

projection [115] prior to classification. The high existing correlation between bands

has been exploited to design new methods for reducing data dimensionality, including

methods that have found great popularity such as PCA [116], LDA [117], or the

MNF [118]. Subspace projection techniques such as HySime [115] have also been used

for this purpose. In fact, it has been reported in previous works that classification

after dimensionality reduction, subspace projection or band/feature selection generally

outperforms classification based on the full original hyperspectral data [7]. By reducing

the number of bands, unsupervised feature selection [119, 120], semi-supervised feature

20



2.2 Introduction 21

selection [121] and supervised feature selection [122] have been reported to be able to

achieve similar or better classification accuracies than using all available bands.

Spectral partitioning, which is a form of dimensionality reduction, provides an

alternative approach to deal with the high dimensionality of hyperspectral data.

In comparison with traditional band reduction/selection approaches, a distinguishing

feature of spectral partitioning is that all spectral bands of the input image can be used for

the subsequent analysis process by creating multiple views of the original hyperspectral

image. This can be achieved by selecting, for a given partition, a subset of bands that

effectively subsample the original spectral signature in the original hyperspectral scene

while retaining its main characteristics. The selection of multiple disjoint subsamples

provides multiple views of the original hyperspectral signature that can be combined

for classification purposes. As reported in [123], this strategy can be implemented by

using techniques such as the AAP [124]), which first automatically generates spectral

band clusters in which the spectral bands are correlated with each other, and then the

bands are reassigned from the clusters into new groups (namely, spectral partitions)

which constitute a subsampling of the original spectral signatures. Similarly, utilizing a

bisection spectral partitioning strategy, the work in [125] reported a significant gain in

classification performance for hyperspectral data. In [52], a spectral partitioning based on

band correlation segmentation was also employed to achieve better results from the PCA

transformation by performing the PCA on each partition (spectral segment). Besides,

in [126] spectral and spatial partitioning were incorporated into a PCA-based compressive

projection for hyperspectral image reconstruction. These works indicate that spectral

partitioning can lead to improved classification results for hyperspectral data.

An important characteristic of spectral partitioning techniques such those mentioned

above is that they do not consider the physical characteristics of the imaging

spectrometer, which may be critical in the process of creating the spectral band clusters.

In fact, most classification techniques assume that the spectral signatures provided by

an imaging spectrometer system for a given pixel can be considered as a unique and

continuous signal. However, it is well-known in hyperspectral imaging that different

parts of the signal are subject to the different characteristics of the physical instruments

after the combined individual responses from several different spectrometers. For

instance, the AVIRIS1 system [1] is formed by four different spectrometers, covering

the nominal spectral ranges: 400–700 nm, 700–1300 nm, 1300–1900 nm, and 1900–

2500 nm, respectively. As shown in Fig. 2.1, these four spectrometers (called A,

B, C and D, respectively) have completely different characteristics. For example,

in the D spectrometer, a carefully specified linear variable blocking filter is used to

limit the wavelengths of light for each element in the detector array. This specialized

filter is intended to separate different spectral orders. For the A spectrometer, a 32-

element silicon detector array with a blue enhanced response is used. The B, C and D

spectrometers each have 64-element arrays instead. As a result, our main contribution

in this chapter is a new partitioning framework that is driven by the characteristics of

the imaging spectrometer and its physical configuration, instead of assuming that the

1http://www.nasa.gov/centers/dryden/research/AirSci/ER-2/aviris.html
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spectral signature is a continuous signal. The methodology that we propose in this

chapter offers a new perspective that gives a new flavour to the problem of spectral

partitioning. Given the fact that different spectrometers have different characteristics,

our speculation in this chapter is that the conventional assumption that the spectral

signatures can be interpreted as unique and distinct signals may not hold in all cases

(at least, given the current status of hyperspectral technology), and that the use of a

spectrometer-driven partitioning strategy prior to classification may lead to improved

hyperspectral data interpretation results, in particular, when spectral partitioning is

used for dimensionality reduction purposes. Similar observations can be made for other

widely used imaging spectrometers, like DAIS 79152 [127], ARES [128], Hyperion [129],

or HyMap [130], among several others [7].

Figure 2.1: Four spectrometers in the AVIRIS system (reproduced from [1]).

In this chapter, we develop a new spectrometer-driven partitioning strategy that

considers the differences between the individual spectrometers in the spectral partitioning

step. An important consideration of our approach is that, as the dimensionality of each

spectrometer signal is much smaller than the whole spectral signal, it allows for the

design of a subsequent classification system that is efficient in scenarios in which limited

training samples are available a priori, as the system uses multiple views of the original

spectral signatures but with reduced dimensionality, which allows for the classification

of the original hyperspectral data without discarding any information collected by the

imaging spectrometer. In other words, instead of extracting features or removing bands,

we reduce the dimensionality by reassigning the original bands into multiple views of

the original data (according to the properties of the considered imaging spectrometer)

and then using an MCS that considers all the information in the final classification.

2http://www.uv.es/leo/daisex/Sensors/DAIS.htm
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For comparative purposes, the proposed spectrometer-driven partitioning strategy is

compared with random partitioning and with another previously developed method (the

AAP) which relies on statistical principles rather than physical principles related to the

imaging spectrometer. The concept is illustrated using two different systems: AVIRIS

and DAIS 7915.

The remainder of this chapter is organized as follows. In section 2.3, we introduce

our spectral partitioning and classification framework, which is implemented using both

the AAP clustering technique and our newly developed spectrometer-driven spectral

partitioning strategy. This section also provides a comparison of these two spectral

partitioning strategies to the simple random selection case, to illustrate the differences

obtained between using a statistical-driven method (the AAP) and a more physically-

driven method. Section 2.4 provides experimental results using representative data sets

collected by the AVIRIS and DAIS 7915 systems. Finally, section 2.5 concludes with

some remarks and hints at plausible future research lines.

2.3 Proposed Framework

In this section, we describe the proposed framework for hyperspectral image classification

after spectral partitioning. Our framework is illustrated in Fig. 2.2. First, the original

hyperspectral image is partitioned using spectral band clustering. For this purpose, we

use two different strategies: AAP [124] (driven by statistical principles) and a newly-

proposed spectrometer-driven approach (which is more driven by physical principles

related to the design of the imaging spectrometer). The resulting q partitions provide

multiple views of the original spectral signatures in the hyperspectral data. These

different views are classified using an MCS which is based on a probabilistic classifier: the

subspace multinomial logistic regression (MLRsub) classifier in [131]. In the following,

we first describe the two spectral band clustering techniques considered (providing a

comparison between them) and then provide details about the considered MCS system.

2.3.1 Spectral Band Clustering using Adaptive Affinity Propa-
gation Spectral Partitioning (AAP-SP)

The AP method [8] was originally presented to automatically search for the optimal

number of clusters in the analyzed data. A main contribution of the algorithm with

regards to traditional unsupervised clustering approaches such as k-means [132] or

ISODATA [133] is that the AP is less sensitive to initialization as it takes every sample

as a potential cluster center. An adaptive version of AP (AAP) was proposed to

automatically search for the optimal cluster number while removing inconsistencies [124].

As opposed to k-means or Isodata clustering, in AAP all data points are simultaneously

considered as potential exemplars, but exchange deterministic messages until a good

set of exemplars gradually emerges. In other words, using AAP we can perform band

clustering without knowing in advance the number of exemplars. Let c be the number of

band clusters and let ρ be the number of spectral partitions. In our previous work [123],

we have adopted the AAP with a nested recursive iteration process for hyperspectral
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Figure 2.2: Proposed framework for spectral partitioning and classification of
hyperspectral data.

band clustering. Resulting from this process, the original hyperspectral data is divided

into c band clusters/groups, each of which contains a group of spectral bands with high

similarity/correlation. After obtaining the c band clusters, we then reassign the bands

with high similarity/correlation to spectral partitions by a band reassignment algorithm

described in Section 2.3.2 such that each partition contains the same number of bands

by using the AAP-SP approach.

2.3.2 Spectral Band Clustering using Spectrometer-Driven
Spectral Partitioning (SD-SP)

Imaging spectrometers generally collect spectral signatures as a combination of more

than one spectrometer, each with different characteristics, signal to noise ratio (SNR),

and etc. As a result, the conventional interpretation of spectral signatures as unique and

distinct signals may not hold in all cases. In fact, the optical and physical characteristics

of a group of spectral bands collected by the same spectrometer are expected to be

quite similar and correlated, considering the electronic status and optical fibres of

different spectrometers, as well as the different optical spectral ranges themselves. All

these differences support the observation that the wavelengths corresponding to each

spectrometer share high similarity and correlation, which provides an alternative source

for partitioning the spectral signatures using a more physically driven approach than

the aforementioned AAP, which is driven by statistical principles. Inspired by the

aforementioned observations, in this chapter we have developed a new band partitioning

strategy based on information conveyed by physical spectrometers to resample the

spectral bands to different so-called partitions. The goal is to exploit the spectral
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information by reducing spectral similarities while increasing the diversities among

partitions.

We have designed a simple band reassignment approach (which can be actually used

for both AAP-SP and SD-SP). In the case of SD-SP, the procedure takes into account the

information provided by different spectrometers. Let s be the number of spectrometers in

the hyperspectral system. The spectral groups are defined by the spectral wavelengths

available in each of the physical spectrometers and known in advance. Notice that s

in SD-SP is the same as c for AAP-SP. Our goal is to reassign the spectral bands of

the different groups into ρ partitions using equal interval sampling. If the number of

bands in a group is divisible by ρ, it is easy to generate the ρ partitions by using equal

interval sampling. Otherwise, in case that the number of bands in a group is smaller

than ρ, we increase the number of bands by random selection from the current bands,

until it reaches ρ bands. If the number of bands in a group is bigger than ρ, we remove

the spectral bands having high correlation and similarity with the others from the group

until it is divisible by ρ. It should be noted that this band reassignment strategy is driven

by the physical information about the spectrometers of the system. Note also that the

same reassignment strategy can be used to generate partitions from the AAP-SP derived

band groups. For simplicity, here we used equal interval sampling due to the following

reasons: 1) in this way, the spectral reflectance signature of each partition follows the

basic shape of the original image. This allows to use reduced signatures but consistent

with the spectral shapes originally collected by the sensor; 2) another reason is that, in

our experiments, we have observed that competitive classification results are obtained as

compared with regards to other strategies; 3) last but not least, the bigger the value of

ρ (number of partitions), the less the similarity that exists among the bands in the same

partition. As a result, by using equal interval sampling we can effectively manage the

spectral similarities and correlations of the bands in the partitions.

2.3.3 Comparison of AAP-SP and SD-SP

In this subsection, we compare the two spectral partitioning strategies described in

previous subsections: AAP-SP and SD-SP. Figs. 2.3(a) and 2.3(c) respectively show

the band clusters obtained by both methods for the AVIRIS Indian Pines data set and

the DAIS Pavia City Center data set (both explained in detail in subsection 2.4.1).

Specifically, the clustering results obtained by AAP were found using the same parameters

for both systems: AVIRIS and DAIS 7915. In order to represent the partitions obtained

by AAP in Figs. 2.3(a) and 2.3(c), the spectral bands that belong to the same cluster

are denoted by bars of the same height and color. Here, the x-axis denotes the spectral

band numbers and the y-axis denotes the corresponding cluster labels for each band.

On the other hand, the letters: A, B, C and D represent the four spectrometers of the

AVIRIS system in Fig. 2.3(a), while the horizontal blue lines between the vertical dashed

lines denote the bands associated to each spectrometer in the AVIRIS data. Similarly, the

numbers 1, 2, 3, 4 and 5 represent the five spectrometers of the DAIS 7915 system in Fig.

2.3(c). It can be seen that spectrometer 5 is composed by a single band, hence there is no

horizontal blue line associated to this spectrometer. Tables 2.2 and 2.3 respectively show
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(a) AAP-SP vs SD-SP (AVIRIS) (b) Correlation matrix (AVIRIS)
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Figure 2.3: Comparison between the two spectral partitioning strategies: AAP-SP and
SD-SP, using the AVIRIS Indian Pines and the DAIS 7915 Pavia City Center datasets. In
plots (a) and (c), the x-axis denotes the wavelengths in micrometers, while the y-axis is
the cluster labels obtained by AAP clustering. Each band cluster is denoted by a unique
color and bar height. The letters: A, B, C and D represent the four spectrometers of the
AVIRIS system, denoting the spectral partitions adopted by SD-SP. The horizonal blue
lines between the vertical dashed lines denote the boundaries of band groups. Similarly,
the numbers: 1, 2, 3, 4 and 5 represent the five spectrometers of the DAIS 7915 system.

Table 2.2: Description of the imaging spectrometers in the AVIRIS system.

Spectrometer Wavelength range (nm) Band numbers Bandwidth
A 400–700 1–31 10 nm
B 700–1300 32–94 10 nm
C 1300–1900 95–157 10 nm
D 1900-2500 158–220 10 nm

the wavelength ranges, band numbers and bandwidth associated to each spectrometer in

the AVIRIS and DAIS 7915 data. Finally, Figs. 2.3(b) and 2.3(d) respectively display

the observed spectral correlation matrix for the AVIRIS Indian Pines and DAIS 7915

data.

Several observations can be made from the comparison given in Fig. 2.3. First

and foremost, it is remarkable that both the AAP-SP and SD-SP clustering results

present high consistency with the respective spectral correlation matrices. In addition,

it can be seen that the band clusters found by AAP-SP (a statistical approach) exhibit

some correspondence with regards to the band clusters found by SD-SP (a physically
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Table 2.3: Description of the imaging spectrometers in the DAIS 7915 system. The
third spectrometer covers two different spectral ranges. The fifth spectrometer is given
by a single band (at 20000 nanometers) which provides the value of celsius temperature
multiplied by 10.

Spectrometer Wavelength range (nm) Band numbers Bandwidth
1 400 – 1000 1–32 15-30 nm
2 1500 – 1800 33–40 45 nm
3 2000 – 2500 41–72 20 nm
3 3000 – 5000 73 2 µm
4 8000 – 12600 74–79 0.9 µm
5 20000 80 –

driven approach). For the AVIRIS data, the first cluster found by AAP-SP corresponds

almost exactly to the spectrometer A, while spectrometers C and D (both in the infra-

red region) also correspond to the same cluster found by AAP-SP, with some noise in

the areas between the clusters which correspond to boundary areas between different

spectrometers. For the DAIS 7915 data, we can observe similar correspondences.

Specifically, the first spectrometer in DAIS 7915 (corresponding to the visible part of

the spectrum) is associated with two clusters identified by AAP-SP. The second and

third spectrometers correspond to the infra-red region and are both associated with

the same cluster by the AAP-SP. The fourth spectrometer is located in a completely

different region and hence it is detected by a different cluster by AAP-SP. Finally, the

fifth spectrometer collects only one band that provides the value of celsius temperature

multiplied by 10 and is detected by a single independent cluster by AAP-SP. Since the

information about the different imaging spectrometers is known in advance, it seems

more practical to use the SD-SP to establish the spectral band groups instead of AAP-

SP, as the latter relies on input parameters that require hand-tuning, but in both cases

the identified band clusters appear meaningful in terms of the wavelength regions they

describe. In the following subsection, we describe the MCS system used to obtain a

final classification result from the partitions generated by the two considered clustering

strategies (AAP-SP and SD-SP) using the band reassignment strategy described in the

previous subsection.

2.3.4 Multiple Classifier System (MCS)

In this section, we describe the MCS system used to provide the final classification

result from the ρ partitions of the original hyperspectral image obtained after band

clustering and reassignment. The classifier system adopted in this chapter is the MLRsub

method [131], which has been shown to be an effective probabilistic classifier that takes

advantage from subspace projection to better separate the classes. Specifically, in the

MLRsub the classification of a pixel (with its associated spectral vector in a given class)

corresponds to the largest projection of that vector onto the class indexed subspaces.

Since we are dealing with different partitions (or views) on the original hyperspectral

data, we need a decision rule to fuse the individual classifications obtained by the MLRsub
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from the different partitions. Let pm(i) be the probability obtained by the MLRsub

classifier for a given pixel i and partition m. In this chapter, we use a simple majority

voting strategy to combine the results obtained from all the partitions. Specifically, the

probabilities resulting from all the different partitions in a given pixel are modeled by:

p̂(i) =
1

ρ

ρ∑
m=1

pm(i), (2.1)

where ρ is the number of partitions. The final class label for pixel i is determined by

majority voting as follows:

ŷ(i) = arg max
k∈{1,...,K}

p̂(k)(i), (2.2)

where K is the number of classes, p̂(k)(i) is the probability corresponding to class k for

a given pixel i, and p̂(i) = {p̂(1)(i), . . . , p̂(K)(i)}. It should be noted that, in order to

include spatial information in the classification stage, we can optionally perform a final

spatial regularization by means of the Markov rand field (MRF) [134], as indicated by

the MLRsubMRF method in [131]. The final classification thus combines the spectral

information (obtained from different partitions or views of the original spectral data,

which can be derived using both AAP-SP or SD-SP) and the spatial information, included

by means of an MRF regularizer after combining the individual classification results for

the different partitions using majority voting. In the following section, we evaluate

the classification accuracy of the proposed framework (with and without MRF-based

postprocessing) using the well-known AVIRIS Indian Pines and DAIS 7915 data sets.

2.4 Experimental Results

In this section, we evaluate the proposed classification framework using two real

hyperspectral data sets. Before reporting our experiments with these two scenes, we

emphasize that we have optimized the parameter settings in order to obtain the best

performance from each individual method in the chain. Specifically, we have empirically

set the number of spectral partitions to ρ = 5. For the MLRsub classifier, we have

optimized all the involved parameters following the procedure described in [131]. For

the optional MRF spatial regularization process, the smoothing parameter is defined

according to the indications in [135]. In order to study the impact of the MRF-

based spatial regularization, we will present results with and without MRF spatial

postprocessing for clarity.

The remainder of this section is organized as follows. In subsection 2.4.1 we describe

the considered hyperspectral scenes in detail. Subsection 2.4.2 discusses and compares

the spectral partitioning results obtained using random spectral partitioning (R-SP),

AAP-SP and SD-SP. Subsections 2.4.3 and 2.4.4 respectively illustrate the performance

of the proposed approach (implemented with both AAP-SP and SD-SP) with the AVIRIS

Indian Pines and DAIS 7915 data sets.
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2.4.1 Hyperspectral Data Sets

The AVIRIS Indian Pines data set3, displayed in Fig. 2.4(a), comprises 145 × 145

pixels and was collected over Northwestern Indiana in June 1992. As shown by Fig.

2.4(b), a total of 10366 pixels are available in the labeled ground-truth, including 16

mutually exclusive classes. Although some of the bands are considered to be corrupted

by water absorption features and noise, we will use all of them since the MLRsub classifier

considered in this chapter has the capability to manage noise and mixtures by projecting

the data to the class indexed subspaces.

(a) False color representation (b) Reference

Figure 2.4: The AVIRIS Indian Pines data set collected over Northwestern Indiana in
June 1992

The DAIS 7915 Pavia City Center data set is illustrated in Fig. 2.5(a). It comprises

400 × 400 pixels and was captured over the central area of Pavia City in Italy, in 2001. A

set of training samples is distributed with the data [see Fig. 2.5(b)] covering 9 mutually

exclusively classes, while the total number of available labeled samples comprises 13275

pixels that do not overlap with the training samples [see Fig. 2.5(c)]. Similarly to

the case of AVIRIS data, in our experiments, we use all the available spectral bands.

Bearing in mind that the thermal spectrometer captures spectral bands with much higher

quantization levels than other spectrometers, we normalize the data values to the scale

[0,1] before processing.

(a) False color representation (b) Training samples (c) Test samples

Figure 2.5: The DAIS 7915 Pavia City Center data set collected over the city of Pavia,
italy, in 2001.

3https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html
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2.4.2 Comparison of Spectral Partitioning Results

Before providing a comparison between our presented methods, we first introduce R-SP as

a baseline method for assessment. First, the spectral bands of the original hyperspectral

image are randomly permuted. With the randomly ordered spectral bands as input, we

employ the band reassigning method described 2.3.2 to generate final random spectral

partitions. Specifically, we treat all the randomly ordered bands as one band group. By

setting the number of partitions to ρ = 5, we perform band reassignment on both data

sets: AVIRIS Indian Pines and DAIS Pavia City Center. The obtained partitions had 44

(R-SP), 41 (AAP-SP), 42 (SD-SP) spectral bands for the AVIRIS data, and 16 (R-SP),

14 (AAP-SP) and 16 (SD-SP) spectral bands for the DAIS 7915 data. Fig. 2.6 illustrates

the (dimensionally reduced) spectral signatures obtained after spectral partitioning and

band reassignment for a random pixel [located at spatial coordinates (100,100)] in the

AVIRIS Indian Pines and DAIS 7915 Pavia City Center data sets. From Fig. 2.6 we

can conclude that the spectral signatures obtained after spectral partitioning and band

reassignment retain the shape of the original spectral signature in the pixel, which means

that the partitions are able to capture the spectral characteristics of the whole spectral

signature while reducing its dimensionality (this property cannot be kept by the R-SP).

On the other hand, the different spectral signatures obtained for the same pixel exhibit

some variability, which means that we can generate multiple views of the original spectral

data which are all realistic since they are obtained by reassigning the spectral information

already comprised by the original signature. For R-SP, the spectral partitions showed

great variability due to the random permutation of band orders. If we compare the

AAP-SP and SD-SP partitioning strategies we can observe similar results, but the AAP-

SP uses a statistically-guided framework while the SD-SP uses a more physically-driven

framework. Based on these properties, we conclude that the considered partitioning

strategies are able to exploit the different characteristics of the spectral signature in each

of the considered partitions. In the following subsections, we evaluate the differences

obtained in the final classification when considering the two aforementioned partitioning

strategies.

2.4.3 Experiments with the AVIRIS Indian Pines data

In this section, we describe the results obtained after applying the proposed classification

framework (using the original spectral information and the multiple views provided by

R-SP, AAP-SP, and SD-SP spectral partitioning) for the AVIRIS Indian Pines scene.

Table 2.4 shows the overall (OA), average (AA) and κ statistic, as well as the individual

classification accuracies, obtained after using 320 randomly selected samples (around 20

samples per class) for training and the rest of the labeled samples [see Fig. 2.4(c)] for

testing. If the number of samples available in the ground truth image is smaller than 20,

we take half of the total samples in that class for training and the other half for testing,

which is the same for the case of the DAIS 7915 Pavia City Center data set. In our

experiments, we considered the classification results obtained by the MLRsub and also

by the MLRsubMRF which applies MRF-based spatial postprocessing after the spectral-
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(g) AAP-SP (DAIS 7915) (h) SD-SP (DAIS 7915)

Figure 2.6: Spectral signatures of the pixel at spatial location (100,100) in the original
AVIRIS Indian Pines data (a), and spectral signatures obtained after spectral partitioning
with R-SP (b), AAP-SP (c) and SD-SP (d) and band reassignment for the AVIRIS Indian
Pines data. Spectral signature of the pixel at spatial location (100,100) in the original
DAIS 7915 Pavia City Center data (e), and spectral signatures obtained after spectral
partitioning with R-SP (f), AAP-SP (g) and SD-SP (h) and band reassignment for the
DAIS 7915 Pavia City Center data.

based classification. All the experiments were repeated 50 times and the results reported

on Table 2.4 are in fact the average scores after 50 Monte Carlo runs. As shown by Table

2.4, both the AAP-SP and the SD-SP obtained very similar results in this experiment.

It is also clear that the classification results after spectral partitioning were better than

those obtained using the full spectral signatures in the original hyperspectral data, which

indicates that the multiple views provided on the original spectral information were useful

in terms of reducing the curse of the dimensionality, which was particularly useful given

the limited number of training samples used for classification purposes. In addition,

when the MRF-based postprocessing was used, the classification accuracies increased

significantly. Both AAP-SP and SD-SP outperformed R-SP. In comparison with AAP-

SP, SD-SP obtained quite similar classification results when the MLRsub was used, while

the incorporation of spatial information by means of MRF-based postprocessing led to

more significant differences between the two methods.

The experimental results reported on Table 2.4 suggest that even when compared with

the MLRsub approach which was shown in [131] to be able to handle high-dimensional
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32 Spectrometer-Driven Spectral Partitioning

Table 2.4: Overall, average and individual class accuracies [%] and κ statistic obtained
by the proposed classification framework (with the original spectral information and with
R-SP, AAP-SP and SD-SP spectral partitioning) for the AVIRIS Indian Pines scene data.
In all cases, only 320 training samples were used.

Class # samples
MLRsub MLRsubMRF

Original R-SP AAP-SP SD-SP Original R-SP AAP-SP SD-SP

C1 54 84.99 88.76 90.00 89.82 97.76 97.82 97.76 97.88

C2 1434 47.86 52.29 54.38 55.96 61.92 65.66 71.51 71.46

C3 834 66.53 65.91 64.65 64.25 84.53 81.35 80.47 79.92

C4 234 72.98 76.49 78.14 79.21 95.48 97.87 97.17 97.42

C5 497 77.46 78.34 81.76 82.15 87.25 88.84 89.01 88.99

C6 747 91.78 91.72 91.83 92.00 97.48 97.70 97.65 97.70

C7 26 93.67 96.33 94.67 95.00 98.00 100 98.67 99.00

C8 489 94.89 95.85 95.45 95.39 99.56 99.62 99.51 99.51

C9 20 98.00 98.20 98.00 98.20 100 100 100 100

C10 968 58.30 65.57 67.92 67.50 74.33 85.73 88.36 88.13

C11 2468 49.09 47.04 50.23 49.18 61.96 60.73 67.96 64.99

C12 614 63.18 68.08 70.32 71.03 79.59 84.07 85.87 86.63

C13 212 99.64 99.50 99.49 99.50 99.92 99.87 99.84 99.87

C14 1294 98.26 98.54 98.25 98.17 99.53 99.52 99.35 99.48

C15 380 18.83 21.30 26.84 27.75 30.37 42.84 49.65 51.57

C16 95 93.91 95.24 95.32 95.40 99.01 99.60 99.57 99.49

Overall accuracy 65.75 67.10 68.77 68.78 77.04 78.94 82.01 82.15

Average accuracy 75.59 77.45 78.58 78.78 85.42 87.58 88.90 89.75

κ statistic 61.40 62.99 64.81 64.85 74.15 76.36 79.72 79.78

(a) Original (b) R-SP (c) AAP-SP (d) SD-SP

(e) Original (MRF) (f) R-SP (MRF) (g) AAP-SP (MRF) (h) SD-SP (MRF)

Figure 2.7: Some of the classification maps obtained by the proposed classification
framework (with the original spectral information (a) and with R-SP (b), AAP-SP (c) and
SD-SP (d) spectral partitioning) for the AVIRIS Indian Pines scene. Spatial smoothness
of labels are also regularized by MRF (e-h) in order to promote the classification
performance. In all cases, only 320 training samples were used as input of the basic
classifier MLRsub.

problems in hyperspectral classification with limited training samples, our proposed

classification framework exhibits the potential to improve the classification results by
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Table 2.5: McNemar’s test for the different classification results obtained from the
AVIRIS Indian Pines data set.

(2) (3) (4) (5) (6) (7) (8)

(1) MLRsub 492.85 126.33 1941.81 163.53 1576.03 4.22 462.13

(2) MLRsubMRF 151.86 1044.75 121.25 707.45 573.96 0.07

(3) MLRsub-AAPSP 1507.08 3.15 1077.04 180.82 153.14

(4) MLRsubMRF-AAPSP 1450.98 221.63 2095.29 965.60

(5) MLRsub-SDSP 1083.57 211.06 116.47

(6) MLRsubMRF-SDSP 1986.49 835.47

(7) MLRsub-RSP 619.09

(8) MLRsubMRF-RSP

feeding multiple views of the original hyperspectral data into an MCS. At this point, it

is also worth noting that all the original spectral information is used when the AAP-

SP and the SD-SP partitioning approaches are used. In fact, these approaches just

provide a mechanism to reassign the original spectral information into partitions that are

intelligently created (according to statistical or physical principles) and which provide

multiple views of the original spectral information that are then used to improve the final

classification results. As expected, the inclusion of spatial information by means of an

MRF-based spatial postprocessing can improve even further the obtained classification

results.

For illustrative purposes, Fig. 2.7 shows some of the classification maps obtained

in this experiment with the AVIRIS Indian Pines scene. Each map corresponds to one

of the 50 Monte Carlo runs conducted in each case. As shown in Fig. 2.7, the use of

AAP-SP and SD-SP leads to smoother classification maps as compared to the case in

which the original spectral information is used, and the inclusion of MRF-based spatial

postprocessing improves the spatial consistency of the final classification maps.

In order to further test the statistical significance of the differences in classification

results reported in Table 2.4, we performed McNemar’s Test[136] to compare the

misclassification degree of Fig. 2.7 with significance level α = 0.05 (meaning the chi-

squared distribution χ2
α,1 = 3.841459). Table 2.5 illustrates the values obtained in

the McNemar’s test. Here, the values in the first and second row are larger than

χ2
α,1, meaning that our presented methods obtained different results with regards to

those found by the original classifiers MLRsub and MLRsubMRF. On the other side,

the classification differences between the R-SP and the original classifiers turned to be

relatively lower. This indicates that, in comparison with the R-SP, our presented methods

could obtain improved enhanced classification results.

To conclude this section, Fig. 2.8 evaluates the OA of our proposed framework as a

function of the number of training samples. Here, we used both the MLRsub classifier and

MLRsub plus MRF-based postprocessing (MLRsubMRF) to refine the final classification

results. Several conclusions can be obtained from Fig. 2.8. First and foremost, the SD-SP

spectral partitioning leads to slightly better classification accuracies than those obtained

when using the AAP-SP. For instance, when the number of training samples was below

30 per class, both AAP-SP and SD-SP obtained about 4% increase in classification

accuracy with regards to using the original spectral information. As the number of

training samples per class was increased, the advantages of spectral partitioning over
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(a) MLRsub (b) MLRsubMRF

Figure 2.8: Overall classification accuracies as a function of the number of training
samples obtained by the proposed classification framework (with the original spectral
information and with R-SP, AAP-SP and SD-SP spectral partitioning) for the AVIRIS
Indian Pines scene. The solid lines represent the average of 50 Monte Carlo runs, while
the colored area around the lines represent the standard deviation around the mean.

using the original spectral information were less significant. Meanwhile, when the number

of training samples increased to 60 per class, the advantages of SD-SP and AAP-SP were

less relevant for MLRsub and MLRsubMRF. Again, the differences between using the

AAP-SP and SD-SP were not significant in this particular example. In all cases, both

AAP-SP and SD-SP outperformed R-SP, particularly as the number of training samples

increased. Finally, the standard deviations obtained when using both the SD-SP and

AAP-SP are smaller than those obtained using the original spectral information and the

R-SP. This indicates that our spectral partitioning framework generally leads to more

stable and robust classification results.

We also note that the computational complexity of the spectral partitioning stage

depends mainly on the number of spectral partitions. For example, if the user sets

the number of spectral partitions to ρ, the approximate computational cost of our

presented approaches AAP-SP and SD-SP would be about ρ times the cost of the

original MLRsub classifier. And when involving spatial information with the MRF post-

processing, additional computational time is needed for both the original MLRsubMRF

classifier and our presented AAP-SP, SD-SP methods. Although the classification of

a partition is similar to the classification of the original data set, we can perform the

classification of different partitions in parallel exploiting multi-core architectures of co-

processors such as GPUs, hence the complexity of the method can be kept within similar

levels as the original classification using straightforward implementation.

2.4.4 Experiments with the DAIS7915 Pavia City Center scene

In this section, we conduct experiments with a data set collected by a different

spectrometer. Table 2.6 displays the OA, AA, κ and individual class accuracies obtained

by the proposed classification framework (with the original spectral information and

with R-SP, AAP-SP and SD-SP spectral partitioning) using the DAIS 7915 Pavia City
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Table 2.6: Overall, average and individual class accuracies [%] and κ statistic obtained by
the proposed classification framework (with the original spectral information and R-SP,
with AAP-SP and SD-SP spectral partitioning) for the DAIS 7915 Pavia City Center
scene data. In all cases, only 90 training samples (10 per class) were used.

Class # samples
MLRsub MLRsubMRF

Original R-SP AAP-SP SD-SP Original R-SP AAP-SP SD-SP

Water 4083 99.90 100 100 100 99.99 100 100 100

Tree 2302 89.48 90.99 88.86 89.80 93.40 92.71 92.74 92.83

Meadow 1136 83.55 90.35 89.37 88.60 89.88 95.63 94.26 93.90

Soil 1301 69.97 70.20 74.70 74.22 70.10 67.30 72.55 72.50

Asphalt 1630 81.95 85.31 87.32 86.64 86.74 87.93 89.45 88.91

Parking lot 132 81.15 77.56 82.06 82.25 83.87 73.72 77.68 78.68

Brick roof 2041 89.34 96.54 94.90 96.33 93.38 98.80 97.58 97.80

Bitumen 491 87.12 87.75 86.18 90.84 88.90 87.01 85.73 91.27

Shadow 159 87.96 100 89.72 91.63 92.50 94.90 93.40 94.75

Overall accuracy 89.13 91.53 91.58 91.91 91.76 92.70 93.06 93.24

Average accuracy 85.60 87.85 88.13 88.92 88.77 88.68 89.20 90.07

κ statistic 86.79 89.70 89.69 90.15 89.97 91.10 91.54 91.76

Table 2.7: McNemar’s Test for different classification results with the DAIS 7915 Pavia
City Center scene data

(2) (3) (4) (5) (6) (7) (8)

(1) MLRsub 365.37 240.33 557.80 460.05 741.48 135.02 420.25

(2) MLRsubMRF 3.86 115.01 20.56 242.27 34.60 42.44

(3) MLRsub-AAPSP 184.01 59.88 265.45 18.30 59.59

(4) MLRsubMRF-AAPSP 33.50 33.45 239.73 25.94

(5) MLRsub-SDSP 138.18 151.30 7.703

(6) MLRsubMRF-SDSP 403.98 141.21

(7) MLRsub-RSP 168.55

(8) MLRsubMRF-RSP

Center data. In our experiment we used only 90 training samples (around 10 pixels

per class) randomly selected from the available training samples in Fig. 2.5(b), and

then we used the mutually exclusive labeled samples in Fig. 2.5(c) for testing. In our

experiments, we considered the classification results obtained by the MLRsub and also

by the MLRsubMRF which applies MRF-based spatial postprocessing after the spectral-

based classification. All the experiments were repeated 100 times and the results reported

on Table Table 2.6 are in fact the average scores after 100 Monte Carlo runs. As shown

by Table 2.6, the use of SD-SP spectral partitioning resulted in the highest OA, AA

and κ statistic values among all considered strategies, considering both MLRsub and

MLRsubMRF.

At this point, we emphasize that the results reported on Table 2.6 were obtained using

a very limited number of training samples per class (much smaller than the full training

set reported on Fig. 2.5(b)). The high classification accuracies reported in this case

can be partly attributed to the influence of the water class, which has a large number

of samples and was very accurately classified in all cases. For illustrative purposes,

Fig. 2.9 shows some of the classification maps obtained in these experiments. Each map

corresponds to one of the 100 Monte Carlo runs conducted in each case respecting to Table

2.6. As shown in Fig. 2.9, both AAP-SP and SD-SP lead to smoother classification maps

and, when the spatial information was included, the final maps were of great quality, in

particular, when the SD-SP spectral partitioning strategy was used. In addition, Table2.7

illustrates the statistical differences between the classification reported on Table2.6, by
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measuring the McNemar’s test for the results in Fig. 2.9 (with significance level α = 0.05

and the chi-squared distribution χ2
α,1 = 3.841459). From Table2.7, we can conclude that

our presented methods (AAP-SP and SD-SP) obtained similar classification accuracies

but higher than those obtained by R-SP.

(a)MLRsub (b)MLRsub(R-SP) (c)MLRsub(AAP-SP) (d)MLRsub(SD-SP)

(e)MLRsubMRF (f)MLRsubMRF(R-SP) (g)MLRsubMRF(AAP-SP) (h)MLRsubMRF(SD-SP)

Figure 2.9: Some of the classification maps obtained by the proposed classification
framework (with the original spectral information and with R-SP, AAP-SP and SD-SP
spectral partitioning) for the DAIS 7915 Pavia City Center scene. Spatial smoothness
of labels are also regularized by MRF (e-h) in order to promote the classification
performance. In all cases, only 90 training samples (10 per class) were used.

To conclude this section, Fig. 2.10 evaluates the OA of our proposed framework as a

function of the number of training samples. Here, we again used the MLRsub classifier

and MRF-based spatial postprocessing to refine the final classification results. From Fig.

2.10, it is remarkable that the proposed framework (implemented with SD-SP) provides

better results when compared with the same approach using AAP-SP and R-SP for

spectral clustering or the original spectral information. This was particularly the case

as the number of training samples was increased, in which the standard deviation also

indicates less variability when spectral clustering approaches were used. Both SD-SP

and AAP-SP obtained better results than R-SP, especially as the training samples were

increased. Similar results were reported in our experiments with the AVIRIS Indian Pines

data. The proposed framework based on spectral partitioning is particularly useful when

very limited training sets are available (this is the most common case in remote sensing

applications, due to the cost and effort associated with laborious ground campaigns).

2.5 Summary and future directions

In this chapter, we have developed a new framework for spectral partitioning of

hyperspectral data which uses band similarity grouping and then band reassignment to

reduce dimensionality and provide multiple views of the hyperspectral data while keeping

the relevant information contained in the original spectral signatures. In this framework,
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(a) MLRsub (b) MLRsubMRF

Figure 2.10: Overall classification accuracies as a function of the number of training
samples obtained by the proposed classification framework (with the original spectral
information and with R-SP, AAP-SP and SD-SP spectral partitioning) for the DAIS
7915 Pavia City Center scene. The solid lines represent the average of 100 Monte Carlo
runs, while the colored area around the lines represent the standard deviation around
the mean.

two different spectral partitioning strategies have been tested: one driven by statistical

clustering, and another one driven by physical principles related to the design of the

imaging spectrometer. The latter approach is quite innovative, as takes into account the

physical characteristics of the system for partitioning the spectral bands collected by each

spectrometer, and resampling them into different groups or partitions. Instead of ideally

considering the spectral signatures as unique continuous signals, our proposed approach

considers each spectral signature as a signal that is contributed from different instrument

sources, and thus partition the data accordingly prior to conducting a probabilistic

classification step that includes the possibility to include a spatial regularization at

the end of the process. We have evaluated the methodology by using the AVIRIS and

DAIS 7915 systems. Our experimental results indicate that the proposed strategy can

exploit the information contained in the different spectrometers in order to improve the

classification results using limited training samples, meaning that we can exploit the band

groups corresponding to different spectrometers as an effective source of information for

spectral partitioning and band reassignment prior to classification. In the future, we will

use other imaging spectrometers and classification techniques in order to analyze the

generality of the presented approach. We are also planning on using different numbers

of bands for each partition (in the present configuration all partitions have the same

number of bands) in order to better model the contributions from each spectrometer.
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Chapter 3

Class-Oriented Spectral
Partitioning

3.1 Summary

Remotely sensed hyperspectral images exhibit very high dimensionality in the spectral

domain. As opposed to band selection techniques, which extract a subset of the original

spectral bands in the image, spectral partitioning techniques reassign the original bands

into subgroups that are then processed separately. From a classification perspective,

this strategy has the advantage that all the original information in the hyperspectral

data can be retained while addressing the curse of dimensionality given by the Hughes

phenomenon. Even if spectral partitioning prior to classification has been widely used,

the strategies adopted to perform such partitioning did not consider the diversity of

spectral classes in the scene. In other words, available techniques are not driven by the

information contained in the classes of interest, which can be very useful to perform the

spectral partitioning in a more effective manner for classification purposes. To address

this issue, in this chapter we present a new class-oriented spectral partitioning technique

that exploits prior information about the classes by automatically ranking the spectral

bands that are more useful for each specific class (instead of considering the hyperspectral

image as a whole). The resulting multiple subgroups of bands with lower dimensionality

are then fed to a multiple classifier system. Our experimental results, conducted with

three different hyperspectral airborne images, suggest that the presented method leads

to competitive results when compared to other state-of-the-art approaches in the field.

3.2 Introduction

Hyperspectral image analysis has developed significantly during the past two decades [7].

Hyperspectral data have been used in many different areas, including disaster monitoring,

natural resources exploitation, environmental applications, etc. [106–108]. However,

contrary to the rapid development of remote sensing technologies, the availability of

training samples and labeled data has been quite limited [7]. As a result, many
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hyperspectral image analysis methods (particularly, for supervised and semi-supervised

classification) have focused on addressing the existing imbalance between high spectral

dimensionality and limited labeled samples [137, 138]. In order to deal with the issue,

dimensionality reduction technique has been widely developed and used [139–142].

Classic dimensionality reduction techniques can be separated into two categories:

1) band selection and 2) feature extraction. Considering the diversity of available

algorithms and techniques, feature extraction turns out to be more flexible and widely

used, including well-known approaches in the literature such as principal component

analysis (PCA) [143], independent component analysis (ICA) [37], manifold learning

(ML) [37, 144] and subspace-based approaches [39, 145]. However, feature extraction

generally transforms the original information after projecting the data into a certain

feature space [146], which may be a challenge for certain applications that require

meaningful spectral signatures according to their physical interpretation [147, 148]. In

turn, band selection algorithms are more effective in preserving the original information

due to their capacity for selecting the most informative spectral bands among hundreds

or even thousands of bands with great correlation and redundancy with supervised or

unsupervised ways [149–151] while, at the same time, retaining their original physical

meaning (i.e., even though some bands are discarded, there is generally no transformation

of the retained bands into a different feature space). As a matter of fact, the

discriminative information that allows a classifier to provide good performance is usually

class-dependent and the relevant information may live in weak features/bands that

are usually discarded or lost after subspace transformation or band selection. As a

result, in practice, it is challenging to use either feature extraction or band selection for

classification purposes.

Many techniques have been developed in order to address this problem. In [152],

an efficient model selection procedure based on kernel alignment was developed for

hyperspectral image classification. Resulting from this process, a weight (learned from

the data) is assigned to each kernel so that both relevant and meaningless image features

automatically emerge after training the model. In [153], an unsupervised band selection

method called multi-objective optimization band selection (MOBS) was developed. The

objective functions were optimized by a multi-objective evolutionary algorithm to find

the best trade-off solutions. The final selected bands evolve from multiple possible

instances of band selection during an iterative process, until the good stable performance

of classification is achieved for different data sets. In order to facilitate the subsequent

automatic interpretation image objects, high-level features are jointly integrated to infer

the spatial and structural information encoded in the low-level and middle-level features

[154]. Classic ensemble learning techniques such as bootstrap aggregation/bagging [155],

AdaBoost [156] or cross-validated committees [157] can also be interpreted as feature

fusion approaches that can take advantage of the relevant information provided by each

classifier [158–160].

An alternative strategy used in recent developments is spectral partitioning, which can

be seen as a kind of band selection approach that aims mainly at rearranging the original

spectral bands in the hyperspectral image. However, as opposed to band selection,
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spectral partitioning does not necessarily discard most of the original spectral bands to

achieve lower dimensionality [56]. Instead, spectral partitioning generates several groups

of band subsets from the original spectral bands, so that each band subset is a so-called

spectral partition containing a much lower number of spectral bands as compared with

the original hyperspectral image, meanwhile, the union of multiple subsets can make

up to the full original image [54]. Therefore, spectral partitioning effectively provides

multiple views of the original hyperspectral image by obtaining several subgroups that can

simultaneously exploit most of the original spectral information in the hyperspectral scene

without discarding a large proportion. In other words, different subgroups of spectral

bands can be used to provide different classification results [54]. The diversity of classifiers

constructed with the subgroups of bands provides the possibility to obtain a very robust

classifier ensemble, which can be achieved by combining the classification results obtained

from each of the subgroups using different ensemble learning strategies [161], such as

bagging and boosting [156, 162], decision combination via majority voting [163], and

multiple classifier systems (MCS) [158, 160]. The diversity obtained in the generation

of the multiple views is one of the keys for successful spectral partitioning prior to

classification [159,160,164].

3.2.1 Related work and motivations

Even if spectral partitioning prior to classification has already been used, the strategies

adopted to perform such partitioning generally do not consider the information about

the spectral classes in the scene. In other words, available techniques are not driven by

the information contained in the classes of interest, which can be very useful to perform

the spectral partitioning in a more effective manner for classification purposes [54, 165].

In high spatial resolution images, land-use classification can be successfully performed

by interpreting the multiple spectral bands according to common classes in the scene

[166]. With such class-oriented interpretation, one can also automatically perform

target detection [167, 168]. However, in hyperspectral image analysis, it is generally

difficult to anticipate which bands play a more relevant role for classification in a specific

scene [169,170], as this information is generally class-dependent. In [152,171], the authors

developed multiple kernel frameworks for hyperspectral image classification. The weight

assigned to different kernel features was carefully established and interpreted. However,

the specific role of spectral bands is more difficult to substantiate since it is often

application-dependent. As a result, it is important that different spectral partitions

derived from the original image represent different perspectives or views on the data

[54, 141, 172, 173]. At this point, we clarify that these multiple views refer to the lower-

dimensional partitions that are obtained by the proposed spectral partitioning framework.

Bearing in mind the aforementioned issues, our motivations to introduce a new

spectral partitioning technique in this chapter can be summarized as follows: 1) to

achieve the benefits of dimensionality reduction without actually discarding most of the

spectral bands in the original image; 2) to facilitate multiple-classifier feature learning

by considering different views (spectral partitions) of the original data; and 3) to

explore the relevance of class-dependent features, which are often discarded by feature
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extraction/selection techniques, all in the context of hyperspectral image classification.

With the aforementioned ideas in mind, our main goal in this chapter is to develop a

new strategy for spectral partitioning that can effectively exploit the spectral bands that

are more relevant to each class of interest in the scene.

The newly presented spectral partitioning strategy consists of three steps. First of

all, we rank the spectral bands that are more useful for each specific class (instead of

considering the hyperspectral image as a whole). As a result, multiple subgroups of bands

with lower dimensionality are selected in this step. Then, the obtained class-oriented

spectral partitions are used as the input of a classifier ensemble strategy, MCS. For this

purpose, we use two state-of-the-art classifiers: the support vector machine (SVM) [174]

and the multinomial logistic regression (MLR) [175] to validate our presented method.

In addition, we incorporate into the MCS the concept of classification with rejection to

evaluate and improve our presented classifier [176,177]. This approach effectively merges

the classification output from the spectral partitions with the classification obtained from

the original image, providing a robust classification output. The proposed approach is

compared to other available spectral partitioning methods, such as the one presented

in [56].

The remainder of this chapter is organized as follows. Section 3.3 describes our

proposed approach. In Section 3.4, we discuss experimental results obtained using three

well-known hyperspectral data sets: the Reflective Optics System Imaging Spectrometer

(ROSIS) Pavia University scene, the Airborne Visible/Infrared Imaging Spectrometer

(AVIRIS) Indian Pines scene, and the hyperspectral digital image collection experiment

(HYDICE) Washington DC Mall scene. The experiments suggest that our presented

method leads to competitive results when compared to other state-of-the-art approaches

in the field. Conclusions and hints at plausible future research lines are given in section

3.5.

3.3 Class-oriented spectral partitioning method

3.3.1 Proposed spectral partitioning strategy

Let us denote by x ≡ {x1, . . . ,xn} ∈ Rd×n the original spectral signatures of the

hyperspectral image Bd with n pixels indexed by S : {1, 2, · · · , n} and d wavebands Ω

(|Ω| = d). Classification is the process that assigns each pixel xi = {xi1, xi2, · · · , xid}, i ∈
{1, · · · , n} with a label yi ∈ L : {1, 2, · · · , Nc}, where Nc is the number of classes

of interest in the scene. Spectral partitioning aims at separating and reassigning the

d spectral bands Ω into a group of band subsets, namely spectral partitions {SPi},
i ∈ {1, 2, · · · ,M}, so that:⋃

i∈Ω

{SPi} ⊆ Ω. (3.1)

This means that usually the union of the spectral partitions gives the whole set of
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original spectral bands of the hyperspectral image. We also note that:

∅ ⊆
⋂

∀i 6=j, i,j∈Ω

{SPi, SPj},⋃
∀i6=j, i,j∈Ω

{SPi, SPj} ⊃ {SPi},
(3.2)

which means that two different spectral partitions may share mutual bands or not,

while any given two spectral partitions should not be equivalent (note that one spectral

partition might be the subset of another). Eqs. (3.1) and (3.2) generally describe

the relationship of spectral partitions, meanwhile they also induce to finite number of

solutions of the spectral partitioning problem. We generally need the spectral partitions

to be different enough among each other in order to provide adequate diversity [161,162].

This brings different perspectives of the original hyperspectral image [54, 56]. If we let

|SPi| be the number of bands in partition SPi, we can infer from Eqs. (3.1) and (3.2)

that
M∑
i=1

|SPi| ≥ d.

Figure 3.1: Flowchart of the proposed class-oriented spectral partitioning prior to
classification approach.

With the aforementioned ideas in mind, Fig. 3.1 shows a general flowchart of our

proposed class-oriented spectral partitioning approach prior to classification. First,

training samples with labels G = {G1, G2, · · · , GNc} are separated into a certain number

of subgroups Gi, where Gi = {xGi ,yGi}, i ∈ {1, · · · , Nc} and the number of subgroups

is given by the number of classes in the scene (Nc = M). Then, each subgroup Gi

is used as input to a band selection algorithm that selects the most relevant bands

using a specific criterion that is driven by the information contained in each class. The

result is a set of Nc class-oriented spectral partitions {SPi}(i ∈ {1, · · · , Nc}) with much

lower dimensionality as compared to the original hyperspectral image (|SPi| << d).

The spectral partitions are fed to an MCS that combines multiple SVM classifiers and
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generates a final classification result.

Herein, we remark that the presented spectral partitioning strategy excludes by a

large degree the influence of noise, outliers, and anomalous classes, and relies on the

effectiveness of the band selection algorithms that are used in the spectral partitioning

scheme. In the following, we describe the band selection techniques adopted in this

chapter and the MCS used to generate the final classification output. In addition, we also

introduce the concept of classification with rejection, as well as describe how we combine

different classifiers to further improve the classification results using this concept.

3.3.2 Band selection algorithms

Band selection techniques intend to select an appropriate band subset from the original

data set to represent the data according to some optimality criterion [114]. Generally,

band selection can be understood as an exhaustive searching process for all possible

cases: (L|ΩBS |) = d!
(d−|ΩBS |)!|ΩBS |! , with ΩBS being the selected bands and L being the

number of all possible subset of selected bands, given a number of bands to be selected

|ΩBS | [114]. A general way to perform the searching process is to solve the following

optimization problem:

Ω∗BS = arg max
ΩBS⊂Ω, |ΩBS |=nBS

J(ΩBS), (3.3)

where nBS = |ΩBS | is the number of selected bands in subset ΩBS and J(ΩBS) establishes

the relative importance of a given spectral band in ΩBS . We have to note that, given the

large number of spectral bands in a hyperspectral image, it is almost impossible to try

all possible band combinations. We also note that, for different scenes, it is difficult to

decide which spectral bands play a more relevant role, or to anticipate which combination

is more useful. As a result, a general strategy has been to find a group of bands that are

both of high quality (e.g., with low noise or not located in the water absorption region)

while exhibiting high variance [170]. Consequentially, many available band selection

algorithms are focused on defining target functions that calculate the priority score of a

given spectral band [49,178,179].

In this chapter, we rely on two popular band selection algorithms: signal-to-

noise ratio (SNR) [180] and band dependence minimization-based linearly constrained

minimum variance (BDM-LCMV) [181] for evaluation purposes. We have selected these

algorithms because their strategies for band selection are widely used, which makes the

algorithms quite representative of existing band selection techniques. In this chapter,

both algorithms are used to perform class-oriented band selection prior to classification.

In the case of the SNR band selection algorithm, J(ΩBS) is defined with a noise-adjusted

principal component based priority score, calculated for the l-th band of the image, Bl,

as follows:

J(Bl) =

d∑
k=1

r2
l,k = ρSNR

l , (3.4)

where r2
l,k =

√
λl,k × vl,k, for l, k = 1, 2, . . . , d and Bl is the l−th spectral data. Herein

λl,k is the set of eigenvalues of the noise-adjusted covariance matrix, and vl,k denotes
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their associated orthonormal eigenvectors. Here, we also use d to denote the number of

wavelengths of the original hyperspectral image. Given a number of bands to be selected,

ΩSB , the SNR algorithm selects the first ΩSB spectral bands with greater J(Bl) values

from all the available bands. At this point, we emphasize that the SNR is one of the most

widely used criteria to establish band priorities. The main assumption of our spectral

partitioning method based on SNR (hereinafter SP-SNR) is that the spectral bands with

higher SNR lead to better classification performance. This simple criterion is based on

minimizing the impact of noise on the performance of the classifier. Consequentially,

the SP-SNR is intended to minimize the impact of noise in classification performance by

generating class-oriented spectral partitions with high SNR values.

SNR is a criterion related to single bands, while BDM-LCMV also includes a second

constraint intended to minimize the similarity between the bands to be selected. From the

viewpoint of classification, BDM-LCMV follows the assumption that a more informative

band combination is generally given by a set of bands that are more distinct between each

other. In the case of BDM-LCMV algorithm, the band priority score can be calculated

as follows:

J(Bl) = (ṽLCMV-CBS
l )T

∑̃−1

ṽLCMV-CBS
l , (3.5)

where:

ṽLCMV-CBS
l =

∑̃−1

Bl(B
T
l

∑̃−1

Bl)
−11N . (3.6)

Here, ṽLCMV-CBS
l represents the weight vectors associated to each spectral band and∑̃

= (1/d)
d∑
l=1

Bl×BT
l denotes the sample band correlation matrix, in which the problem

described is referred to as LCMV-based constrained band selection[181]. In Eq. (3.6),

1N is an N -dimensional column vector with all 1’s in its N components, and N denotes

the number of columns of the spectral band Bl. As a popular band selection algorithm,

BDM-LCMV is also utilized in this chapter due to its capacity to select informative band

combinations containing bands that are distinct between each other. With this issue in

mind, we hold a reasonable expectation that BDM-LCMV may outperform SNR in terms

of classification accuracies.

An important advantage of supervised band selection techniques such as those

described before is that they can reduce the interference introduced by noise, outliers

and unwanted pixels in a hyperspectral image scene. Another important advantage is

that they are driven by the information contained in the classes of interest, turning the

band selection process into a class-oriented one. An additional advantage in the case of

BDM-LCMV is that it generally decreases the size of the used samples, which makes the

inverse calculation faster and more accurate.

3.3.3 Classifier ensemble strategy

In this section, we describe the MCS system used to provide the final classification

result from the Nc partitions of the original hyperspectral image, obtained by our newly
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presented strategy for class-oriented spectral partitioning. The base classifier used for

demonstration purposes in this chapter is the SVM [182], which has been a state-of-the-

art classifier for remotely sensed hyperspectral data. Since we are dealing with different

partitions (or views) of the original hyperspectral data, we need a decision rule to fuse

the individual classifications obtained by the SVM from the different spectral partitions

derived by our method. Let pm(i) be the probability obtained by an SVM classifier for

a given pixel i and partition m. pm(i) provides the degree of membership of a pixel to

different classes of interest. In this chapter, we use a soft ensemble strategy to combine

the results obtained from all the partitions. Specifically, the probabilities resulting from

all the different partitions in a given pixel are modelled by:

p̂(i) =
1

Nc

Nc∑
m=1

pm(i), (3.7)

where m indexes the spectral partitions (m ∈ {1, · · · , Nc}) and Nc is the number of

partitions, which is equal to the number of classes, according to our interpretation in

Fig.3.1. The final class label for pixel i is determined by maximum probabilistic voting

as follows:

yi = arg max
k∈{1,··· ,Nc}

p̂(k)(i), (3.8)

where p̂(k)(i) is the probability corresponding to class k for a given pixel i, and

p̂(i) = {p̂(1)(i), · · · , p̂(Nc)(i)}.

3.3.4 Classification with rejection

In order to evaluate a set of classification outcome, four statistics are widely used: overall

(OA), average (AA) and individual class accuracies, as well as the κ statistic. However,

these statistics are unable to describe how confident a classifier is in the classification of

a certain pixel. With limited training samples, the parametric optimization of a classifier

sometimes results in high individual accuracies only for large classes (i.e., those with

a significant number of pixels in the scene). However, the need for correctly classified

pixels usually surpasses the need for high overall accuracies [176]. Hence, in this chapter,

we exploit two additional statistical metrics to further refine the classification results

provided by our proposed method.

Assuming that R is the set of rejected samples (R̄ is the set of non-rejected samples)

and C is the set of correctly classified samples (C̄ is the set of incorrectly classified

samples), we consider the nonrejected accuracy A and the classification quality Q [177],

which are given as follows:

A =
|C
⋂
R̄|

|R̄|
, (3.9)

and

Q =
|C
⋂
R̄+ C̄

⋂
R|

|R̄
⋃
R|

. (3.10)
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In this chapter, we adopt a non-parametric way to simplify the rejection process

when calculating the statistics A and Q as a function of the rejected fraction, following

previous developments in [177]. By sorting the maximum probabilities of all pixels’

probabilistic output, we can easily decide the rejections by accepting pixels with higher

maximum probabilities and rejecting the remaining pixels. When different classifiers

exhibit different confidence in the classification of the same pixels, this means that a

rejected pixel by one classifier can hold higher confidence by another classifier. This

makes it possible to further improve the classification results by combining the pixels

with confident classifications by different techniques. In order to obtain a combined

classification Ŷ, we define the acceptance of a classifier m as:

Sacc = where(pm(i) > λ), (3.11)

where λ is a constant decided by how many pixels we would like to reject. Then the

rejection set from classifier n can be defined as:

Srej = where(pn(i) < λ). (3.12)

Instead of using lambda, the rejection fraction (ratio of rejection) was recommended

by the works [176,177]. The main reason is that it is easier to compare different methods

under the rejection fraction. As a result, in our work, we used the ratio of rejection to

illustrate the obtained results. As for the selection of the rejection fraction, it is generally

defined by the user according to the desired accuracy after rejection. With the above

formulation in mind, two classifiers can be simply combined as follows:

Ŷ = arg max pm(Sacc)
⋃

pn(Srej), (3.13)

where Ŷ is the final classification map obtained after combining the output provided by

the two classifiers. In practice, we just need to select a value for the rejection fraction

when combining two classification results. To do this, we search the whole solution space

of rejection fractions [0.01, 0.99] with the interval of 0.01 and then select the combination

that reaches the highest overall accuracy. In this chapter, we use this simple concept to

effectively merge the classification output of the aforementioned spectral partitioning

strategy with the classification obtained from the original image, thus exploiting both

strategies (i.e., class-dependent and image-dependent) to provide our final classification

output.

3.4 Experimental results

In this section, we evaluate the presented spectral partitioning method by using three

well-known hyperspectral data sets: a reflective optics system imaging Spectrometer

(ROSIS) data set collected over Pavia University, Italy, an airborne visible infra-red

imaging spectrometer (AVIRIS) data set collected over the Indian Pines region, and

a hyperspectral digital image collection experiment (HYDICE) data set collected over

Washington DC Mall. We first describe the three hyperspectral data sets. Then, we

discuss the results obtained by using the proposed classification framework based on

spectral partitioning, using the aforementioned data sets.
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3.4.1 Hyperspectral images used in experiments
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Figure 3.2: Experimental hyperspectral data sets along with their ground-truth and
average spectral signatures per class.

The first hyperspectral image used in our experiments [see Fig. 3.2 (a)] was collected

by ROSIS over the University of Pavia, Italy. The data set consists of 115 spectral

bands between 0.4 and 1.0 µm, with size of 610×340 pixels. The noisy bands had been

removed, yielding 103 spectral bands. The ground-truth image in Fig. 3.2(b) contains

9 ground-truth classes, 3921 fixed training samples distributed together with the data,

and 40002 test samples [3, 183].

The second hyperspectral image used in our experiment is the well-known AVIRIS

Indian Pines1 data set, displayed in Fig. 3.2(d). It comprises 145 × 145 pixels and was

collected over Northwestern Indiana in June 1992. As shown by Fig. 3.2(e), a total of

10366 pixels are available in the labeled ground-truth, including 16 mutually exclusive

classes. In the following experiments with this data set, we use 640 randomly selected

training samples in total to illustrate the performance of the method using limited

training sets. We also conduct 20 Monte Carlo runs to ensure statistical significance.

1https: //engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html
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Although some of the bands are considered to be corrupted by water absorption features

and noise, we will use all of them since the considered band selection algorithms have

the capacity to automatically screen and select the most useful spectral bands.

The third hyperspectral image used in experiments was collected by HYDICE over

the Washington DC Mall. It comprises 191 bands with 3 m spatial resolution. This

image originally contains 1280 lines with 307 pixels in each line. The test image used in

experiments and its ground-truth are shown in Figs. 3.2(g) and 3.2(h), respectively. The

image is available online 2. In our experiments, we use 26981 labeled samples collected

from 7 ground-truth classes.

For the three data sets, we plot the average spectral signatures of each class in Figs. 3.2

(c), 3.2(f) and 3.2(i) to give an idea of the spectral similarity of the classes. Using

the aforementioned hyperspectral data sets, we statistically evaluate the sensitivity of

our methods to different percentages of training samples after 20 Monte Carlo runs.

The processing times are also reported and discussed. All our experiments have been

conducted by using Matlab R2013a on a desktop PC equipped with an Intel Core i7 CPU

(at 3.6 GHz) and 32 GB of RAM.

3.4.2 Experiments with real hyperspectral data
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Figure 3.3: Spectral partitions obtained by our presented spectral partitioning (SP)
method from the ROSIS Pavia University data. Our method incorporates two band
selection algorithms: SNR (a) and BDM-LCMV (b), respectively. The spectral partitions
obtained by SP-AAP are displayed in (c). In all the plots, the x-axis denotes the set
of original spectral bands, while the y-axis represents the group of selected bands (each
horizontal line displays one group of selected bands).

Before reporting our experimental results, we emphasize that we have optimized the

parameter settings in order to obtain the best performance from each individual method

involved in the classification framework. The band selection algorithms used in this

chapter have a single input parameter that is the number of spectral bands to be selected.

We use the same number of bands for all individual spectral partitions in the framework

of the presented method for simplicity. In order to decide this number, we need to bear

in mind that the number of spectral bands should be enough to provide discriminative

spectral details with less band overlapping among the partitions, to preserve the diversity

of the views provided. After several empirical experiments, we decided to use 20 bands

for the ROSIS Pavia University data set, 60 bands for the AVIRIS Indian Pines data set,

2https://engineering.purdue.edu/ landgreb/Hyperspectral.Ex.html
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and 40 bands for the HYDICE Washington DC Mall data set. For the two considered

classifiers: SVM and MLR, we used the Gaussian radial basis function (RBF) kernel.

This has been one of the most successful and widely used kernel functions in the

literature [184, 185]. In our experiments, we empirically found that this kernel provides

superior performance to other kernels. For the MLR classifier, the logistic regressors

(assumed to be random vectors with independent Laplacian components) are learned

using the LORSAL algorithm [11,175].

3.4.2.1 Experiments with ROSIS Pavia University data

In this subsection, our presented spectral partitioning method is firstly tested with the

ROSIS Pavia University data. Two well-established band selection algorithms, SNR and

BDM-LCMV, are used to construct two spectral partitioning methods called SP-SNR

and SP-BDM-LCMV, respectively. Our method is compared with three other strategies

based on 1) conducting classification on the original hyperspectral image, 2) conducting

classification on the band subsets selected by the same two band selection algorithms

and 3) conducting classification after applying the recently developed adaptive affinity

propagation based spectral partitioning method (SP-AAP) in [56]. Figs. 3.3(a) and

3.3(b) respectively illustrate the multiple groups of selected bands obtained using the

SNR and the BDM-LCMV criteria, while Fig. 3.3(c) shows the bands in the spectral

partitions obtained after using SP-AAP. In all the plots, the x-axis denotes the set of

original spectral bands while the y-axis represents the selected bands for each class. For

example, from up to down along the y-axis, the first horizontal line of the plots shows

all the original spectral bands of the ROSIS data and the second horizontal line (SNR-

Ori) shows the selected bands by the SNR algorithm with all labeled training samples as

input. Then, from the third line on, the figure lists the class-oriented spectral partitions

(multiple views) consisting of the selected bands that correspond to the different classes

in the scene, e.g. Meadows, Gravel, trees, and so forth. In the case of SP-AAP, five

spectral partitions (SPs) are identified in Fig. 3.3(c).

Several observations can be made for the plots displayed in Fig. 3.3. First and

foremost, in contrast to the original band selection algorithms, our presented method

is able to make use of more of the original spectral bands via different multiple partitions

of selected bands. The union of the spectral partitioned bands gives a much larger

band set in comparison to applying a band selection algorithm over the original image.

Another important observation is that there is great diversity in the selected bands among

the spectral partitions that are obtained by using our presented spectral partitioning

method. We remark here that possible reason is that most of the classes in the Pavia

University scene are dissimilar resulting in different band selections. And this is crucial

for generating different views for the classification ensemble process [159, 164]. We

also observed that the union of the obtained partitions does not give the full original

hyperspectral image. This is expected, as the original hyperspectral image exhibits

high redundancy and not all the bands may be useful for classification purposes. Quite

opposite, the SP-AAP method generates more equally sampled spectral bands in each

partition. In this case, we are still considering the full spectral information in the scene
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3.4 Experimental results 51

but voluntarily deciding not to use all of the bands for the construction of the multiple

views. Finally, we note that the two considered band selection algorithms obtained

different spectral partitions, which will lead to different classification results. The key to

our approach is to exploit these partitions synergistically by means of the presented MCS.

In the following, we discuss the experimental results acquired after using the obtained

spectral partitions for classification purposes. In order to provide a fair comparison with

the SP-AAP, we set its number of spectral partitions to five with the ultimate goal of

obtaining the same number of spectral bands in each partition. This is mainly because the

number of bands of each spectral partition has a strong impact on the final classification

performance.

Table 3.1 shows the classification results obtained by the different tested methods

for the ROSIS Pavia University data. When the SNR is used for band selection prior

to classification, the results remain almost the same, while 1.55% increase in OA is

observed when the BDM-LCMV band selection algorithm is used, as compared to using

the original spectral information. In comparison with the single band selection strategy,

the classification results are improved by the considered multiple classifier-based feature

learning strategy based on multiple views provided by different spectral partitions. On

the other hand, our spectral partitioning method leads to improvements in classification

accuracy. For example, in the case of using BDM-LCMV for spectral partitioning, the

OA improved by 5.33% for the SVM classifier and by 5.07% for the MLR classifier,

respectively. When the SNR is used for spectral partitioning, the observed increase in

OA amounts to 1.64% (SVM) and 1.74% (MLR). This is consistent with the observations

in Figs. 3.3(a) and 3.3(b), where we can see that the BDM-LCMV obtained more diversity

in the spectral partitions than the SNR criterion. Also, our BDM-LCMV obtained

better results than the SP-AAP with 2.09% (SVM) and 0.13% (MLR) increase in OA,

respectively.

In order to further evaluate the potential of our presented method, Fig. 3.4 displays

the classification maps after the rejection of some unconfident pixels to obtain a 90%

accuracy of A [see (3.9)] of the remaining pixels. It is remarkable that 96% pixels of

the classification obtained using the original spectral information have to be discarded

to get a more confident result of 90% accuracy, while our presented method (using

the SVM classifier) only needs to discard 39% (SP-SNR) and 20% (SP-BDM-LCMV)

of the pixels. It is also remarkable that the presented spectral partitioning method

shows a great advantage over standard band selection algorithms in the case of the

ROSIS Pavia University data. Similar observations can be made for the MLR classifier.

For illustrative purposes, Fig. 3.5 plots the nonrejected accuracy (A) as well as the

classification quality (Q) as a function of the rejected fractions. From Fig. 3.5, we can

also see that our presented method has more biased confidence towards the individual

pixels to label, in comparison with the original spectral information. As a matter of

fact, the partitions obtained by the proposed method appear to be more informative

than those obtained using traditional band selection algorithms. This opens the door to

combining several classifiers when they have different preferred pixel subsets in terms of

confidence, especially when both subsets share a limited common set of pixels. In this

51



52 Class-oriented Spectral Partitioning

T
a
b

le
3.1:

O
vera

ll,
average

a
n

d
in

d
iv

id
u

a
l

cla
ss

accu
ra

cies
[%

]
a
n

d
κ

sta
tistic

o
b

ta
in

ed
b
y

th
e

p
resen

ted
classifi

cation
fram

ew
ork

im
p

lem
en

ted
u

sin
g

th
e

S
V

M
an

d
M

L
R

w
ith

th
e

b
an

d
selection

a
lg

o
rith

m
s:

S
N

R
a
n

d
B

D
M

-L
C

M
V

,
fo

r
th

e
R

O
S

IS
P

av
ia

U
n

iversity
scen

e.
T

h
e

S
P

-A
A

P
sp

ectral
p

a
rtition

in
g

m
eth

o
d

is
also

in
clu

d
ed

fo
r

co
m

p
a
riso

n
.

H
ere,

u
se

th
e

a
ccep

ted
p

ix
el

su
b

set
of

th
e

sp
ectral

p
artition

ap
p

roach
es

w
h

ile
u

sin
g

th
e

rejected
p

ix
el

su
b

set
o
f

th
e

origin
a
l

cla
ssifi

er.
T

h
e

resu
lts

o
b
ta

in
ed

u
sin

g
th

e
o
rigin

al
sp

ectral
in

form
ation

an
d

th
e

sp
ectral

b
an

d
s

selected
b
y

u
sin

g
th

e
S

N
R

a
n

d
B

D
M

-L
C

M
V

a
re

also
in

clu
d

ed
.

In
a
ll

ca
ses,

3
9
2
1

tra
in

in
g

sam
p

les
h

ave
b

een
u
sed

.

C
la
s
s

S
V
M

B
a
n
d

S
e
le
c
t
io

n
(
B
S
)

S
p
e
c
t
r
a
l
P
a
r
t
it
io

n
in

g
(
S
P
)

B
S

+
O
r
ig

in
a
l

S
P

+
O
r
ig

in
a
l

T
ra

in
/
te

st
A

ll
S
N

R
B

D
M

-L
C

M
V

S
N

R
B

D
M

-L
C

M
V

A
A

P
S
N

R
B

D
M

S
N

R
B

D
M

-L
C

M
V

A
A

P

A
lfa

lfa
5
4
8
/
6
3
0
4

8
4
.6

3
8
3
.9

8
8
3
.5

7
7
7
.9

2
8
4
.7

6
8
3
.5

5
8
4
.5

8
8
4
.6

6
8
4
.2

0
8
4
.3

3
8
4
.4

1

M
e
a
d
o
w

s
5
4
0
/
1
8
1
4
6

6
6
.0

4
6
6
.0

4
7
0
.6

9
7
4
.8

0
7
8
.6

1
7
6
.3

2
6
6
.8

5
7
1
.4

5
7
7
.2

3
7
8
.8

9
7
7
.3

6

G
ra

v
e
l

3
9
2
/
1
8
1
5

7
3
.3

9
6
8
.5

4
6
7
.9

9
5
6
.3

6
6
9
.3

1
6
2
.7

5
7
1
.4

0
7
0
.4

1
7
2
.8

9
7
2
.0

7
6
7
.7

1

T
re

e
s

5
2
4
/
2
9
1
2

9
7
.4

9
9
8
.1

8
9
8
.1

1
9
7
.3

2
9
7
.9

7
9
4
.0

6
9
8
.4

5
9
8
.1

5
9
7
.8

0
9
8
.1

8
9
6
.6

7

M
e
ta

l
sh

e
e
ts

2
6
5
/
1
1
1
3

9
9
.4

6
9
9
.3

7
9
9
.2

8
9
9
.2

8
9
9
.4

6
9
9
.3

7
9
9
.4

6
9
9
.4

6
9
9
.4

6
9
9
.4

6
9
9
.4

6

B
a
re

so
il

5
3
/
4
5
7
2

9
4
.2

7
9
2
.9

4
9
2
.1

7
9
0
.4

4
9
1
.6

9
9
0
.6

6
9
4
.0

7
9
3
.8

3
9
3
.8

3
9
2
.6

7
9
2
.7

2

B
itu

m
e
n

3
7
5
/
9
8
1

9
1
.1

3
8
6
.5

4
8
9
.9

1
8
5
.3

2
8
9
.5

0
8
7
.3

6
8
9
.0

9
9
1
.3

4
9
1
.3

4
9
1
.0

3
8
9
.9

1

B
rick

s
5
1
4
/
3
3
6
4

9
2
.1

2
9
1
.9

1
9
3
.2

5
8
6
.9

2
9
3
.4

0
9
1
.8

3
9
2
.6

9
9
3
.1

6
9
2
.2

1
9
2
.7

8
9
2
.7

2

S
h
a
d
o
w

s
2
3
1
/
7
9
5

9
9
.3

7
9
7
.7

4
9
8
.7

4
9
5
.8

5
9
8
.8

7
9
9
.7

5
9
9
.2

5
9
9
.1

2
9
9
.2

5
9
9
.5

0
9
9
.6

2

O
v
e
ra

ll
a
c
c
u
ra

c
y

7
9
.2

2
7
8
.6

3
8
0
.7

7
8
0
.2

6
8
4
.5

5
8
2
.4

6
7
9
.5

3
8
1
.6

3
8
4
.1

9
8
4
.8

6
8
3
.8

5

A
v
e
ra

g
e

a
c
c
u
ra

c
y

8
8
.6

6
8
7
.2

5
8
8
.1

9
8
4
.9

1
8
9
.2

9
8
7
.2

9
8
8
.4

3
8
9
.0

6
8
9
.8

0
8
9
.8

8
8
8
.9

5

κ
sta

tistic
7
3
.8

2
7
3
.1

2
7
5
.5

7
7
4
.7

1
8
0
.0

5
7
7
.4

0
7
4
.2

1
7
6
.6

3
7
9
.6

5
8
0
.4

5
7
9
.1

8

C
la
s
s

M
L
R

B
a
n
d

S
e
le
c
t
io

n
(
B
S
)

S
p
e
c
t
r
a
l
P
a
r
t
it
io

n
in

g
(
S
P
)

B
S

+
O
r
ig

in
a
l

S
P

+
O
r
ig

in
a
l

T
ra

in
/
te

st
A

ll
S
N

R
B

D
M

-L
C

M
V

S
N

R
B

D
M

-L
C

M
V

A
A

P
S
N

R
B

D
M

S
N

R
B

D
M

-L
C

M
V

A
A

P

A
lfa

lfa
5
4
8
/
6
3
0
4

7
7
.2

7
7
1
.3

9
7
9
.5

2
7
5
.9

7
8
0
.5

0
8
2
.7

3
8
0
.0

8
8
0
.9

3
7
8
.3

9
8
1
.9

9
8
2
.7

3

M
e
a
d
o
w

s
5
4
0
/
1
8
1
4
6

7
5
.7

9
7
4
.1

4
8
0
.3

1
8
3
.0

3
8
4
.4

5
8
2
.5

5
8
1
.9

7
8
2
.8

8
8
3
.3

3
8
4
.8

5
8
2
.5

5

G
ra

v
e
l

3
9
2
/
1
8
1
5

6
5
.8

4
6
4
.8

1
7
8
.2

7
7
5
.2

5
7
5
.6

8
8
1
.6

0
7
8
.8

3
7
8
.9

5
7
8
.4

0
8
1
.1

7
8
1
.6

0

T
re

e
s

5
2
4
/
2
9
1
2

9
3
.6

8
8
6
.6

8
9
2
.3

1
9
2
.6

0
9
1
.6

5
9
4
.7

0
9
1
.0

6
9
2
.9

3
9
1
.9

4
9
1
.9

8
9
4
.7

0

M
e
ta

l
sh

e
e
ts

2
6
5
/
1
1
1
3

9
9
.4

6
9
9
.3

5
9
9
.4

6
9
8
.8

0
9
9
.7

8
9
9
.1

3
9
9
.3

5
9
9
.3

5
9
8
.8

0
9
9
.7

8
9
9
.1

3

B
a
re

so
il

5
3
/
4
5
7
2

8
4
.3

8
7
8
.1

1
7
9
.4

6
8
0
.3

0
8
7
.1

1
8
8
.8

3
8
3
.6

8
8
4
.2

8
8
1
.3

8
8
7
.3

6
8
8
.8

3

B
itu

m
e
n

3
7
5
/
9
8
1

8
5
.6

3
8
5
.8

8
9
1
.2

2
9
2
.1

1
9
3
.7

7
9
3
.2

6
8
9
.0

6
9
1
.9

8
9
1
.9

8
9
3
.6

4
9
3
.2

6

B
rick

s
5
1
4
/
3
3
6
4

8
6
.2

1
7
2
.4

8
7
3
.6

5
6
9
.4

2
8
3
.4

3
8
0
.1

2
7
1
.9

2
7
5
.5

4
7
0
.9

7
7
5
.7

0
8
0
.1

2

S
h
a
d
o
w

s
2
3
1
/
7
9
5

9
7
.4

8
1
0
0

1
0
0

1
0
0

9
9
.8

3
1
0
0

1
0
0

1
0
0

1
0
0

9
9
.8

3
1
0
0

O
v
e
ra

ll
a
c
c
u
ra

c
y

8
0
.0

6
7
6
.0

1
8
1
.5

0
8
1
.8

0
8
5
.1

3
8
5
.0

0
8
2
.5

6
8
3
.6

9
8
2
.6

7
8
5
.2

0
8
5
.0

0

A
v
e
ra

g
e

a
c
c
u
ra

c
y

8
5
.0

8
8
1
.4

3
8
6
.0

2
8
5
.2

8
8
8
.4

7
8
9
.2

1
8
6
.2

2
8
7
.4

3
8
6
.1

3
8
8
.4

8
8
9
.2

1

κ
sta

tistic
7
4
.4

2
6
8
.4

8
7
5
.5

5
7
5
.7

0
7
9
.9

7
7
9
.8

6
7
6
.6

4
7
8
.1

8
7
6
.7

8
8
0
.0

4
7
9
.6

8

52



3.4 Experimental results 53

(a)SVM(4%) (b)SVM-SNR(0%) (c)SVM-BDM-LCMV(41%)

(d)SVM-SP-SNR(61%) (e)SVM-SP-BDM-LCMV(80%) (f)SVM-SP-AAP(65%)

(g)MLR (65%) (h)MLR-SNR (52%) (i)MLR-BDM-LCMV(77%)

(j)MLR-SP-SNR(78%) (k)MLR-SP-BDM-LCMV(83%) (l)MLR-SP-AAP(81%)

Figure 3.4: Classification maps (with rejection) obtained by the proposed classification
framework, using the original spectral information (a,g), with the 20 selected bands by
using SNR (b,h) and BDM-LCMV (c,i) algorithms, and with the spectral partitions
obtained by our proposed spectral partitioning (SP) approach implemented with SNR
(d,h) and BDM-LCMV (e,k and the SP-AAP method (f,l) for the ROSIS Pavia University
data. The percentage in the parenthesis denotes the proportion of pixels remaining after
rejection. Maps (a-f) are obtained with the SVM classifier, while (g-l) are obtained with
the MLR classifier. In all cases, a total of 3921 randomly selected training samples were
used for training and the rest used for testing. The maps are displayed with partial
pixels rejected in order to obtain a 90% classification accuracy for the remaining ones.
Note that the overall accuracies for the unrejected pixels of each map are calculated by
considering the labeled test samples, with the training samples excluded.
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Figure 3.5: Nonrejected accuracies (A) and classification qualities (Q) as a function of
rejected fractions with the ROSIS Pavia University data set. These plots correspond to
the results in Table 3.1.
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Figure 3.6: Classification OAs (as a function of rejections) obtained by our proposed
classification framework with the ROSIS Pavia University data, after being supported
by the rejected pixels of the classifier using the original spectral information.

case, the SP-AAP obtained slightly lower but competitive performance when compared

to our proposed methods, SP-SNR and SP-BDM-LCMV.

With the aforementioned observations in mind, we try to further improve the

classification results of our presented method by using Eq. (3.13). Since more confidence

exists in the results of our presented method, we use the accepted pixel subset of SP-
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Table 3.2: Processing times of different methods for ROSIS Pavia University scene.

Time/sec
SVM (different percentages of training samples [%])

1 2 4 6 8 10

Original 1.66 ± 0.16 2.66 ± 0.32 4.65 ± 0.34 6.60 ± 0.35 8.62 ± 0.58 10.58 ± 0.6

SNR 1.48 ± 0.13 2.34 ± 0.30 4.15 ± 0.32 5.89 ± 0.34 7.61 ± 0.56 9.58 ± 0.59

BDM-LCMV 1.36 ± 0.15 2.25 ± 0.31 3.88 ± 0.32 5.28 ± 0.34 7.11 ± 0.55 9.07 ± 0.58

SP-SNR 9.99 ± 0.45 15.27 ± 0.64 27.25 ± 0.92 40.99 ± 1.48 55.80 ± 1.69 71.00 ± 2.63

SP-BDM-LCMV 8.49 ± 0.54 12.81 ± 0.72 23.75 ± 0.84 36.64 ± 1.46 51.21 ± 2.02 66.17 ± 2.46

SP-AAP 5.43 ± 0.46 8.54 ± 0.75 16.32 ± 0.80 23.01 ± 1.44 31.81 ± 1.79 39.98 ± 2.66

Time/sec
MLR (different percentages of training samples [%])

1 2 4 6 8 10

Original 1.20 ± 0.13 3.48 ± 0.37 10.41 ± 1.34 21.66 ± 2.07 35.60 ± 2.69 50.13 ± 3.15

SNR 1.08 ± 0.13 3.15 ± 0.38 9.38 ± 1.33 19.63 ± 2.04 32.03 ± 2.35 45.13 ± 2.95

BDM-LCMV 1.00 ± 0.12 3.07 ± 0.39 9.28 ± 1.34 19.49 ± 2.05 32.11 ± 2.46 44.57 ± 3.13

SP-SNR 10.57 ± 0.30 30.25 ± 1.08 91.63 ± 3.53 192.27 ± 5.18 311.27 ± 6.66 466.48 ± 6.90

SP-BDM-LCMV 10.23 ± 0.24 29.74 ± 0.94 91.27 ± 3.24 190.92 ± 3.67 310.65 ± 3.89 462.65 ± 4.15

SP-AAP 5.49 ± 0.28 16.43 ± 1.00 50.43 ± 3.29 104.93 ± 4.09 172.10 ± 4.73 257.27 ± 5.33

SNR (or SP-BDM-LCMV) while using the rejected pixel subset of the classifier applied

to the original hyperspectral image. In this case, we are effectively combining the results

obtained using the original spectral information and the spectral partitions derived by

our proposed approach. The results are shown in Table 3.1. In other words, the results

in this table have been optimized to find the best combination of classifiers bearing in

mind the rejection fractions. The effect of this combination on the OAs% is shown in

Fig. 3.6, as a function of the rejection fractions. Remarkably, the classification result of

SP-SNR is improved by about 4% (from 80.26% to 84.19%) when using the SVM and by

6.66% (from 76.01% to 82.56%) when using the MLR.

(a) SVM (b) MLR

Figure 3.7: Overall classification accuracies (as a function of the number of training
samples) obtained by the proposed classification framework (with the original spectral
information and with SP-SNR, SP-BDM-LCMV and SP-AAP) for the ROSIS Pavia
University scene. The solid lines represent the average of 20 Monte Carlo runs, whereas
the colored area around the lines represent the standard deviation around the mean. Plots
(a) is obtained using the SVM classifier and (b) is obtained using the MLR classifier.

In order to evaluate the sensitivity of our methods to different numbers of training

samples, Fig. 3.7 plots the OA achieved by different methods as a function of the

percentage of training samples used to train the classifier. From Fig. 3.7, it is

remarkable that the proposed framework (implemented with SP-BDM-LCMV) provides

better results when compared with the other methods. When the number of training
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samples increases, the performance also increases, implying robustness with respect to

different training sample sets. Also, the SP-SNR obtained results which are close to

those obtained by the SP-AAP method, even though the single SNR band selection

method performed comparatively worst among all methods. On the other hand, we also

calculated the processing times in the considered computing environment (see Table 3.2).

As shown by Table 3.2, our presented spectral partitioning methods are time-consuming

as their computational time is approximately 7 to 10 times that of using the original

spectral bands of the hyperspectral image. However, the presented spectral partitioning

framework performs very fast in the task of obtaining the spectral partitions, as it only

considers the labeled samples as input. Also, the spectral partitions are independently

learned by the classifiers. As a result, it is very feasible to perform the classification

step in parallel by resorting to multi-core architectures of exploiting co-processors such

as graphics computing units (GPUs). With these implementation enhancements, the

complexity of the method can be kept within similar levels as the classification of the

original image.

3.4.2.2 Experiments with AVIRIS Indian Pines data

In this subsection, we report the experimental results obtained by our spectral

partitioning method with the AVIRIS Indian Pines data. The same band selection

algorithms: SNR and BDM-LCMV are also used in this case to generate spectral

partitions, which are respectively referred to as SP-SNR and SP-BDM-LCMV. For

simplicity, we conduct the experiments using the same conditions for all groups.

Considering the fact that most classes of the AVIRIS Indian Pines scene are given by

vegetation features with spectrally similar signatures, a larger number of spectral bands

is needed in order to retain enough spectral details to distinguish different classes. On

the other hand, increasing the number of bands may be detrimental to the diversity

for the MCS, since a larger number of bands in the partitions means higher partition

overlaps [172]. Consequentially, and for simplicity purposes, we empirically set the

number of selected bands to 60 for our spectral partitioning methods as well as for the SP-

AAP method. First of all, we perform the experiments by using 640 randomly selected

labeled samples for both the SVM [182] and MLR-LORSAL classifiers [11, 175]. Each

group of results is obtained after 20 Monte Carlo runs. The average values and standard

variations are reported. Then, we also reported the performance of our presented

methods with regards to different percentages of labeled training samples, along with

the corresponding processing times.

Fig. 3.8 displays the spectral bands selected by the SNR and BDM-LCMV algorithms,

as well as the spectral partitions obtained by using our SP-SNR and SP-BDM-LCMV

methods and the SP-AAP method. In the case of SP-SNR, it can be seen that each

spectral partition consists of more diverse bands as compared to using SNR with all the

training samples. It is also interesting to note that noisy and water absorption bands

have low probability to be selected by SP-SNR and SP-BDM-LCMV, even though we

used all of the original bands as input to the algorithms in order to allow them to select

the most informative bands automatically. The SP-AAP spectral partitioning method is
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Figure 3.8: Spectral partitions obtained by our presented spectral partitioning (SP)
method from the AVIRIS Indian Pines data. Our method incorporates two band selection
algorithms: SNR (a) and BDM-LCMV (b). The spectral partitions obtained by SP-AAP
are displayed in (c). In all plots, the x-axis denotes the set of original spectral bands,
while the y-axis represents the group of selected bands (each horizontal line displays one
group of selected bands).

Table 3.3: Overall, average and individual class accuracies [%] and κ statistic obtained
by the presented classification framework implemented using the SVM with the band
selection algorithms: SNR and BDM-LCMV, for the AVIRIS Indian Pines scene. The
results obtained using the original spectral information and the spectral bands selected
by using the SNR and BDM-LCMV are also included. SP-AAP is also included for
comparison. In all cases, only 640 randomly selected training samples have been used.

Class
Band Selection (SVM) Spectral Partitioning (SP) (SVM)

All SNR BDM-LCMV SNR BDM-LCMV SP-AAP

C1 94.56 ± 5.15 96.4 ± 5.46 95.00 ± 6.99 96.76 ± 5.44 97.12 ± 5.41 93.93 ± 6.25

C2 75.66 ± 3.43 70.85 ± 6.29 71.07 ± 4.49 76.62 ± 4.27 76.82 ± 3.88 75.44 ± 3.74

C3 73.05 ± 4.94 70.96 ± 5.70 68.46 ± 5.32 75.51 ± 5.35 75.31 ± 5.36 72.90 ± 4.54

C4 90.78 ± 3.03 88.66 ± 3.56 88.31 ± 3.70 90.86 ± 2.95 91.27 ± 3.04 91.00 ± 3.94

C5 92.44 ± 2.33 90.36 ± 3.01 89.45 ± 3.19 92.12 ± 2.93 91.62 ± 3.18 91.28 ± 3.26

C6 93.73 ± 2.25 91.84 ± 2.94 90.88 ± 2.10 93.67 ± 2.30 93.77 ± 2.14 94.21 ± 1.88

C7 92.31 ± 6.11 91.54 ± 7.85 91.54 ± 6.06 91.92 ± 6.82 91.54 ± 7.01 90.32 ± 7.89

C8 96.52 ± 1.13 96.00 ± 1.49 95.84 ± 1.20 97.21 ± 1.30 97.27 ± 1.08 96.58 ± 1.98

C9 92.50 ± 14.1 83.50 ± 19.81 84.00 ± 14.65 92.50 ± 13.33 93.50 ± 12.26 90.94 ± 16.83

C10 79.84 ± 5.21 78.04 ± 4.84 74.55 ± 5.68 83.06 ± 5.42 82.96 ± 4.63 81.85 ± 5.04

C11 72.15 ± 3.13 71.24 ± 3.57 67.26 ± 3.86 75.55 ± 3.82 75.43 ± 3.58 72.19 ± 4.89

C12 87.74 ± 4.37 87.33 ± 4.10 85.69 ± 4.73 90.08 ± 3.81 89.28 ± 3.71 87.03 ± 3.61

C13 99.36 ± 0.50 98.66 ± 1.08 99.01 ± 0.79 99.21 ± 0.64 99.24 ± 0.54 99.36 ± 0.37

C14 90.37 ± 2.71 91.82 ± 3.41 90.24 ± 4.32 92.62 ± 2.42 92.77 ± 1.94 91.80 ± 2.87

C15 75.73 ± 6.12 68.31 ± 5.48 67.00 ± 5.39 73.40 ± 6.80 73.17 ± 5.76 72.22 ± 5.75

C16 94.34 ± 3.08 92.97 ± 2.79 93.98 ± 2.58 93.61 ± 2.41 94.53 ± 2.64 94.97 ± 3.19

OA 81.50 ± 1.20 79.83 ± 1.44 77.88 ± 1.29 83.34 ± 1.20 83.28 ± 1.23 83.05 ± 1.06

AA 87.57 ± 1.35 85.53 ± 1.85 84.52 ± 1.37 88.42 ± 1.53 88.48 ± 1.42 88.73 ± 1.49

κ 78.98 ± 1.33 77.05 ± 1.61 74.87 ± 1.44 81.04 ± 1.34 80.98 ± 1.37 80.52 ± 1.16

not able to detect and screen the noisy and water absorption bands in this case. Finally,

we can also see from Fig. 3.8 that the spectral partitions obtained exhibit diverse band

selections but with similar patterns across the classes. It is reasonable that the band

selections share a degree of similarity considering the fact that the classes in the scene

are mostly related to vegetation features [see also Fig. 3.2(f)].

Tables 3.3 and 3.4 shows the OA, AA, κ and individual classification accuracies
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Table 3.4: Overall, average and individual class accuracies [%] and κ statistic obtained
by the presented classification framework implemented using the MLR with the band
selection algorithms: SNR and BDM-LCMV, for the AVIRIS Indian Pines scene. The
results obtained using the original spectral information and the spectral bands selected
by using the SNR and BDM-LCMV are also included. SP-AAP is also included for
comparison. In all cases, only 640 randomly selected training samples have been used.

Class
Band Selection (MLR) Spectral Partitioning (SP) (MLR)

All SNR BDM-LCMV SNR BDM-LCMV SP-AAP

C1 86.43 ± 6.91 86.79 ± 8.44 83.57 ± 8.39 89.21 ± 7.43 90.00 ± 8.16 82.50 ± 9.41

C2 70.86 ± 3.81 68.11 ± 3.74 67.54 ± 3.65 71.87 ± 3.44 71.50 ± 3.27 69.01 ± 3.56

C3 58.05 ± 3.84 57.40 ± 4.68 59.01 ± 4.21 62.95 ± 3.72 58.26 ± 3.86 61.39 ± 4.44

C4 78.60 ± 5.38 78.42 ± 3.46 73.20 ± 6.59 78.71 ± 6.39 77.85 ± 4.50 73.97 ± 6.16

C5 83.77 ± 3.03 82.48 ± 3.49 83.16 ± 2.96 85.42 ± 3.07 87.53 ± 3.48 84.72 ± 3.31

C6 93.53 ± 1.82 92.67 ± 1.99 88.19 ± 2.50 93.16 ± 2.21 92.39 ± 1.96 89.05 ± 2.57

C7 82.24 ± 8.67 88.46 ± 7.69 75.71 ± 10.91 83.24 ± 9.02 84.55 ± 7.90 83.40 ± 9.09

C8 96.56 ± 1.19 93.90 ± 1.95 91.78 ± 2.97 94.95 ± 2.55 92.96 ± 3.19 93.16 ± 3.08

C9 82.62 ± 16.34 84.29 ± 15.70 74.85 ± 12.25 82.79 ± 13.03 90.40 ± 8.25 69.75 ± 14.00

C10 69.26 ± 5.81 71.07 ± 4.41 68.31 ± 4.46 76.25 ± 4.58 70.26 ± 4.55 77.06 ± 3.76

C11 58.35 ± 5.19 56.52 ± 5.08 56.61 ± 4.05 66.67 ± 4.48 59.67 ± 4.51 67.64 ± 4.63

C12 78.48 ± 5.38 76.94 ± 4.04 66.24 ± 5.39 79.07 ± 3.85 74.91 ± 5.35 76.83 ± 3.94

C13 99.56 ± 0.26 99.53 ± 0.31 98.89 ± 0.50 99.33 ± 0.44 99.12 ± 0.75 99.06 ± 0.58

C14 90.49 ± 2.50 87.66 ± 4.40 85.16 ± 4.03 90.83 ± 3.67 89.94 ± 2.63 90.14 ± 4.15

C15 71.74 ± 4.26 67.66 ± 3.44 63.99 ± 3.48 69.75 ± 4.60 68.42 ± 3.45 64.09 ± 5.85

C16 92.22 ± 4.18 93.23 ± 3.60 93.13 ± 3.56 94.70 ± 3.39 87.92 ± 3.70 92.41 ± 5.34

OA 73.80 ± 1.24 72.25 ± 1.12 70.45 ± 1.12 77.37 ± 1.20 73.83 ± 1.15 76.31 ± 1.34

AA 80.80 ± 1.77 80.32 ± 1.41 76.83 ± 1.75 81.47 ± 1.43 80.98 ± 1.22 79.20 ± 1.24

κ 70.33 ± 1.34 68.57 ± 1.21 66.62 ± 1.22 73.17 ± 1.33 70.30 ± 1.26 72.29 ± 1.48

(obtained by the SVM and MLR, respectively) after using 640 randomly selected pixels

(about 40 pixels per class on average) for training and the rest of the labeled samples

for testing. If the number of samples available in the ground-truth image is less than 20,

we take half of the total samples in that class for training and the other half for testing.

Several observations can be drawn from the results reported on Tables 3.3 and 3.4. First

of all, the presented approach leads to an increase of about 1% to 4% in classification

accuracy (regardless of the band selection method used) in comparison with using all

the spectral bands in the original image. Although the advantage seems moderate, the

individual accuracies of 13 out of 16 classes (with the SVM) and 12 out of 16 classes

(with the MLR) in the scene are improved by our presented spectral partitioning method.

Secondly, when compared with standard band selection (SNR and BDM-LCMV) on the

original image, our presented method can further improve the classification accuracy by

about 5% by providing multiple views from the original hyperspectral image into the

MCS. This suggests that our presented spectral partitioning method is able to enhance

the overall statistics by improving most of the individual classes via multiple views of

the original input features that are provided by different spectral partitions.

In order to evaluate the classification results in Tables 3.3 and 3.4 from the

viewpoint of individual pixels, Fig. 3.9 displays the corresponding classification statistics:

nonrejected accuracy (A) and classification quality (Q) as a function of the rejected

fractions. It can be seen from Figs. 3.9(a) and 3.9(c) that all discussed methods exhibit
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(a) Nonrejected accuracies A (SVM) (b) Classification qualities Q (SVM)
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Figure 3.9: Statistics of nonrejected accuracies A and classification qualities Q of the
classifications as a function of rejected fractions with the AVIRIS Indian Pines data.
These plots correspond to the results in Tables 3.3, 3.4.

a similar trend, with the rejection fraction increasing. A similar pattern can be observed

in Figs. 3.9(b) and 3.9(d), which implies that similar confidence distributions towards the

pixels are provided by all the methods considered in this experiment. This observation

is illustrated by the classification maps with 90% of A after rejection in Fig. 3.10. Even

though only about 2% to 4% increase in OA is observed after applying our proposed

spectral partitioning framework, about 7% and 30% increase of nonrejected accuracy

A is observed when compared with the classifier applied to the original hyperspectral

image, and also after using the considered band selection algorithms. In comparison

with the SP-AAP, our methods also provide higher classification accuracy and rejection

confidence when using different rejection fractions. On the other hand, if we compare

the five classification maps with 90% of nonrejected accuracy A in Fig. 3.10, we can

observe that all the methods involved in this case hold similar confidence towards the

pixels in the scene. This is consistent with our discussion of the results in Fig. 3.9.

Despite the presence of similar confidence distribution in the pixels, we plot the combined

classification result against the classifications obtained using SVM with all the original

spectral bands and our presented spectral partitioning method to validate the discussions

above. From Fig. 3.11 we can see that, although the proposed spectral partitioning

strategy obtains better results than standard band selection algorithms and SP-AAP

spectral partitioning method, other extra advantages can be achieved in the views of A
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(a) SVM (79%) (b) SVM-SNR (76%) (c) SVM-BDM-LCMV (68%)

(d) SVM-SP-SNR (86%) (e) SVM-SP-BDM-LCMV (86%) (f) SVM-SP-AAP (83%)

(g) MLR (55%) (h) MLR-SNR (35%) (i) MLR-BDM-LCMV (37%)

(j) MLR-SP-SNR (67%) (k) MLR-SP-BDM-LCMV (60%) (l) MLR-SP-AAP (62%)

Figure 3.10: Classification maps (with rejection) obtained by the proposed classification
framework, using the original spectral information (a,g), with the 60 selected bands by
using SNR (b,h) and BDM-LCMV (c,i) algorithms, and with the spectral partitions
obtained by our proposed spectral partitioning (SP) approach implemented with SNR
(d,h) and BDM-LCMV (e,k) and the SP-AAP method (f,l) for the AVIRIS Indian Pines
data. The percentage in the parenthesis denotes the proportion of pixels remaining after
rejection. In all cases, a total of 640 randomly selected training samples were used for
training and the rest used for testing. The maps are displayed with partial pixels rejected
in order to obtain a 90% classification accuracy for the remaining ones. Note that the
overall accuracies for the unrejected pixels of each map are calculated by considering the
labeled test samples, with the training samples excluded.
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Figure 3.11: Classification OAs (as a function of rejections) obtained by our proposed
classification framework with the AVIRIS Indian Pines data, after being supported by
the rejected pixels of the classifier using the original spectral information. Note that
plot (a) is obtained from one Monte Carlo run in Table 3.3, while plot (b) is obtained
from one Monte Carlo run in Table 3.4. In both cases, the selected run is close to the
statistical average.

and Q with rejections. The improvement is also observed in the case of the ROSIS Pavia

University data, after supported by the classifier using all the original spectral bands

as a whole. This is consistent with the aforementioned observations and discussions, in

the sense that the results of our presented spectral partitioning method (embedded with

band selection algorithms) are further improved after being supported by the classifier

using all the original spectral bands, a phenomenon that is observed for both the ROSIS

Pavia University scene and the AVIRIS Indian Pines scene. Also, the similarity of the

confidence distributions of the two classifications obtained for each pixel suggests that

similar confidences towards individual pixels can be obtained by the different methods

tested in the case of the AVIRIS data scene. This is reasonable, considering the fact

that most of the classes in this scene comprise vegetation features that share very similar

spectral signatures, leading to low classification diversity that spectral partitioning is

able to generate by providing multiple views of the original hyperspectral data.

In order to evaluate the sensitivity of our methods to different numbers of training

samples, we also plot the overall accuracy statistics (mean value and standard deviation)

of different methods as a function of the percentage of training samples as input (see

Fig. 3.12). From Fig. 3.12, it is remarkable that our presented methods outperform those

methods that only use the spectral bands of the original image or the bands selected by

single-band selection algorithms. This is the case for different percentages of training

samples. Finally, it can also be seen that for both classifiers (SVM and MLR), our class-

oriented spectral partitioning methods generally obtained higher OAs when compared

with the SP-AAP method. Meanwhile, we also report the processing times of the

experiments reported in Fig. 3.12 on Table 3.5. From Table 3.5, we can observe that our

presented spectral partitioning methods required 5 to 12 times more computation than

the original group and 3 times more than the SP-AAP. As explained before, these times

can be significantly reduced by resorting to simple parallel implementation frameworks.
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(a) SVM (b) MLR

Figure 3.12: Overall classification accuracies (as a function of the number of training
samples) obtained by the proposed classification framework (with the original spectral
information and with SP-SNR, SP-BDM-LCMV and SP-AAP) for the AVIRIS Indian
Pines scene. The solid lines represent the average of 20 Monte Carlo runs, whereas the
colored area around the lines represent the standard deviation around the mean. Plots
(a) is obtained using the SVM classifier and (b) is obtained using the MLR classifier.

Table 3.5: Processing times of different methods for the AVIRIS Indian Pines scene.

Time/sec
SVM (different percentage of training samples [%])

2 5 10 15 20

Original 1.87 ± 0.05 7.39 ± 0.24 20.96 ± 0.54 45.01 ± 1.12 77.80 ± 1.00

SNR 1.68 ± 0.05 6.37 ± 0.24 18.82 ± 0.57 40.88 ± 1.12 70.05 ± 1.00

BDM-LCMV 1.59 ± 0.05 6.29 ± 0.24 18.59 ± 0.54 40.08 ± 1.21 69.72 ± 0.99

SP-SNR 9.09 ± 0.36 37.69 ± 0.95 108.89 ± 2.04 238.03 ± 4.30 409.95 ± 3.20

SP-BDM-LCMV 8.67 ± 0.05 36.77 ± 0.80 106.92 ± 2.19 237.15 ± 2.98 417.06 ± 2.21

SP-AAP 2.91 ± 0.10 12.83 ± 0.27 34.82 ± 1.50 78.24 ± 2.11 128.57 ± 2.33

Time/sec
MLR (different percentage of training samples [%])

2 5 10 15 20

Original 0.81 ± 0.11 1.42 ± 0.09 2.36 ± 0.16 3.44 ± 0.27 4.48 ± 0.29

SNR 0.70 ± 0.07 1.22 ± 0.10 2.10 ± 0.16 2.97 ± 0.28 3.89 ± 0.27

BDM-LCMV 0.73 ± 0.08 1.23 ± 0.10 2.15 ± 0.12 3.06 ± 0.28 4.04 ± 0.28

SP-SNR 9.14 ± 0.24 15.19 ± 0.38 24.79 ± 0.58 36.28 ± 0.99 47.59 ± 1.30

SP-BDM-LCMV 9.21 ± 0.17 15.57 ± 0.36 25.98 ± 0.64 38.88 ± 1.12 51.44 ± 1.47

SP-AAP 3.20 ± 0.17 3.89 ± 0.24 6.99 ± 0.54 12.06 ± 0.79 17.33 ± 1.40

3.4.2.3 Experiments with the HYDICE Washington DC Mall data set

In this subsection, we tested our spectral partitioning method with the HYDICE

Washington DC Mall data set. First of all, we used 2% randomly selected training

samples from the labeled reference data for training (and the rest for testing). For

simplicity, the experimental results are obtained by using the same conditions for all

groups. Similar to the experiments with the previous two hyperspectral data sets, we

set empirically the number of bands to 40 for single band selection approaches, for the

partitions generated by our spectral partitioning methods, and for the SP-AAP.

Figs. 3.13(a) and 3.13(b) respectively plot the multiple spectral partitions obtained

by using the SP-SNR and SP-BDM-LCMV methods. The spectral partitioning results

obtained by SP-AAP are shown in Fig.3.13(c). In all the plots, the x-axis represents
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Figure 3.13: Spectral partitions obtained by our presented spectral partitioning (SP)
method from the HYDICE DC Mall data set. Our method incorporates two band
selection algorithms: SNR (a) and BDM-LCMV (b). The spectral partitions obtained
by SP-AAP are displayed in (c). In all plots, the x-axis denotes the set of original
spectral bands, while the y-axis represents the group of selected bands (each horizontal
line displays one group of selected bands).

Table 3.6: Overall, average and individual class accuracies (OA, AA, CAs)[%] and κ
statistic obtained by the presented classification framework implemented using the SVM
with the band selection algorithms: SNR and BDM-LCMV, for the HYDICE Washington
DC Mall scene. The results obtained using the original spectral information and the
spectral bands selected by using the SNR and BDM-LCMV are also included. SP-AAP
is also included for comparison. In all cases, only 2% randomly selected training samples
from the labeled reference data have been used.

Class
Band Selection (SVM) Spectral Partitioning (SP) (SVM)

All SNR BDM-LCMV SNR BDM-LCMV SP-AAP

C1 81.34 ± 2.67 83.02 ± 2.83 82.24 ± 3.26 86.78 ± 2.81 88.14 ± 2.25 85.47 ± 2.47

C2 90.48 ± 1.80 90.09 ± 1.38 92.55 ± 1.42 90.57 ± 2.09 93.56 ± 1.43 92.89 ± 1.23

C3 94.09 ± 1.52 95.00 ± 2.37 94.86 ± 1.51 94.72 ± 2.28 95.83 ± 1.91 95.13 ± 1.77

C4 93.16 ± 0.92 93.65 ± 1.44 93.18 ± 0.80 94.14 ± 1.51 93.94 ± 1.05 93.68 ± 0.86

C5 90.96 ± 1.92 87.59 ± 3.22 92.17 ± 1.21 89.48 ± 2.74 93.35 ± 1.66 92.88 ± 1.74

C6 94.40 ± 1.14 90.55 ± 1.69 96.14 ± 0.89 91.78 ± 1.27 93.82 ± 1.73 94.54 ± 1.32

C7 97.58 ± 0.47 94.57 ± 1.58 97.36 ± 0.84 94.66 ± 1.70 97.19 ± 0.62 97.61 ± 0.45

OA 89.77 ± 0.54 89.56 ± 0.74 90.65 ± 0.74 91.00 ± 0.64 92.71 ± 0.54 91.76 ± 0.64

AA 91.72 ± 0.35 90.64 ± 0.57 92.64 ± 0.31 91.73 ± 0.57 93.69 ± 0.44 93.17 ± 0.42

κ 87.49 ± 0.65 87.22 ± 0.89 88.57 ± 0.88 88.96 ± 0.77 91.06 ± 0.65 89.91 ± 0.77

Class
Band Selection (MLR) Spectral Partitioning (SP) (MLR)

All SNR BDM-LCMV SNR BDM-LCMV SP-AAP

C1 77.51 ± 2.92 79.81 ± 2.13 81.28 ± 1.91 90.36 ± 1.95 90.01 ± 2.34 84.05 ± 3.82

C2 85.89 ± 1.49 90.49 ± 1.29 89.02 ± 1.61 91.73 ± 1.48 90.1 ± 1.58 87.26 ± 1.46

C3 91.78 ± 1.76 94.99 ± 2.02 94.83 ± 2.07 95.4 ± 1.75 94.56 ± 1.76 92.67 ± 1.75

C4 93.4 ± 1.43 92.33 ± 1.93 90.43 ± 1.77 94.53 ± 1.32 93.92 ± 1.01 93.95 ± 1.47

C5 93.95 ± 1.51 91.31 ± 1.79 91.91 ± 1.42 93.72 ± 0.94 92.6 ± 1.37 93.76 ± 1.32

C6 99.05 ± 0.47 84.99 ± 7.47 70.56 ± 5.45 96.42 ± 0.51 84.28 ± 7.2 99.16 ± 0.34

C7 96.68 ± 1.29 95.22 ± 1.34 82.67 ± 3.34 97.08 ± 0.72 87.98 ± 4.84 95.37 ± 1.52

OA 87.95 ± 0.75 88.56 ± 0.77 86.19 ± 0.68 93.19 ± 0.65 90.86 ± 0.81 90.10 ± 1.09

AA 91.18 ± 0.50 89.88 ± 1.12 85.81 ± 0.73 94.18 ± 0.44 90.50 ± 0.93 92.32 ± 0.64

κ 85.35 ± 0.90 86.05 ± 0.93 83.18 ± 0.81 91.65 ± 0.79 88.79 ± 0.98 87.90 ± 1.31

the set of indices of the original spectral bands while the y-axis represents the selected

bands for the original image and for each class. From Fig. 3.13, we can observe that

each class-oriented partition takes a band subset of much lower dimensionality than the

original number of bands. In all cases, the selection of partitions allows us to obtain
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(a) SVM (b) SVM-SNR (c) SVM-BDM-LCMV (d) SVM-SP-SNR
(75%) (58%) (78%) (75%)

(e) SVM-SP-BDM-LCMV (f) SVM-SP-AAP (g) MLR (h) MLR-SNR
(87%) (84%) (55%) (0%)

(i) MLR-BDM-LCMV (j) MLR-SP-SNR (k) MLR-SP-BDM-LCMV (l) MLR-SP-AAP
(0%) (85%) (70%) (65%)

Figure 3.14: Classification maps (with rejection) obtained by the proposed classification
framework using the original spectral information (a,g), the 40 selected bands by using
SNR (b,h) and BDM-LCMV (c,i) algorithms, the spectral partitions obtained by our
proposed approach implemented with SNR (d,j) and BDM-LCMV (e,k), and the SP-
AAP method (f,l) for the HYDICE Washington DC mall data. The number in the
parenthesis denotes the proportion of pixels remaining after rejection. In all cases, a
total of 2% randomly selected training samples were used for training. The maps are
displayed with partial pixels rejected in order to obtain a 97% classification accuracy for
the remaining ones. Note that the overall accuracies for the unrejected pixels of each
map are calculated by considering the labeled test samples, with the training samples
excluded.

multiple views of the original data.

Table 3.6 displays the OA, AA, κ, and individual accuracies obtained after using

only 2% randomly selected samples for training and the rest for testing [see Fig. 3.2(i)].

Several observations can be drawn from Table 3.6. First of all, an increase of about

1% to 6% in classification OA is obtained by our presented SP-SNR and SP-BDM-

LCMV methods in comparison with those using all the spectral bands, and also with the
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(c) Nonrejected accuracies A (MLR) (d) Classification qualities Q (MLR)

Figure 3.15: Statistics of nonrejected accuracies A and classification qualities Q of the
classifications as a function of rejected fractions with the HYDICE Washington DC Mall
scene. These plots correspond to the results in Table 3.6.
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Figure 3.16: Classification OAs (as a function of rejections) obtained by our proposed
classification framework with the HYDICE Washington DC mall data, after being
supported by the rejected pixels of the classifier using the original spectral information.
Note here that the plots of both figures (a),(b) are obtained, respectively, from the same
one Monte Carlo run of Table 3.6 that is close to the statistical average.

single band selection approaches. This observation is consistent with those made for the

two previous hyperspectral data sets, suggesting the effectiveness of our newly proposed

methods for multiple classifier-based feature learning based on multiple views that are
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(a) SVM (b) MLR

Figure 3.17: Overall classification accuracies (as a function of the number of training
samples) obtained by the proposed classification framework (with the original spectral
information and with SNR, BDM-LCMV band selection methods and the AAP spectral
partitioning method) for the HYDICE Washington DC mall scene. The solid lines
represent the average of 20 Monte Carlo runs, whereas the colored areas around the lines
represent the standard deviation around the mean. Plots (a) and (b) are respectively
obtained by using SVM and MLR classifiers.

Table 3.7: Processing times of different methods with HYDICE Washington DC mall
scene.

Time/sec
SVM (different percentage of training samples [%])

1 2 3 4 5

Original 0.91 ± 0.19 1.74 ± 0.18 3.30 ± 0.15 5.08 ± 0.15 7.12 ± 0.33

SNR 0.80 ± 0.03 1.47 ± 0.07 2.70 ± 0.10 4.29 ± 0.21 6.12 ± 0.19

BDM-LCMV 0.79 ± 0.04 1.49 ± 0.08 2.71 ± 0.11 4.27 ± 0.16 6.14 ± 0.27

SP-SNR 5.32 ± 0.22 10.06 ± 0.52 18.80 ± 0.59 29.76 ± 1.02 42.35 ± 1.03

SP-BDM-LCMV 5.24 ± 0.23 9.96 ± 0.52 18.76 ± 0.72 29.53 ± 0.76 42.16 ± 1.39

SP-AAP 3.10 ± 0.16 5.88 ± 0.28 10.95 ± 0.42 17.30 ± 0.49 24.48 ± 0.66

Time/sec
MLR (different percentage of training samples [%])

1 2 3 4 5

Original 5.09 ± 0.15 6.29 ± 0.24 7.47 ± 0.24 8.49 ± 0.30 9.09 ± 0.22

SNR 3.96 ± 0.05 4.29 ± 0.08 4.67 ± 0.08 4.94 ± 0.07 5.24 ± 0.07

BDM-LCMV 3.96 ± 0.04 4.27 ± 0.07 4.55 ± 0.06 4.82 ± 0.08 5.11 ± 0.06

SP-SNR 27.27 ± 0.27 29.47 ± 0.27 31.66 ± 0.44 33.50 ± 0.61 35.52 ± 0.53

SP-BDM-LCMV 27.02 ± 0.30 28.99 ± 0.35 30.76 ± 0.43 32.31 ± 0.47 34.17 ± 0.51

SP-AAP 15.65 ± 0.16 16.82 ± 0.20 17.94 ± 0.21 18.92 ± 0.27 19.96 ± 0.32

provided by spectral partitions. Secondly, in comparison with the SP-AAP method,

both SP-SNR and SP-BDM-LCMV obtained improved accuracies. Specifically, relevant

improvements are obtained for the individual classes. This is also consistent with the

observations made for the results obtained with the previous hyperspectral data sets.

In order to better illustrate this, Fig. 3.14 displays the classification maps obtained

for different methods after rejection to pursue 97% OA of the nonrejected pixels. It is

remarkable that, by using our presented spectral partitioning methods (SP-SNR and

SP-BDM-LCMV), an increase of 12% (SVM) and 30% (MLR) in OA are achieved

in comparison with using the spectral bands of the original image, and 3% to 20%

improvements in OA are obtained as compared with the SP-AAP. In order to better
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demonstrate this, Fig. 3.15 plots the classification accuracy A and quality Q as functions

of the rejection fractions. In Fig. 3.15, it is remarkable that our presented method

obtains more confidence in the classification of individual pixels than the other methods.

From the previous experiments with the ROSIS and AVIRIS data sets, we could already

observe that different nonrejected accuracies lead to improvements in classification when

combined with the classification results obtained using the original image. Hence, in the

case of the HYDICE Washington DC mall data set, we plot the supported classification

results in Fig. 3.16. From Fig. 3.16, we can see that the supported classification accuracies

are improved up to 5%. It is also remarkable that, after combining two classifications,

the results can be further improved, especially in the case of using the MLR classifier.

With the aforementioned experimental observations in mind, we conclude that our

presented spectral partitioning approaches (SP-SNR and SP-BDM-LCMV) generally

obtain better classification accuracies when compared with the SP-AAP method. The

obtained results are dependent on the learning rules of the classifiers as well as on

the considered hyperspectral data sets. For example, the SP-BDM-LCMV generally

outperforms other methods, while the SP-SNR also provides competitive performance

in all cases. In turn, the SP-AAP provides comparatively worst classification accuracies

when using the SVM classifier with the ROSIS Pavia University data set. However, when

the MLR classifier is used, the SP-AAP performs better than the SP-SNR and worse than

the SP-BDM-LCMV (see Table 3.1 and Fig. 3.6).

To conclude this section, we evaluate the sensitivity of the compared methods to

different percentages of training samples. Fig. 3.17 plots the overall accuracies of different

methods when using different proportions of training samples as input. First of all, it is

remarkable that our presented spectral partitioning methods provide highly competitive

results in this experiment. The processing times, reported on Table 3.7, indicate that

our methods need about 4 to 6 times more computation than the classification of the

original image and about 2 times more than the SP-AAP. These results can be improved

by straightforward parallelization, as discussed in previous experiments.

3.5 Summary and future directions

In this chapter, we presented a new class-oriented spectral partitioning method for

hyperspectral image classification. The proposed method is shown to be effective in

the task of exploiting the information contained in the specific classes by rearranging the

original spectral information. This is mainly done to address the Hughes phenomenon by

means of a multiple classifier system, while avoiding the elimination of relevant spectral

bands in the original hyperspectral image that may be useful for the discrimination

of the classes. Inspired by the idea of classification with rejection, we also designed

a strategy that combines different classifiers for further improving the classification

result. In our experiments, two spectral partitioning methods are constructed based

on two well-established band selection algorithms: SNR and BDM-LCMV. The obtained

spectral partitions keep most of the relevant spectral bands from the original image and

provide different views (understood as low-dimensional partitions) for multiple feature
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learning, thus addressing the potential problems associated to the limited availability

of training samples. Our experiments illustrated reasonable advantages in classification

accuracy achieved by our presented spectral partitioning framework with three well-

known hyperspectral images: the ROSIS Pavia University data, the AVIRIS Indian

Pines data and the HYDICE Washington DC mall data. Furthermore, the experimental

classification results indicate that the key for a successful spectral partitioning lies in the

capability to generate a group of spectral partitions with diverse views of the original

hyperspectral image. Besides, we also observed the effectiveness of combining different

classifiers with rejection (including those resulting from the multiple classifier views

generated by spectral partitioning and the original hyperspectral image). In our future

work, we will focus on exploring the potential of generating a group of spectral partitions

by multiple criteria, given by an extensive set of band selection algorithms instead of using

only one criterion. The potential of employing different classifiers will also be considered

to enlarge the diversity of the multiple views generated through spectral partitions. We

will also work towards the parallel implementation of the presented methods, which will

allow us to increase their computational performance due to their inherently parallel

nature.
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Chapter 4

Convex Formulation for
Remote Sensing Image
Classification with
Multi-Superpixelizations

4.1 Summary

Superpixels are a powerful device to characterize spatial-contextual information in

remotely sensed hyperspectral images interpretation. However, the exploitation of

superpixels is not straightforward, as it leads to a nonconvex, NP-hard discrete integer

optimization problem. In this chapter, we attack this problem in a compact domain

which allows us to build convex functions, thus opening the door to the incorporation

of over-segmented superpixels. Specifically, this chapter first develops a new method

for generating over-segmented superpixels. Then, we introduce a convex expression for

over-segmented superpixels that adopts the form of graph total variation. This chapter

also considers the vectorial total variation in order to promote piecewise smoothness

and align discontinuities along the boundaries. An approximated optimal solution of

the resulting problem is provided with an instance of the split augmented Lagrangian

shrinkage algorithm (SALSA). Experiments on hyperspectral remote sensing images

demonstrate that the integration of vectorial total variation and superpixel-based graph

total variation is capable of improving the labeling results with much precise boundaries

and inner consistency inside over-segmented superpixels, leading to high classification

accuracies.

4.2 Introduction

Supervised classification is an important task for hyperspectral remotely sensed data

exploitation, which assigns a set of class labels to each pixel in the scene given an

available training reference [3]. In this context, spatial information has been shown
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capable of greatly improving the classification performance from the viewpoint of

statistical accuracy and mapping effectiveness [135, 183, 186–189]. The inclusion of

spatial information is often tackled by means of image segmentation. As a discrete

problem, segmentation aims to partition an image into multiple segments, which consist

of a set of pixels that share some common characteristics(i.e. they belong to the same

object or may have the same surface orientation). As an important source of spatial

information, image segments or superpixels play a significant role in remote sensing

image analysis [3], as well as machine vision [190], medical imaging [191], etc. The

pixels comprising the same superpixel (especially the over-segmented ones) are generally

believed to share highly similar characteristics, such as class labels [192]. At the

superpixel level, hyperspectral image classification can also be processed much faster

as compared to pixel-wise techniques [187,192].

Many techniques and methods have been developed to deal with the image

segmentation problem in the spatial domain, such as thresholding [190], clustering,

compression/histogram/edge-based algorithms [193, 194], region growing [195], integer

optimization via graph-cuts [88, 196], variational methods [197, 198] as well as Bayesian

theory based algorithms such as Markov random fields (MRFs), etc. [134,199]. However,

image segmentation usually leads to an integer optimization problem that is NP-hard

and thus hard to be solved exactly. This is because the label image is naturally a

discrete representation of the original image. Actually, in the context of supervised image

segmentation, apart from a few examples almost all functions associated with a realistic

model are non-convex and even NP-hard [200]. This means that they are hard to solve

and hence a direct minimization usually leads to poor local minima. A popular and well-

established paradigm for modelling these problems is function or energy minimization,

where the spatial information is tackled with the Potts model in the Markov Random

Field (MRF) community or the minimal partition problem in the partial differential

equations (PDE) community. More interesting details regarding binary labeling problems

are experimentally surveyed in the work of Klodt et al. [201], and the more general case

of multi-label problems is reported in the work of Nieuwenhuis [200].

In the MRF community, it is often assumed that labels of neighbouring pixels follow

a Gibbs distribution [199]. In this context, graph-cut algorithms have been developed

to model the resulting integer optimization problem. In the work [84], Boykov and Jolly

firstly present the optimal solution of image binary segmentation via graph-cut algorithms

that solves max-flow problems. Recent efforts [84, 202–204] attack this problem under a

discrete optimization framework, by introducing prior regularizers to promote the spatial

patterns of the label image and approximate the solutions via graph-cut algorithms.

Kohli et al. designed a novel model for enforcing label consistency, which is able to

combine multiple image segmentations in a principled manner based on the higher order

conditional random fields (CRFs) [90]. Following this line, an optimal solution can be

found for the binary case and can only be approached for the multi-label case. Other

techniques also attack the labeling problem via block coordinate descent (BCD) [205] in

a dual objective, such as MPLP [206], MSD [207], TRW-S [88], quadratic pseudo-boolean

optimization (QPBO) [208,209], among many others.
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In the hyperspectral remote sensing image classification literature, the concept of

superpixel has been widely explored and utilized. Superpixels, especially over-segmented

ones, play a significant role in promoting contextual consistency of hyperspectral

classification, which is usually limited by the imbalance between high spectral

dimensionality and limited training samples [187]. Using image segments, Tarabalka

et al. developed several post-processing techniques for improving hyperspectral image

classification [10, 85, 186]. Fang et al. addressed this problem under a sparse model

with superpixels [188]. In a more straightforward way, Li et al. embedded the

graph-cut algorithm associated with spatial information into a novel active learning

scheme that iteratively updates the data term to remarkably improve the labeling

process [135]. The work by Zhang [187] et al. tackled this problem by following a

Bayesian framework also called super pixel-based graphical model. In the work [189],

the discontinuity information provided by boundaries has been formulated to reinforce

the label consistency for hyperspectral image classification. In polarimetric synthetic

aperture radar (PolSAR) image analysis, Xu et al. combine statistical information with

spatial-contextual information using the stochastic expectation maximization (SEM)

algorithm [210]. However, in spite of its great success, the NP-hardness of the integer

optimization problems renders little flexibility with respect to including superpixels as a

spatial prior, mainly due to its discrete nature. In addition, it is generally very difficult

to decide which is the best available image superpixelization considering both the variety

of image segmentation techniques and the parametric adjustments. Thus, it remains

very challenging to naturally exploit superpixels in supervised labeling scenarios for

hyperspectral image classification. This problem becomes even more complicated when

we consider multiple superpixelizations.

4.2.1 Contributions

As mentioned before, the Bayesian framework is widely used in order to exploit

spatial-contextual information. Under the Bayesian perspective, spatial or contextual

information can both be viewed as priors to the conditional probabilities. However,

the maximum a posteriori (MAP) segmentation leads to integer optimization problems

that are hard to solve due to their discrete nature [211]. In order to deal with this

issue, the linear program (LP) [207, 212] or convex relaxation has been used to relax

the discrete labeling problem into a compact domain. It is then much easier to convexly

model the prior regularizers over the compact set, which opens the door to the inclusion of

different priors resulting from real-world knowledge. The solution of the original problem

is then approximated (or even obtained) under a primal-dual scheme [205–207,209] using

a linearly relaxed approach in polynomial time.

Based on the convex relaxation program, and in the spirit of [91, 211, 213], this

chapter introduces a new image labeling mechanism which is extremely flexible with

respect to the inclusion of spatial information coming from superpixels, in the form of a

spatial regularizer. In this regularizer, each superpixel is formulated as a constraint of

graph total variation (GTV) that reinforces the pairwise label consistency in between its

comprising pixels. In addition to the graph total variation associated with superpixels,
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this chapter also utilizes a second spatial regularizer, the vectorial total variation (VTV),

which promotes piecewise smoothness and aligns discontinuities along the edges in the

image domain [211], thus improving the boundary recall of the resulting classification.

Besides, a new framework based on the sigular value decomposition (SVD) is designed

for the purpose of adapting the superpixelization or superpixel generation method to

hyperspectral images, considering their high spectral dimensionality. Here, we specifically

generate over-segmented superpixels with the fast simple linear iterative clustering

(SLIC) algorithm [214] considering that the over-segmented ones are more likely to be

homogeneous.

The main contributions of this chapter can be summarized as follows: 1) development

of a new strategy to relax the NP-hard integer optimization problem related to image

labeling into a compact domain, and characterization of over-segmented superpixels as

a GTV regularizer under a Bayesian image segmentation perspective, 2) introduction of

a VTV as a second spatial regularizer for boundary recalling purposes and development

of a new algorithm based on the SALSA [215] method to solve the resulting problem,

3) adaptation of the SLIC algorithm [214] to hyperspectral image superpixelization,

and 4) provision of experimental evidences illustrating the potential of the proposed

methodology in the context of hyperspectral remote sensing image classification.

4.2.2 Related work

In order to tackle the aforementioned integer optimization problem associated with image

segmentation, the work by Marroquin et al. [216] extended the Bayesian segmentation

framework with a hidden MRF paradigm, which transforms the NP-hard optimization

problem to a continuous domain. Under this paradigm, one can include additional

information as a prior to the maximum likelihood function, such as MRF [216] or a

wavelet-based prior [217]. In the context of convex optimization, some NP-hard problems

associated with integer optimization problems like shortest path, max-flow etc, are often

first relaxed and then solved or approximated as LP or SDP problems. The hidden

fields paradigm can actually be viewed as a statistical interpretation of the relaxation

technique. In the work [213] Condessa et al. sidestep the discrete nature of image

segmentation by formulating the problem in a Bayesian framework with a hidden set of

real-valued random fields. Then the segmentation via the constrained split augmented

Lagrangian shrinkage algorithm (SegSALSA) is introduced to infer the hidden fields. In

turn, the labels can be obtained via marginalized MAP (MMAP). By this means, prior

information such as structure tensor regularization (STR) [218] and VTV [219, 220] are

incorporated under a convex scheme.

This chapter also has strong connections with the work of Bioucas-Dias et al. [211]

and the work of Condessa et al. [213]. There is, however, a major difference. The

methodologies presented in [211, 213] compute the probabilities of labelings to use

elsewhere, namely, in statistical inference problems. Our objective, more in line

with [91, 221], is to use convex relaxation to approximate the original discrete problem.

Similar to the work [213, 222], our resulting algorithm is also convex, time-efficient and

highly parallelizable. The remainder of this chapter is organized as follows: Section 4.3
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introduces the problem and the objective function associated with the vectorial total

variation and graph total variation regularizers under the MAP famework. Section 4.4

describes our newly developed algorithm, that is an instance of the split augmented

Lagrangian shrinkage (SALSA), to solve the resulted problem in Section 4.3. Section

4.5 presents experimental evidence of the performance of our proposed method in the

context of hyperspectral remote sensing classification. Section 4.6 concludes the chapter

with some remarks and hints at plausible future lines.

4.3 Problem Formulation

The mathematical terms of the image segmentation problem are formulated with the

following notations. Let S ≡ {1, 2, · · · , n} be a set of integers indexing the n pixels

of an image, x ≡ [x1, · · · ,xn] ∈ Rd×n a matrix of n vectors across d dimensions. Let

y ≡ (y1, · · · , yn) ∈ Ln ≡ {1, · · · ,K}n be an image of class labels, termed segmentation

or labeling, such that yi = k if and only if the label of pixel i belongs to class k.

Givenx, a supervised image segmentation aims to find a partition P ≡ {R1, · · · , RK}
of S such that the features indiced by a given setRi, for i ∈ {1, · · · ,K}, are similar in

some sense. Similarly, an unsupervised image superpixelization can be represented by

another partition N ≡ {V1,V2, · · · ,VT } = x out of S, where the t-th superpixel clique

comprises of nt pixels and thus
∑
nt = n. We remark that there exists a one-to-one

correspondence between a superpixel and a graph. And the main goal of this chapter

is to straightforwardly reinforce the spatial information provided by the superpixels into

the supervised image segmentation problem.

4.3.1 Maximum a posteriori segmentation

We adopt a Bayesian perspective into the segmentation problem. Given the posterior

probability pY|X(y|x), the observation model pX|Y(x|y), and the prior probability pY(y)

(often an MRF), the MAP segmentation is given by

ŷMAP = arg max
y∈Ln

pY|X(y|x) = arg max
y∈Ln

pX|Y(x|y)pY(y). (4.1)

Under the conditional independence assumption, we have

pX|Y(x|y) =

n∏
i=1

pXi|Yi(xi|yi) =

K∏
k=1

∏
i∈Rk

p(xi), (4.2)

where p(xi) = pXi|Yi(xi|yi = k). In a supervised scenario, the class probabilities

pXi|Yi(·|yi = k) for k ∈ L are already known or learned from a training set. Having

into consideration (4.2), we may write

ŷMAP = arg min
y∈Ln

− log
(
pX|Y(x|y)pY(y)

)
= arg min

y∈Ln

n∑
i=1

Di(yi) + λU(y),
(4.3)
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where Di(yi) = − log pXi|Yi(xi|yi) denotes the log-likelihood probability density (often

called a data term in the bayesian image segmentation scenario), λU(y) = − log pY(y)

corresponds to the prior function, and λ > 0 is a tunable regularization parameter

controlling the power of spatial prior that is often an MRF. The minimization of (4.3)

is a nonconvex integer optimization problem over a discrete domain of y. In the case of

Potts [134] prior and K = 2, the problem has an exact solution obtained by mapping the

problem into of a min-cut computation on a suitable graph [223]. However, for K > 2, the

optimization (4.3) is proven NP-hard [88] and, therefore, usually only approximations

may be computed. To further complicate the use of integer formulations, the class of

regularizers U that may be used in (4.3) is quite narrow; for example, it is not a simple

task to include prior coming from superpixels into U .

4.3.2 Convex relaxation

In order to utilize the linear program of convex relaxation, first we replace the constraint

y ∈ Ln in (4.3) by a more common integer constraint in convex optimization problems.

Let zi = [z1i, . . . , zKi]
T ∈ {0, 1}K be a “1-of-K” representation of yi; that is, (yi = k)⇔

[zil = 0 for l 6= k and zik = 1]. Using this representation, optimization (4.3) may be

equivalently written as

ẑ ∈ arg min
z

n∑
i=1

qTi zi + λφ(z),

s.t.: 1TKz = 1Tn

z ∈ {0, 1}K×n

(4.4)

where z = [z1, . . . , zn] is the relaxed hidden field, qi = [D(yi = 1), . . . , D(yi = K)]T ,

φ(z) = U(y), and 1p is a p-dimensional column vector of 1’s.

As proposed in [91, 221], and also related with [211, 213], we relax the optimization

(4.4) by replacing the discrete set {0, 1} to the interval [0, 1], obtaining the optimization

ẑ ∈ arg min
z∈RK×n

n∑
i=1

qTi zi + λφ(z),

s.t.: 1TKz = 1Tn

z ≥ 0

(4.5)

where λ > 0 is a tunable regularization parameter. This resulted (4.5) is not equivalent to

(4.4) but, still, a very close approximation. The solution ẑ to the relaxed linear program

can be used to gain information about the solution to the original integer program.

Although the solutions ẑki yielded by (4.5) are mostly discrete [200], a few elements,

mostly in the boundary of the classes, may not be in {0, 1}. In order to recover a

complete discrete solution, we can compute

ŷi = arg max
k

ẑki, i ∈ S, k ∈ L.

The formulation (4.5) yields excellent results when compared with the original integer

formulation, as extensively illustrated in [200]. In addition, a proper tailoring to the
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function φ(·) allows to embrace a much larger group of prior information sources that

comes from real-world knowledge of the scene, besides the Gibbs distribution assumption,

the MRF or the CRF. This is exactly the possibility that we explore in this chapter.

4.3.3 Spatial regularizers

4.3.3.1 Vectorial Total Variation

Herein this chapter uses two spatial regularizers of the VTV φV TV (·) and GTV φGTV (·).
Specifically, the φV TV is of a form of vectorial total variation (VTV) [220]

φV TV (z) ≡ λ1

∑
n∈S

ωn
√
||Dhz[n]||2 + ||Dvz[n]||2, (4.6)

where Dh,Dv : RK×n 7→ RK×n are linear operators computing horizontal and vertical

first order backward vector differences, respectively, ωn can often be the magnitude at

pixel [n] weighting the n-th piece of the VTV regularizer, || · || is the standard Euclidean

norm, and λ1 > 0 is the regularizer parameter controlling the strengh of the spatial prior.

The regularizer (4.6) is utilized in order to promote the piecewise smoothness of z and

also preserve aligned edges across z in the image domain. We employ this isometric total

variation considering its capacity to allow piecewise variability along different directions.

The vectorial total variation is convex, although not strictly, allowing optimization via

proximal methods relying on Moreau proximity operators [213,224].

4.3.3.2 Graph Total Variation

Given a graph Nj , for j = 1, · · · , C, associated with the j-th superpixelization, its

corresponding graph total variation (GTV) is formulated as the sum of the total variation

over each subgraph Vj,t, for t = 1, · · · , nT , in the following

φGTV(z) =
∑
Vj,t∈Nj

ωt
∑

(m,l)∈Vj,t

ωml||zm − zl||2,

where ωml denotes the pairwise weight between nodes m and l in the subgraph Vj,t.
Minimizing this graph total variation thus leads to the promoted consistency of the

hidden layers z for each over-segmented superpixel partition. Without providing extra

prior information to each node, we can simply set ωml = 1
nj,t

and formulate the GTV

associated with multiple superpixelizations as

φGTV(z) =

C∑
j=1

ωc||(Ac − I)z||2F =

C∑
j=1

∑
Vt∈Nj

ωt||(Aj,t − I)z[Vt]||
2
F , (4.7)

where j indices the j-th graph/superpixelization, Aj is a blockwise disjoint union of

fully connected subgraphs, Aj,t = E/nj,t is a normalized adjacency square matrix of the

subgraph Vj,t , nj,t is the node number of sugbraph Vj,t, E is a square 1-matrix of size

nj,t, and || · ||F is the Frobenius norm. Note that there is a one-to-one correspondence

between graph and superpixelization, subgraph and partition element (superpixel), and

node and pixel. This means that each node (pixel) is connected to all other nodes
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belonging to the same partition element, and to no node belonging to a different partition

element. Thus, the minimization over z of the graph Laplacian (Aj − I) promotes the

minimization of the total variation of the vectors zi across the pixels i belonging to the

same partition element, for all partition elements belonging to the j-th superpixelization.

Therefore, this regularizer promotes constant vectors zi within the partition elements.

Under the perspectives of both Bayesian labeling framework and convex optimization,

this formulation is based on the definition of the GTV prior as sums of convex functions

and associated linear operators. In this chapter, we use the fast superpixel clustering

algorithm SLIC [214] aiming to obtain multiple over-segmented spatial partitions.

By taking the Frobenius norm, we can decouple (4.7) pixelwisely and superpixelwisely,

thus opening the possibility to flexibly weight specific superpixelizations, objects or

classes for more practical purposes. On the other side, note that here we are allowed to

combine multiple superpixelizations/segmentations at the same time, which avoids the

dilemma of selecting ”the best” segmentation.

4.4 Optimization Algorithm

Having in mind the data term −(log pTi )zi or qTi zi (p is the probability of vectors that

are often known or learned by supervised classifiers), the VTV (4.6) and the GTV (4.7),

the resulting optimization problem turns out to be

ẑ ∈ arg min
z∈RK×n

n∑
i=1

−(log pTi )zi

+ λ1

∑
n∈S

ωn
√
||Dhz[n]||2 + ||Dvz[n]||2

+ λ2

C∑
c=1

ωc||(Ac − I)z||2F ,

s.t. : z ≥ 0, 1TKz = 1Tn , λ1 ≥ 0, λ2 ≥ 0

(4.8)

where the constraint z ∈ [0, 1]K×n is removed as it is equivalent to z ≥ 0 and 1TKz = 1Tn ,

C is the number of graphs/superpixelizations of the original image In (4.8) the first part,

often called the data term, is a linear combination of variable zi, which is thus a convex

term. Together with the convex (4.6) and (4.7), (4.8), we obtain a convex optimization

problem, which is exactly what we originally target in this chapter.

The optimization (4.8) has a solution as it is a convex problem defined on a

compact set. The resulting optimization algorithm is very similar to SALSA [215] and

SegSALSA [211,213]. To solve the problem given by (4.8), we start with the formulation

of SALSA introduced in [215]:

min
z∈RK×n

3∑
j=1

fj(z) +

m+2∑
j=1

gj(H
g
jz) (4.9)

where the convex functions fj , for j = 1, · · · , 3, correspond to the data term, sum-to-one

constraint and nonnegativity constraints, respectively, and gj , for j = 1, · · · , C+ 2 are a
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set of closed, proper and convex functions, Hg
j , for j = 1, · · · , C + 2 are linear operators,

and
C+2∑
j=1

gj(H
g
jz) corresponds to a prior which is a summation of C + 2 terms. Note here

that C is the number of graphs/superpixelizations, while the number ”2” corresponds to

the vectorial total variation along the horizontal and vertical directions. We define the

convex functions fi as follows

f1(ζ) =
∑
i∈S
−(log pTi )ζ,

f2(ζ) = ι+(ζ),

f3(ζ) = ι1(ζ),

(4.10)

where ζ are dummy variables whose dimensions depend on functions fj for j = 1, · · · , 3.

ι+(·) is the indicator function defined over the set ζ ∈ RK×n+ with: ι+(ζ) = 0 if ζ ∈ RK×n+

and ι+(ζ) = +∞, otherwise. Likewise, ι1(ζ) is the indicator in set {1n}, with ι1 = 0 if

and only if ζ ∈ {1n}, and +∞ otherwise.

By introducing in (4.9) variable splitting ufj = z, for j = 1, · · · , 3 and ugj = Hg
i z, for

j = 1, · · · , C + 2, we convert the original optimization into the equivalent constrained

form

min
uf ,ug,z

3∑
j=1

fj(u
f
j ) +

C+2∑
j=1

gj(u
g
j )

s.t.

[
uf

ug

]
=

[
Gf

Gg

]
z,

(4.11)

where uf1 , uf2 , uf3 ∈ RK×n, and the dimension of ugj , for j = 1, · · · , C+2, being dependent

on the prior selection. In (4.11), we stack columnwise the identity operators I into the

single operator Gf : RK×n → RK×3n and define Gg as a columnwise stacking of the

operators Hg
j associated with the prior term.

4.4.1 SALSA Formulation

Taking the formulation (4.11), we apply the C-SALSA methodology [215]. We denote the

scaled Lagrange multipliers associated with the constraints uf = Gfz and ug = Ggz as

df = [dfT1 , . . . ,dfT3 ] and dg = [dgT1 , . . . ,dgTm ], respectively. We thus have the following

C-SALSA based formulation for (4.11),

zk+1 = arg min
z

∥∥∥∥[Gf

Gg

]
z−

[
uf,k

ug,k

]
−
[
df,k

dg,k

]∥∥∥∥2

F

, (4.12)

uf,k+1
j = arg min

ufj

fj(u
f
j ) +

µ

2
‖Gfzk+1 − ufj − df,kj ‖

2
F ,

ug,k+1
j = arg min

ugj

gj(u
g
j ) +

µ

2
‖Ggzk+1 − ugj − dg,kj ‖

2
F , (4.13)

df,k+1 =df,k −
[
Gfzk+1 − uf,k+1

]
,

dg,k+1 =dg,k −
[
Ggzk+1 − ug,k+1

]
, (4.14)

where µ > 0 is a parameter of the optimization controlling the variable splitting.
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4.4.2 Optimization with respect to z

The solution of the quadratic form of (4.12) is [211]

zk+1 = (G∗G)−1G∗(uk + dk) = F−1

3I(uf,kj + df,kj ) +

C+2∑
j=1

(Hg
j )
∗(ug,kj + dg,kj )

 ,

where

F = 3I +

C+2∑
j=1

(Hg
j )
∗Hg

j ,

and (·)∗ represents the adjoint operator with respect to the Frobenius norm. Having in

mind that the operator G is the columnwise stacking of the operators Gf and Gg,

if the linear operators Hg
j can be represented through cyclic convolution operators,

solving (4.12) with respect to relaxation variable z can be implemented through cyclic

convolution operations, thus diagonalizable in the frequency domain and consequently

easily performed using the fast Fourier transform (FFT) with O(Kn lnn) complexity.

4.4.3 Optimization of the split variables with Moreau proximity
operators (MPO)

The optimization subproblems associated with (4.13) can be solved through proximal

methods, by computing the associated Moreau proximity operators (MPO) [224] of each

of the convex functions. We first present the closed form expressions of these operators

for the data fit term, and sum-to-one and nonnegativity constraints.

4.4.3.1 Moreau proximity operator for f1

The Moreau proximity operator for the data fit f1 is

ψf1/µ(ν) = arg min
ζ

(∑
i∈S

qTi ζi

)
+
µ

2
‖ζ − ν‖2F ,

where ν ≡ [ν1, . . . ,νn] ∈ RK×n, and ζ ≡ [ζ1, . . . , ζn] ∈ RK×n. This optimization is

decoupled (pixelwise) with respect to ζi for i ∈ S, meaning

ψf1/µ(ν) = (ψf1/µ(ν1), . . . , ψf1/µ(νn)),

such that

ψf1/µ(νi) = arg min
ζi

qTi ζi +
µ

2
‖ζi − νi‖2F .

We find the proximal operator by locating the vertex of the paraboloid ∇ψf1/µ/∇ζi =

0 with respect to ζi, leading to

ψf1/µ(νi) = νi + (log qi)/µ.

This operator has a complexity of O(Kn), the number of classes across the number

of pixels.
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4.4.3.2 Moreau proximity operator for f2

The Moreau proximity operator for the sum-to-one constraint f2 is

ψf2/µ(ν) = arg min
ζ
ι1(ζ) +

µ

2
‖ζ − ν‖2F =

(
I− 1K1TK

K

)
ν +

1K1Tn
K

,

where ν, ζ ∈ RK×n. This operator is the projection in the probability simplex, and has

a complexity of O(Kn), the number of classes times the number of pixels.

4.4.3.3 Moreau proximity operator for f3

The Moreau proximity operator for nonnegativity constraint f3 is

ψf3/µ(ν) = arg min
ζ
ι+(ζ) +

µ

2
‖ζ − ν‖2F = max{0,ν},

where ν, ζ ∈ RK×n. This operator is the projection in the first orthant, and has a

complexity of O(Kn), the number of classes times the number of pixels.

4.4.4 Optimization of Vectorial Total Variation

The inclusion of the VTV prior in (4.8) introduces the term λ1

∑
i∈S

ωi
√
||(Dhz)i||2 + ||(Dvz)i||2

which means that our prior has a single term, m = 1.

We define the linear operator Hg : RK×n → R2K×n as

Hg =

(
Dh

Dv

)
, (4.15)

where Dh and Dv correspond to the circular horizontal difference operators previously

defined. The corresponding convex function g is defined as

g(ζ) = λ1

∑
i∈S

ωi

√
||ζhi ||2 + ||ζvi ||2, (4.16)

where ζ = [ζh ζv] ∈ R2K×n, and ζh and ζv belong to the range of the horizontal and

vertical difference operators Dh and Dv, respectively.

The Moreau proximity operator for the VTV prior is thus

ψg/µ(ν) = arg min
ζ

(∑
i∈S

ωi

√
||ζhi ||2 + ||ζvi ||2

)
+

µ

2λ1
||ζ − ν||2F , (4.17)

where ν, ζ ∈ R2K×n and ζh, ζv ∈ RK×n. This optimization can be pixelwise decoupled

and can be solved with the vector soft thresholding operator [224]

ψg/µ(νi) = max{0, ||νi|| − λ1ωi/µ}
νi
||νi||

, (4.18)

which is of complexity of O(Kn). If the linear operators Hg
j can be represented through

cyclic convolution operators, solving (4.12) with respect to the hidden field z can be

implemented through cyclic convolution operations, thus diagonalizable in the frequency

domain and consequently easily performed in the frequency domain [225].
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4.4.5 Optimization of Graph Total Variation

As introduced in (4.8), the Moreau proximity operator of the j-th graph

(superpixelization), for j ∈ {1, · · · , C}, is

ψgj/µ(ν) = arg min
ζ
λ2ωj ||(Aj − I)ζ||2F +

µ

2
||ζ − ν||2F , (4.19)

where ν, ζ ∈ RK×n, which is a quadratic optimization problem. The Moreau proximity

operator is thus

ψgj/µ(ν) =
µ

2λ2ωj

(
(Aj − I)T (Aj − I) +

µ

2λ2ωj
I
)−1

ν. (4.20)

To easily represent the matrix to calculate the inverse, let

F−1 =
µ

2λ2ωj

(
(Aj − I)T (Aj − I) +

µ

2λ2ωj
I
)−1

,

and

[Aj,t − I] =


1
nt
− 1 1

nt
· · · 1

nt
1
nt

1
nt
− 1 · · · 1

nt
...

...
. . .

...
1
nt

1
nt

· · · 1
nt
− 1

 ,

[(Aj,t − I)T (Aj,t − I)] =


nt−1
nt

− 1
nt

· · · − 1
nt

− 1
nt

nt−1
nt

· · · − 1
nt

...
...

. . .
...

− 1
nt

− 1
nt

· · · tn−1
nt


= − 1

nt
E + I.

where Aj,t are diagonal blocks of Aj , corresponding to a fully connected subgraph of

the partition graph with nt (nt = nj,t to keep notation light) nodes, a partition element

with nt pixels, and is a nt × nt matrix and E = {1} denoting a nt × nt square matrix

. Note that Aj,t is normalized by the pixel number of its corresponding superpixel and

that E = vvT , with v being a column vector of 1’s. Trivially, letting θj = µ
2λ2ωj

, there

comes

F−1 = θj

(
(Aj − I)T (Aj − I) + θjI

)−1

= θj

(
(− 1

nt
E + I) + θjI

)−1

= −θnt
(

(−1− θj)ntI + vvT
)−1

.

Since ∃ ((−1−θj)ntI)−1 and 1 + vT ((−1−θj)ntI)−1v =
θj

1+θj
6= 0 (θj 6= 0), according

to the Sherman Morrison Formula 1, trivially we can acquire F without the inverting

1https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
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calculation

F =
( θj

1 + θj
I +

1

(1 + θj)nt
E
)
, (θj =

µ

2λ2ωj
)

=
( µ

µ+ 2λ2ωj
I +

2λ2ωj
(µ+ 2λ2ωj)nt

E
)
.

(4.21)

Hence, the Moreau Proximity Operator of the GTV is

ψgj/µ(ν) =
( µ

µ+ 2λ2ωj
I +

2λ2ωj
(µ+ 2λ2ωj)nt

E
)
ν, (4.22)

which can be pixelwise decoupled as

ψgj/µ(νi) =
µ

µ+ 2λ2ωj
νi +

2λ2ωj
(µ+ 2λ2ωj)nt

nt∑
k=1

νk, (4.23)

where i, k ∈ S ≡ {1, · · · , n} index the pixels that belong to the same t-th partition as

the i-th, k-th pixel. To be specific, the first term of (4.23) corresponds to the value on

the i-th node itself, the value of the i-th pixel, and the second term corresponds to the

mean of ν on the fully connected subgraph that the i-th node belongs to, such that this

operator has a complexity of O(CKn).

4.4.6 SegSALSA-VTV-GTV

Algorithm 1 SegSALSA-VTV-GTV

initialization:
choose (uf,0j ,df,0j ) ∈ Rn×K , j = 1, . . . , 3

choose (ug,0j ,dg,0j ), j = 1, . . . , C + 2

define F = 3I +
∑m
j=1H

g∗
j H

g
j

set µ ∈]0,+∞[
for k = 0, 1, . . . , kSTOP do
zk+1 = F−1

(∑3
j=1(uf,kj + df,kj ) +

∑C+2
j=1 (Hg

j )∗(ug,kj + dg,kj )
)

for j = 1 to 3 do
uf,k+1
j = proxfj/µ(zk+1 − df,kj )

df,k+1
j = df,kj − (zk+1 − uf,k+1

j )
end for
for j = 1 to C + 2 do
ug,k+1
j = proxgj/µ(zk+1 − dg,kj )

dg,k+1
j = dg,kj − (zk+1 − ug,k+1

j )
end for

end for
return zk+1

Algorithm 1 displays the pseudocode for our proposed instance of the SALSA

algorithm, termed Segmentation via Augmented Lagrangian Shrinkage Algorithm

associated with vectorial total variation and graph total variation (SegSALSA-VTV-

GTV). SegSALSA-VTV-GTV converges for any µ > 0, while the convergence speed

is highly dependent on the value of µ. Note that the computational complexities with
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respect to x and MPOs for fj , j = 1, · · · , 3, and gj , j = 1, · · · , C+2, together lead to the

conclusion that the computational complexity of SegSALSA-VTV-GTV per iteration is

dominated by the term O(Kn lnn), associated to the computation of zk+1. Meanwhile,

the algorithm can be straightforwardly parallelized for high performance computation via

GPU and other architectures, due to the fact that optimizing of the algorithm actually

decouples pixelwisely each term of (4.8). Also note that the parameter µ only influences

the convergence speed of the algorithm, only if the algorithm converges. The parameters

λ1 and λ2 × ωj , for j ∈ {1, · · · , C} can be tuned to control the importance of the

corresponding VTV and GTV regularizers. For simplicity purposes, we directly use one

value for each production of λ2×ωj , for j ∈ {1, · · · , C}, since they are actually the values

of λ2 times of the weights ωj .

4.5 Experiments

In this section, we evaluate the proposed method with remote sensing data sets that are

obtained by different types of sensors, namely, hyperspectral images (HSI) and multi-

spectral images (MSI). Before reporting our experimental results, we introduce our newly

designed framework in Fig. 4.1.

Figure 4.1: Experimental framework for our proposed method with respect to
hyperspectral and multispectral remote sensing image data sets.

As shown in (4.8), there are three main ingredients in our method: the data term,

the magnitude map for VTV, and the multiple over-segmented superpixelizations for

GTV. First of all, a classifier multinomial logistic regression -MLR in our case, whose
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regressors are learned by the LORSAL algorithm [175, 226]), is exploited to estimate

the class probabilities of the image, in preparation for the data term. Before obtaining

the remaining two terms (VTV and GTV), we perform the SVD for dealing with the

high spectral dimensionality of the hyperspectral images. Then, in order to weaken

the trivial textural details of the image, the anisotropic edge preserving filtering [227]

is then utilized to the main transformed components and to the multispectral image.

Finally, we extract the magnitude map with the Sobel operator and generate multiple

over-segmented superpixelizations with the fast spatial clustering algorithm SLIC [214],

available in the VLFeat toolbox 2, with varying parameters.

4.5.1 Experimental results with hyperspectral images (HSIs)

(a) ROSIS PaviaU (b) Ground-truth (c) Magnitude (d) Partitions (e) Legends

(f) AVIRIS Salinas (g) Ground-truth (h) Magnitude (i) Partitions (j) Legends

Figure 4.2: Experiments with hyperspectral data. First row lists the ROSIS Pavia
University dataset: (a) HSI RGB composite, (b) ground-truth reference, (c) magnitude
map, (d) multiple over-segmented partitions/superpixels, (e) class legends. The second
row shows the results (f-j) of the AVIRIS Salinas dataset.

In this subsection, we evaluate our proposed algorithm with the ROSIS Pavia

University data set as well as the AVIRIS Salinas data set. The first hyperspectral image

used in our experiments [see Fig. 4.2 (a)] was collected by ROSIS over the University of

Pavia, Italy. The data set consists of 115 spectral bands which covering the wavelength

range from 0.43 to 0.86 µm, with size of 610×340 pixels. The noisy bands had been

removed, yielding 103 spectral bands that are actually used in this chapter. The ground-

truth image contains 9 ground-truth classes, including 42776 labeled samples. The second

2http://www.vlfeat.org/doc/api/slic.html
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Table 4.1: Overall, average and individual class accuracies [%] and κ statistic obtained
by the presented classification framework implemented using the MLR classifier in
comparison with the state-of-the-art methods, majority voting (MVS), Graphcut and
discontinuity preserving relaxation (DPR). In particular, we set the parameter of the
proposed method λ1 = 5, λ2 × cj = 2, for j = {1, · · · , 3}. The averages are and
corresponding standard deviations are calculated under 20 monte carlo runs. In all cases,
only 30 randomly selected training samples per class have been used for the ROSIS Pavia
University data set.

Class MLR MVs Graphcut DPR Proposed

Alfalfa 74.22 ± 3.15 87.03 ± 3.05 88.85 ± 4.34 91.64 ± 3.60 90.67 ± 4.35

Meadows 73.41 ± 3.96 84.47 ± 5.45 84.10 ± 5.92 85.03 ± 5.29 86.66 ± 6.38

Gravel 75.35 ± 5.05 93.09 ± 6.57 89.47 ± 7.06 88.67 ± 5.80 95.76 ± 5.35

Trees 91.99 ± 2.56 68.89 ± 4.88 93.33 ± 2.83 91.02 ± 2.89 92.22 ± 3.87

Metal sheets 99.82 ± 0.12 97.88 ± 2.45 100 ± 0.02 100 ± 0.00 99.93 ± 0.02

Bare soil 78.11 ± 4.29 95.18 ± 3.28 96.39 ± 4.60 98.16 ± 3.31 98.69 ± 2.95

Bitumen 89.34 ± 2.90 99.46 ± 0.00 97.63 ± 1.28 99.92 ± 0.07 99.28 ± 0.36

Bricks 73.69 ± 4.33 90.21 ± 7.05 78.23 ± 7.51 88.11 ± 5.98 79.92 ± 11.18

Shadows 99.73 ± 0.34 88.71 ± 3.29 99.69 ± 0.76 99.48 ± 0.04 99.16 ± 0.44

Overall accuracy 77.41 ± 1.78 86.89 ± 2.38 87.94 ± 2.53 89.70 ± 2.35 90.02 ± 2.96

Average accuracy 83.96 ± 0.88 89.43 ± 1.15 91.97 ± 1.28 93.56 ± 1.12 93.59 ± 1.41

κ statistic 71.51 ± 2.05 83.07 ± 2.90 84.53 ± 3.11 86.75 ± 2.92 87.17 ± 3.65

hyperspectral image used in our experiment is the well-known AVIRIS Salinas3 data set,

collected by the AVIRIS sensor of 224 bands in the wavelength range from 0.38 to 2.50

µm over Salinas Valley, California. As displayed in Fig. 4.2(f), it comprises 512 lines

by 217 samples across 204 spectral bands after discarding 20 water absorption bands.

For the reference collection, a total of 54129 pixels are available in the labeled ground-

truth, including 16 mutually exclusive classes. For both hyperspectral data sets, we also

prepared the magnitude map (Fig. 4.2 (c,h)) and three over-segmented superpixelizations

(Fig. 4.2 (d,i)), respectively.

Before displaying the experimental results, we first introduce our experimental setup

for the analysis of hyperspectral images. The class probabilities are estimated by an

MLR, where the logistic regressors (assumed to be random vectors with independent

Laplacian components) are learnt using the LORSAL algorithm [175, 226]. The MLR

classifiers are learned with 30 training samples and 15 samples per class, respectively,

for the ROSIS Pavia University data and the AVIRIS Salinas data. For simplicity,

we use three over-segmented superpixelization representations (with SLIC algorithm) to

construct the graph total variation. In order to obtain convergence in our proposed

method, we empirically set 200 iterations. Meanwhile, some recently developed state-of-

the-art methods, namely, majority voting approaches [85], graph-cut [84] algorithm and

the discontinuity preserving relation scheme [189], are also employed in this chapter for

evaluation and comparison purposes. Also, for statistical purposes, 20 Monte Carlo runs

are performed for all the compared methods.

The obtained results are displayed in Tables 4.1, 4.2. Several observations can

be made from these results. First, all the segmentation results obtain remarkable

3http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote Sensing Scenes#Salinas scene
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Table 4.2: Overall, average and individual class accuracies [%] and κ statistic obtained
by the presented classification framework implemented using the MLR classifier in
comparison with the state-of-the-art methods, majority voting (MVS), Graphcut and
discontinuity preserving relaxation (DPR). In particular, we set the parameter of the
proposed method λ1 = 5, λ2 × cj = 5, for j = {1, · · · , 3}. The averages are and
corresponding standard deviations are calculated under 20 monte carlo runs. In all cases,
only 15 randomly selected training samples per class have been used for the AVIRIS
Salinas data set.

Class MLR MVs Graphcut DPR Proposed

Brocoli-green-weeds-1 99.12 ± 0.49 100 ± 0.00 99.97 ± 0.12 100 ± 0.00 100 ± 0.00

Brocoli-green-weeds-2 99.86 ± 0.21 99.92 ± 0.02 100 ± 0.00 100 ± 0.00 100 ± 0.00

Fallow 93.33 ± 4.42 95.28 ± 8.97 99.96 ± 0.10 99.27 ± 2.08 99.84 ± 0.15

Fallow-rough-plow 99.66 ± 0.15 98.98 ± 0.00 99.75 ± 0.09 100 ± 0.00 99.85 ± 0.00

Fallow-smooth 97.41 ± 0.81 86.34 ± 5.49 98.68 ± 0.32 98.80 ± 0.34 94.18 ± 4.73

Stubble 99.22 ± 0.23 99.92 ± 0.00 99.73 ± 0.17 99.97 ± 0.01 99.92 ± 0.00

Celery 99.88 ± 0.06 99.29 ± 0.08 99.91 ± 0.03 100 ± 0.00 99.92 ± 0.01

Grapes-untrained 67.57 ± 9.79 81.02 ± 13.41 78.88 ± 13.12 78.70 ± 11.84 82.51 ± 18.94

Soil-vinyard-develop 98.45 ± 0.73 98.66 ± 1.02 98.93 ± 0.82 99.55 ± 0.55 99.44 ± 0.58

Corn-senesced-green-weeds 85.74 ± 4.43 90.51 ± 4.58 91.45 ± 3.57 93.20 ± 3.15 93.62 ± 2.03

Lettuce-romaine-4wk 91.68 ± 2.89 96.81 ± 0.07 96.42 ± 2.77 98.74 ± 0.72 96.23 ± 1.32

Lettuce-romaine-5wk 99.61 ± 0.57 100 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.00

Lettuce-romaine-6wk 89.14 ± 4.81 71.20 ± 10.64 95.16 ± 4.00 93.31 ± 4.37 90.58 ± 8.34

Lettuce-romaine-7wk 92.29 ± 0.92 90.60 ± 6.34 97.95 ± 1.49 99.70 ± 0.15 97.27 ± 0.52

Vinyard-untrained 66.14 ± 8.10 78.94 ± 16.07 79.12 ± 13.37 78.52 ± 11.13 84.34 ± 15.33

Vinyard-vertical-trellis 96.11 ± 2.62 98.12 ± 0.04 99.32 ± 0.74 98.90 ± 0.91 98.43 ± 0.84

Overall accuracy 86.50 ± 1.43 90.75 ± 2.17 91.82 ± 1.96 91.93 ± 1.65 93.14 ± 3.19

Average accuracy 92.20 ± 0.48 92.85 ± 0.83 95.95 ± 0.65 96.17 ± 0.54 96.01 ± 1.03

κ statistic 85.02 ± 1.56 89.72 ± 2.41 90.92 ± 2.16 91.03 ± 1.81 92.39 ± 3.50

improvements compared with the fundamental MLR classifier, particularly after the

inclusion of spatial information. Meanwhile, the proposed algorithm also outperforms

the compared methods with respect to the overall accuracy for both HSI datasets.

For illustrative purposes, Fig. 4.3 also displays the corresponding classification maps

that are obtained from one of the 20 Monte Carlo runs. Remarkably, our obtained

segmentation maps show stronger pixel consistency while keeping more precise contours

for the land objects, which are exactly what this chapter explores via formulating

the VTV and superpixel-related GTV regularizers. Specifically, when compared with

majority voting and graph-cut methods, our proposed method (with VTV) preserves

better the edge/boundary information, since majority voting does not consider the

boundary discontinuity and the graph-cut does not consider the oblique (only the vertical

and horizontal) discontinuities. On the other hand, the map acquired by the discontinuity

preserving relaxation method misses some small scale details due to the fact that the DPR

method relies greatly on the quality of edge extraction, which is a challenging task in

HSI processing. Bearing these observations in mind, our proposed method turns out to

be the-state-of-the-art.

The regularization parameters play a significant role in adjusting the performance of

the whole machinery. In order to illustrate the effect of the two spatial regularizers, we

display additional segmentation maps obtained by using different values of the regularizer
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Table 4.3: Overall, average and individual class accuracies [%] and κ statistic obtained
by the presented classification framework implemented using the MLR classifier in
comparison with the state-of-the-art methods, majority voting (MVS), Graphcut and
discontinuity preserving relaxation (DPR). In particular, we set the parameter of the
proposed method λ1 = 4, λ2 × cj = 2, for j = {1, · · · , 3}. The averages are and
corresponding standard deviations are calculated under 20 monte carlo runs. In all
cases, 200 randomly selected training samples per class have been used for the Zurich3
data set.

Class MLR MVs Graphcut DPR Proposed

Roads 77.54 ± 1.36 84.43 ± 1.24 83.11 ± 1.29 79.01 ± 1.36 70.59 ± 4.78

Buildings 52.54 ± 3.51 50.03 ± 5.69 57.15 ± 4.75 60.39 ± 4.17 72.50 ± 5.46

Trees 84.96 ± 0.90 91.20 ± 0.81 88.83 ± 1.09 90.51 ± 1.10 94.75 ± 1.02

Grass 91.06 ± 1.19 94.67 ± 0.62 93.03 ± 1.17 93.09 ± 1.14 95.43 ± 1.12

Bare-Soil 95.02 ± 0.76 95.22 ± 0.96 95.70 ± 0.57 95.80 ± 0.80 92.87 ± 0.75

Water 99.56 ± 0.08 99.77 ± 0.01 99.61 ± 0.08 99.84 ± 0.06 99.78 ± 0.03

Railways 56.60 ± 1.91 69.77 ± 2.29 73.31 ± 2.65 78.79 ± 1.89 94.32 ± 1.28

Overall accuracy 87.87 ± 0.19 90.39 ± 0.48 90.62 ± 0.36 91.16 ± 0.34 92.98 ± 0.50

Average accuracy 79.61 ± 0.23 83.58 ± 0.78 84.39 ± 0.60 85.35 ± 0.55 88.61 ± 0.80

κ statistic 81.99 ± 0.27 85.71 ± 0.71 86.08 ± 0.53 86.87 ± 0.50 89.58 ± 0.74

parameters λ1 and λ2×cj , for j = {1, · · · , 3}. For simplicity, we set the same parametric

values for three over-segmented superpixelizations. The obtained results of both HSI

datasets are shown in Fig. 4.3, displaying a clue also on how to tune the values of the

parameters by hand. Specifically, this means that only the superpixel-based regularizer

(GTV) is utilized when setting λ1 = 0. And, likewise, when λ2 × cj = 0, only the VTV

regularizer is considered. It is obviously observed that different scales of contours of the

land-objects can be controlled by tuning the parameters. For both regularizers, small

values of the parameters lead to more details of the land objects, especially the small ones

while greater values tend to keep the main contours of the objects. As for the VTV and

GTV regularizers, when both of them are considered, the performance improves greatly

in comparison with the individual use of one regularizer, which is consistent with what

we have anticipated, i.e., involving the VTV to both promote piecewise smoothness and

align the discontinuities along the boundaries while incorporating GTV to reinforce the

label consistency over the over-segmented superpixels.

4.5.2 Experimental results with high spatial resolution images
(VHR)

In this section, we evaluate our proposed framework with two remotely sensed

multispectral images (MSI). The ”Zurich Summer v1.0” dataset 4 is a collection of 20

chips (crops), taken from a QuickBird acquisition of the city of Zurich (Switzerland)

in August 2002. The QuickBird images are composed by 4 channels (NIR-R-G-B) and

were pansharpened to the PAN resolution of 0.62 meters / pixel. In this collection, 8

different urban and periurban classes were manually annotated: Roads, Buildings, Trees,

Grass, Bare Soil, Water, Railways and Swimming pools [228]. The cumulative number of

4https://sites.google.com/site/michelevolpiresearch/data/zurich-dataset
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Table 4.4: Overall, average and individual class accuracies [%] and κ statistic obtained
by the presented classification framework implemented using the MLR classifier in
comparison with the state-of-the-art methods, majority voting (MVS), Graphcut and
discontinuity preserving relaxation (DPR). In particular, we set the parameter of the
proposed method λ1 = 4, λ2 × cj = 2, for j = {1, · · · , 3}. The averages are and
corresponding standard deviations are calculated under 20 monte carlo runs. In all
cases, 200 randomly selected training samples per class have been used for the Zurich6
data set.

Class MLR MVs Graphcut DPR Proposed

Roads 73.28 ± 2.01 82.03 ± 1.28 82.03 ± 1.89 83.12 ± 1.43 84.20 ± 1.77

Buildings 64.92 ± 2.61 63.10 ± 4.91 65.19 ± 4.10 66.99 ± 2.96 67.44 ± 4.15

Trees 76.60 ± 1.67 84.87 ± 2.23 83.53 ± 1.31 86.17 ± 1.52 93.03 ± 1.91

Grass 88.14 ± 1.22 92.10 ± 1.01 90.47 ± 1.18 90.66 ± 1.37 91.38 ± 2.24

Bare-Soil 72.49 ± 2.08 93.89 ± 3.68 83.42 ± 1.04 83.85 ± 1.96 94.61 ± 3.68

Water 84.61 ± 1.28 100 ± 0.00 98.10 ± 2.02 93.49 ± 1.80 99.95 ± 0.15

Swimming-Pools 92.78 ± 0.83 97.55 ± 0.29 93.39 ± 0.75 94.91 ± 0.92 96.22 ± 3.40

Overall accuracy 74.01 ± 0.54 78.98 ± 1.25 78.93 ± 0.89 80.36 ± 0.71 82.36 ± 0.91

Average accuracy 78.97 ± 0.31 87.65 ± 0.93 85.16 ± 0.51 85.60 ± 0.46 89.55 ± 0.63

κ statistic 65.91 ± 0.62 72.10 ± 1.63 72.05 ± 1.18 73.82 ± 0.92 76.32 ± 1.21

class samples is highly unbalanced, to reflect real world situations. And the purpose of

distributing datasets is to encourage reproducibility of experiments. In this chapter, we

employ the 3rd (926 × 943 pixels) and 6th (812 × 984 pixels) images, as an example, to

test our proposed method. As illustrated in the framework (see Fig. 4.1), the QuickBird

MSI images and their corresponding prepared ingredients are shown in Fig. 4.4. We

extracted the magnitude maps for both used image and transformed the images into

three over-segmented superpixel representations by the SLIC method (via the VLFeat

toolbox 5). The result of our proposed method is obtained after 200 iterations with

convergence, while 20 Monte Carlo runs are employed for all the considered methods.

To start with, the accuracy statistics of 20 Monte Carlo runs are shown in Tables 4.3,

4.4 with the mean plus/minus the standard deviation reported in the tables. From

both tables, we can see that the accuracies are remarkably increased after the spatial

information is incorporated by different methods. In comparison with state-of-the-art

methods, namely, MVs, graph-cut and discontinuity preserving relaxation, our proposed

method achieves the highest values in terms of overall accuracy, κ statistic and average

accuracy, which is consistent with our results with hyperspectral images. For illustrative

purposes, we also display the classification maps that are obtained with the methods in

Fig. 4.5. First of all, it is remarkable that our proposed method obtain classification

maps in which both the label consistency and boundary discontinuity are well refined,

in comparison with state-of-the-art methods. Also, the hand-tuned parameters of the

VTV and GTV spatial regularizers provide an intuitive description of their effects on the

classification performance of our proposed machinery (i.e., small values of the parameters

preserve more trivial details of the land objects while greater values keep the basic

contours or strong boundaries of large-scale land objects). This is quite consistent with

5http://www.vlfeat.org/doc/api/slic.html
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what have been observed with the experiments on HSIs in Section 4.5.1 and meanwhile

is what we originally explore in this chapter.

4.6 Summary and future directions

This chapter proposed a new method, SegSALSA-VTV-GTV, which provides a convex

formulation to exploit the spatial information coming from multiple over-segmented

superpixelizations into supervised hyperspectral image segmentation. With this method,

we sidestep the NP-hardness of the original discrete integer optimization problem by using

a relaxation technique based on linear programming, and successfully express the over-

segmented superpixels in the form of a graphical spatial regularizer across the relaxed

hidden field. In addition, we formulate a convex optimization problem and approximate

the solution for the original NP-hard image labeling problem. Specifically, we design

a framework to substantiate and validate the method. The experimental results,

obtained with remotely sensed hyperspectral and multispectral images, demonstrate that

our proposed method achieves state-of-the-art performance when compared with other

methods, such as majority voting, graph-cut and discontinuity preserving relaxation

techniques. Our proposed approach can also be viewed as a general framework for solving

a range of similar problems, such as change detection, regression, etc. Also the proposed

approach is highly parallele and pixelwise decoupled, thus it can be straightforwardly

implemented in parallel using high performance computing architectures. Our future

perspectives will focus on exploring and evaluating the potential of the proposed approach

when dealing with remote sensing data coming from multiple sources.
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(a) GT (b) MLR(78.37%) (c) MVs(88.28%) (d) GCut(90.40%) (e) DPR(91.37%)

(0, 1, 84.81%) (1, 1, 87.22%) (4, 1, 90.72%) (7, 1, 92.95%) (10, 1, 92.09%)

(5, 0, 89.42%) (5, 1, 91.49%) (5, 2, 92.34%) (5, 3, 92.77%) (5, 4, 91.96%)

(f) GT (g) MLR(85.43%) (h) MVs(89.83%) (i) GCut(91.26%) (j) DPR(90.61%)

(0, 5, 94.96%) (1, 5, 95.13%) (4, 5, 95.31%) (7, 5, 95.39%) (10, 5, 95.51%)

(5, 0, 92.93%) (5, 1, 94.39%) (5, 4, 95.26%) (5, 7, 95.27%) (5, 10, 95.32%)

Figure 4.3: Classification maps of two HSI datasets: ROSIS Pavia University and AVIRIS
Salinas. Top row (the ROSIS Pavia University dataset) shows: (a) ground-truth, (b)
MLR classification, (c) majovity voting, (d) graph-cut and (e) discontinuity preserving
relaxation. Extra results of the proposed method are displayed in the 2nd and 3rd rows
with varying parameter values (λ1, λ2 × cj , for j = {1, · · · , 3}, overall accuracy). In the
4th to 6th rows, corresponding results of the AVIRIS Salinas dataset are also showed.
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(a) QB Zurich3 data (b) Ground-truth (c) Magnitude (d) Partitions

(e) QB Zurich6 data (f) Ground-truth (g) Magnitude (h) Partitions

Class legends

Figure 4.4: The MSI datasets. First row lists the QB Zurich3 dataset: (a) MSI RGB
composite, (b) ground-truth reference, (c) magnitude map, (d) multiple over-segmented
partitions/superpixels. Second row lists the corresponding maps(e-h) of the QB Zurich6
dataset.
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(a) GT (b) MLR (87.80%) (c) MVs (90.08%) (d) GCut (92.03%) (e) DPR (91.14%)

(0, 2, 91.83%) (1, 2, 92.47%) (3, 2, 93.29%) (5, 2, 93.12%) (7, 2, 92.34%)

(4, 0, 92.03%) (4, 1, 93.12%) (4, 2, 93.28%) (4, 3, 92.47%) (4, 4, 91.84%)

(f) GT (g) MLR (73.11%) (h) MVs (78.40%) (i) GCut (81.55%) (j) DPR (80.07%)

(0, 2, 80.88%) (1, 2, 81.48%) (3, 2, 82.74%) (5, 2, 82.56%) (7, 2, 82.31%)

(4, 0, 80.51%) (4, 1, 82.64%) (4, 2, 82.76%) (4, 3, 81.96%) (4, 4, 81.00%)

Figure 4.5: Segmentation maps of two QuickBird Zurich v1.0 MSI datasets: Zurich3 and
Zurich6. Top row (the Zurich3 dataset) lists: (a) ground-truth, (b) MLR classification,
(c) majovity voting, (d) graph-cutt and (e) discontinuity preserving relaxation. Results of
the proposed method are displayed in the 2nd and 3rd rows with varying parameter values
(λ1, λ2 × cj , for j = {1, · · · , 3}, overall accuracy). In the 4th to 6th rows, corresponding
results of the Zurich6 dataset are also showed.
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Chapter 5

Multi-Superpixelization-based
Convex Formulation for Joint
Classification of Hyperspectral
and LiDAR Data

5.1 Summary

The synergistic analysis of light detection and ranging (LiDAR) and hyperspectral data is

attracting a significant interest in recent years due to the complementary nature of these

two sources of remote sensing data. In this chapter, we propose a new spectral-spatial

classification method able to jointly exploit these two kinds of data. Our work is based on

three innovative components: 1) a superpixel generation method aimed at multivariate

image spatial partitioning, 2) a multi-source framework for feature extraction, and 3) a

convex framework used to approach the solutions of the resulted image labeling problem

associated with vectorial total variation and superpixel-based graph total variation

regularizers. Our experimental results, conducted with a hyperspectral data set collected

by the Compact Airborne Spectrographic Imager (CASI) spectrometer over the city of

Houston in 2013 and a corresponding LiDAR data set, illustrate the effectiveness of the

proposed framework.

5.2 Introduction

Spectral-spatial classification techniques have been shown to be capable of greatly

enhancing the classification performance as compared with techniques only using the

spectral information in hyperspectral images [3], especially considering very high spatial

resolution imagery. With the inclusion of spatial information, the existing spatial

correlation between pixel signatures can be further exploited [67]. On the other hand,

spatial information has also been helpful when dealing with the imbalance between the

high spectral dimensionality of hyperspectral data and the generally limited availability
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Figure 5.1: Importance of spatial information in a very high resolution image.

of labeled samples [10].

The techniques that exploit spatial information for hyperspectral image classification

can generally be separated into two categories: pre-classification processing and post-

classification processing. Techniques such as spatial filtering [10], morphological

operators like attribute profiles (APs) [229], extended APs (EAPs) [70] allow a classifier

to get rid of noise, contextual variations, outliers, and so on. However, the use of

spatial information may also lead to overfitting, decreasing the generalization ability

of the classificar. Post-classification techniques aim at including the spatial information

into the classification model via regularizing the previously obtained label estimations.

Traditionally, a wealth of techniques have been developed in the literature for spectral-

spatial hyperspectral image classification [70, 104, 187, 211, 229]. The high spatial

correlation turns out to be the key aspect for this task. Particularly, the image segments

such as (over-segmented) superpixels have been shown to be very useful in promoting

classification accuracy by taking advantage of the fact that the pixels comprising a

superpixel generally share similar characteristics [104].

Compared with other image segmentation techniques, superpixelization can provide

highly homogeneous segments. When using superpixels in classification, there usually

exists a risk of modifying the sample labels in a superpixel [187] given the data term

provided by a classifier, while the straightforward way usually leads to a discrete

optimization problem that is NP-hard [104]. Apart from very few examples [223], a

solution can only be approximated by graph-cut algorithms [88] in the discrete domain,

or by other optimization techniques [200] in a relaxed or transformed compact domain.

In our previous work [104], we have attacked this problem with a convex formulation

with graph total variation (GTV) based on superpixels and vectorial total variation

(VTV) after linearly relaxing the discrete optimization problem into a continuous

domain. The spatial regularization of VTV and GTV is proven beneficial in promoting

piecewise smoothness, aligning the discontinuities of object boundaries while enforcing

the label consistency of pixels in a superpixel. Similar techniques have also been

developed [211, 213]. However, the difficulty of performing accurate edge detection

in hyperspectral images introduces great challenges to the design of accurate spatial
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Figure 5.2: Block diagram of the proposed method.

partitioning techniques [93]. As a result, the extracted edges of superpixels may often

fail to meet the demand of a classification mission to precisely discriminate some close

land covers in the spatial domain, such as different plant species.

Motivated by the aforementioned issues, in this chapter we develop a new superpixel-

based framework for spectral-spatial classification of hyperspectral and LiDAR data

sets. The rich spatial information provided by LiDAR data is used in this chapter to

complement the hyperspectral data. Considering these multi-source datasets, our main

contributions include: 1) a feature extraction method with the multi-source datasets

via singular value decomposition (SVD) and extended attribute profiles (EAP), 2)

adapting the simple linear clustering algorithm (SLIC) [214] into multivariate image

partitioning, and 3) approximating the solution of the resulted classification problem

with a convex formulation [104] considering the vectorial total variation (VTV) and graph

total variation (GTV) based on superpixels. Our method is experimentally validated and

compared with state-of-the-art methods using a hyperspectral data set collected by the

Compact Airborne Spectrographic Imager (CASI) spectrometer over the city of Houston

in 2013 and a corresponding LiDAR data set 1.

5.3 Proposed Method

5.3.1 Convex formulation with spatial information

Let x ≡ [x1, · · · ,xn] ∈ Rd×n be a feature matrix containing d-dimensional image feature

vectors indexed by the integer set S ≡ {1, 2, · · · , n}. Let y ≡ (y1, · · · , yn) ∈ Ln be

a label image of K classes, such that yi = k if and only if the label of pixel i is k.

Given the posterior probability pY‖X(y|x), the conditional independence assumption of

the observation model pX‖Y(x|y), and the prior probability pY(y) (often an MRF), the

maximum a posteriori (MAP) segmentation (or labeling) in a supervised scenario can be

1http://www.grss-ieee.org/community/technical-committees/data-fusion/2013-ieee-grss-data-fusion-
contest/
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written as:

ŷMAP = arg min
y∈Ln

− log(pX|Y(x|y)pY(y))

= arg min
y∈Ln

n∑
i=1

Di(yi) + λU(y),
(5.1)

where Di(yi) = − log pXi|Yi(xi|yi), λU(y) = − log p(y), and λ > 0 is a regularization

parameter. The minimization of (5.1) is an integer optimization problem. In the case

of Potts [134] prior and K = 2, the problem has exact solution obtained by mapping

the problem into the computation of a min-cut on a suitable graph [223]. However, for

K > 2, the optimization (5.1) is NP-hard [88] and, therefore, only approximations may

be computed. In the work [104], the solution of this problem is approximated via the

following convex formulation:

ẑ ∈ arg min
z∈[0,1]K×n

n∑
i=1

qTi zi + λ1

∑
n∈S

√
||Dhz[n]||2 + ||Dvz[n]||2 + λ2

C∑
c
||(Ac − I)z||2F

s.t.: 1TKz = 1Tn ,

(5.2)

where z = [z1, . . . , zn] is the relaxed hidden field out of the discrete variable y,

qi = [D(yi = 1), . . . , D(yi = K)]T is the data term often provided by a classifier,

the second term represents the VTV regularizer with Dh,Dv : RK×n 7→ RK×n being

linear operators computing horizontal and vertical first order backward vector differences,

respectively, and the third term is the superpixel-based GTV [104]. Note that we are

able to append an arbitrary number of superpixelizations by this means. In total, (5.2)

is a convex formulation whose solutions can be obtained by the SALSA algorithm [211]

as an instance of the ADMM method [200]. The solutions ẑki yielded by (5.2) are mostly

discrete [200] and a complete discrete solution is computed by ŷi = arg maxk ẑki, i ∈ S.

5.3.2 Feature extraction and superpixelization

In this section, we describe the feature extraction methods with the multi-source

data, followed by the preparation of the three terms in (5.2). Fig. 5.2 displays the

presented framework including mainly three parts, feature extractions via SVD and

EAP, probabilistic class estimation with the MLR classifier [211], and spatial regularizers

associated with both gradient extraction and superpixels.

First of all, the EAP [70] and SVD are respectively performed on the LiDAR and

hyperspectral data for feature extraction purposes. Specifically, via SVD transformation,

we retain the acquired dSVD major components FSVD ∈ RdSVD×n [see Fig. 5.2 (e)] with

the goal of relaxing the imbalance between limited training samples and high spectral

dimensionality. As suggested in the work [70], dEAP EAPs FEAP ∈ RdEAP×n [see

Fig. 5.2(f)], as a concatenation of many APs, are generated for the high resolution

LiDAR data. As a result, the extracted features are collected by layer-wise stacking

{FSVD, FEAP}, resulting in F ∈ RdF×n, where dF = dSVD + dEAP.

Once these features have been constructed, we train the MLR classifier with the

features f ≡ [f1, . . . , fn] where the high dimensionality is thus reduced to dF or dSVD
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depending on the actual input. Hence, we estimate the data term of (5.2) by the MLR

in the work [175]:

p(yi = k|fi,ω) =
exp

(
ω(k)T h(fi)

)
∑K
k=1 exp

(
ω(k)T h(fi)

) , (5.3)

where h(fi) ≡ [h1(fi), . . . , hm(fi)]
T is a vector of m fixed functions, often termed as

features; ω(k) ≡ [ω
(k)
1 , . . . , ω

(k)
m ]T is the set of logistic regressors for class k learnt by the

LORSAL algorithm [175], and ω ≡ [ω(1)T , . . . ,ω(K)T ]T . Note that in this chapter, we

train the classifier with FSVD and F, respectively, in order to also test the potential of

LiDAR data in promoting a classifier.

To fill up the spatial regularization terms, we obtain the gradient map for VTV

with the stacked muulti-variate feature image F through G =
dF∑
i=1

ωiD[Fi], where

D computes the 1st order backward differences horizontally or vertically and ωi =

var(Fi)/
∑
var(Fi), for i = {1, . . . , dF}, weights each component Fi with the value

of its variance that is normalized for all. As for the superpixelization, we measure the

color differences via the spectral angle distance (SAD) and discard the transformation

from RGB space to CEILAB space [214], in order to adapt the SLIC algorithm to the

case of multivariate images F out from the original based on three RGB channels.

5.4 Experimental Results

We evaluate our proposed method by testing its performance in classification with the

Houston dataset that includes a hyperspectral data set and a rasterized LiDAR data set

that are geographically co-registered, as shown in Figs. 5.3(a) and 5.3(d). The references

comprise a fixed number of 2832 training samples and 12197 training samples. To set

up the experiments, we choose the 1st 8 of the SVD major components (dSVD = 8, [see

Fig. 5.3(e)] from the hyperspectral image, and 3 extended attribute profiles [dEAP = 3,

see Fig. 5.3(f)] built from the LiDAR data. Hence, 11 components in total are exploited,

which are later fed to the MLR classifier and used for the gradient map [see Fig. 5.3(g)]

and superpixelization associated with the spatial regularizers [see (5.2)]. Note that here

we utilize 3 superpixelizations for the graph total variation constraints. Specifically,

graph-cut promotes the classification by reinforcing the label consistency for pixels in

neighboring areas by considering the cost as the function energy [88]. On the other

hand, the DPR takes advantage of the edges in the image objects to align the class

labels following the discontinuities along the boundaries [189]. We thus selected these

two state-of-the-art methods for comparison, in order to explore the effectiveness of our

proposed method. Also, we compare the results with and without the inclusion of LiDAR

data in preparing the data term provided by the MLR classifier.

The classification results are displayed in Fig. 5.4, from which several observations can

be made. First of all, we can observe that the classification performance is dramatically

improved with the inclusion of spatial information for all the compared methods. Also,

the inclusion of the information of the LiDAR data promotes the classification results for
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all cases, from Fig. 5.4(a) to Fig. 5.4(e), from Fig. 5.4(b) to Fig. 5.4(f), from Fig. 5.4(c)

to Fig. 5.4(g), and from Fig. 5.4(d) to Fig. 5.4(h). Regarding our method based on [104],

the results obtained improve those found by using the graph-cut and DPR algorithms,

with and without using the LiDAR data.

5.5 Summary and future directions

This chapter proposes a new spectral-spatial classification method able to jointly exploit

hyperspectral and LiDAR data. In addition to hyperspectral imagery, LiDAR data are

also considered in order to provide improved classification estimations as well as well-

defined spatial regularizers of GTV (based on superpixels) and VTV. Our experimental

results with real hyperspectral and LiDAR data indicate the effectiveness of the newly

proposed method when compared with the-state-of-the-art algorithms. Our future work

will focus on a deeper and more extensive validation of the proposed method with

additional hyperspectral and LiDAR datasets.
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(a) RGB false color map (b) Test samples (c) Training samples (d) LiDAR image

(e) FSVD of HSI (f) FEAP of LiDAR (g) Manitude of F (h) Partitions of F

Figure 5.3: The CASI hyperspectral data set collected over the city of Houston in 2013
and a corresponding LiDAR data collected over the same area.
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(a) MLR FSVD (82.73%) (b) GC FSVD(88.60%) (c) DPR FSVD(86.99%) (d) CF FSVD(89.68%)

(e) MLR F (88.79%) (f) GC F(89.71%) (g) DPR F(89.07%) (h) CF F(89.89%)

Figure 5.4: Classification results obtained by different methods using the CASI
hyperspectral data and the corresponding LiDAR data.
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Chapter 6

Conclusions and Future
Research Lines

In this thesis, we have addressed some challenges related to hyperspectral image

classification. On the one hand, the high spectral dimensionality and high redundance

of spectral information hinders greatly the development of relevant algorithms and

techniques for hyperspectral image understanding. Especially, hyperspectral image

classification has often been an ill-posed problem, due to the imbalance between the high

spectral dimensions and limited availability of the labeled samples. On the other hand,

the spatial information has seldom been exploited in a simple manner in image labeling

problems, although proven to be very helpful in promoting classification performance of

hyperspectral images. Taking the concept of superpixel, especially that resulting from

over-segmented cases, the hyperspectral image labeling problem is usually NP-hard to

be solved in polynomial time, due to its discrete nature. As a result, the work developed

in this doctoral thesis is intended to attack the main challenges of hyperspectral image

classification by considering both the high-dimensional nature and the discrete labeling

problems involved in hyperspectral image analysis.

The first important original contribution of this thesis is the development of different

spectral partitioning strategies that reassign the hyperspectral bands into multiple groups

of band subset of much lower dimensionality, instead of discarding most of the bands or

features as performed by traditional feature selection/extraction techniques. By this

means, the original information (especially the physical-related information) remains

intact for the subsequent analysis tasks. In detail, we mainly considered two aspects to

achieve this goal. From the viewpoint of hyperspectral image analysis, we have developed

a new band-clustering based spectral partitioning strategy which considers the high

correlation/similarity among neighboring spectral bands, and also a new spectrometer-

driven spectral partitioning strategy which considers the intrinsic characteristics imposed

by the multi-spectrometers of the imaging device. On the other hand, we have also

developed a new class-oriented spectral partitioning method based on band selecting

techniques, taking into account the fact that the relevant information for classification

purposes is class-dependent and may often live in weak bands or features that are
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usually abandoned by traditional dimensionality reducing techniques. All these spectral

partitioning strategies provide significant innovation in the context of dimensionality

reduction and classification of hyperspectral images.

Another important contribution of this thesis work is the exploration of new strategies

for utilizing spatial information in hyperspectral image classification. By means of a

linear program, we have adopted the Bayesian maximum a posteriori (MAP) image

segmentation perspective and then relaxed the original discrete optimization problem

of image labeling into a compact domain, where the information from over-segmented

superpixels is convexly formulated in the form of graph total variation. In this regard,

the contribution introduced in this thesis is of great importance as it opens the door to

flexibly append the information of real-world knowledge as priors in order to regularize

the image labeling model. Also, it allows us to use an arbitrary number of spatial

partitions of the hyperspectral images, which allows us to mitigate the dilemma related

to the difficulty of searching for the best image partition from a huge number of image

partitioning methods available, along with the varying parametric setups. Based on this

newly developed algorithm, this thesis work has also conducted an instance of application

with a multi-source data set, including a hyperspectral image and a rasterised LiDAR

data that are obtained from the same scene and spatially co-registered. The advantages

of our proposed method were demonstrated in comparison with other state-of-the-art

spatial-spectral image classification techniques.

The future lines of this thesis work will focus on the development of novel ensemble

learning techniques able to boost the final classification output resulting from the multiple

classifiers that are learned from diverse perspectives of the spectral partitions. Another

future line will focus on improving the graph total variation via the consideration of the

inner structure of a subgraph/superpixel. This consideration has the potential to provide

a more organic exploitation of superpixels with regards to minimizing risks caused by

isolated or noisy pixels and, meanwhile, balancing the power between the superpixels

that are of different sizes. The realization of these aforementioned works is in progress

by the candidate. A final research line that will be pursued in the future is related to

the combination of spectral partitioning and spatial partitioning as a whole in the scope

of hyperspectral image classification.
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Apendix A

Publications

The results of this thesis work have been published in several international journal

papers and peer-reviewed international conference papers. Specifically, the applicant

has co-authored 4 JCR journal papers and 8 international peer-reviewed conference

papers directly related with this thesis work. This thesis work have been supported

by the Chinese Scholarship Council (CSC) of the Ministry of Education of the People’s

Republis of China. The candidate has been a pre-doctoral researcher in the Department

of Computer and Communications in the University of Extremadura, forming part of the

Hyperspectral Computing Laboratory (HyperComp) research group of the University of

Extremadura during four years. During the development of the thesis, the candidate has

been a visitor (for a total of 14 months) with the Instituto de Telecomunicações, Instituto

Superior Técnico, Universidade de Lisboa, Portugal. In the following, we describe the

publications achieved by the candidate, providing also a short description of the journal

or conference where it was presented and indication of the specific contributions of the

candidate to each publication.

A.1 International Journal Papers

1. Y. Liu; J. Bioucas-Dias; J. Li; A. Plaza (2017). Multi-superpixelization-based

convex formulation for joint classification of hyperspectral and LiDAR data. IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing,

submitted under review. [JCR(2015)=2.145].

This paper was published in the journal IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, which is one of the main journals of the

remote sensing category of JCR. This paper explores the application of the convex

formulation work introduced in chapter four to multi-source data set, including a

hyperspectral image and a co-registered LiDAR data set. To reach this goal, a

framework based on SVD is developed for the multi-source image data superpixel

generation and classification.

2. Y. Liu; F. Condessa; J. Bioucas-Dias; J. Li; A. Plaza (2017). Convex Formulation

for Remote Sensing Image Classification with Multi-Superpixelizations. IEEE
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Transactions on Geoscience and Remote Sensing, submitted under review.

[JCR(2015)=3.360].

This paper was submitted to the journal IEEE Transactions on Geoscience and

Remote Sensing, which is a very important journal in the first quarter of the

remote sensing and electrical and electronic engineering areas of JCR. This paper

provides a straightforward to make use of the spatial information from over-

segmented superpixels. With the linear program, this work convexly relaxes the

original NP-hard discrete optimization problem of image labeling into the compact

domain, which opens the door to freely forge the real-world knowlege as priors

to regularize the image labeling process. Armed with this machinery, the over-

segmented superpixels are formulated into the form of graph total variation that

reinforces the label consistency of the pixels comprising the same superpixel. The

solution of the formulated problem is obtained via a developed instance of the

SALSA algorithm.

3. Y. Liu; J. Li; A. Plaza (2017). Class-Oriented Spectral Partitioning for

Remotely Sensed Hyperspectral Image Classification. IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, 14(2), 409-416.

[JCR(2015)=2.145].

This paper was published in the journal IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, which is one of the main journals of

the remote sensing category of JCR. This paper develops a new class-oriented

spatial partitioning strategy which obtains the class-oriented spectral partitions,

considering that the relevant information for classification may often live in

weak features/bands and be class-dependent. Several traditional band selection

algorithms are used, for this purpose, to generate the spectral partitions for each

class in a supervised manner.

4. Y. Liu; J. Li; A. Plaza (2015). Spectrometer-Driven Spectral Partitioning for

Hyperspectral Image Classification. IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, 9(2), 668-680. [JCR(2015)=2.145].

This paper was published in the journal IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, which is one of the main journals

of the remote sensing category of JCR. This paper is focused on developing a

spectrometer-driven spatial partitioning strategy which exploits the characteristics

of the multiple spectrometers and high band correlation. The band similarity

provided by the spectrometers and band clusters are utilized to generate multiple

band subsets, namely, spectral partitions that have much lower spectral dimensions,

which provides diverse perspectives into the original hyperspectral images. Instead

of mostly discarded by traditional dimensionality reduction techniques, the band

subsets are fed to a multiple classifier system for ensemble learning purposes to

obtain a final classification output.
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A.2 Peer-reviewed International Conference Papers

The work presented in this doctoral thesis, along with others performed during the time

period it was done, was also presented in several conferences and workshops around the

world. Each one of them is detailed as follows:

1. Y. Liu; J. Bioucas-Dias; J. Li; A. Plaza (2017). A Cloud Shadow Removal Method

Based On Linear Unmixing Model For Hyperspectral Image Classification. In

Geoscience and Remote Sensing Symposium (IGARSS), 2017 IEEE International

(submitted and under review). IEEE.

This work has been accepted for oral presentation at the IEEE International

Geoscience and Remote Sensing Symposium (IGARSS) that will be held in Fort

Worth, Texas, USA, in July 2017. This is the most important international

workshop in the remote sensing field. This work develops a novel cloud shadow

effect removal method based on linear unmixing model, where the unmixing is

only performed once on the well-illuminated pixels instead of performed twice on

both the shadowed and well-illuminated pixels that is usually conducted by the

traditional methods.

2. Y. Liu; J. Bioucas-Dias; J. Li; A. Plaza (2017). Multi-superpixelization-based

convex formulation for joint classification of hyperspectral and LiDAR data. In

Geoscience and Remote Sensing Symposium (IGARSS), 2017 IEEE International

(submitted and under review). IEEE.

This work has been accepted for oral presentation at the IEEE International

Geoscience and Remote Sensing Symposium (IGARSS) that will be held in Fort

Worth, Texas, USA, in July 2017. This is the most important international

workshop in the remote sensing field. The work conducted in this manuscript

is a application of convex formulation for image classification with superpixels to

the case of multiple data source, which in our work, includes a hyperspectral data

and a co-registered LiDAR data.

3. Y. Liu; F. Condessa; J. Bioucas-Dias; J. Li; A. Plaza (2016). Convex formulation

for hyperspectral image classification with superpixels. In Geoscience and Remote

Sensing Symposium (IGARSS), 2016 IEEE International (pp. 3294-3297). IEEE.

This work was presented as an oral presentation in the IEEE International

Geoscience and Remote Sensing Symposium (IGARSS) held in Beijing City, China,

in 2016. This is the most important international workshop in the remote sensing

field. This work develops convex formulation to deal with the NP-hard problem of

image labeling with superpixels. The linear program is used to relax the original

discrete optimization problem into a compact domain, which opens the door to

flexibly append regularizing information from multi-sources as priors. Under

this machinery, the superpixels are formulated as graph total variation and a

corresponding solution is approached by the developed instance of the SALSA

algorithm.
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Convex formulation for hyperspectral image classification with superpixels

4. Y. Sun; X. Zhang; A. Plaza; J. Li; I. Dópido; Y. Liu (2016). A new

semi-supervised classification strategy combining active learning and spectral

unmixing of hyperspectral data. In SPIE Remote Sensing (pp. 1000708-1000708).

International Society for Optics and Photonics.

This work was presented as an oral presentation in the In SPIE Remote Sensing

held in Edingburgh City, UK, in 2016. This work explores the possibility

and feasible clue of utilizing the spectral unmixing technology into a semi-

supervised classification process. In this work, the abundance information and class

probabilistic estimation are simultaneously considered in the screening of candidate

training samples.

5. Y. Liu; J. Li; A. Plaza; Y. Sun (2016). A multiple criteria-based spectral

partitioning method for remotely sensed hyperspectral image classification. In

SPIE Remote Sensing (pp. 100070C-100070C). International Society for Optics

and Photonics.

This work was presented as an oral presentation in the In SPIE Remote Sensing

held in Edingburgh City, UK, in 2016. This work aims at diversity generating with

using different band selection algorithms in the scenario spectral partitioning of

hyperspectral images. The diversiy is generated in order to boost the ensemble

learning process with the multiple classifiers that are learned with the spectral

partitions.

6. Y. Liu; J. Li; A. Plaza (2015). Class-oriented spectral partitioning for hyperspectral

image classification. In Geoscience and Remote Sensing Symposium (IGARSS),

2015 IEEE International (pp. 4983-4986). IEEE.

This work was presented as an oral presentation in the IEEE International

Geoscience and Remote Sensing Symposium (IGARSS) held in Milan City, Italy, in

2015. This is the most important international workshop in the remote sensing field.

This work develops a class-oriented spectral partitioning method for hyperspectral

image classification. For each spectral partition, the corresponding class-dependent

bands are selected by using traditional band selection algorithms.

7. Y. Liu; J. Li; A. Plaza (2014). Spectrometer-Driven Spectral Partitioning for

Hyperspectral Image Classification. Workshop on Hyperspectral Image and Signal

Processing : Evolution in Remote Sensing (WHISPERS), 2014.

This work was presented as an oral presentation in the Workshop on Hyperspectral

Image and Signal Processing : Evolution in Remote Sensing (WHISPERS) held in

Lausanne, Switzerland, in 2014. This work presents a spectrometer-driven spectral

partitioning method for hyperspectral image classification. The band similarities

imposed by the spectrometer is considered to provide the base band groups for

spectral partitioning.
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8. Y. Liu; J. Li; A. Plaza; J. M. Bioucas-Dias; P.G. Rodriguez; A. Cuartero (2014).

Spectral Partitioning for Hyperspectral Remote Sensing Image Classification. In

Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International

(pp. 3434-3437). IEEE.

This work was presented as an oral presentation in the IEEE International

Geoscience and Remote Sensing Symposium (IGARSS) held in Quebec City,

Canada, in 2014. This is the most important international workshop in the remote

sensing field. This work introduces a new spectral band clustering based spectral

partitioning method for dimensionality reduction of hyperspectral image in the

scenario of classification.
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