
TESIS DOCTORAL

Percepción Cognitiva Planificada para
Robots Autónomos

Marco Antonio Gutiérrez Giraldo

Tecnologı́a de Computadores y de las Comunicaciones

2017

TESIS DOCTORAL

Percepción Cognitiva Planificada para
Robots Autónomos

Marco Antonio Gutiérrez Giraldo

Tecnogı́a de Computadores y de las Comunicaciones

Conformidad de los Directores:

Fdo: Pablo Bustos Garcı́a de Castro Fdo: Luis J. Manso Fernández-Argüelles

2017

Planning-based Cognitive
Perception for Autonomous

Robots

Marco Antonio Gutiérrez Giraldo
Cáceres, 2017

University of Extremadura
Doctoral Dissertation

This work is licensed under license:
Creative Commons Attribution-Noncommercial-No Derivative Works 3.0.

http://creativecommons.org/licenses/by-nc-nd/3.0/es/deed.en

Abstract:

The growing presence of robotics in our lives is an undeniable fact backed up by the current
prevalence of industrial automation solutions. The next step in this progression will probably
be the outbreak of autonomous service robots able to take decisions by themselves. For mo-
bile autonomous robots to become ubiquitous, perception is one of the fundamental skills to
improve. Perception is crucial to accomplish intelligent tasks in dynamic environments. For
any autonomous system to act intelligently, it must acquire a representation of the environment
useful for planning and control, and perception plays a key role in the accurate creation of this
kind of representation. On the other hand, planning has a direct effect in the perception out-
come through decisions such as viewpoint positioning or sensor parameter tuning. Therefore,
since strategies taken by the planners directly affect perception results and vice versa, these two
disciplines are meant to understand each other.

Because building fully autonomous robots entails a very wide range of hard and time-
consuming problems, they are usually isolated for a faster and more convenient research out-
come. Planning and perception are two of these problems that have long been considered iso-
lated. However, the closer we get to develop complete robotic solutions capable of executing
intelligent tasks, the more we need these research fields to cooperate in order to obtain more
efficient behaviors. Perception plays a key role in the accurate creation of the world internal
representation, while planning is of utmost importance for optimal sensor data acquisition and
valuable perception results. Therefore, a better integration of these two robotic disciplines is
necessary to achieve the successful execution of high level robotic tasks.

The development of a planning-based cognitive perception framework can help robots gen-
erate and execute perception strategies to handle high-level uncertainties more efficiently. Exist-
ing perception strategies aim for sensor data selection, action parameters determination, selec-
tion of techniques to apply, conflict solving and decision making according to the environment
and internal knowledge of the robot. Most of these perception processes that are used in the
system have a cognitive connotation. This means that the system makes use of internal infor-
mation of the robot in combination with the sensed data when a search is performed in order to
enhance the results. This is called informed search, as it is an aided search that not only uses the
data obtained by the sensors in the specific moment of the search but also previous information.
Consequently, in this work, when the robot has to search for an object, it takes advantage of the
extra cognitive information available. The robot combines information from its own internal
knowledge, acquired along its lifetime, with the information obtained from its sensors. The fact
that prior information or internal knowledge about objects is considered in every search helps
reducing search times, improving the overall results.

The main contribution of the thesis is the development of a system for object informed
search using different planned perception processes. The different steps are carefully developed
and tested to form a complete system able to make a robot deliver objects in a large household
environment. Several techniques where developed for each of these steps to boost the perfor-
mance of the robot in a complete search and deliver task. The different steps of the cognitive
perception are planned accordingly to the goal of the task, the cognitive knowledge in the robot
and the environment sensed data. An internal world model in the robot helps maintaining an
internal state of the surroundings, while some extra information regarding perceptions might

be stored in the form of deep learning features. Planning is made using this internal model but
taking into account the information from the embeddings and other extra sources. This helps
maintaining a flexible set of stages that guide the robot through the high level task. It makes the
robot able to react to unexpected situations and to finally deliver the requested item. The final
goal of this system is to make the robot able to fulfill requests from a human asking it to bring
specific objects in a large real environment.

Using the deliberative cognitive architecture CORTEX [Bustos et al., 2016], through its Ac-
tive Grammar-based Modeling (AGM) [Manso et al., 2015], a planning-based cognitive percep-
tion framework for autonomous robots has been developed. Several stages of the robot delivery
task have been researched, producing a final high level solution tested in real scenarios. Ob-
ject detection, recognition and location was enhanced through different developments. Object
modeling and manipulator motion planning was studied in order to provide a means to reach
and grasp the object. Finally a planning platform for all these perceptive steps was developed,
enabling the delivery robot to accomplish high level tasks.

Experiments and results are provided for all of the different stages developed along this
dissertation. The published papers along with their experiments and results provide support
for the scientific impact of the work developed along these years. The experiments and the
holistic solution implemented in a delivery robot in a real apartment environment demonstrate
the usefulness of the solutions presented here.

Resumen:

La creciente presencia de robots en nuestras vidas es un hecho innegable respaldado por el
predominio de las soluciones autómatas industriales. El siguiente paso en esta progresión será
probablemente la creación de robots autónomos de servicio capaces de tomar decisiones por
si mismos. Para que los robots móviles autónomos llegaran a extenderse, la percepción es
una de las habilidades fundamentales a mejorar. La percepción es crucial para lograr tareas
inteligentes en entornos dinámicos. Para que cualquier sistema actúe de manera inteligente,
debe adquirir una representaci’on del entorno que sea útil para la planificación y el control.
La percepción juega un papel esencial en la creación precisa de esta representación. Por
otro lado, la planificación tiene un efecto directo en el resultado de la percepción a través de
decisiones como el posicionamiento de puntos de vista o ajustes de parámetros del sensor. Por
lo tanto, como las estrategias tomadas por el planificador afectan directamente los resultados de
percepción y vice versa, estas dos disciplinas están destinadas a entenderse.

Por el hecho de que la construcción de robots autónomos completos implica un gran numero
de problemas difı́ciles, normalmente son aislados para mayor rapidez y una investigación mas
conveniente. La planificación y la percepción son dos de estos problemas que durante mucho
tiempo se han considerado aisladamente. Sin embargo, cuanto más cerca nos encontramos
de desarrollar soluciones robóticas completas capaces de ejecutar tareas inteligentes más
necesitamos que estos campos de investigación cooperen con el fin de obtener comportamientos
más eficientes. La percepción juega un papel importante en la creación de la representación
interna del mundo, mientras que la planificación es de alta importancia para una adquisición
de datos óptima por parte del sensor y para obtener buenos resultados de percepción. Dicho
esto, una mejor integración de estas dos disciplinas robóticas es de gran importancia cuando se
intenta conseguir la ejecución satisfactoria de tareas robóticas de alto nivel.

El desarrollo de un framework para la planificación de la percepción cognitiva puede ayudar
a los robots a generar y ejecutar estrategias de percepción para manejar incertidumbres de alto
nivel de manera más eficiente. Estas estrategias de percepción tratan de seleccionar datos del
sensor, determinar parametros de las acciones, seleccionar ténicas a aplicar, resolver conflictos y
tomar decisiones teniendo encuenta el entorno y el conocimiento interno del robot. La mayorı́a
de estos procesos de percepcion que se usan en sistema tienen una connotación cognitiva. Esto
significa que el sistema usa la infomación interna del robot en combinación con los datos de
los sensores cuando se ejecuta una búsqueda con el fin de mejorar los resultados. Esto se
llama búsqueda informada, ya que es “ayudada” pues no sólo usa los datos del sensor en el
momento especı́fico de la acción. Consecuentemente, en este trabajo, cuando el robot tiene
que realizar una cierta búsqueda, se aprovecha de la información cognitiva. El robot combina
información de su propio conocimiento interno, adquirida durante su vida, con la información
de los sensores. El hecho de que se considere información anterior o conocimientos internos
sobre los objetos durante las búsquedas, ayuda a mejorar dichas tareas en tiempo y resultado.

La principal contribución de la tesis es el desarrollo de un sistema para la búsqueda
informada de objetos usando diferentes procesos de percepción. Los diferentes pasos han
sido cuidadosamente desarrollados y probados con el fin de formara un sistema completo que
permita al robot encontrar y entregar objetos en grandes entornos domésticos. Varias técnicas
han sido desarrolladas para cada uno de los pasos para mejorar la actuación del robot en una
tarea completa de búsqueda de objetos. Los diferentes pasos de la percepción cognitiva son

planificados de acuerdo al objetivo de la tarea, el conocimiento cognitivo del robot y los datos
de los sensores. Un modelo interno del mundo en el robot ayuda a mantener un estado interno
del entorno, mientras que alguna información extra sobre percepciónes puede ser almacenada
en forma de caracterı́sticas de “deep learning”. La planificación utiliza este modelo interno
pero considera la información de las caracterı́sticas y otras fuentes. Esto ayuda a mantener un
conjunto de pasos flexibles que guarán al robot a través de la tarea de alto nivel. Esto permite
que el robot sea capaz de reaccionar a situaciones inesperadas para finalmente entregar el
objeto requerido. El objetivo final del sistema es proveer al robot con capacidades para cumplir
peticiones de un humano que le pida que le traiga objetos especı́ficos en grandes entornos reales.

Usando la arquitectura cognitiva deliberativa CORTEX [Bustos et al., 2016], a través de su
Gramáticas Activas basadas en Modelado (AGM) [Manso et al., 2015], se ha desarrollado un
framework de planificacón de la percepción cognitiva. Se han investigado diferentes pasos de
la tarea de búsqueda y entrega del robot, produciendo una solución de alto nivel probada en
escenarios reales. La deteci’on, reconocimiento y localización de objetos ha sido mejorada
a través de distintos desarrollos El modelado de objetos y la planificación del movimiento
de manipuladores ha sido estudiada con el fin de aportar métodos para alcanzar y agarrar el
objeto. Finalmente una plataforma de planificación para todos estos pasos perceptivos ha sido
desarrollada, permitiendo al robot reparto cumplir sus tareas de alto nivel.

Se aportan experimentos y resultados para los diferentes pasos desarrollados durante esta
tesis. Los artı́culos publicados ası́ como sus experimentos y resultados respaldan el impacto
cientı́fico del trabajo desarrollado en estos años. Las últimas pruebas y experimentos con
la solución holı́stica implementada en un robot de reparto en un apartamento real prueban la
utilidad de las soluciones aquı́ presentadas.

Contents

1 Introduction 1
1.1 Why planning-based cognitive perception? . 1
1.2 The case study: A delivery robot . 3
1.3 Motivation . 4

1.3.1 Environment Sensing and Cognitive Modeling of Rooms 5
1.3.2 Semantic Relations for Scene and Object Discovery 7
1.3.3 Modeling and Planning for Grasping 12
1.3.4 Informed Search for Planning Perception 14

1.4 List of Publications . 16

I Publications 19

2 A Cost-efficient 3D Sensing System for Autonomous Mobile Robots 21
Introduction . 23
Previous Works . 23
System Design . 24

Hardware . 24
Data Processing . 25

Experimental Results . 27
Mapping . 27
Novelty Detection and 3D Shape Retrieval based on Gaussian Mixture Models

and Superquadrics . 28
Conclusions and Future Work . 30
Acknowledgements . 30
References . 30

3 An Incremental Hybrid Approach to Indoor Modeling 31
Introduction . 33
Pverview of the Approach . 33
Rooms and Doors Modeling . 34

Room Detection . 35
Door Detection . 36

Incremental Modeling of the Environment . 36
Experimental Results . 37
Conclusions and Future Work . 39
Acknowledgement . 39

CONTENTS

References . 39

4 A Passive Learning Sensor Architecture for Multimodal Image Labeling: An
Application for Social Robots 41
Introduction . 43
State-of-the-Art . 45
Passive Learning Sensor Architecture . 46

Cognitive Attention . 47
Cognitive Subtraction . 48
CNN Classificatin Step . 49
Semantic Processing . 50

Experiments . 52
Tests on Image Buffering . 53
Cognitive Attention Tests . 54
Tests with Generic ImageNet Training . 55
Tests with Networks with Fine-Tuned Training Datasets 56

Conclusions and Future Work . 58
Abbreviations . 59
References . 59

5 Semantic Exp. of Auto-Gen. Scene Desc. to Solve Robotic Tasks 63
Introduction . 64
System Design . 65

Multimodal Encoder-Decoder Pipeline . 65
Word Semantics Relationships . 65
Word Matching System . 66

Experiments . 66
Conclusions and Future Work . 68
Acknowledgement . 68
References . 68

6 Exploiting Symmetries and Extrusions for Grasping Household Objects 71
Introduction . 72
Related Work . 73
Generating Compact Object Representations from Single RGB-D Images 73

Superquadric Representation . 73
Object Completion from Extrusions . 74

Using Compact Object Representations for Grasp Planning 75
Experimental Results . 76

Accuracy of Fit . 76
Robot Grasping Experiments . 77

Discussion and Conclusion . 77
Acknowledgements . 78
References . 78

7 SPAM for a Manipulator by BNM in Unknown Environments 79
Introduction . 80

CONTENTS

Best Next Move Planner . 81
Simulation Results . 83
Experiments . 84
Conclusions and Future Work . 85
References . 85

8 Perceptive Parallel Processes. Coordinating Geometry and Texture 87
Introduction . 88
Related Works . 89
The Perception System . 89
Texture Aware Perceptive Process . 90

Multimodal Neural Model . 90
Syntactic Frequency Distribution Parser . 90

Geometry Aware Perceptive Process . 91
Looking for Tables . 91
Object Recognition and Pose Estimation . 91

Experiments . 91
System Setup . 91
Results on the Experiments . 92

Conclusions and Future Works . 93
References . 93

9 Integrating Planning Perception and Action for Informed Object Search 95
Introduction . 96
Related Works . 97
Integration of an Object Oracle in a Robotics Architecture 98

Domain: Node Types and Actions . 99
Agents . 99

Design of the Oracle Agent . 100
Cue Acquisition . 101
Semantic Container Vector Representation . 103
Querying Oracle for Object Location . 103

Experimental Results . 104
Conclusions . 105
References .

II Conclusions and Future Works 97

10 Review and contributions 99

11 Future works 101

A Robotic Software Contributions 103
A.1 The Needs of Specific Software for Robotics 103
A.2 Component Oriented Programming . 105

A.2.1 Main Characteristics . 105

CONTENTS

A.2.2 Advantages and disadvantages . 106
A.2.3 Why Component Oriented Programming for Robots? 107

A.3 Model Driven Engineering for Robotics . 109
A.4 Robotic Frameworks . 112

A.4.1 RoboComp . 114
A.4.1.1 Component Model . 115
A.4.1.2 Libraries, Tools and Files 115

A.5 Robot Perception Software . 116
A.5.1 Point Cloud Library . 117
A.5.2 OpenDetection . 118

B Publications not covered in this thesis 121

Chapter 1

Introduction

“ Chew, if only you could see what I’ve
seen with your eyes! ”

— Roy Batty, Blade Runner

1.1 Why planning-based cognitive perception?
Science fiction has promised us robots capable of cleaning houses or performing normal day
to day activities. The industrial success of automation and teleoperated robots confirms that
current robots are physically capable of performing almost any motion. These robots operate
in industrial environments, performing high precision tasks and lifting heavy loads. However,
when dealing with day to day tasks in unknown environments and when being outside of care-
fully controlled setups, even the most sophisticated industrial robot would be unable to carry
a simple object to a specific place. For them to achieve full autonomy, a key element is still
missing: a perceptive-cognitive structure to help them perform tasks autonomously. A structure
like this would allow robot maintaining internal representations of the environment and con-
cepts related to it that would help them reasoning and making decisions when working toward
a certain goal.

Nonetheless, building fully autonomous robots entails overcoming a wide range of hard and
unsolved problems. In order to deal with the challenge and come up with results without having
to solve all the issues, researches have split up the problem into smaller pieces and focused their
research on each of them separately. Therefore, most research groups often focus only on one
or two of these fields and do not consider the rest. While isolating the problems is a good way to
achieve successful research results, when the goal is to have a fully autonomous robot working
in a real environment, it comes to a point that some of these skills have to be integrated. This
increases the research complexity, but, on the other hand, it can help achieve new successful
results, as more information can be taken into account than when using isolated approaches. In
fact, some researchers are starting to embrace this novel multimodal procedure, leading to the
recent trend in more holistic robotics solutions.

While in certain areas of robotics such as control or motion planning there is still work to
do, it is undeniable that one of the core pieces that we are currently missing is a good perception
system. Perception is a key component when it comes to performing almost any day to day task.
Moving robots in unknown environments requires a good perception to avoid hitting obstacles.

1

2 CHAPTER 1. INTRODUCTION

Any kind of process involving detection, classification and/or location calls for an autonomous
system with good visual skills. Even after the searched object is detected, perception is also
needed to properly reaching it and to proceed with the final grasp. Therefore, since most of the
main tasks an autonomous robot could perform depend to a large extent on a proper perception,
solving this issue becomes of utmost importance for the progress of the research in robotics.

Sensors play a key role when it comes to the performance of perceptive processes. Different
aspects like quality, quantity or type of data sensed highly impact the robot’s understanding of
the environment. In the last few years, the affordability and performance of PrimeSense devices
have made easy for anyone to have access to 3D data. The previous solutions for sensing depth
information were either costly, self-made [Gutierrez et al., 2011] or dependent on the scene
information, such as stereo vision. However, still most of the current perception solutions con-
sider texture information separately from geometric information. Prove of this is the existence
of separated solutions and libraries such as OpenCV [Bradski, 2000] and the PointCloudLi-
brary [Rusu and Cousins, 2011]. The OpenDetection library [Sarkar and Gutierrez, 2016] is an
effort to unify geometrical and visual perception with the specific needs of robotics. Detection
and recognition tasks may require texture information, as we may need to differentiate between
objects with the same shape. At the same time, shape is important to detect objects with little
or no texture, and for manipulation tasks. But as intended through this research, the combined
use of geometry and texture information can lead perception systems to more robust outputs.

Deep Learning [Goodfellow et al., 2016] comprehends a set of Machine Learning tech-
niques that allow the representation of complex concepts from simpler representations, i.e., a
trained Deep Neural Network (DNN) can encapsulate small representations of different fea-
tures of images that, when used in combination, build up to more complex concepts. Recent
advances in hardware, along with the huge amount of data available nowadays in the cloud, have
boosted the results provided by these networks. Works in this area, like [Szegedy et al., 2015,
Krizhevsky et al., 2012, Simonyan and Zisserman, 2014] or [Girshick et al., 2016], achieve as-
tonishing results in image classification when trained and tested with standard datasets such as
the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [Russakovsky et al., 2015]
or the PASCAL VOC [Everingham et al., 2010]. However, when these trained networks face
real world environments, with their inherent handicaps such as unfavorable light conditions, low
resolution or messy and cluttered scenes, the outcome is often not good enough to be used in a
production system. Consequently, testing and improving these solutions in robots, dealing with
real scenarios, becomes a key asset when trying to strengthen and enhance perception systems
results for real applications.

Since perception is somehow present in almost any service the robot performs, it has to
adapt to every state and requirements from the system in order to advance toward higher level
goals. For this reason, creating a planned perception that takes into account all the different
sources of information would enhance the overall perception task performance. For example,
a planned perception would allow the robot to take proper decisions regarding the usage of
geometry or textured information according to the stage of the plan and the needs of the robot
itself at that moment. Also the feedback coming from the perception level needs to have a direct
impact into the planning in order to be able to adapt to the environment in non-trivial situations.
For instance, the robot might need to acquire a better viewpoint of an object due to poor light
conditions or to obtain a complete visual model of it. This work represents an effort to solve
this problem through the production of a flexible plan while exploiting cognitive information.
To achieve this it tries to plan and adapt the vision system, on every stage of the plan, using the

1.2. THE CASE STUDY: A DELIVERY ROBOT 3

cognitive and environmental data.

1.2 The case study: A delivery robot

From the moment a human asks a robot for an object, until the point when it delivers the re-
quested item, lots of different processes take part in a “robotic mind”. Even though it might
look like an easy task for a human being, for a robot, it is a long and complex series of ac-
tions that have to be executed under the uncertainty of a real environment. These actions are
executed, within the robot, as numerous processes that have to robustly interact either with the
environment (through sensors or actuators) or with each other. Therefore, in order to make
these processes and resulting actions able to cope with the uncertainty of the environment,
while working toward a certain goal, the whole cognitive perception process must be carefully
planned.

In this dissertation, planning-based cognitive perception is presented through the specific
case of a human asking a robot to bring a certain object located in a large household environ-
ment. Location of the object is unknown, although some information might be contained in
the internal world model. The robot uses this information combined with the data obtained
from sensors in order to plan and execute the different perceptual steps, taking into account the
outcome of the previous stage and the state of the environment in order to execute the next one.

When robots search objects in wide environments, as a first step, in order to narrow the
search space, it has first to decide where to look for a certain object. A basic approach would be
to go around exploring the unknown frontiers of the search space [Yamauchi, 1997]. However,
when looking at humans visual performance, it seems that long term memory representations
have a strong influence on it [Woodman and Chun, 2006]. In this work this same principle
is applied to robotics in the form of informed search. Informed search helps the robot take
advantage of its previous experience and knowledge when taking early decisions on where to
begin a certain search.

Subsequently, once the robot reaches possible locations, a set of actions should be triggered
in order to look for the object. In order to detect the different elements, segmentation of the
scene must be properly achieved. After segmentation is done, a proper classification process
that labels each of the parts is needed to provide the robot with a detailed knowledge of the
objects in its surroundings. Different approaches to the detection and localization problems
were developed and enhanced in order to provide the robot with these capabilities for the whole
search process.

Finally, after the robot locates the object within its surroundings, it must grasp it to later
perform its delivery. For this to happen not only proper location of the object is needed, but
some extra geometrical information is also required in order to plan a proper grasping of the
object. Object modeling techniques where developed to provide this stage with the necessary
information for a successful grasp. Likewise, an arm motion planning and grasping should be
performed. A Simultaneous Planning and Mapping (SPAM) algorithm was developed for this
matter. It helps the robotic arm to reach the object through a proper path avoiding collisions.
Only then, a robot can reach the object, grasp it and deliver it to the human requesting the object.

Shelly (figure 1.1) is the name of the delivery robot used in the experiments of this disser-
tation. It is the fourth generation of a manipulator robot, completely build and designed by the
researchers at RoboLab (the robotics lab at the University of Extremadura, Spain). As being

4 CHAPTER 1. INTRODUCTION

Figure 1.1: The Shelly robot looking for a requested object in the kitchen of the apartment.

fully designed locally three is less dependencies on third parties for hardware maintenance. It is
also good for fast and custom updates, keeping the design up to the state-of-the-art and always
matching the researchers needs. The main drawback is that there is a higher workload in the
research process however, on the other hand, more is learned in the process.

It is equipped with an omnidirectional base that allows the Shelly to move in any direc-
tion at any point. This helps avoiding unnecessary turns and reducing the accumulated error in
odometry measurements. On top of the base lies a 2D LRF that is used for mapping and local-
ization purposes as well as obstacle avoidance. The robot is equipped with 4 Intel NUC PCs for
onboard processing, interconnected through a switch and accessible through a wifi connection.
Additionally, these computers can be managed through a touch screen located at the front of the
robot. This screen can also be used for human-robot interaction purposes. It has a robotic arm
with four degrees of freedom and a grip for object grasping. A motorized head along with sev-
eral sensors are also installed in the robot. Current available sensors are a camera, primesense
device and a kinect v2, although they can easily be exchanged for new ones when needed.

1.3 Motivation

The ensemble of research articles produced along the development of this dissertation creates a
well defined pipeline that empowers autonomous systems to produce object deliveries in apart-
ment like environments. We present here and tie together these works with the aims of un-
derstanding them as a whole research production. The analysis of the research is performed
through the use case of the delivery robot.

Initial works try to cover the first needs of the delivery robot, sensing the environment and
modeling rooms for SPAM, presented in works outlined in subsection 1.3.1. Once the robot is
capable of sensing and modeling, word semantics relations are exploited to boost object scene
discovery results in the research works presented in subsection 1.3.2. Once the object to deliver
has been found, a proper modeling of the object along with a robotic arm path planning is

1.3. MOTIVATION 5

needed in order to be able to grasp the object. This is analyzed in subsection 1.3.3. Finally
optimization and management of the whole delivery robot is done by means of planning-based
cognitive perception in the papers described in subsection 1.3.4.

1.3.1 Environment Sensing and Cognitive Modeling of Rooms

The first an most crucial task to perform when a robot needs to know its surroundings is to sense
the environment and obtain data for further processing. Nowadays different sensing systems
exist to obtain 2D and 3D data, being the most popular the PrimeSense sensor family due to its
great cost-efficiency balance. These sensors offer decent 3D colored information of the environ-
ment at a rate of 30 frames per second (fps). However until the mass production of this solution,
cameras were the main cost-efficient sensor. Back then, due to sensor access most perception
solutions were focused on 2D image processing. 3D information was built using 2D images
mostly through stereo vision techniques with its own drawbacks (i.e., the need of texture or
calibration). Although several methods provide different means to estimate depth from RGB im-
ages [Ayache and Lustman, 1991] [Meguro et al., 2007] [Moravec, 1996] [Scharstein et al., 2001],
they still have a strong dependencies on light variations and texture. Other solutions like 3D
LRFs (Laser Range Finders) provide much more accurate data with less environmental
dependencies at higher cost. Before the boost of the PrimeSense devices, 3D sensor alternatives
to cameras was high and out of budget for most robotics labs. In these conditions an effort to
build “A Cost-Efficient 3D Sensing System for Autonomous Mobile Robots” (see chapter 2)
was made to conceive an affordable alternative to the existent costly 3D sensors.

The sensor developed in this work consists of a complete 3D sensing system solution for
autonomous mobile robots. A regular 2D LRF sensor is used and moved by a step motor in
order to obtain 3D points from a full 360°scan. Additionally, a regular camera is mounted on
top and used to obtain texture data from the environment. This allows the system to provide
the RGB information attached to each of the 3D points produced by the LRF scan. Finally, an
embedded system is configured to manage the different components of the system. The software
to control the system is built on top of RoboComp, the component framework used for robotics
development through this dissertation (see section A.4.1). A camera component handler, along
with another one for the LRF, run in the embedded system, managing and sending the data
over the network to a more powerful desktop for high level processing. The embedded system
converts coordinates from Polar System to Cartesian system and adds color through an extrinsic
3D-LRF Camera Calibration.

In order to test the system, a mapping of the environment was performed using
the Chen-Medonig (point-to-plane) framework for the Iterative Closest Point (ICP) algo-
rithm [Chen and Medioni, 1992]. 24 different scans, moving the robot around the lab with a
rotation β > 2 rads, were made. Data results matched accurately the environment shape and
measurements. However, it was discovered that when rotation was increased over 0.2 rads
different point clouds were not smoothly connected. This was attributed to high rotational dif-
ferences among point clouds that are hard to handle by this ICP algorithm. Furthermore, using
our system the Gaussian Mixture Model (GMM) for novelty detection [Drews et al., 2010] was
deployed and tested. In this development a mulsti-scale burden was initially performed in order
to reduce computation load. Afterwards, the Earth’s Mover Distance [Rubner et al., 1998] was
used over the GMM in order to detect differences among scans. This enabled the system with
the capability of detecting new objects added in the scenes. Figure 1.2 shows an execution of

6 CHAPTER 1. INTRODUCTION

this algorithm in a room scanned with the 3D sensor. Figure 1.2a corresponds to the scan of an
room along with the detected Gaussians. The second scan of the room, this time including the
novelty, along with the associated Gaussians, is shown in figure 1.2a. Finally, once the novelty
was detected, a superquadric was shaped in order to fit the point cloud and provide the robot
with an idea of the shape of the new object.

(a) Empty room.
(b) Room with a novelty

Figure 1.2: Downsampled point cloud scans and associated Gaussians.

Once the low level data acquisition is functional, the delivery robot needs to locate within
the environment in order to move around it. For the robot to be able to locate itself, a proper
mapping of the environment is needed. Using our new developed sensing system, An Incre-
mental Hybrid Approach to Indoor Modeling (see chapter 3) was developed. This work
enables the delivery robot to model rooms along with the doors that connects them into a novel
hybrid cognitive representation. With this modeling information the robot is able to locate itself
and produce paths in large indoors environments when looking for objects.

In the representation used there, the model of the environment is stored as an undirected
graph whose vertices represent the different rooms and edges the doors connecting them (see
Figure 1.3). This cognitive representation allows the robot to easily reason over large environ-
ments with several rooms and doors (i.e., the robot can obtain a minimum path connecting two
rooms). On top of that, the representation can also be extended to contain more complex world
structures such as different floors in a building. This topological representation avoids the need
of a metric map of the environment since it only has to maintain the parametric description of
each room and doors. Developed geometric restrictions and loop closings help correct possible
errors in the final model derived from noise in the environment.

In this work the problem of room modeling was reduced to a rectangle detection problem
as rooms are assumed to be rectangular with walls perpendicular to the floor. Therefore, a new
rectangle detection technique was developed based on a search in the parameter space through
a 3D variation of the Hough Transform [Rosenfeld, 1969, Joo et al., 2010]. In the detection
process, only the points that belong to the contour of a rectangle are considered. The pose of the
robot relative to the room where it is located is be computed according to the perceived rectangle
regions. For more details and a formal definition of the method please refer to chapter 3.

Similarly to the apartment like environment, in which final tests of our delivery robot are
performed, the indoor modeling algorithm is tested in a two rooms environment connected
through a door (see figure 1.4a). Starting from the middle of one of the rooms, the robot is
made to move around in order to incrementally model the first room. Once the it is modeled,
the robot proceeds through the door and models the second room. Finally after the loop closing

1.3. MOTIVATION 7

(a) Topological representation. (b) Scheme of environment.

Figure 1.3: Topological representation of an environment composed by three intercommuni-
cated rooms.

and application of restrictions (i.e., door matching), both rooms were properly modeled (see
figure 1.4). Each square of the figure represents an area of 0, 27 × 0, 27m2. The real sizes
of the two rooms were 3, 19 × 3, 78m2 (room 1) and 4, 20 × 3, 78m2 (room 2) and the sizes
obtained by the modeling process were 2, 97× 3, 78m2 (room 1) and 4, 05× 3, 78m2 (room 2).
Although the accuracy of each room model is limited by the sampling step of the Hough space,
the resulting error is in the permissible range for the needs of the delivery robot. If needed,
more accuracy can be obtained by reducing the sampling step size of the Hough space (at the
expense of a higher CPU load).

The delivery robot was enabled with sensing, mapping and location capabilities. Using the
hardware and software developed it should, at this point, be able to retrieve information of the
environment and produce an accurate cognitive map to locate itself and move around.

1.3.2 Semantic Relations for Scene and Object Discovery
Once the robot is able to start moving around and look for the target object, it should take
decisions on where to go. Choosing where to start and how to approach different locations is
not a trivial task. Making good decisions at this stage can enormously reduce the time taken to
find and reach the object. Exploiting word semantics can help boost the significance of objects
labels and infer new information that helps the robot understand scenes. In fact, the use of
semantics is a promising approach for scene labeling as confirmed by several works in the area
such as [Romero-González et al., 2017] or [Rangel et al., 2016].

In an effort to select the best potential locations within rooms to find a specific object the
research presented in “A Passive Learning Sensor Architecture for Multimodal Image La-
beling: an Application for Social Robot” (see chapter 4) was conducted. In this work, a
four stages architecture is developed to exploit informed search in order to optimize the ini-
tial selection of containers to speed up the full object search process. The Passive Learning
Sensor Architecture (PLSA) is designed to take advantage of the multimodal information ob-
tained when combining RGB-D sensor data with trained semantic language models. The main
contribution of this work lies in speeding up the search process using data acquired in real en-
vironments and from distant locations. This means, the objects sensed data, acquired by the
robot, will have a low resolution and poor light.

Figure 1.5 shows the four stages of PLSA. The first stage, cognitive attention, detects object
containers in images discarding those without them. From the selected images, the region of
the container is segmented and provided to the second step. For this segmentation, the cognitive

8 CHAPTER 1. INTRODUCTION

(a) Frontal view of the two rooms with connecting door.

(b) Modeling of the two rooms before restrictions
are applied.

(c) Final resulting model of the two rooms.

Figure 1.4: Modeling of two contiguous rooms with a connecting door used in the modeling
experiments

Figure 1.5: The four main steps of our passive learning architecture. The left-hand side of the
vertical black line describes the output of each step in a mathematical notation, while the right-
hand side shows it visually. Explanations of the outputs are given on the outer right descriptions.
The forbidden sign means the image will be discarded.

1.3. MOTIVATION 9

Figure 1.6: Tabletop segmentation and object recognition pipeline used by the texture aware
process.

information regarding the robot and possible object containers location is used. Afterwards, the
cognitive subtraction step performs a segmentation process that outputs the regions correspond-
ing to each object lying in the container. This step is specific to each container, in particular,
for tables, the pipeline shown in figure 1.6 is used. Once objects are segmented, they are la-
beled using a very deep Convolutional Neural Network (CNN) based on deep residual learn-
ing [He et al., 2016] trained with ImageNet [Russakovsky et al., 2015]. These labels are then
processed by the Semantic Processing step. This step uses word semantics, in a similar way as
the work in chapter 5, to compute an average semantic vector that represent each container. All
the vector representations of the labels produced by the previous step for a certain container are
processed to produce that container’s average semantic vector. Finally these average vectors are
compared with the representation of the label of the object to find to determine the optimum
order in which tables should be visited.

Similarly to the work explained in chapter 3, the experiments are also performed with the
delivery robot in a two room apartment-like real environment. Five containers (tables) are dis-
posed with objects on them, grouped according to their use, as shown in figure 1.7. The tests
preformed tried to prove the usefulness of each of the stages present in the architecture. Initial
tests showed that a buffer of about 20 images was enough for PLSA to acquire optimum per-
formance. PLSA outperformed state-of-the-art segmentation algorithms combined with CNN

10 CHAPTER 1. INTRODUCTION

Figure 1.7: Setup of the experiment: At the top the real setup, bottom-left is the cognitive model
of the setup, bottom-right are images of the real tables and objects.

architectures, trained with generic datasets and specially tunned for our experiment. Finally,
the semantic step was tested, showing improvements in the results respect to a non-semantic
step architecture. However, an interesting discovery was that this step does not improve that
much the results of the CNN architectures with retrained models. Further details are available
in chapter 4.

Once possible object locations are selected and approached by the robot, the object recogni-
tion stage should be triggered. In order to help the delivery robot with the detection of objects a
“Semantic Expansion of Auto-Generated Scene Descriptions to Solve Robotic Tasks” was
developed (see chapter 5). This work analyzes and enhances auto-generated image descrip-
tions in order to detect semantic relations between a query and a scene. The system takes an
object description as input and produces a set of matching scene images using word semantic
expansion techniques in auto-generated image captions.

The first part of the system is in charge of generating realistic image descriptions. A
multimodal encoder-decoder pipeline is in charge of generating these descriptions (see fig-
ure 1.8). The encoder learns from a joint image-sentence dataset. Sentences are en-
coded using a long short-term memory (LSTM) recurrent neural network, as described
in [Hochreiter and Schmidhuber, 1997]. Image features are extracted from the top layer
of a deep convolutional network trained with the Imagenet dataset for the classification
task [Krizhevsky et al., 2012] and projected to the multimodal embedding space. A pairwise
ranking loss is minimized in order to learn to rank images and their descriptions. For decod-
ing, a Structure-Content Neural Language Model (SC-NLM) [Kiros et al., 2014] is used. It is
a multiplicative neural language model where the attribute vector is an additive function of the
embeddings. These embeddings are conditioned on the embedding vector for the description
computed by the LSTM.

After a set of scene descriptions are generated, semantic relations are used to help find
matchings between the descriptions and the system query. An improved version of the skip-
gram model [Mikolov et al., 2013] was used for this matter. This version models word rep-
resentations that help predict the surrounding words in a corpus. As more than often related

1.3. MOTIVATION 11

Figure 1.8: Multimodal encoder-decoder pipeline.

(a)

(b)

Figure 1.9: Top results of the query look for a pet in a river. a) These are the results using the
word semantics relations. None of the generated captions specifically contained ether the word
pet or river. b) These are the results for the direct matching experiment. Only five of all the
generated captions contained the word river.

words are found next to each other in corpus, when training the model with large datasets, it
tends to capture semantic relationships among words. Descriptions are syntactically analyzed
using NLTK and key parts are selected while the rest are discarded (i.e., connectors or articles).
An average of the model representations of these key words is computed for each image. Then
this representations are compared using the cosine distance with the representation of the query
and images are ranked according to their results. Objects can be searched using descriptions
that might contain negative parts e.g., “not red”). These negative parts are identified in the syn-
tactic analysis process and the representation is subtracted, instead of added, to the final average
vector value. This process moves away the description average vector from the vector repre-
sentation of that word, making it more unlikely to get good results with semantically related
words.

Experiments for this work compare qualitative results of the ranking of images and a regular
direct matching among words in the query and words in image descriptions. Figure 1.9 shows
a test for the query look for a pet in a river. Using the developed system, images containing a
pet and water are usually ranked high, even though neither the word “pet” nor the word “river”
were present in the generated captions of these images. However, for the direct match approach
only the word “river” could be found in some captions, leaving no option to even consider any

12 CHAPTER 1. INTRODUCTION

(a) 3D scan of a tabletop.
(b) Superquadrics modeling the
objects in the tabletop.

(c) 3D data and superquadrics.

Figure 1.10: Superquadrics modeling of objects on a tabletop.

image containing pets (as the word was not present at all on any image caption of the dataset).
Further examples can be found in the experiments sections of chapter 5.

1.3.3 Modeling and Planning for Grasping

Once the robot recognizes and locates the object to deliver, the first steps toward a grasping ma-
neuver take into action. The first work in this direction is an effort on “Exploiting symmetries
and extrusions for grasping household objects” (see chapter 6). This work introduces algo-
rithms for completing partial point clouds through the analysis of the symmetry and extrusions
that the shape of different objects present. The robot is empowered with the ability to predict
the 3D shape of an object from a single view to prepare for a final grasping step. Two shape
generation techniques are developed in this work, one using superquadrics and the other one
exploiting linear extrusions.

The superquadric representation used here is similar to the one in chapter 2, although this
time is enhanced with point cloud completion through symmetries detection techniques. This
is done because superquadric fitting techniques such as [Duncan et al., 2013] have their perfor-
mance decreased when applied over 3D data corresponding to one view of an object. Although
hardcoding limits in axes dimensions can help overcome this issue it is still not practical for
real environments where the shapes of different objects can have high variations. Therefore,
similarly to [Bohg et al., 2011], an additional pre-processing step was added in an effort to pro-
vide a more complete point cloud to the superquadric minimizations process. This point cloud
completion step finds an optimal symmetry plane perpendicular to the table where the object is
lying in order to mirror the points. Figure 1.10 shows a tabletop of objects modeled using this
technique.

For the extrusions based shape completion, a three-step approach was used to calcu-
late the extrusion axis. Points from the initial point cloud are used to generate a first hy-
potheses of the extrusion axis. Afterwards, a line is fit into the set of hypotheses us-
ing linear least-squares along with a RANSAC algorithm [Fischler and Bolles, 1981]. Fi-
nally, an optimization on this initial estimate is performed using the dynamic hill climbing
algorithm [Yuret and De La Maza, 1993]. Once optimized, points are rotationally extruded
around the axis to generate the complete point cloud. Using the Poisson surface reconstruc-
tion [Kazhdan et al., 2006] on the completed point cloud a mesh fitting the object is obtained.
Extracted extrusion information is later used to reduce the complexity of the grasp planning.

Experiments on this work measured the accuracy of the fittings and performed full grasp
planning tests with a humanoid robot. Symmetric shapes were transformed into partial clouds

1.3. MOTIVATION 13

Figure 1.11: Simultaneous Planning and Mapping cycle

with noise to simulate a single 3D view. An error distance of 2mm was produced when complet-
ing the shape using extrusions while a higher error was found for the superquadrics shape fitting
(slightly larger than original shape). Finally, a set of grasping experiments were performed on
four objects. For more details and comments on the experiments please refer to chapter 6.

Once the object shape is ready and the possible grasps are generated the arm needs a path
to reach the target. In order to help this process a “Simultaneous Planning and Mapping
(SPAM) for a Manipulator by Best next Move in Unknown Environments” (chapter 7) was
developed. This work aims to provide the manipulator robot with SPAM capabilities in order
to move in unknown environments. A skin type setup based on 3D depth camera sensors that
completely encompass the manipulator is used to obtain 3D point clouds. These clouds are then
used to create a c-space map in which the Best Next Move (BNM) algorithm is applied to direct
the motion of the manipulator and avoid obstacles.

Similarly to Best Next View [Torabi and Gupta, 2010], in BNM the local motion in each
step is designed to reveal the maximum environmental map possible. BNM uses the strategy
in [Temerinac et al., 2007] for point cloud registration as it calls for rapid identification and
collection of 3D shapes. Map construction and goal convergence are considered as separated
goals to be addressed in parallel. For map construction, global motion is steered toward maxi-
mum environment mapping. In fact, the mapping in BNM has a tendency to move toward the
direction by which the point clouds spread in space, thus easing a faster mapping of c-space ob-
stacles. For further details on the implementation of BNM please refer to chapter 7. For a visual
overview, figure 1.11 shows the full proposed SPAM cycle with the two parallel processes.

Several simulation experiments were conducted to test the proposed SPAM algorithm. BNM
was tested against sensor-based RTT [Um et al., 2013]. After 30 runs, the total time, the num-
ber of point cloud generated and the mapping efficiency was measured. BNM took half the
time, generated almost the same amount of point clouds but doubled in mapping efficiency
the results from sensor-based RTT. A final test with a real manipulator and two IPA sen-
sors [Um et al., 2011] was performed proving maximum environment map generation and goal
reaching.

14 CHAPTER 1. INTRODUCTION

1.3.4 Informed Search for Planning Perception

Once the different steps for an object search were developed the next logical development was
to integrate them into a full delivery robot solution and test the utility of the whole system.
A first work in this direction was done through Perceptive Parallel Processes Coordinating
Geometry and Texture (see chapter 8). This work presents a full solution for a robot looking
for objects in large household environments. Two processes run in parallel, separately analyzing
the geometry and texture of the 3D and 2D information obtained by the robot.

In order to find the best potential places to start the search process, the system starts per-
forming a syntactical analysis on the request given to the delivery robot. The Neural Language
Toolkit (NLTK) [Bird et al., 2009] is used to analyze the search query and obtain the target
object. Immediately after, the texture-aware perceptive process analyzes a database of images
that correspond to generic versions of the rooms available in the environment. This means that
if one of the rooms available for the delivery robot is a kitchen, a set of kitchen images will
be analyzed to decide whether this room should be visited first. This allows the robot to pre-
evaluate the potential rooms to visit without wasting time trying to reach them. In this initial
step, the texture process generates automatic descriptions of these generic images and evaluates
the appearance of the searched object in them. The description generation is made through a
multimodal neural model following the structure in [Kiros et al., 2014]. Afterwards, these de-
scriptions are analyzed and a frequency histogram that captures the appearance of the different
nouns is generated. Finally, this is compared to the object label extracted from the query to
provide a certain score for the room. The same process is repeated for each room, scoring each
of them and producing a final ordered list of places to visit for the robot.

Once the order of rooms to visit is determined, the delivery robot starts checking them one
by one. During this stage the two parallel processes, geometric and texture, get started. The
first one, has a focus on texture analysis and aims for a rapid wide scene labeling. This helps
taking decisions on what places should be further inspected or if, on the contrary contrary, the
robot should give up in that area and continue with the next spot. Even though The analysis of
the scene is similar to the one used for the room selection step. The difference lies in that the
texture process uses the camera images that the robot captures instead of generic ones.

On the other side, the geometry-aware perceptive process performs a more detailed evalua-
tion of the scene. A pipeline similar to the one in chapter 8 and shown in figure 1.6 is used. This
process has a table detection step that exploits geometry restrictions in order to detect them as
planes at a certain height and parallel to the floor. Afterwards, a tabletop segmentation mech-
anism is used to select the object on the table (see Figure 1.6.b). This step is followed by a
geometry matching verification using Viewpoint Feature Histograms (VFH) [Rusu et al., 2010]
to recognize the shape of the different objects and estimate their location. Finally, a label
matching step selects the proper object from the table if present. If the object is not found in
the processed table the robot would mark the table as visited and proceed with the processing
scenes and tables.

For the experiments on this work an environment larger than previous ones was used. This
time, a full apartment with seven different locations was explored by the delivery robot (see
Figure 1.12). Five executions of five different object searches were performed, making a total
of 25 tests performed. The first step, the order of places to visit, was first evaluated, resulting in
a total success, always selecting the room containing the object as a first target. Afterwards, the
full recognition and location of the object was evaluated, with a success rate of 92% of the 25

1.3. MOTIVATION 15

Figure 1.12: An overview of the household environment used in the experiments. The rooms
are labeled as follows: 1.- Entrance, 2.- Living room, 3.- Patio, 4.- Bathroom 5.- Hallway, 6.-
Kitchen, 7.- Bedroom. Circled in yellow is the robot at its starting point.

test cases. More details on these experiments can be found in chapter 8.
Another full solution was the effort to integrated the architecture explained in chapter 4

into a planned perception system in order to produce a holistic delivery robot solution. For
this, a work in “Integrating Planning Perception and Action for Informed Object Search”
(see chapter 9) was developed. This research comprises the planning and execution of all the
perception steps needed for the delivery robot to work. It integrates PLSA (see section 1.3.2)
into an oracle agent that aids the delivery robot decide what containers to approach. A final
verification step, using the same structure as the geometry-aware process from previous work
(chapter 8), is also added in order to certify the existence of the object. Once the object is
recognized and located, the robot triggers the object grasping step to grab the object for the
final delivery.

The deliberative cognitive architecture, CORTEX [Bustos et al., 2016], enables the robot
to perform all the steps of the object search process. These steps start by asking the pas-
sive learning agent (oracle agent) for object location hypotheses. Later on, the cognitive ar-
chitecture guides the robot through the search, following with the verification of the object
classification and its precise location within the scene to finish grasping the target. CORTEX
is built on top of many developments carried out during past years, the most relevant being
the Active Grammar-based Modeling architecture (AGM) [Manso et al., 2015], the RoboComp
framework [Manso et al., 2010, Gutiérrez et al., 2013] or the Deep State Representation con-
cept [Marfil et al., 2014, Manso et al., 2016].

Planning is made using the world model of the robot and taking into account the information
from the deep learning features along with other external sources. This helps maintain a flexible
set of stages that will guide the robot through the high level task. This flexibility makes the robot
able to react to unexpected situations and creating a robust set of actions to finally deliver the
requested item.

The higher-level modules called agents share information through the internal world model.
This world model helps maintain an internal state of the surroundings, while some extra per-
ceived information might be stored in the form of deep learning features. This model combines
symbolic and metric information as necessary [Manso et al., 2016] and is managed and mon-

16 CHAPTER 1. INTRODUCTION

Figure 1.13: The CORTEX architecture along with its agents accessing and contributing to the
maintenance of a shared representation of the environment and of the robot itself. Planning and
Executive are in charge of the high-level task planning activities, although all agents might have
domain specific deliberative capabilities.

itored by an executive module in charge of providing agents with a sequence of actions that,
if executed correctly, would take the robot to a state where its goal has been achieved (object
found). As a result the executive generates a plan that correspond to the different steps of the
cognitive perception that considers the goal of the task, the cognitive knowledge in the robot
and the environment sensed data. Specifics on how the architecture performs the planing of the
cognitive perception process can be found in chapter 9.

For the experiments, the same setup as in the work from chapter 4, shown in figure 1.7, was
used. The delivery robot was placed in random positions within the two rooms and asked to find
five objects from five different locations. The proposed method was tested against a random and
traveling salesman algorithm. The probabilities of finding the object in the first place were of
0.36, 0.35 and 0.9 for the random, traveling salesman and oracle-based solutions, respectively.
The average time take for the robot to reach the proper container was 82.68, 61.0 and 26.13
seconds for the random traveling salesman and oracle-based solutions. Time taken for table
inspection was ignored as it is not part of the proposed architecture and it is constant for all the
tested algorithms. Even though the random and traveling salesman policies have similar success
rates, the latter is able to approach the right table because it optimizes the order in which tables
are inspected. More details on these results are available in chapter 9.

1.4 List of Publications

.
Environments Sensing And Rooms Cognitive Modeling:

1.4. LIST OF PUBLICATIONS 17

• “A Cost-efficient 3D Sensing System for Autonomous Mobile Robots”. Marco A.
Gutiérrez, E. Martinena, A Sánchez, Rosario G. Rodı́guez, P. Núñez. In Proc. of Work-
shop of Physical Agents, WAF 2011, September 2011. Albacete, Spain.

• “An Incremental Hybrid Approach to Indoor Modeling”. Marco A. Gutiérrez, P.
Bachiller, L. J. Manso, P. European Conference on Mobile Robots, ECMR 2011. Septem-
ber 7-9, 2011. Örebro, Sweeden.

Semantic Relations for Object Detection:
• “Perceptive Parallel Processes Coordinating Geometry and Texture”. Marco A.

Gutiérrez, Rafael E. Banchs and Luis F. D’Haro. Proceedings of the Workshop on Mul-
timodal and Semantics for Robotics Systems, IROS 2015. pp. 30-35. 2 October, 2015.
Hamburg, Germany.

• “Semantic Expansion of Auto-Generated Scene Descriptions to Solve Robotic Tasks”.
Marco A. Gutiérrez, Rafael E. Banchs. International Journal of mechanical Engineering
and Robotics Research. vol. 5, no 2, p. 109. April, 2016.

Modeling and Planning for Grasping:
• “Exploiting symmetries and extrusions for grasping household objects”. Ana Huamán

Quispe, Benoı̂t Milville, Marco A Gutiérrez, Can Erdogan, Mike Stilman, Henrik Chris-
tensen, Heni Ben Amor. IEEE International Conference on Robotics and Automation
(ICRA) 2015. pp. 3702-3708. 26-30 May 2015. Seattle, Washington.

• “Simultaneous Planning and Mapping (SPAM) for a Manipulator by Best Next Move in
Unknown Environments”. Dugan Um, Marco A. Gutiérrez, Pablo Bustos and Sungchul
Kang. IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS,
November 3-8, 2013. Tokyo, Japan.

Informed Search for Planning Perception:
• “A Passive Learning Sensor Architecture for Multimodal Image Labeling: An Applica-

tion for Social Robots.” Marco A. Gutiérrez, Luis J. Manso, Harit Pandya and Pedro
Núñez Sensors 17, no. 2: 353.

• “Integrating Planning Perception and Action for Informed Object Search.” Luis J. Manso,
Marco A. Gutierrez, Pablo Bustos and Pilar Bachiller. Cognitive Processing (To Ap-
pear), 2017.

18 CHAPTER 1. INTRODUCTION

Part I

Publications

19

Chapter 2

A Cost-efficient 3D Sensing System for
Autonomous Mobile Robots

21

JOURNAL OF PHYSICAL AGENTS, VOL. XXX, NO. XXX, XXX 2011 1

A Cost-Efficient 3D Sensing System for
Autonomous Mobile Robots

Marco A. Gutiérrez, E. Martinena, A. Sánchez, Rosario G. Rodrı́guez, P. Núñez.

Abstract— This paper describes a mechanism for building
an inexpensive and, at the same time, accurate system for 3D
scanning on Autonomous Mobile Robots. Our system allows us
to obtain 3D points from the robot environment along with its
associated color. This data can be later processed using different
techniques in order to obtain information from surrounding
objects useful for tasks such as navigation or localization.
Information is obtained at a rate of 50 ms per line of scan
(700 points per line). In order to use the sensor as part of
an active perception system, resolution is made to be directly
dependent on the scanning speed and robots are able to adjust
the related parameters accordingly to their needs. Our approach
uses a regular commercial 2D Laser Range Finder (LRF), a
step motor and a camera, all this controlled by an embedded
circuit which makes the system apt for being built in any
regular Autonomous Mobile Robot. Finally, to test our system,
two different real applications have been used. First a 3D Map
reconstruction is done using several point clouds matched by
the ICP algorithm and our odometry. Then, we make a novelty
detection and 3D shape retrieval using the Gaussian Mixture
Model and Superquadrics.

Index Terms—Autonomous Mobile Robots, 3D Shape retrieval,
Mapping, Laser Range Finder, RGB-D

I. I NTRODUCTION

Sensing and processing the unknown environment is crucial
for Autonomous Mobile Robots to obtain information from
their surroundings. Most of the actions a mobile robot could
achieve, such as mapping, localization, exploration or navi-
gation, have strong dependences on the information obtained
from their environment. Hence, the task of properly acquiring
and processing this information has became a critical need in
the mobile robotics field.

In order to obtain this information Autonomous Mobile
Robots, can use different sensing systems to achieve data.
Cameras are one of the most common used interfaces to
obtain environment data. They have been widely studied and,
therefore several algorithms are available to achieve world
modeling. For this reason, not only direct information is now
obtained from cameras, other, such as depth, can be estimated
following several methods [1], [2], [3], [4], however most
of these solutions have a necessity for texture information.
Therefore, these algorithms have a strong dependency on light
variations and wouldn’t work properly in indoors environments
specially those with surfaces not uniformly colored. LRF
(Laser Range Finder) solutions provide a more accurate choice
in terms of precision and environmental dependency. However,
they lack from texture information when it is available.

Marco A. Gutiérrez, E. Martinena, A. Sánchez, Rosario G. Rodrı́guez and
P. Núñez are with University of Extremadura.
E-mail: marcog@unex.es

The lack of good, cheap and fast sensors allowing robots
to sense the environment in real-time, in order to allow
them to act on the basis of acquired data, is one of the
reasons of the gap between prognoses and reality. Several
commercial accurate 3D LRF systems are already available
in the market. However, most of them have usually a high
cost (∼ 50.000USD). This way, we have developed a 3D
sensing system for Autonomous Mobile Robots. It consists
on a 2D LRF moved by a step motor, a camera for texture
information and an embedded system that manages the other
three components. Although this managing choice could limit,
in some way, the whole system it has been chosen that way
because it is intended to be used in Autonomous Mobile
Robots and they have a strong needs for small and power-
efficient sensing systems. The embedded system is in charge
of directly moving the step motor, acquiring information from
the LRF and the camera, collecting the 3D data and sending
it over the network for its processing, storage or visualization.

This paper is organized as follows. In section II we talk
about some previous works in the field. Our 3D sensing system
is deeply explained in Section III, its hardware components
and how the data is processed. Then we test our system
using two different applications in Section IV. First building
a 3D map of the robot environment using the Iterative Closest
Point (ICP) algorithm and the odometry information, and
then detecting changes on 3D maps applying the Gaussian
Mixture Model and retrieving shapes from detected objects
using superquadrics. Finally, in Section V we present some
conclusions and future work directions.

II. PREVIOUS WORKS

Autonomous Mobile robots have a strong need of 3D
ranging sensors. Therefore researchers have been increasingly
focusing efforts in this field, and, as a consequence, groups
have came up with different approaches to obtain 3D points
and shapes from the environment.

The relative low cost of cameras have made these systems
very common. Therefore, using cameras to obtain 3D infor-
mation has been a widely spread research effort. In order to
obtain depth information from images the number of cameras
used have changed along the different studies. The most
popular solution is using two cameras (Binocular Stereo),
mostly inspired in the way humans obtain depth perception
from their environment. Several groups have done intensive
works on these systems [2] [3] [4]. But also other number
of cameras such as three [1], one (monocular cameras) [9] or
even only using unsorted collections of images [10], have been

23

2 JOURNAL OF PHYSICAL AGENTS, VOL. XXX, NO. XXX, XXX 2011

used. However, these systems are highly dependent on texture
information. This makes them to, usually, loose accuracy when
facing indoor environments. In the same way, most of the time,
these solutions have high computational costs with big power
requirements and a small field of view (usually 60◦).

In order to solve the lack of texture dependency the use of
laser lines projection have taken into account [8]. Even some
RGB-D commercial sensors widely popular nowadays such
as the Primesense RGB-D sensor [20] make use of infrared
projection to reduce this texture need. Although solutionsare
very popular, compared to LRF performance, they get small
fields of view, low depth precision (3cm in 3m scan) and high
sensibility to light variations.

Due to the price difference from commercial 2D LRF to
3D LRF, solutions to achieve the whole 3D spectrum with 2D
LRF systems have been explored. This has been done ether
making the 2D LRF scanner rotate itself [12] or rotating a
mirror in front of the it [13]. Some of these solutions even
include a camera for texture information retrieval [14]. On
our system, efforts have been not only focused on the LRF-
camera 3D system but also on managing it from an embedded
system in order to make it able for running on small and low
power consumption Autonomous Mobile Robots.

Finally, some other different 3D retrieval solutions are worth
to mention, like using a rotating camera and an angled LRF
[15] or even using camera shadows to construct Multiple
Virtual planes [11].

III. SYSTEM DESIGN

To develop a complete sensing system that can cover most
of the mobile robotic possible needs, a wide range of possibili-
ties must be taken into account. Indoor or outdoor scenes, more
or less light or uniformly or not uniformly colored objects are
some of the different aspects from the environment a robot can
face. Our device is made up in an effort to take into account
all these likelihoods, trying to get the best and more accurate
info out of each situational environment.

Our design is intended to be simple and low cost (∼3500e).
And although, some of the hardware could be cheaper (laser
is ∼ 3000e), it has been chosen that way due to our target of
getting the most available information out of the surroundings
a robot could find itself, while, at the same time keeping
it small and power-efficient to be deployed on Autonomous
Mobile Robots.

A. Hardware

Our solution consists of three main hardware parts, showed
in Fig. 1. First, a commercial 2D LRF is moved by a step
motor (labeled as (1) and (2) on Fig. 1) to be able to obtain 3D
points from full 360◦ scans. Secondly, a camera (labeled (3)
on Fig. 1) is used in order to achieve texture feedback from the
environment. When this information is made available, we are
able to attach color information to the correspondent points
obtained from our LRF. And finally, an embedded system
(labeled (4) on Fig. 1) that manages the rest of the components
in the system. Fig. 1b shows a sketch of the system and the
associated reference frames of some of the elements.

Fig. 1: a) The 3D sensing system mounted on one of our
Autonomous Mobile Robots,Robex. The three main hardware
parts are marked in the Figure (LRF (1), step motor (2),
RGB camera (3) and embedded system (4)) b) Sketch of the
measurement system and associated reference frames.

We use a Hokuyo LRF with a large scanning range (30
meters and 270◦). It has been chosen that way so that we
can make scans ether indoor or outdoors with appropriated
accuracy, although the system is fully compatible with almost
any other 2D LRF sensor. The LRF is attached to a step
motor to make it scan the full 360◦ in front of the mobile
robot. The step motor has enough torque to move the LRF
without using any gear-train and, in consequence avoiding the
backslash they usually introduce. It has 200 steps resolution
and it is attached to a power driver to obtain a higher one, up
to 25000 steps. Between the several ways of moving a laser
that exist, we have chosen to do it in the Z axis, withα=0
degrees, as shown in Fig. 2. This is the solution that better fits
our needs because it leads to high resolution of points in front
of the robot, exactly the place it is facing and most possibly
to where it is moving [7]. This allows us to focus our density
distribution on certain objects, i.e. obstacles or new elements
introduced in the environment [18]. The resolution we want
to achieve on the scan is directly dependent on the speed of
the step motor. Therefore, our system is good to be used for
active perception purposes since most of the resolution is kept

24CHAPTER 2. A COST-EFFIC. 3D SENS, SYSTEM FOR AUTONOMOUS MOBILE ROBOTS

MARCO A. GUTIERREZ ET AL.: A COST-EFFICIENT 3D SENSING SYSTEM FOR AUTONOMOUS MOBILE ROBOTS 3

Fig. 2: LRF and step motor rotating scheme.

Fig. 3: Scans using different speeds, and therefore achieving
different levels of resolution: a) 0.6 rad/s,∼25 lines of scan
b) 0.4 rad/s,∼50 lines of scan c) 0.2 rad/s,∼100 lines of scan
d) 0.1 rad/s,∼200 lines of scan.

in front of the robot and is able to select the proper speed
for each scan, changing the resolution in consequence. Fig.3
shows different resolutions scans from our system, according
to selected speed and its approximated scan resolution.

The Camera consists of a regular Web-Cam that provides us
with 640x480 images at a rate of 10 frames per second. It is
kept statically on top of the LRF and the step motor facing the
same space as the scanner in order to match the color pixels
from the camera with their correspondent 3D points from the
LRF. The camera is USB connected to the embedded system
to make more accurate and real-time matching of the captions
and the 3D points. Both two sensors have different reference
systems,IRF andLRFRF (see sketch at Fig. 1b). Therefore, as
mathematically shown in Section III-B, data information from
the camera would be calibrated, that is, processed to match
the LRF one. This process involves finding the transformation
IRF TLRFRF (Fig. 1b).

Finally, all these elements are controlled by our embedded
system. It has aGNU/Linux distribution and severalRobocomp
[5] components on top of it. It takes responsibility for properly
moving the step motor according to given instructions and,
therefore, assuring the required resolution. It makes calcula-
tions to retrieve the angles and data coming from the LRF.
Besides, it captures images from the camera and assigns pixels
to the corresponding 3D points. Then, information can be

Fig. 4: Screenshoot of themanagerComp Robocomp tool. 1)
The 3D laser and the Camera running on the embedded system
2) The component in charge of the odometry running on the
robot 3) The process and display component running on a
Desktop system.

locally stored for later processing, or sent through the network
for live treatment, storage and/or display.

B. Data processing

The software to control our system is built in on top of the
robotics frameworkRobocomp [5]. Making use of its compo-
nent oriented programming and its communication middleware
we are able to minimize the CPU load in our embedded system
leaving the heavy processing for the powerful desktop systems.
A light-weight camera component handler and another for the
LRF and the step motor are executed directly in the embedded
system (see (1) on Fig. 4), sending the data over the network
to other components running on desktop computers that will
make further data storage, analysis and/or display (see (3)on
Fig. 4). Thanks to the communication middleware the system
constitutes a generic component that can be used through its
interface:

1 i n t e r f a c e Laser3D
2 {
3 vo id moveToAndSweepAtSpeed (f l o a t

minAng , f l o a t maxAng , f l o a t speed ,
boo l once , i n t numScans , ou t i n t

nScans , ou t f l o a t p e r i o d) ;
4 vo id s t o p () ;
5 TLaserData g e t L a s e r D a t a () ;
6 Laser3DConfData ge tL aserCon fDa ta () ;
7 }

Listing 1: Interface of theLaser3D Robocomp Component

1) Coordinate systems conversion: The 2D LRF returns
points in the Polar Coordinate System (Fig. 5a) that is, a
distancer and a polar angle or azimuthϕ

{
(ri,ϕi)| i = 1...n

}
.

Then, making use of the information coming from our step

25

4 JOURNAL OF PHYSICAL AGENTS, VOL. XXX, NO. XXX, XXX 2011

Fig. 5: Transformation from the LRF data to Cartesian Coor-
dinates.

motor we obtain the inclination angleθ of the LRF. This leaves
our coordinates expressed in the Spherical System (Fig 5b),
having a radial distancer, an azimuth angleϕ and an incli-
nation angleθ ,

{
(ri,ϕi,θi)| i = 1...n

}
. Then, data is finally

converted into the Cartesian System
{
(xi,yi,zi)| i = 1..n)

}

(Fig. 5c), using the following regular systems conversion
equation:

xi = ri · sinθi cosϕi

yi = ri · sinθi cosϕi

zi = ri · cosθi

, i = 1...n (1)

It is desired to keep the embedded system as much free
of CPU load as possible to assure a good real-time response.
However, since our inclination angleθ is directly dependent
on the step motor movements information and we want to
preserve the system accuracy, it is unavoidable but to ex-
ecute the polar system coordinates to the spherical system
transformation on our system. Therefore, transforms up to the
spherical coordinates are processed on the embedded system,
then data is sent over the network and the rest of the processing
steps are computed on external and more powerful systems.

2) Extrinsic 3D-LRF Camera Calibration: Camera image
data is also obtained. It comes in form of RGB matrix that is
matched to its correspondent laser points. For this matching
Rotation (R) and Transformation (T) of those color points to
the laser reference frame must be performed [6]. In order
to calibrate our camera-LRF, calculation of proper R and
T is needed. This R and T are needed to obtain the target
(XL,Y L,ZL), therefore we can say:

X c

Y c

Zc

= R

XL

Y L

ZL

+T (2)

Where(X c,Y c,Zc) are points on the reference system of the
camera and(XL,Y L,ZL) the ones from the laser. Also written
as:

XL = r11X c + r12Y c + r13Zc +Tx

Y L = r21X c + r22Y c + r23Zc +Ty

ZL = r31X c + r32Y c + r33Zc +Tz

(3)

We obtainn empirically known matching pair points in our
LRF and camera, in the form:

((XL
i ,Y

L
i ,Z

L
i),(xi,yi)), i = 1...n (4)

Where every point(xi,yi) obtained from the image matches
the corresponding(XL

i ,Y
L
i ,Z

L
i) obtained from the LRF.

Following [6] we could conclude that using equation 5 we
can obtain a solution.

Av = 0 (5)

WhereA is defined in equation 6 with ann ≥ 7, and being
the points not coplanar.

A =

x1XL
1 x1Y L

1 x1ZL
1 x1 − y1XL

1 − y1Y L
1 − y1ZL

1 − y1

.

.

.
xnXL

n xnY L
n xnZL

n xn − ynXL
n − ynY L

n − ynZL
n − yn

(6)
This solution depends on a parameter or scale factor:

V = (v1, ...,v8)

v1 = r21 v5 = λ r11

v2 = r22 v6 = λ r12

v3 = r23 v7 = λ r13

v4 = T x v8 = λ Tx

(7)

Imposing the rotation matrix orthogonality we could de-
termine the mentioned matrix and two components of the
translation vectorTx andYy. Then, to obtain the last component
of the translation vector,Tz, we only have to solve equation 8.

B

(
Tz

fx

)
= b (8)

Where:

B =

x1 (r11XL
1 + r12Y L

1 + r13ZL
1 +Tx)

. .

. .

. .
xn (r11XL

n + r12Y L
n + r13ZL

n +Tx)

(9)

and

b =

−x1(r31XL
1 + r32Y L

1 + r33ZL
1)

.

.

.
−xn(r31XL

n + r32Y L
n + r33ZL

n)

(10)

Then we obtainTz following:
(

T̂z

f̂x

)
= (BtB)−1Btb (11)

This way we have obtained all the components of the corre-
spondent Rotation MatrixR and Translation VectorT which
are used to transform the points from one system to the other
or, in the same way, assign the texture information to the 3D
laser points (see Fig. 1b).

Fig. 6 shows a scan of our lab taken at 0.2πrad/sec of
speed (10 seconds per 360◦ scan). The image is shown at Fig.
6a and data points from the same scan at Fig. 6b. After, as

26CHAPTER 2. A COST-EFFIC. 3D SENS, SYSTEM FOR AUTONOMOUS MOBILE ROBOTS

MARCO A. GUTIERREZ ET AL.: A COST-EFFICIENT 3D SENSING SYSTEM FOR AUTONOMOUS MOBILE ROBOTS 5

Fig. 6: (a) Camera image from a scan in our lab (b) Points
from our 3D LRF (c) Colored data form the scan after data
transformation.

explained, properly matching both data sets a result such as
the one shown in Fig. 6c is obtained. Notice that colored data
is not the whole 3D data from LRF, since the camera covers
a much smaller area than the LRF, as explained on Section II.

IV. EXPERIMENTAL RESULTS

We have built our testing system using a Hokuyo UTM-
30LX 2D LRF. It has 30 meters and 270◦ of scanning range.
The LRF scans 270◦ at a rate of 25ms. However, we get the
scans at a speed of 50ms due to the use of our, in some
way, CPU limited embedded system. The 2D LRF is attached
to a CeNeCe 23HB56 step motor to achieve the whole 3D
spectrum. The motor has 200 steps and a 11 Kg/cm torque and
it is attached to a Leadshine DRP452 driver with 15 different
modes of resolution (from 1/2 to 1/125 steps). A Logitech
Quickcam Pro 9000 Web Camera is used to obtain texture
information from the environment. It gives us 640x480 images
at a rate of 10 FPS (Frames Per Second). This all is controlled
by our embedded system consisting of an ARM Cortex-A8
OMAP 3530 of 720 Mhz and 4G Mobile Low Power DDR
SDRAM @ 200 Mhz running an Ubuntu GNU/Linux System.
All of it is properly mounted and assembled intoRobex, one
of our Autonomous Mobile Robots (see Fig. 1).

The software have been developed using theRobocomp
framework [5], which makes it easy to balance the work
load between the embedded system and other more powerful
ones. On the embedded system we have deployed two main
components, one for managing the step motor and laser system
and other for managing the camera. This data is served through
the network to another external components running in more
powerful desktop machines. Then, as said, the collecting data
component ether processes, stores or shows data for its further
analysis.

We have tested our 3D sensing system using two different
algorithms. First we have run a scan matching in an effort to
make a map of the environment of the robot. For this algorithm
we have tried obtaining different scans at different pointsof
the room and then matching them using ether the ICP scan
matching algorithm [16] or odometry.

The second experiment consists of a novelty detection
on a 3D map and a subsequent shape retrieval of detected
novelty using superquadrics. We have used an algorithm that
simplifies the data using a multi-scale sampling technique in
order to reduce the computation time of detecting changes in
the environment. Then a method based on the Earth Mover’s
Distance (EMD) and Gaussian Mixture Models (GMM) [18]
is used to detect changes and obtain a segmented point could
representing those changes. Finally the 3D shape of the object
is retrieved using a superquadric approximation to the point
cloud.

A. Mapping

Several tests in the mapping field have been performed. In
one of them, we have used the Chen-Medioni (point-to-plane)
framework for ICP (Iterative Closest Point) [16]. Having a
collection of points(pi,qi) with normals ni this algorithm
tries to determine the optimal rotation and translation to be
applied to the first collection of points, i.e.pi to bring them
into alignment with the secondqi. It obtains a rotationR and
translationt trying to minimize the alignment error:

ε = ∑
i
[(Rpi + t − qi) ·ni]

2 (12)

27

6 JOURNAL OF PHYSICAL AGENTS, VOL. XXX, NO. XXX, XXX 2011

Fig. 7: ICP Scan Matching using 24 different scans and
moving fromA to B an angle ofβ ≤ 0.2 rad per scan.

We have obtained 24 different scans moving the robot
around the lab and rotating it an angleβ ≤ 0.2 rad. Data
results from the scan matching are shown from two different
points of view in Fig. 7a and in Fig 7b. PointsA and B
from Fig 7 correspond to start and ending points of the scan,
respectively. The Scan Matching has been colored on the
values of theY axis (height) in order to make it more visually
understandable. Results seem to be quite real and accurate.

After this 24 scans we started increasing the rotation
between our scans over 0.2 rad (β ≥ 0.2 rad). Then we
experienced some error on the applied ICP algorithm, as
shown in Fig. 8. It can be seen how walls of our scan start to
get deviated as we start increasing the angle of the movements.
This could be due to the fact that the quality of alignment
obtained by ICP depends heavily on choosing good pairs for
corresponding points in the two cloud point [17]. Again, points
A and B from Fig 8 correspond, respectively, to start and
ending point of the complete scan.

Since ICP does not allow our robot enough freedom in its
movements, we have performed a mapping implementation
using odometry. To obtain the needed odometry information
we have used thedifferentialRobot component that our frame-

Fig. 8: ICP Scan Matching using 31 different scans and
moving fromA to B increasing the angle overβ ≥ 0.2 rad.

work Robocomp provides (see (2) in Fig. 4). We have done 31
scans rotating an angle ofβ = 0.2 rad one of our Autonomous
Mobile Robots (labeledA on Fig. 9). This movement specially
confuses the ICP algorithm, and makes it almost impossible
to make the match without using odometry. Therefore, making
use of the obtained points, combined with the odometry, we
have performed the matching showed on Fig. 9. As you can
see results are much better than the ones we obtained with
ICP. Still an accumulated error on the final scan is showed by
the red square, labeled b in Fig. 9b. This, as further explained
on Section V, could be solved using for the mapping, along
with the 3D data, the texture information our system provides.

B. Novelty Detection and 3D Shape Retrieval based on Gaus-
sian Mixture Models and superquadrics

The second test we have performed on our system is in
the field of novelty detection and 3D shape retrieval. We
have used the Gaussian Mixture Model for novelty detection
and superquadrics for the 3D shape retrieval [18]. There are
some main steps in the algorithm: the multi-scale sampling
to reduce computation burden; change detection based on
Earth’s Mover Distance over the point cloud selections of

28CHAPTER 2. A COST-EFFIC. 3D SENS, SYSTEM FOR AUTONOMOUS MOBILE ROBOTS

MARCO A. GUTIERREZ ET AL.: A COST-EFFICIENT 3D SENSING SYSTEM FOR AUTONOMOUS MOBILE ROBOTS 7

Fig. 9: Data Obtained from a scan in our lab using odometry.
Point A shows where the robot has rotated and the red square
the accumulated odometry error.

the Gaussian Mixture Model and a 3D shape retrieval of the
detected changes using superquadrics.

To perform our experiment we have used our system to scan
an empty room in our lab. Then a box have been added to
the scene in order to introduce a novelty on the environment.
Fig. 10a shows the simplified point cloud (in black) and the
correspondent Gaussians associated to the big concentration of
points on the empty room, Fig. 10b shows the scene containing
the novelty, labeled as (1). Then Gaussians from the first scan
are compared to those on the second one and matched using
the Earth Mover’s Distance EMD. The novelty usually shows
up as an unmatched Gaussian as it is the only thing that wasn’t
there before (labeled (1) in Fig. 10c).

After selecting the correspondent novelty we have retrieved
a superquadric and place it on the same place as the box was.
The idea of this is to retrieve the 3D shape of the object that
was representing the obtained point cloud, in this case a box.
Fig. 10d shows a superquadric corresponding to the novelty
detected by the previous steps of the algorithm.

This shape retrieval is important in order to provide the
mobile robot with a geometric idea of the objects it is facing.

Fig. 10: (a) Simplified point cloud and associated Gaussians
of empty room (b) Simplified point cloud and associated
Gaussians of room with a novelty (c) Selected novelty on
the second scan and associated point cloud (d) Retrieved
superquadric from the novelty selected point cloud.

29

8 JOURNAL OF PHYSICAL AGENTS, VOL. XXX, NO. XXX, XXX 2011

The GMM and superquadrics approach tested here seems quite
interesting and challenging. However in our opinion further
works are needed since it seems still highly dependable on
thresholds and too slow with large datasets, at least if it wants
to be used for real-time processing.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented the construction of a 3D sensing
system for Autonomous Mobile Robots consisting in a Cam-
era, a 3D LRF and an embedded system. It is intended to
be small and power efficient without giving up performance.
We have tested our system retrieved data with two different
algorithms obtaining promising results. Certainly the step mo-
tor combined with the 2D LRF constitutes a solid alternative
to those expensive commercial solutions. Data is acquired
accurately and fast enough while keeping the low-cost and
autonomous requirements. Also, texture information is prop-
erly attached to the points coming from the LRF in order
to get more information for data processing algorithms. The
public interface provided by the communication middleware
makes the whole system become a real hardware component,
accessible externally through the network. The API offered
by the laser component, provides methods to actively scan the
world with variable precision.

For the mapping, scan matching using ICP and odometry
has been performed. Results are good but still depend on the
point cloud provided for ICP, making the algorithm sensible
to high changes between scans. Making use of texture in-
formation [19] or even making it a real-time mapping with
small changes between consecutive scans could constitute a
good upgrade for this experiment. In the novelty detection
and 3D shape retrieval field the used algorithms (GMM and
superquadrics) seemed promising. However, we found some
trouble detecting certain point clouds, probably because these
algorithms seem highly sensible to thresholds. They, also
where very intensive in CPU and memory. Again adding
texture information to the algorithm might be a choice, al-
though this could make the application not suitable for real-
time use due to a high CPU load. The 2D LRF makes scans
at a speed up to 25ms, although our system still retrieves
data at a speed of 50ms. This is caused by the embedded
processor’s CPU whose limited performance still constitutes
a bottleneck. New and more powerful ARM processors with
multicore architecture have already been announced by Texas
Instruments. They are expected for the next few months and
will probably solve this problem.

Finally, texture information is attached to the laser through
the manual calibration process from section III-B2, another
interesting improvement could be to develop an automatic way
of finding these camera-laser data correspondences.

ACKNOWLEDGMENTS

This work has partly been supported by grants PRI09A037
and PDT09A044, from the Ministry of Economy, Trade

and Innovation of the Extremaduran Government, by grant
TSI-020301-2009-27 from the Spanish Ministry of Industry,
Tourism and Commerce, by grant IPT-430000-2010-002 from

the Spanish Ministry of Science of Innovation and by FEDER
funds from the European Community.

REFERENCES

[1] N. Ayache and F. Lustman, “Trinocular stereo vision for robotics,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 13, no. 1, pp. 7385, 1991.

[2] J. Meguro, J. Takiguchi, Y. Amano, and T. Hashizume, “3D re- construc-
tion using multibaseline omnidirectional motion stereo based on gps/dead-
reckoning compound navigation system,”Int. Journal of Robotics Re-
search, vol. 26, pp. 625636, 2007.

[3] H. P. Moravec, “Robot spatial perception by stereoscopic vision and 3D
evidence grids,”CMU Robotics Institute Technical Report CMU-RI-TR-
96-34, 1996.

[4] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms,”IEEE Workshop on Stereo and
Multi-Baseline Vision, 2001.

[5] L.J. Manso, P. Bachiller, P. Bustos, P. Nuñez, R. Cintasand L. Calderita.
“RoboComp: a Tool-based Robotics Framework”.In Proc. of Int. Conf.
on Simulation, Modeling and Programming for Autonomous Robots
(SIMPAR). Pages 251-262. 2010.

[6] Trucco, Emanuele and Verri, Alessandro.,“Introductory techniques for 3D
Computer Vision”, Prentice-Hall Inc, 1998.

[7] Wulf, Oliver and Wagner, Bernardo,“Fast 3D Scanning Methods for Laser
Measurement Systems”,Proceedings of the International Conferene on
Control Systems and Computer Science, 2003.

[8] Davis, J.; Chen, X.; , “A laser range scanner designed forminimum
calibration complexity ,”Proceedings. Third International Conference on
3-D Digital Imaging and Modeling, 2001, vol., no., pp.91-98, 2001

[9] Vidal-Calleja, T. and Davison, A.J. and Andrade-Cetto,J. and Murray,
D.W., “Active control for single camera SLAM”,Proceedings IEEE
International Conference on Robotics and Automation, 2006.

[10] Furukawa, Yasutaka; Curless, Brian; Seitz, Steven M.;Szeliski, Richard;
, “Reconstructing building interiors from images,”IEEE 12th Interna-
tional Conference on Computer Vision, 2009, pp.80-87.

[11] Aliakbarpour, H.; Dias, J.; , “IMU-Aided 3D Reconstruction Based
on Multiple Virtual Planes,”International Conference on Digital Image
Computing: Techniques and Applications (DICTA), 2010, pp.474-479.

[12] Bosse, Michael; Zlot, Robert; , “Continuous 3D scan-matching with a
spinning 2D laser,”International Conference on Robotics and Automa-
tion, 2009. ICRA ’09. pp.4312-4319, 12-17.

[13] Ryde, J.; Huosheng Hu; , “3D Laser range scanner with hemispher-
ical field of view for robot navigation,”International Conference on
Advanced Intelligent Mechatronics, 2008. AIM 2008. IEEE/ASME, vol.,
no., pp.891-896.

[14] Hartmut Surmann and Kai Lingemann and Andreas Nchter and Joachim
Hertzberg, “A 3D laser range finder for autonomous mobile robots,”,
Proceedings of the 32nd International Symposium on Robotics, 2001 pp.
153-158.

[15] Ryde, J.;, “An inexpensive 3D scanner for indoor mobilerobots,”
International Conference on Intelligent Robots and Systems, (IROS) 2009.
IEEE/RSJ, pp.5185-5190.

[16] Chen, Y.; Medioni, G.; , “Object modeling by registration of multiple
range images,”Proceedings IEEE International Conference on Robotics
and Automation, 1991. pp.2724-2729 vol.3.

[17] Gelfand, N.; Ikemoto, L.; Rusinkiewicz, S.; Levoy, M.;, “Geometrically
stable sampling for the ICP algorithm,”Proceedings. Fourth International
Conference on 3-D Digital Imaging and Modeling, 2003. 260- 267.

[18] Drews, P.; Nuñez, P.; Rocha, R.; Campos, M.; Dias, J.; ,“Novelty
detection and 3D shape retrieval using superquadrics and multi-scale
sampling for autonomous mobile robots,”International Conference on
Robotics and Automation (ICRA), 2010 IEEE, pp.3635-3640.

[19] Ji Hoon Joung; Kwang Ho An; Jung Won Kang; Myung Jin Chung;
Wonpil Yu; “3D environment reconstruction using modified color ICP
algorithm by fusion of a camera and a 3D laser range finder,”Interna-
tional Conference on Intelligent Robots and Systems, 2009. IEEE/RSJ ,
pp.3082-3088.

[20] The primesensor Technology, http://www.primesense.com/

30CHAPTER 2. A COST-EFFIC. 3D SENS, SYSTEM FOR AUTONOMOUS MOBILE ROBOTS

Chapter 3

An Incremental Hybrid Approach to
Indoor Modeling

31

1

An incremental hybrid approach to indoor modeling
Marco A. Gutiérrez Pilar Bachiller Luis J. Manso Pablo Bustos Pedro Núñez

Department of Computer and Communication Technology, University of Extremadura, Spain

Abstract— Most of mobile robots basic functions are highly
dependent on a model of their environment. Proper modeling is
crucial for tasks such as local navigation, localization or route
planning. This paper describes a novel solution for building
models of indoor environments. We use a 3D Laser on a mobile
robot to scan the surroundings and obtain sensing information.
While the robot explores the environment, perceived points are
clustered forming models of rooms. Room modeling is solved
using a new variation of the Hough transform. The result of
the modeling process is a topological graph that represents the
rooms (nodes) and their connecting doors (edges). Each node in
this representation contains the metric parametrization of the
room model. Using this basic metric information, robots do not
need to maintain in parallel a metric map of the environment.
Instead, this metric map can be totally or partially built from
the topological representation whenever it is necessary. To test
the approach we have carried out a modeling experiment of a
real environment, obtaining promising results.

Index Terms— Environment modeling, hybrid representation,
active exploration, 3D laser scanning.

I. INTRODUCTION

In recent years, the problem of map building has become
an important research topic in the field of robotics. A wide
variety of proposals use dense metric maps to represent the
robot environment. While a metric representation is necessary
for solving certain robot tasks, many others require a more
qualitative organization of the environment. Topological maps
provide such a qualitative description of the space and consti-
tute a good support to the metric information.

Several approaches on mobile robotics propose the use of
topological representation to complement the metric infor-
mation of the environment. In [16] it is proposed to create
off-line topological graphs by partitioning metric maps into
regions separated by narrow passages. In [14] the environment
is represented by a hybrid topological-metric map composed
of a set of local metric maps called islands of reliability.
[17] describes the environment using a global topological map
that associates places which are metrically represented by
infinite lines belonging to the same places. [18] constructs
a topological representation as a route graph using Voronoı̈
diagrams. In [19] the environment is represented by a graph
whose nodes are crossings (corners or intersections). [9]
organizes the information of the environment in a graph of
planar regions. [3] proposes an off-line method that builds a
topological representation, whose nodes correspond to rooms,
from a previously obtained metric map.

In this paper, we propose a novel incremental modeling
method that provides a hybrid topological/metric represen-
tation of indoor environments. Our approach improves the
current state of the art in several aspects. Firstly, as in
[3], the topological space is represented by a graph whose

nodes encode rooms and whose edges describe connections
between rooms. However, in our proposal, the topological
representation is incrementally built from the local information
provided by the sensor. This means that no global metric
map is needed to extract a topological description of the
environment. In addition, instead of maintaining in parallel a
dense metric map, each topological node contains a minimal
set of metric information that allows building a map of a part
of the environment when it is needed. This approach reduces
drastically the computation the robot must perform to maintain
an internal representation of its surroundings. In addition, it
can be very helpful for solving certain tasks in an efficient
way, such as global navigation or self-localization.

We also present a new variation of the Hough transform
used for room modeling. Under the rectangularity assumption,
this method provides the geometrical parametrization of a
room from a set of points. It is shown how this proposal
improves the results compared to other approaches.

The rest of the paper is organized as follows. In section
II, an overview of the approach is presented. Section III
describes the modeling method that provides a description
of the environment in terms of rooms and their connections.
Along section IV, the process for creating the proposed
hybrid representation is detailed. Experimental results in a real
environment are presented in section V. Finally, section VI
summarizes the main conclusions of our work.

II. OVERVIEW OF THE APPROACH

As a first approach towards environment modeling, we
focus on indoor environments composed by several rooms
connected through doors. Rooms are considered approximately
rectangular and contain several objects on the floor.

To solve the low-level perceptual process, we have equipped
one of our mobile robots with a motorized 2D LRF (Laser
Range Finder). Stereo cameras, static 2D LRFs and 3D LRFs
constitute an alternative for this purpose. It is possible nowa-
days to use stereo vision or even the very popular RGB-D
primesense sensor[1] to retrieve depth from images and, in
consequence, be able to map the robot surroundings. However
most of these vision studied techniques are performed under
almost ideal circumstances. Uniformly colored surfaces or
light variations are some of the problems these solutions might
face. In addition, compared to LRF performance, sensors like
RGB-D get small fields of view and low depth precision
(3cm in 3m scan). LRFs constitute a strong alternative to
these sensors, especially when facing not ideal environments.
A wide variety of this kind of sensors have became lately
available: point range finders, 2D LRFs and 3D LRFs. 3D
LRFs seem promising, but their high cost makes them in

5th European Conference on Mobile Robots, September 7-9, 2011, Örebro, Sweden 219

33

2

practice less usable than other sensors. Motorized 2D LRFs
have arisen as a good solution combining important advantages
in relation to other sensors for this applications.

To cover the whole 3D spectrum, the 2D LRF is attached
to a step motor that makes it scan the whole hemisphere in
front of the mobile robot. The resolution is made to be directly
dependent on the scanning speed and the robot is able to adjust
the related parameters accordingly to its needs. During the
exploration, perceived points are stored in a 3D occupancy grid
that constitutes a discrete representation of a particular zone of
the environment. This occupancy grid is locally used, so, when
the robot gets into a new room, the grid is reseted. Each cell of
this grid contains the certainty degree about the occupancy of
the corresponding volume of the environment. The certainty
increases if a point is perceived over time in the same position
and decreases when the point vanishes from the space covered
by the sensor. Thus, stable points produce higher occupancy
values than unstable ones. Cells with a high certainty degree
are used for detecting a room model fitting the set of perceived
points. Once the model of the current room can be considered
stable, it is stored in an internal representation that maintains
topological and metric information of the environment.

In this representation, the environment is described as
an undirected graph whose vertices represent the different
explored rooms (see figure 1). An edge linking two vertices
expresses the existence of a door that connects two rooms. This
is a very useful representation for the robot to effectively move
around man-made environments. For instance, the robot could
analyze the graph to obtain the minimum path connecting
any two rooms. Moreover, this representation can be extended
using recursive descriptions to express more complex world
structures like buildings. Thus, a building could be represented
by a node containing several interconnected subgraphs. Each
subgraph would represent a floor of the building and contain a
description of the interconnections between the different rooms
and corridors in it.

(a) (b)

Fig. 1. Topological representation (a) of an environment (b) composed by
three intercommunicated rooms.

Using this topological graph, a minimal set of metric
information is maintained. Specifically, each vertex of the
graph stores the parametric description of the corresponding
room and its doors. Using this basic metric information, the
robot does not need to maintain in parallel a metric map of the
environment. Instead, a total or partial metric representation
can be recovered whenever it is necessary from the topological
one.

To deal with the uncertainty derived from odometric and
sensor errors, we follow a non simultaneous approach to
localization and modeling. Modeling errors are minimized

by performing specific actions directed to quickly obtain
measures around the robot. Once a model is fixed, errors in
the following models, i.e. adjacent rooms, are canceled by
applying geometric restrictions. Finally, detected loop closings
are used through a global minimization procedure to further
reduce modeling errors. Localization errors are canceled by
continuously rebuilding a new model that is compared to the
current one. Using an estimated rectangular model instead
of the raw measures is an effective procedure to update the
position of the robot relative to the current model, since
it is less sensitive to wrong measurements. As long as the
rectangular hypothesis is coherent with the real world around
the robot, these methods work robustly in real situations. More
details on this are given on section IV.

III. ROOMS AND DOORS MODELING

Since rooms are assumed to be rectangular and its walls
perpendicular to the floor, the problem of modeling a room
from a set of points can be treated as a rectangle detection
problem using the projections of those points onto the floor
plane. Several rectangle detection techniques can be found
in the literature [5, 6, 15]. Most of them are based on
a search in the 2D point space (for instance, a search in
the edge representation of an image) using line primitives.
These methods are computationally expensive and can be very
sensitive to noisy data. In order to solve the modeling problem
in an efficient way, we propose a new rectangle detection
technique based on a search in the parameter space using a
variation of the Hough Transform [13, 2].

For line detection, several variations of the Hough Trans-
form have been proposed [8, 11]. The extension of the Hough
Transform for rectangle detection is not new. [20] proposes a
Rectangular Hough Transform used to detect the center and
orientation of a rectangle with known dimensions. [4] proposes
a Windowed Hough Transform that consists of searching
rectangle patterns in the Hough space of every window of
suitable dimensions of an image.

Our approach for rectangle detection uses a 3D version of
the Hough Transform that facilitates the detection of segments
instead of lines. This allows considering only those points that
belong to the contour of a rectangle in the detection process,
which is very important to obtain reliable results. For instance,
consider the 2D view of the occupancy grid that is shown in
figure 2(a). In this situation, the robot has perceived all the
walls and objects of the room it is located and, partially, two
walls of the adjoining room. Figures 2(b) and 2(c) show the re-
sults of the rectangle detection process using variations of the
Hough transform based on lines and segments, respectively.
The lined region of both figures corresponds to the detected
rectangle. As it can be observed, a method based on lines, as
the one proposed in [4], considers points that can be situated
outside the rectangle, leading sometimes to wrong results.
Nevertheless, the proposed variation of the Hough transform
takes into account only those points belonging to the four
segments of the rectangle providing always the best rectangle
pattern.

5th European Conference on Mobile Robots, September 7-9, 2011, Örebro, Sweden 220

34 CHAPTER 3. AN INCREMENTAL HYBRID APPROACH TO INDOOR MODELING

3

(a) 2D view of the occupancy
grid.

(b) Rectangle detection using
lines.

(c) Rectangle detection using
segments.

Fig. 2. Rectangle detection using the variation of the Hough transform based
on lines (b) and the proposed one based on segments (c).

A. Room detection

In our room detection method, the Hough space is parame-
terized by (θ, d, p), being θ and d the parameters of the line
representation (d = x cos(θ) + y sin(θ)) and |p| the length
of a segment in the line. For computing p it is assumed that
one of the extreme points of its associated segment is initially
fixed and situated at a distance of 0 to the perpendicular line
passing through the origin. Under this assumption, being (x, y)
the other extreme point of the segment, its signed length p can
be computed as:

p = x cos(θ + π/2) + y sin(θ + π/2) (1)

Using this representation, any point (x, y) contributes to
those points (θ, d, p) in the Hough space that verifies:

d = x cos(θ) + y sin(θ) (2)

and
p >= x cos(θ + π/2) + y sin(θ + π/2) (3)

Equation 2 represents every line intersecting the point as
in the original Hough Transform. The additional condition
expressed by equation 3 limits the point contribution to those
line segments containing the point. This allows computing
the total number of points included in a given segment. For
instance, given a segment with extreme points Vi = (xi, yi)
and Vj = (xj , yj) and being H the 3D Hough space, the
number of points that belongs to the segment, which is denoted
as Hi↔j , can be computed as:

Hi↔j = |H(θi↔j , di↔j , pi)−H(θi↔j , di↔j , pj)| (4)

where θi↔j and di↔j are the parameters of the common
line to both points and pi and pj are the signed lengths of

the two segments with non-fixed extreme points Vi and Vj ,
respectively, according to equation 1.

Since a rectangle is composed of four segments, the 3D
Hough space parameterized by (θ, d, p) allows computing
the total number of points included in the contour of the
rectangle. Thus, considering a rectangle expressed by its four
vertices V1 = (x1, y1), V2 = (x2, y2), V3 = (x3, y3) and
V4 = (x4, y4) (in clockwise order), the number of points of
its contour, denoted as Hr, can be computed as:

Hr = H1↔2 +H2↔3 +H3↔4 +H4↔1 (5)

Considering the restrictions about the segments of the rect-
angle and using the equation 4, each Hi↔j of the expression
5 can be rewritten as follows:

H1↔2 = |H(α, d1↔2, d4↔1)−H(α, d1↔2, d2↔3)| (6)

H2↔3 = |H(α+π/2, d2↔3, d1↔2)−H(α+π/2, d2↔3, d3↔4)|
(7)

H3↔4 = |H(α, d3↔4, d2↔3)−H(α, d3↔4, d4↔1)| (8)

H4↔1 = |H(α+π/2, d4↔1, d3↔4)−H(α+π/2, d4↔1, d1↔2)|
(9)

being α the orientation of the rectangle and di↔j the normal
distance from the origin to the straight line defined by the
points Vi and Vj .

Since Hr expresses the number of points in a rectangle r
defined by (α, d1↔2, d2↔3, d3↔4, d4↔1), the problem of ob-
taining the best rectangle given a set of points can be solved by
finding the combination of (α, d1↔2, d2↔3, d3↔4, d4↔1) that
maximizes Hr. This parametrization of the rectangle can be
transformed into a more practical representation defined by the
five-tuple (α, xc, yc, w, h), being (xc, yc) the central point of
the rectangle and w and h its dimensions. This transformation
can be achieved using the following expressions:

xc =
d1↔2 + d3↔4

2
cos(α)− d2↔3 + d4↔1

2
sin(α) (10)

yc =
d1↔2 + d3↔4

2
sin(α) +

d2↔3 + d4↔1

2
cos(α) (11)

w = d2↔3 − d4↔1 (12)

h = d3↔4 − d1↔2 (13)

In order to compute Hr, the parameter space H is dis-
cretized assuming the rank [−π/2, π/2] for θ and [dmin, dmax]
for d and p, being dmin and dmax the minimum and maximum
distance, respectively, between a line and the origin. Taking
some sample step for each parameter and being G the 3D oc-
cupancy grid and τ the minimum occupancy value to consider
a non-empty region of the environment, the proposed method
for room modeling can be summarized in the following steps:

1) Initialize all the cells of the discrete Hough space H to
0.

2) For each cell, G(xd, yd, zd), such that
G(xd, yd, zd).occupancy > τ :
Compute the real coordinates (x, y) associated to the
cell indexes (xd, yd).
For θd = θdMin . . . θdMax:

a) Compute the real value θ associated to θd.

5th European Conference on Mobile Robots, September 7-9, 2011, Örebro, Sweden 221

35

4

b) Compute d = x cos(θ) + y sin(θ).
c) Compute the discrete value dd associated to d.
d) Compute p = x cos(θ + π/2) + y sin(θ + π/2).
e) Compute the discrete value pd associated to p.
f) For p′d= pd . . . ddMax: increment H(θd, dd, p

′
d)

by 1.
3) Compute argmaxHr(α, d1↔2, d2↔3, d3↔4, d4↔1).
4) Obtain the rectangle r = (α, xc, yc, w, h) using equa-

tions 10, 11, 12 and 13.
As it can be observed, the height of walls is only taken

into account through histogram contributions. This is because
walls correspond to 2D segment with higher histogram values
than any other plane perpendicular to the floor. Thus, it is
not necessary to explicitly consider the height of points in the
room detection method.

Even though this method is computationally expensive,
in practice, its complexity can be significantly reduced in
two ways. Firstly, instead of computing H from the whole
occupancy grid, it can be updated using only those cells whose
occupancy state has changed. In addition, it is not necessary
to apply step 3 over the entire parameter space, since only
rectangles of certain dimensions are considered rooms. Thus,
it is assumed a specific rank of w and h that limits the search
to those values of d1↔2, d2↔3, d3↔4 and d4↔1 fulfilling that
rank.

B. Door detection

The proposed 3D Hough space is also used for door detec-
tion. Doors are free passage zones that connect two different
rooms, so they can be considered as empty segments of the
corresponding room rectangle (i.e. segments without points).
Taking this into account, once the room model is obtained,
doors can be detected by analyzing each wall segment in
the 3D Hough space. Therefore, for each segment of the
rectangle, defined by Vi and Vj , two points Dk = (xk, yk) and
Dl = (xl, yl) situated on the inside of that segment constitute
a door segment if they verify:

Hk↔l = |H(θi↔j , di↔j , pk)−H(θi↔j , di↔j , pl)| = 0 (14)

being θi↔j and di↔j the parameters of the straight line
defined by Vi and Vj and pk and pl the signed lengths of the
segments for Dk and Dl:

pk = xk cos(θi↔j + π/2) + yk sin(θi↔j + π/2) (15)

pl = xl cos(θi↔j + π/2) + yl sin(θi↔j + π/2) (16)

Assuming pi ≤ pk < pl ≤ pj and a minimum length
l for each door segment, the door detection process can be
carried out by verifying equation 14 for every pair of points
between Vi and Vj , such that pl − pk ≥ l. Starting from the
discrete representation of the Hough space, this process can
be summarized in the following steps:

1) Compute the discrete value θd associated to θi−j .
2) Compute the discrete value dd associated to di−j .
3) Compute the discrete value pdi associated to pi.
4) Compute the discrete value pdj associated to pj .

5) Compute the discrete value ld associated to l (minimum
length of doors).

6) pdk ← pdi
7) While pdk ≤ pdj − ld :

a) pdl ← pdk + 1
b) While pdl < pdj and |H(θd, dd, pdk) −

H(θd, dd, pdl)| = 0: pdl ← pdl + 1
c) If pdl − pdk > ld:

i) Compute the real value pk associated to pdk.
ii) Compute the real value pl associated to (pdl −

1).
iii) Compute the door limits Dk and Dl from pk

and pl.
iv) Insert the new door segment with extreme

points Dk and Dl to the list of doors.
d) pdk ← pdl

IV. INCREMENTAL MODELING OF THE ENVIRONMENT

Building topological maps requires to endow the robot not
only with modeling skills, but also with the ability to actively
explore the environment. Exploration plays an important role
in our proposal because the robot must make sure that each
room model corresponds to a real room before leaving it
behind. For this reason the robot must scan the whole space
surrounding it to take correct decisions about the current
model.

In our system, the exploration task is driven by the 3D local
grid. When a room model is detected from the set of points
stored in the grid, the robot must verify it by scanning the
unexplored zones inside the estimated room model. Depending
on its occupancy value, the cells of the grid are labeled as
occupied, empty and unexplored. Thus, by analyzing the grid,
the robot can direct its sensor towards new places and retrieve
the necessary information to get a reliable model. At this point,
the benefits of using a long range sensor become clear. Few
movements of the robot are needed to cover the whole space
around it and, in consequence, the modeling process is less
sensitive to odometric errors.

Once the local space around the robot has been completely
explored, the current room model is inserted as a node in the
graph representing the topological space and the robot gets
out of the room to model new places. Each node in the graph
stores the geometric parametrization of the room and its doors.
The center and orientation of the room are used to form a
reference frame (Fr) that expresses the location of the room
in relation to a global reference frame (Fw). Thus, being r =
(α, xc, yc, w, h) the rectangle that models a given room, the
transformation matrix (Tr) that relates Fr with Fw is defined
as:

Tr =

cos(α) − sin(α) 0 xc
sin(α) cos(α) 0 yc

0 0 1 0
0 0 0 1

 (17)

Using this transformation matrix, any point of the model is
expressed in coordinates relative to the room. This way, if the
local or global reference frames are modified, points of room
models remain unaffected. In addition, the robot can be aware

5th European Conference on Mobile Robots, September 7-9, 2011, Örebro, Sweden 222

36 CHAPTER 3. AN INCREMENTAL HYBRID APPROACH TO INDOOR MODELING

5

of errors in its odometric estimation by detecting changes
in the room reference frame. These changes come from the
estimation of new room models, with the same dimensions
than the current one, using the set of recently perceived points.
Thus, being r(i) = (α(i), xc(i), yc(i), w, h) the room model
at instant i and r(i+1) = (α(i+1), xc(i+1), yc(i+1), w, h) a
new estimation of the room model at i+1, changes in the robot
pose can be computed using the rotational and translational
model deviations of equations 18 and 19.

4α = α(i+ 1)− α(i) (18)

4t =

xc(i+ 1)
yc(i+ 1)

0

−

cos(4α) − sin(4α) 0
sin(4α) cos(4α) 0

0 0 1

xc(i)
yc(i)
0

(19)
This is useful once the model is created for dealing with the

problem of robot pose estimation. However, odometric errors
are present during the whole modeling process, affecting the
resulting representation in two ways. Firstly, when the robot
models a new room, the location of the new room could not
match its real location. Secondly, odometric errors lead to
wrong measurements that cause imperfect estimations of the
parameters of rooms and doors.

Though the essence of these two problems is slightly
different, both can be detected and corrected using the notion
of adjacent rooms. Therefore, if two adjacent rooms, r1 and
r2, are communicated by a door, any point of the door is
common to both rooms. Assume a door point dr1 viewed
from the room r1 and the corresponding point dr2 of the room
r2. The metric representation of both rooms would ideally be
subject to the following restriction:

‖Tr2dr2 − Tr1dr1‖2 = 0 (20)

When the robot creates a new room model that is adjacent
to a previous one, expression 20 determines the need for
correcting the new model reference frame. In addition, the
deviation between the positions of the common door allows
computing how this correction should be applied in order to
fulfill the restriction imposed by the expression above.

After an exploration of arbitrary length, if the robot returns
to a previously visited room (i.e. a loop closing is detected), the
non-correspondence between the input and output doors can
also be determined using expression 20. In such cases, new
corrections must be done in order to cancel the error. However,
this error is caused by wrong estimations of room and door
models and, in consequence, a reference frame correction
will surely not solve the problem. Our solution to these
situations is to minimize a global error function defined over
the whole metric representation. In our representation of the
environment, the global error is defined in terms of deviations
between the positions of the doors connecting adjacent rooms.
Thus, the error function to minimize can be expressed as:

ξ =
∑

∀connected(d(n)
ri ,d

(m)
rj)

‖Trid(n)ri − Trjd
(m)
rj ‖2 (21)

being d
(n)
ri and d

(m)
rj the middle points of a common door

expressed in the reference frames of rooms ri and rj, respec-

tively, and Tri and Trj the transformation matrices of such
rooms.

The employed minimization method is based in the Stochas-
tic Gradient Descent [12]. The basic idea [10] is to minimize
the global error function by introducing small variations in
the parameters of room and door models. These variations
are constrained by the uncertainty of the measurement, so
high-confident parameters remain almost unchanged during the
error minimization process. As result, a reliable representation
of the environment that maintains the restrictions imposed by
the real world is obtained.

V. EXPERIMENTAL RESULTS

We used one of our custom differential robots to build a
model of the environment. It has been equipped with a Hokuyo
UTM-30LX 2D LR moved by a step motor. It scans up to 30
meters and a range of 270◦ at a rate of 25ms per line of
scan (700 points). The LRF is positioned in the front of the
robot and it performs a roll movement to cover an amplitude
of 360◦, (see figure 3(b)). The software has been developed
using the component oriented robotics framework RoboComp
[7].

The experimental results presented in this paper correspond
to the modeling of an environment formed by two contiguous
rooms with its corresponding doors. Rooms have been made
to be similar to any regular room and have been filled with
random objects to simulate a real human environment. Figure 3
shows two views of the environment used in this experiment.
In these views, the two rooms, labeled as 1 and 2, and the
doors have been marked in red and green, respectively.

(a) Frontal view of the scene.

(b) Side view of the scene taken from the left up corner of
3(a).

Fig. 3. Two views of the real scene of the experiment.

We placed our mobile robot in the center of room 1 in
order to start our testing. In the first part of the experiment,
the robot performs a full 3D scan of the first room. Results

5th European Conference on Mobile Robots, September 7-9, 2011, Örebro, Sweden 223

37

6

can be seen in figure 4. From its initial location, the robot
makes a first scan and obtains an initial model of the room
(figures 4(a) and 4(b)). Figure 4(a) shows the regions and the
model while figure 4(b) shows only the model. Notice that
regions containing points are considered walls (in red) and
those without points are considered doors (in green). Using
this initial model, the robot tries now to scan the unknown
areas. After moving 90◦ counter clockwise, new points are
obtained from a second scan. Figures 4(c) and 4(d) show on
regions and model results, respectively. As it can be observed,
the accuracy of the model increases with this second scan. The
detected rectangle fits the room size but there are still some
unknown parts considered as doors. The robot tries to verify
whether those regions are real doors or not by moving 180◦

and performing another scan. After this new scan, the room is
perfectly matched by the model, as figures 4(e) and 4(f) show.
The room scanning is finished when all regions in the model
have been scanned, and further scanning (even using higher
resolutions) results in no modifications. Then, the obtained
room model is fixed and stored in the topological graph. Notice
that, although the model size and doors are properly obtained,
the room has been a little mispositioned when compared to
reality. This is due to the accumulation of odometric errors
during the robot movements. Nevertheless, the relative position
of the robot inside the room remains correct and therefore the
detection of a new room is not affected by this misplacement.

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Modeling process of room 1.

After the model of the first room has been fixed, the robot

uses one of the obtained doors to get to the next room. In the
experiment, the robot goes through the door on the right to
room 2 and performs a full 3D scan. Figure 5 shows results
of the second room scans. Specifically figures 5(a) and 5(b)
correspond to the first one. As it can be observed, the model
is still not matching the real room because of the existence of
big spaces with missing information. Therefore the robot turns
and get another scan of one of these places. Figures 5(c) and
5(d) show the model and regions after the second scan in this
room. Now the model fits the room but, again there are still
unscanned parts. The robot turns 90◦ again and performs the
scan whose regions and resulting model are shown in figures
5(e) and 5(f). After doing all these scans in the second room
the final model is obtained. Further scans do not change the
model, so it is fixed.

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Modeling process of room 2.

Fig. 6. Final representation obtained after the modeling of the two rooms.

5th European Conference on Mobile Robots, September 7-9, 2011, Örebro, Sweden 224

38 CHAPTER 3. AN INCREMENTAL HYBRID APPROACH TO INDOOR MODELING

7

Once the second model has been fixed, the deviation be-
tween the two room models (figure 5(f)), caused by odometric
errors, is corrected according to the common door restriction
(equation 20). Figure 6 shows the result of this correction.
Each square of the figure represents an area of 0, 27×0, 27m2.
This size corresponds to the sampling step of the Hough space
for the parameters d and p. This means that the accuracy
of each room model is limited by this sampling step. The
real sizes of the two rooms are 3, 19× 3, 78m2 (room 1) and
4, 20×3, 78m2 (room 2). The sizes obtained by the modeling
process are 2, 97 × 3, 78m2 (room 1) and 4, 05 × 3, 78m2

(room 2). As it can be observed, the difference between
the representation and the real world is in the range of the
permissible error. More accurate models can be obtained by
reducing the sampling step of the discrete Hough space.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an incremental modeling
method for building hybrid representations of indoor environ-
ments. The proposed representation consists in a topological
graph that describes the rooms of the environment and their
connections. Each node of the graph represents a room and
contains the geometric parametrization of the corresponding
room and its doors. This geometric parametrization is the only
metric information included in the representation. Using this
information, the robot can recover a metric map of a particular
zone of the environment when it is needed. Thus, no dense
metric map is mantained in parallel to the topological graph.
Rooms and doors are modeled using a variation of the Hough
Transform that detects segments and rectangle patterns. We
have proposed methods for dealing with odometric errors in
the creation of new models as well as in loop closings. In ad-
dition, a method for robot pose estimation using room models
has been presented. Real experiments have been carried out
using a mobile robot equipped with a motorized 2D Laser.
Results show the accuracy of the modeling process in real
environments.

We are working on several improvements of our proposal.
In particular, work in order to relax the rectangle assumption
is currently in progress. We are also extending the modeling
ability of our robots for representing other structures of man-
made environments like corridors. Bigger and more complex
possible surroundings are also being taken into account.

ACKNOWLEDGMENT

This work has partly been supported by grants PRI09A037
and PDT09A044, from the Ministry of Economy, Trade and
Innovation of the Extremaduran Government, and by grants
TSI-020301-2009-27 and IPT-430000-2010-2, from the Span-
ish Government and the FEDER funds.

REFERENCES

[1] The primesensor technology. http://www.primesense.com/.
[2] R.O. Duda and P.E. Hart. Use of the hough transformation to detect

lines and curves in pictures. Commun. ACM, 15:11–15, January 1972.
[3] Kwangro Joo, Tae-Kyeong Lee, Sanghoon Baek, and Se-Young Oh.

Generating topological map from occupancy grid-map using virtual door
detection. In IEEE Congress on Evolutionary Computation, pages 1–6,
2010.

[4] C.R. Jung and R. Schramm. Rectangle detection based on a windowed
hough transform. In Proceedins of the XVII Brasilian Symposium on
Computer Graphics and Image Processing, pages 113–120, 2004.

[5] D. Lagunovsky and S. Ablameyko. Straight-line-based primitive ex-
traction in grey-scale object recognition. Pattern Recognition Letters,
20(10):1005–1014, 1999.

[6] C. Lin and R. Nevatia. Building detection and description from a single
intensity image. Computer Vision and Image Understanding, 72(2):101–
121, 1998.

[7] L. Manso, P. Bachiller, P. Bustos, P. Núñez, R. Cintas, and L. Calderita.
Robocomp: a tool-based robotics framework. In Proceedings of the Sec-
ond international conference on Simulation, modeling, and programming
for autonomous robots, SIMPAR’10, pages 251–262, 2010.

[8] J. Matas, C. Galambos, and J. Kittler. Robust detection of lines using the
progressive probabilistic hough transform. Computer Vision and Image
Understanding, 78(1):119–137, 2000.

[9] E. Montijano and C. Sagues. Topological maps based on graphs of
planar regions. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1661–1666, October 2009.

[10] E. Olson. Robust and Efficient Robotic Mapping. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA, June 2008.

[11] P.L. Palmer, J. Kittler, and M. Petrou. Using focus of attention with
the hough transform for accurate line parameter estimation. Pattern
Recognition, 27(9):1127–1134, 1994.

[12] H. Robbins and S. Monro. A stochastic approximation method. The
Annals of Mathematical Statistics, 22(3):400–407, 1951.

[13] A. Rosenfeld. Picture processing by computer. ACM Comput. Surv.,
1:147–176, September 1969.

[14] S. Simhon and G. Dudek. A global topological map formed by local
metric maps. In In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1708–1714, 1998.

[15] W.-B. Tao, J.-W. Tian, and J. Liu. A new approach to extract rectangular
building from aerial urban images. In Signal Processing, 2002 6th
International Conference on, volume 1, pages 143 – 146, aug. 2002.

[16] S. Thrun. Learning metric-topological maps for indoor mobile robot
navigation. Artificial Intelligence, 99(1):21–71, 1998.

[17] N. Tomatis, I. Nourbakhsh, and R. Siegwart. Hybrid simultaneous
localization and map building: a natural integration of topological and
metric. Robotics and Autonomous Systems, 44(1):3–14, 2003.

[18] D. Van Zwynsvoorde, T. Simeon, and R. Alami. Incremental topological
modeling using local vorono-like graphs. In Proc. of IEEE/RSJ Int. Conf.
on Intelligent Robots and System (IROS 2000), volume 2, pages 897–
902, 2000.

[19] F. Yan, Y. Zhuang, and W. Wang. Large-scale topological environ-
mental model based particle filters for mobile robot indoor localization.
Robotics and Biomimetics, IEEE International Conference on, 0:858–
863, 2006.

[20] Y. Zhu, B. Carragher, F. Mouche, and C.S. Potter. Automatic particle de-
tection through efficient hough transforms. IEEE Trans. Med. Imaging,
22(9), 2003.

5th European Conference on Mobile Robots, September 7-9, 2011, Örebro, Sweden 225

39

40 CHAPTER 3. AN INCREMENTAL HYBRID APPROACH TO INDOOR MODELING

Chapter 4

A Passive Learning Sensor Architecture
for Multimodal Image Labeling: An
Application for Social Robots

41

sensors

Article

A Passive Learning Sensor Architecture for
Multimodal Image Labeling: An Application for
Social Robots
Marco A. Gutiérrez 1,*, Luis J. Manso 1, Harit Pandya 2 and Pedro Núñez 1

1 Robotics and Artificial Vision Laboratory, University of Extremadura, 10003 Cáceres, Spain;
lmanso@unex.es (L.J.M.); pnuntru@unex.es (P.N.)

2 Robotics Research Center, IIIT Hyderabad, 500032 Hyderabad, India; harit.pandya@research.iiit.ac.in
* Correspondence: marcog@unex.es; Tel.: +34-927-257-259

Academic Editor: Vittorio M. N. Passaro
Received: 21 December 2016; Accepted: 8 February 2017; Published: 11 February 2017

Abstract: Object detection and classification have countless applications in human–robot interacting
systems. It is a necessary skill for autonomous robots that perform tasks in household scenarios.
Despite the great advances in deep learning and computer vision, social robots performing non-trivial
tasks usually spend most of their time finding and modeling objects. Working in real scenarios means
dealing with constant environment changes and relatively low-quality sensor data due to the distance
at which objects are often found. Ambient intelligence systems equipped with different sensors can
also benefit from the ability to find objects, enabling them to inform humans about their location.
For these applications to succeed, systems need to detect the objects that may potentially contain
other objects, working with relatively low-resolution sensor data. A passive learning architecture for
sensors has been designed in order to take advantage of multimodal information, obtained using an
RGB-D camera and trained semantic language models. The main contribution of the architecture lies
in the improvement of the performance of the sensor under conditions of low resolution and high
light variations using a combination of image labeling and word semantics. The tests performed on
each of the stages of the architecture compare this solution with current research labeling techniques
for the application of an autonomous social robot working in an apartment. The results obtained
demonstrate that the proposed sensor architecture outperforms state-of-the-art approaches.

Keywords: robot sensors; ambient intelligence sensors; deep learning; object detection; object recognition;
word semantics

1. Introduction

The possibilities and applications of autonomous social robots and ambient intelligence systems
in our daily activities can be of utmost help. For the case of social robots, the research community
has already studied how to perform several kinds of these tasks, such as cloth folding [1],
floor vacuuming [2], cooking [3] or even more complex home assistant applications [4]. A basic
skill on which these applications heavily rely is the need to identify and locate common household
objects. Additionally, the problem of searching and finding objects extends to other automation
applications requiring context awareness, e.g., Kidd et al. [5]. The complexity and variety in shape and
location of these objects makes their detection one of the most complex skills to develop. Due to this
complexity and despite the important advances in computer vision [6], most of the current solutions
are still not robust enough to be applied in real household scenarios where clutter and changing
environment conditions are common. Therefore, due to the importance of object detection for real
household tasks, the development of methods to improve it has become a challenging and interesting
research topic.

Sensors 2017, 17, 353; doi:10.3390/s17020353 www.mdpi.com/journal/sensors

43

Sensors 2017, 17, 353 2 of 19

A property of indoor environments is that their items are usually structured hierarchically (e.g.,
an object lies on a table which is located in a certain room). Maintaining a representation of the
environment and these hierarchical relationships can become extremely helpful when segmenting the
environment. Additionally, objects in household environments are often found grouped by categories
and placed relatively close according to their use, e.g., kitchen utensils are arranged together in the
kitchen and toys are usually stored in a specific location in a certain room. These two properties can
be exploited to successfully find and classify objects in indoor environments. Techniques such as
cognitive subtraction [7] allow robots to use their world model in order to detect potentially unknown
objects. The work presented here takes advantage of these properties and uses them to improve the
detection of objects in household environments under real-world conditions.

It has been demonstrated that long-term memory representations have a strong influence on
human visual performance [8]. Therefore, taking advantage of previous experience through a long-term
memory of a system is another key value that can be added to autonomous systems in order to improve
the search of objects. The Passive Learning Sensor Architecture (PLSA) has been developed in order
to exploit these advantages and to improve the performance when trying to find objects in large
environments. It uses a world representation to filter the input data and focus the attention to those
places where the objects of interest could be found. This information is obtained while the system is
performing any task, even when it is apparently stopped (see the social robot use case in Figure 1).
It is designed to be able to deal with low resolution images or light changes. Processing these images,
the system learns the most probable object locations in order to help improve the time taken to find
objects in later situations. The main contribution of the PLSA is that it improves the performance of
social robots and autonomous systems in the task of finding objects in large environments through
the combination of image labeling with word semantics. It uses multimodal information—language
semantic information from trained models combined with visual input data—in order to estimate the
most likely location for any given object. The system also exploits the existent semantic relationships
among objects in the same object container to improve the final results. In the context of this paper, any
object which can have objects inside or over it is considered an object container, i.e., a table, a shelf or a
cupboard. However, in the use case presented here, a social robot searching for objects in an apartment,
all the containers used are tables.

Figure 1. Shelly, a humanoid social robot, exploring an apartment and labeling objects on tables.
The visualization of the labeling process is shown in the top right corner.

The pipeline of the architecture is composed of four main steps: a first cognitive attention stage
to locate and segment object containers; a segmentation step to select smaller windows to label as
objects; a Deep Neural Network (DNN) that is able to label the selected windows; and a final semantic
matching step to improve and fine tune labeling results.

The use case of an implementation of PLSA in a social robot searching for objects in a 65 m2

apartment is presented for a better understanding. The robot learns from the images acquired while

44CHAPTER 4. A PLSA FOR MULTIMODAL IMAGE LABELING: AN APP. FOR SOC. ROBOTS

Sensors 2017, 17, 353 3 of 19

moving through the apartment during the execution of previous tasks. The PLSA takes advantage
of its multimodality and combines these images with language semantic information to make early
predictions on possible object locations. This way, the social robot is able to optimize the path to a
successful search when searching for objects.

The remainder of this paper is organized as follows. After a brief summary about similar works
in the literature in Section 2, Section 3 deeply explains the design of the PLSA. Section 4 describes the
experiments that have been run to test the proposed sensor architecture. The conclusions and future
lines of work are outlined in Section 5. For an easier understanding of the abbreviations used along
the explanation of this work, a reference list is included at the end of the manuscript.

2. State-of-the-Art

The research community has demonstrated a high interest in the problem of active visual object
search, however only a few works using semantic information have been published. Rangel et al. [9]
presented a system to classify images using image descriptors generated from general purpose semantic
annotations obtained through an external API. They propose using a semantic image descriptor of
fixed dimension. Each entry of this descriptor corresponds to a label from a set of predefined labels
and contains the probability of that label representing the image.

In [10], a dual 2D and 3D system to solve the search-and-find task is presented. The first 2D-based
part of the system classifies wide scenes in order to decide whether to continue exploring in that
direction. It uses texture information as the input for a DNN to automatically generate full descriptions
from generic indoor images. These descriptions are syntactically and semantically processed in order
to help a robot select which rooms to visit for a certain task. For the second part of the system,
the 3D-based one, it takes advantage of the geometric information to look for specific objects within the
scenes. Making use of 3D segmentation and classification pipelines, it is able to classify the different
parts of the scene and locate specific objects. The approach presented in this paper is similar with this
work in the sense that semantic relationships among words are used to predict the possible location
of objects.

Semantic relationships are also exploited in [11] for object search in large environments.
Uncertain environment spatial semantics are built and used in combination with imperfect semantic
priors obtained from Internet databases in order to improve the efficiency of the search. This work
differs from the one presented here in that it proposes reasoning about unexplored parts of the map,
however it is similar to the PLSA in the sense that general semantic knowledge is used and applied in
combination with extracted semantic cues to reason about locations of interest.

Regarding generic active object search, the work by Saidi et al. [12] should be pointed out.
It models the search task as an optimization problem with the goal of maximizing the target detection
probability while minimizing the distance and time to achieve the task. Visibility maps are computed
based on a world model in order to search for a local maxima which is supposed to be the new sensor
placement in the next step. To evaluate the interest of a given configuration multiple variables are
used: the probability of detecting the object, the new volume that will be seen, and the cost in time and
energy to reach that configuration. However, in contrast to the PLSA, no visual information is shared
from one task to another or from previous experiences.

Another interesting solution exploiting object–object relations for active object search is presented
in [13]. The work estimates object–room probabilistic relations that are extracted from a database
and matched to defined ontological concepts in order to determine the next room to approach.
These relations are used to compute the probability of finding the target object given a set of objects
previously seen. This probability is then used to decide which object to approach next in the search
process. This is similar to the PLSA in the sense that the relative location of objects to each other
is exploited in order to optimize the search. However, the solution presented here differs in that it
makes use of the semantic relationship among labels instead of probabilities as a measure of distance
between objects.

45

Sensors 2017, 17, 353 4 of 19

Object search and localization of objects in indoor environments dealing with low resolution
images is also addressed in [14]. The visual search mechanism is based on a combination of receptive
field coocurrence histograms and the object recognition through SIFT features [15], while the view
planning strategy takes into account the layout of the environment and the specific constraints of the
object. They also improve concurrent multiple object search through an optimized use of their shared
camera zooming. This work heavily relies on SIFT features, which are specific for object instances
and cannot be directly used to detect general classes of objects. This could be extended with new
state-of-the-art object recognition techniques (e.g., DNN-based solutions) to improve the accuracy and
reduce the steps of the process.

3. Passive Learning Sensor Architecture

The Passive Learning Sensor Architecture is designed to work in indoor environments, passively
acquiring relatively low resolution images where the objects to detect are seen from a far distance.
It detects possible object locations through multimodal information, combining semantic language
data with image information. The architecture consists of a processing pipeline of four main steps,
as illustrated in Figure 2. The first step, Cognitive Attention (CA), selects images that show a container
with pontential objects in it. From these images, it extracts Regions of Interest (ROI), i.e., square parts
of the image, where an object container is seen. The second one, called Cognitive Subtraction (CS),
performs a segmentation of this ROI using the internal world model. This process extracts, within the
regions selected during the first step, those regions potentially corresponding to known or unknown
objects lying in the object containers. Afterwards, a Convolutional Neural Network (CNN) step sets
labels according to the possible classes (i.e., object types) for the image regions obtained in the previous
step. Finally, a Semantic Processing (SP) step uses a learned semantic model to improve the labels
from the CNN and maximize the probability of finding the correct container for the object searched.
After processing the images, it produces average semantic descriptors for each container found that
will help in the later object search task. This section details the different stages of the pipeline of the
sensor architecture. We use the case of a social robot looking for a mug to better explain the work flow
of the architecture.

Figure 2. The four main steps of our passive learning architecture. The left-hand side of the vertical
black line describes the output of each step in a mathematical notation, while the right-hand side shows
it visually. Explanations on the outputs are given on the outer right descriptions. The forbidden sign
means the image will be discarded.

46CHAPTER 4. A PLSA FOR MULTIMODAL IMAGE LABELING: AN APP. FOR SOC. ROBOTS

Sensors 2017, 17, 353 5 of 19

3.1. Cognitive Attention

This first stage of the architecture filters the images where an object container is seen, it detects
regions of interest corresponding to object containers, and provides such regions along the information
of the container in the image (identifier and geometrical properties) to the next stage of the pipeline.
For each image, Ii accepted; this first stage provides the next stage with a tuple Cti containing the
region of interest of the image that shows the container ROI(Ii), along with that container’s specific
information such as its type (T), pose (P), and shape (S). See Equation (1).

CA(ii) = Cti = (ROI(Ii), (T, P, S)) (1)

In order to decide if a container is seen (i.e., lies in the frustum of the camera), the architecture
must have access to an estimation of the pose and shape of the containers. Given this information and
the parameters of the camera, the first step is to check if any of the known object containers are seen in
the current image and to estimate the area of the image occupied by it. This process of making the
sensor focus its attention on the parts of the image in which containers can be seen is called Cognitive
Attention (CA). Thanks to this step, the architecture only takes into account those pictures taken when
a container lies within the frustum of the camera, and only processes the regions of the images showing
those containers (in 1.-CA from Figure 2 you can see images going through and images not going
through). This helps reduce the probability of false positives coming from parts of the environment
that the architecture is not supposed to consider.

The cognitive model used in this implementation of the PLSA is Active Grammar-based Modeling
(AGM) [16]. AGM cognitive models are multi-graphs where nodes and edges are typed and can
be attributed with metric properties. The type of a node is used to denote the kind of entity it
represents, whereas the type of an edge denotes the kind of relationship among the linked symbols.
Metric properties can also be included in the nodes and in special edges designed to this end. The metric
properties of nodes and edges allow to automatically generate a geometric model of the environment
from the cognitive model. Additionally, these geometric models can be easily used to perform collision
checks, to estimate relative poses and camera projections, and other operations. An AGM world model
that contains the robot, rooms and tables is shown in Figure 3. However, other alternatives to this
cognitive model can also be used (e.g., [17,18]) as long as they allow storing and accessing the necessary
information, and support the computation of the contour of the containers in the images. Given the
cognitive model, once an image is considered to have a container, the contour of that container is
projected from 3D to the 2D space of the camera image. If at least 80% of the of the container lies within
the image, then that region is selected and the next stage of the PLSA is triggered, otherwise the image
is ignored.

Figure 3. (left) A social robot uses the PLSA to search for objects in an apartment; (right) A schematic
view of the AGM cognitive model, with the symbols of the robot, one room and three tables.

47

Sensors 2017, 17, 353 6 of 19

Therefore, the CA stage selects the images from the camera that show containers and outputs the
tuples corresponding to the detected areas of those containers along with the container information
from the cognitive model. The output of the cognitive attention stage CA(Ii) is a vector of tuples Cti,
where Cti tuples are composed of the region of interest and the container information (i.e., its type,
pose and size), as can be seen in Figure 2, 1.-CA step.

For the case of a social robot looking for a cup in the apartment where all containers are tables,
this stage selects the images containing the tables as is moves around the apartment. It uses the
information from its own world model to detect the location of the robot and the tables at any moment.
From those images, this step selects the ROIs containing the tables and passes them along, with the
shape and pose of the corresponding object container, to the next step.

3.2. Cognitive Subtraction

The second stage of the pipeline performs an additional segmentation step called Cognitive
Subtraction (CS). It takes as input the tuples of the regions of interest obtained by the previous stage
of the pipeline along with the container information, Cti, and generates a series of sub-regions of
interest out of each container image, corresponding to possible objects ojc. These sub-regions, which are
expected to contain a single object each, are associated to its container and constitute the output of
this stage, e.g., for one image, associated with a container c, it will produce a set of sub-images
~Oic = (o1c, o2c, ..., omc) (see 2.-CS in Figure 2):

CS(Cti) = ~Oic = {o1c, o2c, ..., omc} (2)

Following the general idea suggested by Cotterill et al. [19], among many others, that rational
behavior is “internally simulated interaction with the environment”, CS uses the cognitive
understanding of the environment provided by the previous step in order to perform a proper
segmentation of objects on the container. Thereafter, the CS algorithm uses the information about the
object container and detects differences between the data acquired from the sensors and synthetic data
obtained by imagining the output of the sensors, given the current world model.

The information obtained from the previous step contains the type, pose and size of the containers.
The CS step triggers the specific algorithms to perform the subtraction of known elements in order
to detect the new unknown ones. The following are the steps taken for the specific case of tables
as containers in order to subtract the unknown data (unknown objects on the tables) from the real
world data:

1. Random sample consensus [20] is used to estimate the plane of the table using the point cloud of
the scene acquired with the RGB-D camera. The border of the table is estimated using a convex hull
of the 3D points laying within the table plane. Using this border information, an imaginary prism
is created on top of the table. All the 3D points inside this prism are extracted and considered to
belong to the unknown objects lying on the table.

2. Different object point clouds are segmented using euclidean distance clustering [21]. A threshold
distance to determine if points belong to the same object or to a new one is used (for the
experiments conducted, 0.01 m).

3. Candidate object point clouds are transformed to image coordinates and the image region
corresponding to the object candidate is segmented.

Figure 4 illustrates a sample of the results obtained after these steps. The regions of interest,
marked in the figure, correspond to parts of the environment that are unknown to the robot and are
probably objects lying on the table. Therefore, they are fed to the next step for labeling purposes.

48CHAPTER 4. A PLSA FOR MULTIMODAL IMAGE LABELING: AN APP. FOR SOC. ROBOTS

Sensors 2017, 17, 353 7 of 19

Figure 4. Example of segmentation by the cognitive subtraction algorithm. It must be taken into
account that all the cognitive steps are made over the 3D data and projected back to the image.

In the example of the social robot looking for a cup, the output of this step will be the segmentation
of the objects lying on top of the table. Using the table selected along with the cognitive information
from the previous step segmentation, the robot performs the specific steps to segment the objects
on top of the table. The segmented parts, passed on to the next step, are the object candidates to
be labeled.

3.3. CNN Classification Step

The third step of the PLSA classifies the image regions obtained from the previous step. It produces
a label lic for each of the object candidates regions oic obtained in its input (see Equation (3) and 3.-CNN
in Figure 2).

CNN(~Oic) = ~Lic = (l1c, l2c, ..., lmc) (3)

Any algorithm able to perform this task can be used for this step. This processing of the object
candidate regions is open to the usage of new algorithms that might, in the future, improve the current
object classification state-of-the-art.

The current implementation uses a very deep Convolutional Neural Network (CNN) based
on deep residual learning [22]. The main characteristic of deep residual learning is the nature of
their building blocks, illustrated in Figure 5. In the figure, F(x) represents the residual learning
function, where x is the input of the layer N that gets added to the residual value at the layer N + 1.
This essentially drives the new layer to learn something different from what the input has already
encoded. This is repeated for all the layers in the network.

Figure 5. A building block of the residual learning process in our DNN.

49

Sensors 2017, 17, 353 8 of 19

The other advantage of this setup is that such connections help to handle the vanishing gradient
problem in very deep networks, which slows down the training of front layers. This is defined formally
in Equation (4); being x and y the input and output vectors respectively and having F(x, Wi) as the
residual mapping to be learned. For the example in Figure 5 that has two layers, F = W2σ(W1x) in
which σ denotes the rectifier linear unit (RELU) [23].

y = F(x, Wi) + x (4)

Figure 6 shows the whole architecture of the 152 layers CNN with residual learning. At the top
part of the figure, the network configuration is described while at the bottom it shows the graphical
setup of the layers. Although the network used here is much deeper than others, it has a lower
complexity (measured in FLOPs). While in a traditional approach, a layer has to generate a whole
desired output, thanks to the design of the building blocks of the residual networks, their layers are
only responsible for, in effect, fine tuning the output from a previous layer by just adding a learned
residual F(x) to the input x. It uses 3-layer bottleneck blocks for which each residual function F
uses a stack of three layers instead of two. The three layers are 1× 1, 3× 3, and 1× 1 convolutions,
where the 1× 1 layers are responsible for reducing and then increasing (restoring) dimensions, leaving
the 3× 3 layer a bottleneck with smaller input/output dimensions.

Figure 6. Architecture of the 152 layers CNN with residual learning.

Most of the time, training these networks is a heavy task in terms of time and hardware
prerequisites. Therefore, the model of the CNN used in the experiments was trained using the
generic ImageNet dataset. Also, this configuration proved to perform better than others tested here,
as deeply explained in Section 4.

In the use case of the social robot, this step would only take the small images produced in the
previous step, corresponding to objects on the table, and apply a label to each one of them. These labels,
associated to their container, are then passed on to the next semantic processing step.

3.4. Semantic Processing

The Semantic Processing step (SP) takes all the labels produced by the previous step Lic for all the
images and groups them according to their own containers c. Therefore, a vector of all labels from all
images for each of the seen containers is processed separately LC = L1c + L2c...Lpc = {lc1, lc2, ..., lcm, ..., lck}.
As a result, an average semantic vector ~SVc is produced for each container c (see step 4.-SP in Figure 2).

Since the output of this step is a common vector for each container, all objects in the container will be
considered when looking for a certain item. This process takes advantage of the fact that, in household
environments, objects located next to each other are usually semantically related in some way or another.
Sometimes, some mixing can be found but in general it can be said that they are usually grouped in spaces
(toys, kitchen utensils, office supplies, etc.). As we use average semantic vectors to decide if the object is

50CHAPTER 4. A PLSA FOR MULTIMODAL IMAGE LABELING: AN APP. FOR SOC. ROBOTS

Sensors 2017, 17, 353 9 of 19

on a certain container, if an object is “out of place”, it might not be found on the first container selected. In
the use case of the social robot, when looking for the cup, even if it is misplaced, the robot will go look for
it in the kitchen, not around the tools or any other place, similarly to what a human might have done.

For this step, the skip-gram model [24] is used, also commonly known as word2vec. It is a
“sallow” word embedding model which learns to map discrete words, represented by an id, into a
low-dimensional continuous vector space using the distributional properties of the word observed
along a raw text corpus (a large and structured set of texts). The word vectors learned can be used for
different research purposes. One of the most common ones (the one used here) is the computation
of the distance between word vector representations as a measure of word semantic similarity as,
commonly, in the corpus provided in the training, similar words appear close to each other. The model
used in this step for the current implementation of the PLSA is also a generic one. It has been trained
on texts obtained from the Google News dataset (with more than 100 billion words).

This last step is intended to expand and improve the image labeling results by using the semantic
relationships between the labels obtained on a certain container. Due to the low resolution of the
images provided to the CNN step, the results obtained after it are still not robust enough for real
applications. Additionally, the label used to identify the objects to search are often just a synonym
or a similar word of the one the CNN is using, resulting in never finding the required object (e.g.,
the system provides the label mug to an object and the user is looking for a cup). This is also a case
where semantics can help find a certain object (e.g., no cup has been detected but the detection of coffee
guides the PLSA to the same container).

Vector representations help expand the semantics of the labels assigned to each container.
Therefore, for every set of labels obtained for a certain container during the CNN step, ~Lic an average
Semantic Vector (SV) is computed ~SVc. This way, each container has a single semantic feature vector.
These average vectors consider all labels in a certain location as a whole, minimizing the effect of false
positives provided by the CNN step in the final object search.

Once the user of the system wants to find an object with label lo, the semantic vector representation
SVlo of the label is computed using the learned skip-gram model. Afterwards, the Semantic Similarity
SS to each container c is calculated as the cosine distance (dot product) of the representation of the label
SVlo and the semantic vector of the container ~SVc (see Equation (5)). The higher the value obtained,
the better result and the closer, semantically, the object searched is to an object container.

SS = ~SVlo ·
1
n

n

∑
i

~lic = ~SVlo · ~SVc (5)

In the use case of the social robot wondering around the apartment, an average semantic vector
representation would have been calculated for each of the tables. Afterwards, when looking for a
cup, the semantic distance of the semantic vector representation of cup against all the vectors from the
tables would be calculated. The higher the value of a table the more probable it is to find the object
there. This is visually shown in Figure 7, as you can see the table selected to approach would be the
one with the kitchen utensils.

51

Sensors 2017, 17, 353 10 of 19

Figure 7. The process of finding an object location by obtaining the semantic similarity of a semantic
vector with the known containers.

4. Experiments

To demonstrate the effectiveness of all stages of the PLSA, each of them has been individually
tested using a social robot. Additionally, an experiment has been conducted to study how the number
of images used to inspect the containers affects the results.

Figure 8 shows the environment in which the experiments took place. Five different object
containers (tables in this case) are distributed among two rooms of an apartment, with five different
types of objects on them. The disposal of the objects follows the principle that, in indoor environments,
those with similar purposes are usually found in the same places. The tables in the apartment are
configured for the experiments as follows (labeled as shown in Figure 8): table A contains hardware
tools, table B has a computer and other tech gadgets, table C has office supplies, table D has kitchen
utensils, table E contains different toys. It is worth noting that some of the objects are often labeled
differently depending on the person asked (e.g., some people would label an object as a “toy” while
others would call it a “plush”). Therefore, asking the robot about the location of an object using a
particular label requires the system to be able to generalize.

The social robot is equipped with an RGB-D camera and operates in the apartment with an
implementation of the PLSA. The experiments have an initial phase in which the robot wanders
around the apartment, passively taking pictures of the tables, labels the objects lying on them and
calculates the average vector representation of each container. Pictures are considered when a table is in
the field of view of the camera, at less than 2 m and at a frame rate no higher than 1 Hz. These pictures
are then used to train the average semantic vector representation of the tables. After the initial phase,
the robot is asked to use the multimodal information (combination of images features and language
semantics) to locate 20 objects among the ones on the tables. The results obtained are compared with
the following combination of image segmentation and state-of-the-art CNN image recognition systems:

• GoogleNet [25] is a 22 layers deep network (27 if pooling is taken into account) that makes use of
“inception modules” which basically act as multiple convolution filter inputs, that are processed on
the same source, while pooling at the same time. Another training of this network but without
relighting data-augmentation was also tested (GoogleNet2).

• AlexNet, by Krizhevsky et al. [26], consists of eight layers, of which five are convolutional layers,
with some of them being followed by maxpooling layers. The other three layers are fully-connected
layers with a final 1000-way softmax.

52CHAPTER 4. A PLSA FOR MULTIMODAL IMAGE LABELING: AN APP. FOR SOC. ROBOTS

Sensors 2017, 17, 353 11 of 19

• Very Deep Convolutional Networks by Simonyan et al., presented in [27] (VGG16) consist of a
series of thirteen convolutional layers (also with maxpool in between), followed by three fully
connected layers.

• Regions with Convolutional Neural Network (R-CNN) [28] performs localization and classification
of the objects in the image. It generates category-independent region proposals, then a
convolutional network extracts a fixed-length feature vector from each region and finally the
third module, which is a set of class-specific linear SVMs, scores each feature vector. Since it
performs localization by itself, no previous segmentation step is added to this network.

Figure 8. Setup of the experiment: On the top, the two room of the real setup; on the bottom-left,
the visualization of the cognitive model of the setup; on the bottom-right, the tables and objects on
them: table A contains tools, table B tech gadgets, table C office supplies, table D kitchen utensils and
table E toys.

These networks competed in the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) [29] and the PASCAL VOC [30] competitions and obtained top positions in their rankings.
In the experiments presented in this section, they were tested with both, generic and specific
training data.

The following experiments are as follows. Section 4.1 tests how the number of images processed
per container affects the whole system. This is done to look for, if it exists, a maximum number of
images after the PLSA should stop processing for a certain container. For this, we watch the results
of the whole PLSA as we add images to a certain container. Afterwards, the Cognitive Attention
step is tested by comparing the results of the PLSA with this stage and without it, in Section 4.2.
In Section 4.3, the output after the the first three layers and the whole architecture is compared with
combinations of previously mentioned state-of-the-art algorithms. This proves not only that the results
of the three first layers improve state-of-the-art algorithms but also that they improve when adding
the final Semantic Processing step. Finally, Section 4.4 shows how specific retrains of these networks
do not actually improve the results of the PLSA, which justifies the use of generic training data sets for
the architecture models.

4.1. Tests on Image Buffering

The purpose of this test is to study the evolution of the Semantic Similarity SS of an object to the
containers as the size of the PLSA image buffer is increased. The number of labels produced and taken
into the semantic step increases as more images are added to be processed. This can make the final
results vary. To test this, results were obtained starting from a buffer size of one image, and the size

53

Sensors 2017, 17, 353 12 of 19

was increased one by one up to a buffer size of 43 images. Figure 9 shows how the semantic similarity
of the labels of objects with table A evolves as images of such a container are added to the buffer.
In Figure 9a, only objects present on the table are tested against the labels from table A. As a general
rule, it can be said that the similarity with labels of present objects keeps increasing or stabilizes as
images are added. The contrary occurs in Figure 9b, where objects not present on the table are queried
for table A. In this last case, similarity decreases as images are added. Therefore, it can be concluded
that adding images to the buffer either improves or it does not negatively affect the results of the
architecture. Little improvement is appreciated for a buffer size higher than 20 images. Because of
these results, during the rest of the experiments, the buffer size was set to store the information of the
last 30 images for each object container.

(a) Positive samples (b) Negative samples

Figure 9. These graphs show how the semantic similarity between objects and the SV of table A evolves
as more images of table A are added to the buffer of the PLSA. The higher the Semantic Similarity
value is, the higher the likelihood of the presence of the object. (a) objects queried are present in the
table; (b) objects queried are not present in the table.

4.2. Cognitive Attention Tests

To test the Cognitive Attention stage, this experiment compares the results obtained with and
without this stage. The setup of the experiment is depicted in Figure 10. Table 1 shows the results
obtained. Using the Cognitive Attention step, only the table region of the image is considered, while
without it, the full image is used. Results prove the effectiveness of this step as the PLSA obtains a
higher success rate when using CA.

Additionally, to prove that CA is not only beneficial to the PLSA, this step was also tested with
another segmentation and labeling technique: the Top-Hat (TH) [31] combined with three of the main
DNN presented at the beginning of Section 4. As can be appreciated in the table, the results are equal
or better when focusing on the selected table region of the image.

Table 1. Success rate of the PLSA and other algorithms’ configurations when using full images of the
ROI obtained from the Cognitive Attention step.

Method Full Image Cognitive Attention

PLSA (no semantics) 0.4 0.65
TH + GoogLeNet 0.35 0.35

TH + GoogLeNet2 0.35 0.35
TH + AlexNet 0.2 0.35
TH + VGG16 0.55 0.6

54CHAPTER 4. A PLSA FOR MULTIMODAL IMAGE LABELING: AN APP. FOR SOC. ROBOTS

Sensors 2017, 17, 353 13 of 19

Figure 10. Cognitive attention in practice: 1. Shows the visualization of the cognitive model; 2. Is the
real Primesense sensor camera with augmented reality, projecting the cognitive location of the table
marked with four blue dots; 3. Shows the specific part of the image to process along with a Top-Hat
based segmentation and a GoogLeNet classification.

4.3. Tests with Networks with Generic ImageNet Training

The full PLSA was compared with a combination of state-of-the-art object detection and
recognition systems. For this, three main segmentation algorithms were used:

• Top-Hat [31]: A morphology transformation based algorithm commonly used for segmentation purposes.
• Multiscale Combinatorial Grouping [32]: An algorithm for bottom-up hierarchical image segmentation.
• The Cognitive Subtraction: Algorithm explained in Section 3 and stage two of the PLSA.

These segmentation algorithms were combined with the CNN architectures with best results in
the top challenges in computer vision, addressed in Section 4. To test the system, it was queried with
20 objects and asked to locate them among the five object containers considered for the experiment
(tables A, B, C, D and E). If the first choice of the algorithm was the correct table, it was counted as a
success, otherwise it was considered a failure.

The first three steps of the PLSA are compared with a mix of the segmentation algorithms
combined with the DNNs explained configurations with generic trainings. Table 2 shows the
normalized success rate of all of them. For results on the second column (Direct Match), a direct
naive match, in which labels of objects to find are directly matched with the labels detected in the
obtained images, is used. The third column shows the results when adding the semantic processing
step. The results prove how the PLSA outperforms all of the other solutions tested and, at the same
time, how a semantic processing step brings improvements not only to PLSA but also, in most of the
cases, to the labels resulting from the rest of the CNNs. All the DNN algorithms used for the results in
Table 2 use models trained with the generic ImageNet database.

55

Sensors 2017, 17, 353 14 of 19

Table 2. Success rate of the object search test when using the first three steps of the PLSA against top
CNN algorithms and results when adding the SP step.

Method Direct Match Semantic Processing

PLSA 0.65 0.75
TH + GoogleNet 0.35 0.45

TH + GoogleNet2 0.35 0.45
TH + AlexNet 0.35 0.1
TH + VGG16 0.6 0.6

MCG + GoogleNet 0.5 0.5
MCG + AlexNet 0.15 0.25
MCG + ResNet 0.55 0.55
MCG + VGG16 0.55 0.45
CS + GoogleNet 0.45 0.5

CS + GoogleNet2 0.6 0.65
CS + AlexNet 0.2 0.25
CS + VGG16 0.45 0.45

R-CNN 0.4 0.0

4.4. Tests with Networks with Fine-Tuned Training Datasets

These experiments perform the same tests as the previous one, but using fine-tuned data sets.
Instead of using the models trained with the generic ImageNet database, a specific fine-tuned retrain
on a reduced set of classes was used. For these tests, the following changes were made to the models
of the DNNs:

• GoogLeNet2_ft: this model is the ImageNet trained GoogLeNet2 model with a retrain on the last
full-connected layer for 138 classes.

• VGG16_fc1: is VGG16 fine-tuned on 1000 categories by simply training on new images.
• VGG16_fc2: uses the VGG16 model but retraining the last fully-connected layers on 136 categories.
• VGG16_fc3: is VGG16 fine-tuned on 44 categories by changing the last fully-connected layer.
• R-CNN_m: is using the pretrained R-CNN with bounding boxes (region proposals) given by MCG

instead of Selective Search.

As well as in Table 2, the first three steps of the PLSA are compared to different combinations
of segmentation algorithms and DNNs, and then the Semantic Processing step is added to all the
combinations to test its effectiveness. The resulting success rates are shown in Table 3. They prove
how the PLSA (even with a generic training) still outperforms the success rates of fine-tuned networks.
However, it is worth noting that the semantic processing step does not perform as good as on the
previous tests with these training configurations.

In general, the success rates of the direct match approach (without the Semantic Processing step)
show better results for these retrained networks than for the generic ones. However, when adding the
semantic processing step, these success rates do not seem to improve, they even worsen in some cases.
In order to further investigate why this step does not improve the networks with fine-tuned models,
some extra experiments were performed. The average semantic similarity of the labels applied to each
container were computed. Average values of the results of models trained with the generic database
and the retrained models were compared. Results of these computed average semantic similarity are
shown in Table 4. For each table, an average semantic distance among all the vector representations
of the labels found for that table was computed. Since the semantic similarity is an inverse distance
measure, a higher value means the label representations of a table are “semantically closer” in the
search space. For all the cases, the average similarity among all the labels applied to tables in the
generic trained networks is higher than the similarity for the same networks when retrained with a
lower amount of classes. These results mean that labels applied to containers by the generic training
are closer to each other in the search space than the ones from the fine-tuned trainings, which means
they are also semantically closer.

56CHAPTER 4. A PLSA FOR MULTIMODAL IMAGE LABELING: AN APP. FOR SOC. ROBOTS

Sensors 2017, 17, 353 15 of 19

Table 3. Average success rate of the object search test with the PLSA and fine-tuned networks.
The second column shows the results of not including Semantic Processing and the third one shows
the results when including this step.

Method Direct Match Semantic Processing

PLSA 0.65 0.75
TH + VGG16_fc1 0.5 0.4
TH + VGG16_fc2 0.65 0.45
TH + VGG16_fc3 0.4 0.4

TH + GoogleNet2_ft 0.35 0.6
MCG + VGG16_fc1 0.5 0.4
MCG + VGG16_fc2 0.55 0.55
MCG + VGG16_fc3 0.55 0.4

MCG + GoogleNet2_ft 0.35 0.4
CS + VGG16_fc1 0.65 0.6
CS + VGG16_fc2 0.6 0.5
CS + VGG16_fc3 0.5 0.5

CS + GoogleNet2_ft 0.45 0.4
R-CNN_m 0.35 0.2

Table 4. Average word2vec semantic similarity between labels detected per table. Rows in bold
correspond to the original models without fine tuning.

Method Table A Table B Table C Table D Table E

MCG + VGG16 0.6014 0.3906 0.37714 0.33766 0.4097
MCG + VGG16_fc1 0.19741 0.23967 0.19976 0.21568 0.28264
MCG + VGG16_fc2 0.18415 0.22191 0.18938 0.17405 0.24179
MCG + VGG16_fc3 0.2178 0.19943 0.18505 0.20464 0.23815

MCG + GoogLeNet2 0.28346 0.2965 0.24557 0.2136 0.36935
MCG + GoogLeNet2_ft 0.18915 0.19017 0.18314 0.18309 0.32282

For a better visualization of this issue, t-SNE [33] was used. It is a dimensionality reduction
technique well suited for the visualization of high-dimensional datasets. Using this technique, Figure 11
shows a plot of the vector representations of labels obtained for table A, when using a generic training
(Figure 11a) and when using a fine-tuned one (Figure 11b). Since generic trainings have more classes,
sometimes they generate light fails. A light fail is a name used to denote failure made with a word that
is not very far in meaning to the correct one (e.g., mug instead of cup). This light fails to help maintain
the ~SV of the container around the similar space, almost as if it were a correct answer, therefore not
considerably affecting the final result. However, when using the models retrained with a reduced set
of classes, and probably influenced by the lack of vocabulary available in their results, the fails are
usually not so light. This means that a fail, more often than with the big ImageNet generic trained
models, will be a totally different word (e.g., screwdriver instead of cup). This makes the location in the
search space of the ~SV of a container very affected by the fails of these models, which makes it have
a lower semantic similarity (a higher distance to the words in the search space) to the actual correct
labels of the objects it contains, lowering its general success rate. Therefore, it can be concluded that
generic training datasets with a larger number of classes are more likely to benefit from the semantic
processing step of the PLSA.

57

Sensors 2017, 17, 353 16 of 19

(a) MCG + VGG16 (b) MCG + VGG16_fc3

Figure 11. Visualization, using t-SNE for dimensionality reduction, of labels applied to table A.

5. Conclusions and Future Work

The PLSA was introduced and deeply described. The experimental results obtained from its use in
a household social robot were also presented. It was demonstrated that it outperforms state-of-the-art
algorithms both with generic and fine-tuned training datasets. The different steps of the architecture
were deeply tested, showing how they contribute to the whole architecture and to its final performance.
It is believed that this solution constitutes a firm candidate to be used as a first step to guessing
object locations either in social robotics tasks or any other solution that involves search functions in
broad scenarios.

Further work improving the different steps in the architecture can be made. Specially, it would
be interesting to explore new alternatives for the semantic processing step. Other word semantic
relationships can be tested in an effort to improve this process. It can also help discover what specific
training setups can actually benefit from it. Different strategies for selecting specific labels that might
become representative of certain locations might help improve results.

The current output of the system only handles one query at a time and this may also be extended.
Taking into account multiple object searches at the same time might help reduce the time of high level
tasks with a strong dependence on the find-and-search process, e.g., having a robot clean an apartment
or cook something in the kitchen. For these tasks with multiple objects, instead of one container, a best
path to find several objects should be given as an output. Therefore, the distance between containers
should also be taken into account.

This architecture is meant as a first guess on where to look for an object. Further work might be
required to strengthen final results and have actuators that actually verify the existence of the object or
even robots that fetch and bring the item to a specific location. Current implementation of the PLSA
provides a primary guess in the search task; in order to fully integrate the architecture into higher level
plans, more search and verification steps will be needed to assure a final successful execution of the
plan. For example, when two objects with the same label are found, an extra step could be added in
this verification step to decide which one to choose.

Supplementary Materials: A video of the robot setup and run can be found at: https://youtu.be/7dWIc5zc8vo.
All the code involved in the experiments are part of the RoboComp framework which is freely available at:
https://github.com/robocomp.

Acknowledgments: This work has been partially supported by the MICINN Project TIN2015-65686-C5-5-R, by the
Extremaduran Goverment project GR15120, by MEC project PHBP14/00083. The authors gratefully acknowledge
the support of NVIDIA Corporation with the donation of GPU hardware used for this research.

Author Contributions: Marco A. Gutiérrez and Luis J. Manso designed and implemented the architecture.
They also run different tests and wrote part of the paper; Harit Pandya implemented and trained the deep neural
networks used on the third stage. He also run several tests that helped improve the architecture; Pedro Núñez
helped with the analysis of the data and paper writing.

58CHAPTER 4. A PLSA FOR MULTIMODAL IMAGE LABELING: AN APP. FOR SOC. ROBOTS

Sensors 2017, 17, 353 17 of 19

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

AGM Active Grammar Model
API Application Programming Interface
CA Cognitive Attention
CNN Convolutional Neural Network
CS Cognitive Subtraction
DNN Deep Neural Network
FLOP Floating Point Operations
GPU Graphic Process Unit
ILSVRC ImageNet Large-Scale Visual Recognition Challenge
MCG Multiscale Combinatorial Grouping
PLSA Passive Learning Sensor Architecture
R-CNN Regions with Convolutional Neural Networks
RELU Rectifier Linear Unit
RGB-D Red Green Blue Depth
ROI Region Of Interest
SIFT Scale Invariant Feature Transform
SP Semantic Processing step
SV Semantic Vector
SVM Support Vector Machine
TH Top-Hat
t-SNE t-distributed Stochastic Neighbor Embedding
VGG Visual Geometry Group
VOC Visual Object Challenge

References

1. Kita, Y.; Kanehiro, F.; Ueshiba, T.; Kita, N. Strategy for Folding Clothing on the Basis of Deformable Models.
In Proceedings of the 11th International Conference on Image Analysis and Recognition (ICIAR 2014),
Vilamoura, Portugal, 22–24 October 2014; Campilho, A., Kamel, M., Eds.; Springer: Cham, Switzerland, 2014;
Part II, pp. 442–452.

2. Doty, K.L.; Harrison, R.R. Sweep Strategies for a Sensory-Driven, Behavior-Based Vacuum Cleaning Agent.
In Proceedings of the AAAI 1993 Fall Symposium Series, Raleigh, NC, USA, 22–24 October 1993; pp. 1–6.

3. Bollini, M.; Tellex, S.; Thompson, T.; Roy, N.; Rus, D. Interpreting and Executing Recipes with a Cooking
Robot. In Proceedings of the 13th International Symposium on Experimental Robotics, Quebec City, QC,
Canada, 18–21 June 2012; Desai, P.J., Dudek, G., Khatib, O., Kumar, V., Eds.; Springer: Heidelberg, Germany,
2013; pp. 481–495.

4. Khosravi, P.; Ghapanchi, A.H. Investigating the effectiveness of technologies applied to assist seniors:
A systematic literature review. Int. J. Med. Inform. 2016, 85, 17–26.

5. Kidd, C.D.; Orr, R.; Abowd, G.D.; Atkeson, C.G.; Essa, I.A.; MacIntyre, B.; Mynatt, E.; Starner, T.E.;
Newstetter, W. The Aware Home: A Living Laboratory for Ubiquitous Computing Research. In Proceedings
of the Second International Workshop on Cooperative Buildings, Integrating Information, Organizations,
and Architecture (CoBuild’99), Pittsburgh, PA, USA, 1–2 October 1999; Springer: Berlin/Heidelberg,
Germany, 1999; pp. 191–198.

6. Szegedy, C.; Toshev, A.; Erhan, D. Deep neural networks for object detection. In Proceedings of the
26th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10
December 2013; pp. 2553–2561.

7. Manso, L.J. Perception as Stochastic Grammar-Based Sampling on Dynamic Graph Spaces. Ph.D. Thesis,
University of Extremadura, Badajoz, Spain, 2013.

59

Sensors 2017, 17, 353 18 of 19

8. Woodman, G.F.; Chun, M.M. The role of working memory and long-term memory in visual search.
Vis. Cognit. 2006, 14, 808–830.

9. Rangel, J.C.; Cazorla, M.; García-Varea, I.; Martínez-Gómez, J.; Élisa, F.; Sebban, M. Scene classification based
on semantic labeling. Adv. Robot. 2016, 30, 758–769.

10. Gutierrez, M.A.; Banchs, R.E.; D’Haro, L.F. Perceptive Parallel Processes Coordinating Geometry and Texture.
In Proceedings of the Workshop on Multimodal Semantics for Robotics Systems (MuSRobS) and International
Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–2 October 2015.

11. Aydemir, A.; Pronobis, A.; Göbelbecker, M.; Jensfelt, P. Active Visual Object Search in Unknown
Environments Using Uncertain Semantics. IEEE Trans. Robot. 2013, 29, 986–1002.

12. Saidi, F.; Stasse, O.; Yokoi, K.; Kanehirot, F. Online object search with a humanoid robot. In Proceedings of
the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29
October–2 November 2007; pp. 1677–1682.

13. Elfring, J.; Jansen, S.; van de Molengraft, R.; Steinbuch, M., Active Object Search Exploiting Probabilistic
Object–Object Relations. In RoboCup 2013: Robot World Cup XVII; Behnke, S., Veloso, M., Visser, A.,
Xiong, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 13–24.

14. Sjö, K.; López, D.G.; Paul, C.; Jensfelt, P.; Kragic, D. Object search and localization for an indoor mobile robot.
CIT J. Comput. Inf. Technol. 2009, 17, 67–80.

15. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
16. Manso, L.J.; Calderita, L.V.; Bustos, P.; Bandera, A. Use and Advances in the Active Grammar-based

Modeling Architecture. In Proceedings of the International Workshop on Physical Agents 2016, Malaga,
Spain, 16–17 June 2016; pp. 31–36.

17. Milliez, G.; Warnier, M.; Clodic, A.; Alami, R. A framework for endowing an interactive robot with
reasoning capabilities about perspective-taking and belief management. In Proceedings of the 23rd
IEEE International Symposium on Robot and Human Interactive Communication, Edinburgh, UK, 25–29
August 2014; pp. 1103–1109.

18. Foote, T. tf: The transform library. In Proceedings of the 2013 IEEE International Conference on Technologies
for Practical Robot Applications (TePRA), Woburn, MA, USA, 22–23 April 2013; pp. 1–6.

19. Cotterill, R.M. Cooperation of the basal ganglia, cerebellum, sensory cerebrum and hippocampus:
Possible implications for cognition, consciousness, intelligence and creativity. Prog. Neurobiol. 2001, 64, 1–33.

20. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Commun. ACM 1981, 24, 381–395.

21. Jain, A.K.; Murty, M.N.; Flynn, P.J. Data Clustering: A Review. ACM Comput. Surv. 1999, 31, 264–323.
22. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385.
23. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the

27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814.
24. Mikolov, T.; Dean, J. Distributed representations of words and phrases and their compositionality.

In Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe,
NV, USA, 5–10 December 2013.

25. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

26. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe,
NV, USA, 3–6 December 2012; pp. 1097–1105.

27. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv
2014, arXiv:1409.1556.

28. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-Based Convolutional Networks for Accurate Object
Detection and Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 142–158.

29. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;
Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015,
115, 211–252.

30. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes
(VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338.

60CHAPTER 4. A PLSA FOR MULTIMODAL IMAGE LABELING: AN APP. FOR SOC. ROBOTS

Sensors 2017, 17, 353 19 of 19

31. Meyer, F. Contrast feature extraction. In Analyse Quantitative des Microstructures en Sciences des Materiaux,
Biologie et Medecine; Cherman, J.L., Ed.; Rieder: Stuttgart, Germany, 1977; p. 374.

32. Pont-Tuset, J.; Arbelaez, P.; Barron, J.; Marques, F.; Malik, J. Multiscale Combinatorial Grouping for Image
Segmentation and Object Proposal Generation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 128–140.

33. Van der Maaten, L.; Hinton, G. Visualizing non-metric similarities in multiple maps. Mach. Learn.
2012, 87, 33–55.

c© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

61

62CHAPTER 4. A PLSA FOR MULTIMODAL IMAGE LABELING: AN APP. FOR SOC. ROBOTS

Chapter 5

Semantic Exp. of Auto-Gen. Scene Desc.
to Solve Robotic Tasks

63

International Journal of Mechanical Engineering and Robotics Research Vol. 5, No. 2, April 2016

© 2016 Int. J. Mech. Eng. Rob. Res. 109
doi: 10.18178/ijmerr.5.2.109-114

Semantic Expansion of Auto-Generated Scene

Descriptions to Solve Robotic Tasks

Marco A. Gutiérrez
RoboLab, University of Extremadura, Cáceres, Spain

Email: marcog@unex.es

Rafael E. Banchs
HLT Dept., I2R, A*STAR, Singapore

Email: rembanchs@i2r.a-star.edu.sg

Abstract—When a robot is facing object description based

tasks, such as “bring me something to drink water”, it has to

semantically relate the concepts on the task with the objects

it is able to find. This work expands the semantic scope of

words in automatically generated scene descriptions and a

given task in order to find a proper match for the robot task.

An encoder-decoder pipeline that unifies joint image-text

embedding models with multimodal neural language models

is used to generate scene descriptions. Then the semantics of

those descriptions are extended through word vectors. We

improve our previous work by expanding the dimension of

the object description by adding the option of negating

characteristics of the searched object. Finally we show that

we are able to find objects that are in the scene and where

not directly referred in the task or labeled by the robot

using different words.

Index Terms—object search, semantics, deep neural

networks, robotics vision

I. INTRODUCTION

Object searching tasks for robots in unknown

environments remains a challenge for the robotics

research community. Being able to make a robot

successfully perform full pick and place tasks is one of

the main objectives of many roboticists. One of the key

parts of it is the ability of the robot to properly match the

information regarding the object to find with the objects

found in in the scenes surrounding it. Properly

performing the match between the information and the

objects found can help robots perform these tasks in a

more natural way.

Numerous ways exist for object detection and

recognition on scene images. Deep neural network based

image labeling and, lately, image description generation

are on the state of the art for scene images understanding.

Big advances have been done in this field as recent works

like [1]-[3] prove. These works make use of deep neural

networks in order to produce somewhat accurate

descriptions of the image scene. However these captions

are usually short and, even though in the case they

provide accurate descriptions, they do not fully express

Manuscript received August 17, 2015; revised December 28, 2015.

all the information that is contained in the scene. On top

of that, same things can sometimes be expressed with

different words or people may differ on how they call

something that shows up on a certain scene, specially

since words can have multiple degrees of similarity [4].

For these reasons we can not solely rely on the words on

these descriptions as atomic units that give us all the

information we need to match a certain object query. In

order to extend the information contained on these

generated sentences semantic relations between words

can be exploited.

There is a wide range of research works in the field of

the analysis of words semantics relations. Works such as

[5]-[8] are just an example of some of the most common

works in this research area. Some approaches exploit

manually created ontologies or taxonomies like WordNet

[9] or Freebase [10]. As stated in [11], these works are

ontologies that are manually created and maintained in

order to provide a means for establishing semantic

relations between words and because of that sometimes

its further development can be very costly. In

consequence, only a determined domains have a suitable

ontology, limiting the applicability of similarity measures

based on one of them. On the other hand word vectors are

a good and fast way to capture semantic relations

between words [12], specially when trained over big

corpus containing a large amount of words. This makes

them easily trainable in the needed semantic scope so the

info better matches the application. In our design we

decided to handle semantic relations between words by

measuring the distance among the word vector

representation of those words.

The system presented here weights the semantic

relations between a description based search task issued

to the robot and scene automatically generated

descriptions in order to improve the possibilities to find

an object matching the user needs. Our system is even

able to handle descriptions that include negations, such as

“find an animal that does not bark”. First, the task is

analyzed using the Natural Language Toolkit (NLTK) [13]

in order to select the key words on it and differentiate

negative requirements from positive ones. The neural

network encoder-decoder pipeline described in [14] is

used in order to generate captions that describe scenes

International Journal of Mechanical Engineering and Robotics Research Vol. 5, No. 2, April 2016

© 2016 Int. J. Mech. Eng. Rob. Res. 110

from images. Then pre-trained word vectors helps finding

semantic similarities between words using the skip-gram

model described in [12]. A similarity weight is calculated

using the cosine distance in the vector space between the

selected words from the descriptive task and the ones in

the image generated descriptions. Results are sorted by

their calculated similarity weight, the best ones would be

the ones with the highest similarity value. This process

allows the expansion of the semantic domain of the

words on the image generated captions. The system is

able to find things that are not explicitly noted in the

description sentences. Even in the case of querying for

something that is not on the image dataset, the output will

still be semantically more relevant than a random

ordering of the images.

II. SYSTEM DESIGN

The goal of our system is to look for scenes that

contain the information that is described in the task the

robot is given. It accepts descriptive tasks in the form of

“get me something to drink water” or even with negative

parts like “bring me an instrument with no strings”.

When the robot receives a task the system semantically

analyzes the sentence detecting the main positive words

and the negative ones from the description. It obtains the

word vector representations of these words and calculates

an average of these vectors by weighing appropriately the

negative vectors and the positive ones. Also, as shown in

Fig. 1, the system contains a multimodal encoder-decoder

pipeline that generates the descriptions for the scenes.

The system generates five description candidates for each

scene. An average of the cosine distances between the

vector representations of adjectives and nouns from these

descriptions and the vector representing the description is

calculated for each of the scenes. Finally the system

provides a rank of best matching scenes according to their

weight value. The selected scenes contain the objects that

are most semantically related to the words on the

description contained in the task.

Figure 1. System's architecture

A. Multimodal Encoder-Decoder Pipeline

The system contains an encoder-decoder pipeline that

automatically generates descriptions for the scenes. The

encoder (see Fig. 2) is learned with a joint image-

sentence embedding where sentences are encoded using

long short-term memory (LSTM) recurrent neural

networks [15]. Image features from the top layer of a

deep convolutional network trained from the ImageNet

classification task [16] are projected into the embedding

space for the LSTM hidden states. A pairwise ranking

loss is minimized in order to learn to rank images and

their descriptions.

Figure 2. The deep convolutional network (CNN) and long short-term
memory recurrent network (LSTM) encoder. It is in charge of learning a

joint image-sentence embedding.

As Fig. 3 shows, for decoding, the Structure-Content

Neural Language Model (SC-NLM) described in [14] is

used, which takes into account the content in the

sentences. It is a multiplicative neural language model

where the attribute vector is an additive function of the

embeddings. These embeddings are conditioned on the

embedding vector for the description computed with the

LSTM. Allowing the system to make use of large

amounts or monolingual text to improve the quality of the

language model. Since the embedding vectors share a

joint space with the image embeddings, the SC-NLM can

also be conditioned on image embeddings after the model

has been trained.

Figure 3. Structure-content neural language model decoder in charge of

generating words for the scene description one at a time.

The final output of this pipeline generates are the top

five most reliable descriptions for a scene. This is run for

each one of the scenes that are in the dataset.

B. Word Semantics Relationships

In order to measure the semantic relationships between

words we selected a neural network based tool, since they

perform better than Latent Semantic Analysis (LSA) [17]

for preserving linear irregularities among words and in

terms of computational cost when trained over large

65

International Journal of Mechanical Engineering and Robotics Research Vol. 5, No. 2, April 2016

© 2016 Int. J. Mech. Eng. Rob. Res. 111

datasets [4], [18]. We use an improved version of the

Skip-gram model [12] to find word representations that

predict the surrounding words in a corpus. Our system

was trained using the negative sampling [19] technique

instead of the hierarchical softmax, so it tries to

differentiate data from noise by means of logistic

regression. Semantic relations on the words of the

training data are encoded in a word vector space. The

semantic relation between words is measured by the

cosine distance between their vector representations.

These semantic relationships are used to extend the scene

descriptions word meanings when the robot search task is

being performed.

C. Word Matching System

This is the module in charge of making the semantic

matching and evaluation between the task and the scene

descriptions. As the robot receives the task this module

analyzes it using NLTK. The positive main words are

separated from the negative ones. For this, a basic

syntactic analysis of the task is performed along with

some basic regular expression matching techniques.

Prepositions, pronouns and determinants are ignored as

they we do not consider them relevant to the task. Firstly

the average vector representing the task description is

obtained by summing up the vector representations of the

positive words and subtracting the ones from the negative

words. This leaves us with a vector representation that

will represent the semantic of the description of the task.

Then the cosine distance of this vector with the words on

the scene description is obtained and an average distance

for all of them is finally calculated. This would be the

weight of the scene for a specific description in a task,

and in consequence a representation of how semantically

similar they are.
Finally when all scene weights are computed for the

given task they are ranked by their weight value. The

output of the system will show the scenes with the

highest weight, as those are the ones that are supposed to

have a higher semantic similarity with the description on

the task. Since they are semantically similar, they should

be describing similar things.

III. EXPERIMENTS

In order to perform the experiments the LSTM encoder

and SC-NLM decoder of the pipeline described in

Section II-A have been trained on sentences from both

Flickr30K [20] and Microsoft COCO [21]. We have

selected randomly a subset of 1000 images from

Flickr30K to use them as a dataset for the scene

description generation. These are the ones being

considered for a possible selected scene and final match

with the task description. The vector space word

representation have been trained on a Google News data

subset containing about 100 billion words. And the final

word vector model contains 300-dimensional vectors for

3 million words and phrases.

Since a manual interpretation of the contents of an

image will always be open to criticism of subjectivity

[22], there is a high difficulty of quantitatively evaluate

the retrieval effectiveness of our approach. However we

will perform a manual evaluation on the output to provide

an approximated quantitative evaluation, providing

besides the visual output as a support of our experiment

results.

For evaluation purposes we have tested the system

against a direct word to word matching approach. On this

direct matching approach we will select the positive and

negative words in the same way we do in our system.

Then for the positive words we will add a value of 1 to

the overall scene weight if the word in the task

description appears on any the scene generated

descriptions, otherwise 0 will be added. For the negative

words we will subtract 1 if the there is a match between

the negative word and any word from the scene generated

descriptions. The same way as with the positive ones

nothing will be subtracted if the word is not found in the

descriptions. This measures basically the number of

words shared among the description in the task and those

from the scene minus the negative words they share.

Finally these computed weights would represent the

similarity between the scene and the description on the

task, the higher the value the more similar they are

supposed to be.

a man in a black apron is working on a grill.
a man wearing a black shirt is cooking.

a man with cooking on the ground with his machine.
a young man in a black shirt is cooking on a large grill.

a man is in his left hand.

Figure 4. Top result of the task “find me a barbecue pit”. Note that the
words “barbecue pit” do not appear in the generated captions but

probably due to the high semantic relation with the word “grill” (0.583

cosine distance) we are able to find it.

For the quantitative results we have evaluated the top

five results for six search tasks on both approaches

manually giving a score of 1 for correct matches, 0.5 to

partially correct matches and 0 to totally wrong matches.

We obtained a total score of 25 for our system against a

score of 10.5 for the direct match approach, showing the

benefits of our semantic expansion approach. We show

here a visual excerpt of the obtained results and add some

comments on them for a more specific evaluation.
1

Fig. 4 shows the top result, a basic example of the

robot process of the task “find me a barbecue pit”. Not

1Due to space limits we can only show some results here, for a wider

overview of all the ones used in the evaluation please refer to:

http://magutierrez.com/description-based-tasks.

66CHAPTER 5. SEMANTIC EXP. OF AUTO-GENERATED SCENE DESC. TO SOLVE ROBOTIC TASKS

International Journal of Mechanical Engineering and Robotics Research Vol. 5, No. 2, April 2016

© 2016 Int. J. Mech. Eng. Rob. Res. 112

any of the scene generated descriptions show the word

“barbecue” among their results. The reason why the

system is able to select that picture is due to the high

semantic relation between the words “barbecue” and

“grill” (cosine distance of 0.583 of their correspondent

word vectors representations). In the same way Fig. 5

shows results on different descriptive tasks that had no

words for direct matching so the result on the alternative

is a total random selection of scenes. However on those

pictures our system is still able to provide us with a scene

that can match the description from the task. These

examples show that even though the description

generation system is not reflecting the same words as in

the task description we can still match them due to their

existing semantic relation represented in the word vector

space.

In Fig. 5 we show the results from the two options

tested, our system and the direct match approach. Results

are displayed ordered by similarity score from left to

right, keeping the results from our solution on the top row,

while the lower one corresponds to the direct match

approach output. On the first task (Fig. 5a) our system is

able to relate the words “strings” and “instrument” with

names of instruments with strings. However on the direct

approach only the word instrument is matched from the

scene descriptions so even the fact that some guitars are

shown as a result is pure coincidence as it could have

been any other instrument. On the second task (Fig. 5b)

the system gets more confused. However is still better as

it can relate the word “drink” with some liquids or

drinking situations. Even though, in this case it is not a

great result it is still better than a totally unrelated scene

such as some of the results on the direct match approach.

Some of the errors here are also due to some errors in the

automatically generated scene description.

(a) Task: “Find an animal that barks”

(b) Task: “Find something that floats in water”

Figure 5. Tasks that had none words in common with any of the scene generated descriptions

(a) Task: “Find an instrument with strings”

67

International Journal of Mechanical Engineering and Robotics Research Vol. 5, No. 2, April 2016

© 2016 Int. J. Mech. Eng. Rob. Res. 113

(b) Task: “Bring me a drink with alcohol”

Figure 6. First row from left to right of each tasks are our system results compared to the direct match approach on the second row

Fig. 7 uses the novel introduced negation part on the

description from the task. This example task is “find a

sport with no ball”. The first results are good as the

system relates some sport with the word ball and its able

to discriminate them. It gets some confusion though and

there is clearly room for improvement. However we

found out that we can take the weighted distance value as

a reference on how much we can trust the result since

when bad results are obtained this weighted distance

value is usually very low. Please refer to the online

results in order to take a better look at the insights of the

word matches.

Figure 7. Task: “find a sport with no ball”

IV. CONCLUSIONS AND FUTURE WORK

Our system processes tasks issued to a robot to search

and find objects by its description and look for its

matches from different scenes. We use word

representations in vector spaces to expand the semantic

scope of the descriptions and improve the matching

between them. It has been proved that our system is able

to properly obtain scene relations to a certain descriptive

task using the semantic relations between the descriptions

and the robot search task. The system can even provide

meaningful results when queried with words that don't

even directly appear on the scene descriptions. On the

other hand some results might not be accurate enough

sometimes due to not very accurate semantic relations

and other times due to errors on the scene descriptions.

Therefore there is room for improvement on both sides.

We could take into account the value of the cosine

distance and discard the results when values are too low,

as we observed that low values always correspond to very

bad matches. Also new deep learning techniques can be

applied for the scene description generation in order to

improve this part of the system. Dynamically selecting

the most important parts of the description on the task can

provide an improvement as we can give them a different

weighs on the semantic matching algorithm. Other word

semantic relation techniques can be tested in order to

look for a better semantic matching between the task and

the scene description.

ACKNOWLEDGMENT

This work has been conducted as part of an A*STAR

Research Attachment Programme (ARAP) at the Human

Language Technology Department of Institute for

Infocomm Research, Singapore.

REFERENCES

[1] X. He, R. Srivastava, J. Gao, and L. Deng, “Joint learning of

distributed representations for images and texts,” arXiv preprint
arXiv: 1504.03083, 2015.

[2] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell:

A neural image caption generator,” arXiv preprint arXiv:
1411.4555, 2014.

[3] K. Xu, J. Ba, R. Kiros, A. Courville, R. Salakhutdinov, R. Zemel,

and Y. Bengio, “Show, attend and tell: Neural image caption
generation with visual attention,” arXiv preprint arXiv:

1502.03044, 2015.
[4] T. Mikolov, W. T. Yih, and G. Zweig, “Linguistic regularities in

continuous space word representations,” in HLT-NAACL, June

2013, pp. 746-751.
[5] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas,

and R. A. Harshman, “Indexing by latent semantic analysis,” JAsIs,

vol. 41, no. 6, pp. 391-4071990.

[6] M. Sahlgren, “The word-space model: Using distributional

analysis to represent syntagmatic and paradigmatic relations
between words in high-dimensional vector spaces,” Institutionen

for Lingvistik, 2006.
[7] T. Mikolov, Q. V. Le, and I. Sutskever, “Exploiting similarities

among languages for machine translation,” arXiv preprint arXiv:

1309.4168, 2013.
[8] N. J. Van Eck, L. Waltman, and J. van den Berg, “A novel

algorithm for visualizing concept associations,” in Proc. Sixteenth
International Workshop on Database and Expert Systems

Applications, August 2005, pp. 405-409.

68CHAPTER 5. SEMANTIC EXP. OF AUTO-GENERATED SCENE DESC. TO SOLVE ROBOTIC TASKS

International Journal of Mechanical Engineering and Robotics Research Vol. 5, No. 2, April 2016

© 2016 Int. J. Mech. Eng. Rob. Res. 114

[9] G. A. Miller, “WordNet: A lexical database for English,”

Communications of the ACM, vol. 38, no. 11, pp. 39-41, 1995.

[10] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor,

“Freebase: A collaboratively created graph database for
structuring human knowledge,” in Proc. ACM SIGMOD

International Conference on Management of Data, June 2008, pp.
1247-1250.

[11] ACMs. Christoph, L. O. F. I., Measuring Semantic Similarity and

Relatedness with Distributional and Knowledge-Based
Approaches, 2016.

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,” arXiv preprint

arXiv: 1301.3781, 2013.

[13] S. Bird, E. Klein, and E. Loper, Natural Language Processing
with Python, O'Reilly Media, Inc. 2009.

[14] R. Kiros, R. Salakhutdinov, and R. S. Zemel, “Unifying visual-
semantic embeddings with multimodal neural language models,”

arXiv preprint arXiv: 1411.2539, 2014.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735-178, 1997.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,” Advances

in Neural Information Processing Systems, 2012, pp. 1097-1105.

[17] S. T. Dumais, “Latent semantic analysis,” Annual Review of
Information Science and Technology, vol. 38, no. 1, pp. 188-230,

2004.
[18] A. Zhila, W. T. Yih, C. Meek, G. Zweig, and T. Mikolov,

“Combining heterogeneous models for measuring relational

similarity,” in HLT-NAACL, 2013, pp. 1000-1009.
[19] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,

“Distributed representations of words and phrases and their
compositionality,” Advances in Neural Information Processing

Systems, 2013, pp. 3111-3119.

[20] B. Plummer, L. Wang, C. Cervantes, J. Caicedo, J. Hockenmaier,
and S. Lazebnik, “Flickr30k entities: Collecting region-to-phrase

correspondences for richer image-to-sentence models,” arXiv
preprint arXiv:1505.04870, 2015.

[21] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, et al.,

“Microsoft COCO: Common objects in context,” in Computer
Vision–ECCV, Springer International Publishing, 2014, pp. 740-

755).
[22] H. Besser, “Visual access to visual images: The UC berkeley

image database project,” Library Trends, vol. 38, no. 4, pp. 787-

798, 1990.

Marco A. Gutiérrez is a PhD student in
cognitive vision for robotics systems at the

Robotics and Artificial Vision Laboratory

(RoboLab) from the University of
Extremadura, Spain since 2011. He is

currently holding an A*STAR Research
Attachment Programme (ARAP) scholarship

in the Human Language Technology

Department at I2R, A*STAR, Singapore. He
obtained the highest evaluation possible

(above expectations on all fields) on his internship at KUKA

Laboratories GmbH, Augsburg, Germany in 2012. Recently his team

(Ursus) was awarded with Best Team for Functionality Benchmark on

Object Perception and Speech Understanding at the Rocking Robot
Challenge 2014 in Tolouse, France. He has contributed to several open-

source robotics and computer vision related projects such as RoboComp
and the Point Cloud Library even as organization administrator and

mentor (respectively) for several editions of the Google Summer of

Code programme (2013, 2014 and 2015). His recent areas of research
include cognitive vision, deep neural networks, multimodal systems and

word semantics. He is organizer of the \textit{Workshop on Multimodal
Semantics for Robotics Systems} and Advisory Committee for the

\textit{The Path to Success: Failures in rEal Robots} Workshop that

will take place as part of next IROS 2015 conference in Hamburg,
Germany.

Rafel E. Banchs (M’14) is currently a

Research Scientist at the Institute for

Infocomm Research in Singapore. He
received his Ph.D. in Electrical Engineering

from the University of Texas at Austin in

1998. He was awarded a Ramon y Cajal

fellowship from the Spanish Ministry of

Education and Science from 2004 to 2009.
His recent areas of research include Machine

Translation, Information Retrieval, Cross-
language Information Retrieval and Dialogue Systems. More

specifically, he has been working on the application of vector space

models along with linear and non-linear projection techniques to
improve the quality of statistical machine translation and cross-language

information retrieval systems. He has served as co-organizer of the 2nd
TC-STAR Work-shop on Speech to Speech Translation 2006; the First

International Workshop on Content Analysis in the Web2.0 (CAW2) at

WWWW 2009, the ESIRMT-HyTra Joint Workshop at EACL’12, the
CREDISLAS workshop at LREC’12, the Special Session

“Rediscovering 50 Years of Discoveries” at ACL’12, HyTra-2 and
HyTra-3 workshops at ACL’13 and EACL’14, and NII-Shonan Meeting

Seminar 059 on “The Future of Human-Robot Spoken Dialogue: from

Information Services to Virtual Assistants”. He has also served as area
chair for IJCNLP’11, general co-chair of AIRS’13 and PC chair of

IALP’14

69

70CHAPTER 5. SEMANTIC EXP. OF AUTO-GENERATED SCENE DESC. TO SOLVE ROBOTIC TASKS

Chapter 6

Exploiting Symmetries and Extrusions for
Grasping Household Objects

71

Exploiting Symmetries and Extrusions for Grasping

Household Objects

Ana Huamán Quispe1 Benoı̂t Milville1 Marco A. Gutiérrez2 Can Erdogan1 Mike Stilman†
Henrik Christensen1 Heni Ben Amor1

Abstract—In this paper we present an approach for creating
complete shape representations from a single depth image for
robot grasping. We introduce algorithms for completing partial
point clouds based on the analysis of symmetry and extrusion
patterns in observed shapes. Identified patterns are used to
generate a complete mesh of the object, which is, in turn, used for
grasp planning. The approach allows robots to predict the shape
of objects and include invisible regions into the grasp planning
step. We show that the identification of shape patterns, such
as extrusions, can be used for fast generation and optimization
of grasps. Finally, we present experiments performed with our
humanoid robot executing pick-up tasks based on single depth
images and discuss the applications and shortcomings of our
approach.

I. INTRODUCTION

The ability to grasp and manipulate objects is an impor-

tant skill for autonomous robots. Many important tasks, e.g.,

assisting humans in household environments, require robots

to reliably plan and execute grasps on surrounding objects.

To generate plans for manipulation tasks, information about

the shape of the object is required. A frequent approach to

grasp planning is to use a database of polygonal meshes

representing the different objects that the robot can manipulate

[8]. Such information about object geometry can be used by

grasp planners to synthesize an appropriate hand shape and

orientation for physical interaction. While this approach is

valid for structured domains with a small set of different

objects, it does not scale to unstructured environments in

which many objects may have never been seen before.

Other approaches to grasp planning employ depth cameras

to acquire 3D point clouds of new objects, which in turn are

used to generate grasps. Since the point clouds are acquired

from a specific perspective, they only hold partial shape

information about the visible frontal part. Using only partial

point clouds to plan manipulation tasks can be very limiting,

since many grasps involve placing fingers on opposite sides of

an object. To fill any gaps and produce a complete point cloud,

multiple images can be acquired by either iteratively moving

the camera or the object. This process is time-consuming and

1Institute for Robotics and Intelligent Machines, Geor-
gia Institute of Technology, Atlanta, GA 30332, USA.
ahuaman3@gatech.edu, cerdogan@cc.gatech.edu,
benoit.milville@gadz.org, hic@cc.gatech.edu,
hbenamor@cc.gatech.edu

2Robotics and Artificial Laboratory, Univesity of Extremadura, Cáceres,
10003, Spain. marcog@unex.es

Fig. 1: Extracted information of rotational symmetries in the

object is used to create a complete shape from a partial point

cloud. The generated mesh is used by a grasp planner to

generate a continuous set of grasps around the symmetry axis.

introduces new challenges such as the precise matching of the

individual point clouds of each view.

Alternatively, the robot can use geometric cues to predict the

shape of the object in unseen regions. Through the analysis

of inherent shape properties such as mirror symmetries and

rotational extrusions, estimates of the complete point cloud

can be generated from a single image. The extracted symmetry

parameters can be used to extend observed shape patterns, e.g.,

the profile curve of an object, to occluded regions.

In this paper, we show how compact object representa-

tions for manipulation tasks can be generated from a partial

point cloud. Given a single RGB-D image, we generate

a complete mesh model of the observed object as well

as additional shape information, e.g., axis of symmetry or

superquadric approximations. We show that these compact

representations can be later exploited for the fast synthesis

of a continuous set of grasps. In turn, the set is used to

plan robot manipulation tasks. Our approach builds both upon

recent developments in symmetry-based [3, 18], as well as

extrusion-based object representations [16]. Symmetry-based

representations mirror observed object parts into occluded

regions. Extrusion-based approaches, on the other hand, try

2015 IEEE International Conference on Robotics and Automation (ICRA)
Washington State Convention Center
Seattle, Washington, May 26-30, 2015

978-1-4799-6923-4/15/$31.00 ©2015 IEEE 3702

to identify a two-dimensional profile which can be linearly

or rotationally extruded to complete an object. In this work

we show how symmetries and extrusions can be used to

extract two different types of object representations, namely

superquadric approximations and 2D shape profiles. We also

show how these representations can used to generate grasps

on the object.

The rest of this paper is organized as follows: Section

II summarizes relevant literature. Section III introduces two

compact object representations that are based on detecting

symmetries and extrusions. Section IV shows how compact

object representations based on extrusion patterns can be

exploited for fast grasp planning with a small number of

parameters. Section V presents experimental results of the

object completion, as well as its application to robot grasping

tasks. Finally in Section VI we discuss our approach and its

advantages and shortcomings.

II. RELATED WORK

For a robot to physically interact with its environment,

algorithms for both grasp planning and perception are required.

Traditional approaches for grasp generation are often based

on fitting 3D CAD models to the observed scene [14, 15].

Such an approach, however, cannot be used to grasp novel

objects since it requires accurate, prior knowledge about the

shape. With the advent of depth cameras, various researchers

have turned towards point cloud representations for perception

and grasp planning. Huebner et al. [11] showed that bounding

boxes computed from point clouds can be used to grasp novel

objects. In a similar vein, Jiang et al. [12] proposed a so-

called grasping-rectangle representation which can be used

to infer the best grasp parameters given an RGB-D image

of a novel object (given an offline training step). Przybylski

et al. [21] showed simulation results in which a medial axis

representation of objects can be used to find successful grasps

without compromising on the approximation quality. Other

than boxes and spheres [17], superquadrics [9] have also been

considered for grasping applications given their compactness

and ability to represent many diverse shapes with a limited

number of parameters. Recently, Duncan et al. presented a

fast hierarchical approach to fit superquadrics online [5].

On the side of grasp generation, a popular metric used to

predict grasp robustness is the ǫ metric proposed by Ferrari

and Canny [6]. While many popular grasp generators, such

as GraspIt! use this metric to evaluate and refine the grasp

search, it has been noted [4] that a grasp with a good metric

does not translate to a robust grasp in a real-world execution.

Researchers such as Hsiao [10] and Balasubramanian [1] have

shown that grasps obtained using simple human heuristics can

produce comparable or even better results when evaluated in

a real, non-simulated environment.

A real world scenario - contrary to a simulated one -

presents its own set of challenges: errors in perception, control

and modeling must be considered and might render an optimal

simulated grasp into an infeasible one. Regarding incomplete

perceptual information, such as one-view point clouds for a

given object, Bohg et al. [3] proposed a simple approach that

exploits the symmetry of most common household objects to

predict the full shape of an object on a tabletop scenario.

Following Bohg’s observation that most common household

objects present similar characteristics (such as symmetry,

extrusion-like geometry and primitive shapes), we use them

to approximate the shape of objects. This is also useful in the

event of occlusion, in which a complete point cloud is not

available.

III. GENERATING COMPACT OBJECT REPRESENTATIONS

FROM SINGLE RGB-D IMAGES

In this section, we present two compact representations of

objects that can be generated from partial point clouds. These

representations can be used to plan grasps on objects involving

regions of the point cloud that are currently invisible. As a

result, a wider range of grasps can be planned, including, for

example, side grasps which are based on an opposition of

fingers placed at the front (seen) and the back (unseen) of the

object.

We will first present a superquadric representation which is

based on determining symmetries in point clouds. After that,

we will turn towards a more detailed representation which

makes use of rotational symmetries and linear extrusions to

characterize an object.

A. Superquadric Representation

Superquadrics are a family of geometric shapes that can

represent a wide range of diverse objects. The equation de-

scribing superquadrics in their canonical form can be written

as

F (x) =

(

(x

a

)
2

ǫ2

+
(y

b

)
2

ǫ2

)

ǫ2

ǫ1

+
(z

c

)
2

ǫ1

= 1. (1)

where a,b,c are the scaling factors along the principal axes,

ǫ1 is the shape factor of the superquadric cross section in

a plane orthogonal to XY containing the axis Z, and ǫ2 is

the shape factor of the superquadric cross section in a plane

parallel to XY. If a general transformation is considered,

then the total number of parameters required to define a

superquadric is 11 (the 6 additional being the rotational and

translational degrees-of-freedom (DoFs) {x, y, z, ρ, ψ, θ}). By

minimizing the error between each point and the general

superquadric equation, a shape that best fits the point cloud

can be obtained:

min
k

n
∑

k=0

(√
abcF ǫ1(x; Λ)− 1

)2

(2)

As mentioned in Section II, superquadrics have previously

been used to generate grasp configurations for simple objects

[2, 22]. Most of these approaches assume that the complete

shape of the object is given or that the parameters can

be learned beforehand. However, when working with depth

cameras this is not a reasonable assumption to make. In

recent work, Duncan et al. [5] presented a superquadric fitting

3703

73

Fig. 2: An example for the superquadric fitting with symmetry

analysis (middle) and without it (bottom).

approach which uses a voxel representation to reduce the

computational complexity of the task. We found that this

approach worked well when the segmented point cloud of

the object had a good viewing point (i.e. the front, side

and top of the object were seen). For point clouds in which

only one side of the object was seen (i.e. only front), the

performance quickly deteriorated, producing fitting parameters

that in many cases exceeded greatly the original dimensions

of the objects. While this could be partially alleviated by hard-

coding limits in the dimension of the axes, this is not practical

when dealing with novel objects, for which we might not know

the dimensions beforehand.

Inspired by work presented by Bohg et al. [3], we added

an additional pre-processing step to the superquadric mini-

mization process. Instead of using the original point cloud as

input, we generated a mirrored version (see Fig. 2) by finding

an optimal symmetry plane perpendicular to the table where

the object resides (for more details of this process, please refer

to the original paper [3]).

B. Object Completion from Extrusions

Planning task-specific grasps requires information about

the complete shape of the object to be manipulated. Many

household objects are based on extrusions. Indeed many

modelling and manufacturing systems use linear and rotational

extrusions in a hierarchy to generate the models used for

manufacturing. Uncovering extrusions in partial point clouds

can therefore help to generate a complete point cloud from a

partial observation. In addition, this knowledge can be used to

create a large set of feasible grasps from which a planner can

Hypotheses Initial Estimation Optimization

Fig. 3: The three steps used for optimizing the axis of

extrusion. First, we generate hypotheses by analysing pairs of

points. The resulting estimates are used to produce an initial

estimate of the axis of extrusion. Finally, optimization is used

to improve the extrusion axis.

choose suitable candidates for task execution. For example,

detecting the axis of symmetry in a rotationally symmetric

object allows us to rotate any feasible grasp around this axis.

In this paper, extrusion detection is performed using a three-

step approach, see Fig. 3 for an overview of the approach using

rotational extrusions. In the first step, we use points from the

partial point clouds to generate hypotheses for the extrusion

axis. In the case of rotational extrusions, we randomly sample

pairs of points and use the normal of each point to create a

line. Each pair of lines is intersected and the resulting point

is used as a hypothesis for the axis of extrusion. Fig. 3 shows

an example for points sampled from a cylindrical object. To

account for noise, we use the midpoint of the line connecting

the closest points, in case the two lines do not intersect.

The collected hypotheses points are then used to create an

initial estimate of the axis of extrusion. To this end, we fit a

line into the set of hypotheses using linear least-squares. The

RANSAC [7] algorithm is further used to reduce the influence

of outliers. Given this initial estimate, we perform optimization

to produce a more accurate axis of extrusion. Specifically, we

use the dynamic hill climbing algorithm [23] to search for an

axis of extrusion which reduces the dispersion of points along

the profile of the object. In every iteration, the axis of extrusion

is used to rotate all points of the partial point cloud back onto a

plane. We then estimate the density of the points using a kernel

density estimator [20]. By maximizing the density using the

hill climbing algorithm, we can reduce the dispersion of the

projected points, thereby recreating the profile of the object.

However, performing a kernel density estimation in each step

of the optimization process is computationally expensive and

does not scale to large point clouds. The following method

is, therefore, a discrete approximation of the kernel density,

which produced accurate results in practice while at the same

time being fast.

We create an approximation of the kernel density estimator

by creating a grid over the projected point cloud. The number

of cells used in our experiments varied between 5 and 30

cells in each dimension. For each cell i ∈ {1, ..,M} we count

the number of points ci that lie within. We then calculate the

average of the differences to neighbouring cells j ∈ {1, .., N}.

The overall objective function of the optimization can be

3704

74CHAPTER 6. EXP. SYMMETRIES AND EXTRUSIONS FOR GRASPING HOUSEHOLD OBJS.

0

5

10

15

20

0 1 2 3 4 5 6 7

0

5

10

15

20

25

Iteration 2 Iteration 10 Iteration 50

Fig. 4: Density estimation at different stages of optimization.

At the beginning of the optimization, the projected points are

highly dispersed. The axis of extrusion is then changed to

minimize the dispersion, such that the outer profile of the

object emerges as can be seen in iteration 50. On the right

side we can see the object to which the profile belongs.

written as

E =
1

M

1

N

M
∑

i

N
∑

j

||ci − cj || (3)

where E is the energy to be minimized. Fig. 4 shows three

iterations during the optimization of the axis of extrusion.

Dark areas correspond to regions of high density of points,

while lighter areas correspond to low density regions. In early

iterations, the estimate of the axis does not produce a clear

profile when points are projected (rotationally) onto a plane.

In iteration ten, we can see that high density regions start

forming. After fifty iterations, an approximate profile of the

object starts to emerge.

After optimization is finished, we regard the projected points

as the profile of the object and rotationally extrude them

around the axis of extrusion to generate a complete point

cloud. Fig. 5 shows a set of household objects, the recorded

depth images, as well as the reconstructed complete meshes.

Given the completed point cloud, we reconstructed the meshes

using Poisson surface reconstruction [13].

For the case of linear extrusions along an axis, a different

method for the estimation of the initial axis of extrusion needs

to be used. For linear extrusions, we compare the normal

vectors of pairs of points and generate a hypothesis if the

difference between the normals is below a threshold. The

resulting set of hypothesis can then be clustered, such that each

cluster represents a possible axis of extrusions. For example,

for a box, up to six clusters can be found.

Note, that in our approach we use a point cloud to represent

the profile of an extrusion. For revolute objects, the profile

defines the outer curve of the object, which can be rotated

around the axis of extrusion to generate the complete shape.

For linear extrusions, the cloud represents the basic 2D shape

which can be extruded to form the object. Fig. 6 shows the

extracted object profiles for objects with linear extrusions.

IV. USING COMPACT OBJECT REPRESENTATIONS FOR

GRASP PLANNING

Grasp planning greatly benefits from the completed point

clouds. A complete point cloud can be triangulated and used as

an input to existing grasp generation and planning algorithms.

In contrast to the partial point cloud, the completed and

triangulated mesh can be used to perform collision checks

Fig. 6: Extracted object profile for the linearly extruded

objects. The extracted profiles are used to create a complete

point cloud.

and evaluate grasp quality using existing metrics. In contrast,

traditional grasp quality metrics cannot be directly applied to

partial point clouds. Similarly, having a complete mesh allows

a grasp planner to evaluate a large variety of grasps, which can

then be pruned based on task constraints. However, generating

many grasps often involves repeated applications of grasp op-

timization methods which can be computationally demanding,

in particular in the presence of many degrees-of-freedom in

the robot arm and hand. Extracted shape information from

extrusions can be used to improve the efficiency of this process

by significantly reducing the number of degrees-of-freedom of

the problem.

The main insight of this section is that hand shapes during

object grasping are invariant to movements along the axis of

extrusion. As long as the robot hand moves along the axis of

extrusion, no expensive replanning of the hand shape is neces-

sary. In the case of linear extrusions, the robot hand can move

up and down the axis of extrusion without having to change

the hand shape. Similarly, in the case of rotational extrusions,

the hand can be rotated around the axis of extrusion. This

knowledge can be exploited during grasp generation in order to

turn each single detected grasp into a continuous set of grasps.

Subsequently, we present a specific example how information

about extrusions can be used to reduce the dimensionality and

complexity of a grasp re-planning task.

Fig. 7a shows a scenario, in which a grasp is executed

on a rotationally symmetric object. The grasp has a low

manipulability index which is not sufficient to achieve the task

constraints. Typically, this means that a new grasp and arm

pose needs to be planned, which involves (sampling-based)

optimization in the high-dimensional space of joint angles.

Given that the grasp is performed on a rotationally sym-

metric object, the grasp generation can be modeled as an

inverse kinematics problem where the goal is to determine

an arm configuration q that is collision free. The output is

constrained by the end-effector position on the object and the

corresponding inverse kinematics solution. The end-effector

pose x can be parametrized by (1) the rotation around the axis

of extrusion φ and (2) the distance along the axis of extrusion

3705

75

Fig. 5: Reconstruction of rotationally symmetric household objects. The top row shows a photo of the object. The middle

row shows the corresponding depth image recorded using a Microsoft Kinect. The bottom row shows the completed mesh.

Reconstruction was performed from a single image through the analysis of extrusions.

α, x = pose(φ, α). The inverse kinematics solution q with a

7-DoF arm for an end-effector pose x can be parametrized by

an additional variable θ which represents the angle between

the wrist-elbow-shoulder plane and the ground, q = IK(x, θ).
At each iteration i, the new arm position is computed

using an updated grasp position from the parameter space

{φi−1 ± δφ, αi−1 ± δα} and the corresponding inverse kine-

matics parametrized by {θi−1 − δθ, θi−1, θi−1 + δθ}. Let P

represent the full space of the variables φ, α, and θ. The

algorithm iteratively updates these parameters by determining

which tuple leads to the maximum manipulability [19]. This

is realized by solving for the following objective

qi = argmax
{φ,α,θ}∈P

√

det(J(q)JT (q)) (4)

where q = IK(pose(φ, α), θ). The sequence in Fig. 7 shows

several snapshots during this optimization. In this scenario,

the robot grasps a rotationally symmetric bottle. The initial

random grasp sample in Fig. 7a yields a manipulability of

0.268 which is then improved in Fig. 7d leading to a value of

0.540. To optimize the manipulability, the planner iteratively

changes the grasp position on the robot with the φ and

α parameters, and the inverse kinematics parameter θ. This

optimization can be performed efficiently since, the high-

dimensional configuration space of the hand does not need

to be represented thanks to the extracted symmetries. Instead,

a three-dimensional space of parameters {φ, α, θ} ∈ P is used.

V. EXPERIMENTAL RESULTS

In this section, we present a set of experiments which

we conducted to evaluate the proposed approach. The first

set of experiments focuses on the complexity and accuracy

of point cloud completion when generating compact object

representations. The second set of experiments shows the

application of the approach to grasp planning on a humanoid

robot. The used humanoid robot is based on Schunk LWA3

arms with 7 DoF. A Schunk gripper with a maximum aperture

of 7cm was used. Partial point clouds were recorded using a

Microsoft Kinect camera.

A. Accuracy of Fit

We first analyzed the accuracy of fit of the two presented

compact object representations. For extrusions, we collected a

set of rotationally symmetric meshes from internet databases

from which we generated partial point clouds. We then cut

out a partial point cloud representing 30% of the data and

simulated Kinect-like noise by adding holes and noise to

the dataset. The partial cloud was then completed using the

extrusion detection methods from Sec. III-B. To measure the

accuracy, we compared the completed clouds to the original

mesh of the object. On average, the approach produced an

error (distance of points to mesh) of 2mm, where objects had

a diameter between 10 − 20cm. Analysis of the extrusions

required on average 200ms.

For superquadric fitting we conducted a similar experiment.

However, in this case we noticed larger variations in the

reconstructed shapes depending on the perspective of the

camera to the object. We therefore placed each object at one

of five different locations in front of the camera and measured

the run time of the algorithm including symmetry analysis and

without it. As depicted in Tab. I, the fitting time is shorter when

additional points are added via symmetry analysis. While this

3706

76CHAPTER 6. EXP. SYMMETRIES AND EXTRUSIONS FOR GRASPING HOUSEHOLD OBJS.

Fig. 7: Grasp manipulability optimization along the axis of extrusion. Since the object is symmetric, the same hand configuration

can be rotated around the object (A-B, C-D). At the same time, the extra DOF in the inverse kinematics solution is also utilized

to maximize manipulability (B-C).

may seem unintuitive, we found that the superquadric shape

has more constraints when considering mirrored points. As

a result, the optimization process required for fitting quickly

settles on a good solution.

TABLE I: Comparison of fitting times

Object Input P1 P2 P3 P4 P5 Avg. Time

Apple
Symmetry 0.02 0.13 0.01 0.06 0.07 0.05s

Plain 0.14 0.17 0.06 0.06 0.06 0.098s

Milk
Symmetry 0.20 0.07 0.03 0.05 0.04 0.078s

Plain 0.42 0.56 0.27 0.53 0.06 0.368s

Jam
Symmetry 0.06 0.11 0.13 0.08 0.21 0.118s

Plain 0.08 0.29 0.10 0.08 0.11 0.132s

Raisins
Symmetry 0.29 0.25 0.31 0.14 0.27 0.252s

Plain 0.36 0.40 0.43 0.43 0.32 0.388s

Creamer
Symmetry 0.15 0.15 0.22 0.13 0.14 0.158s

Plain 0.65 0.09 0.39 0.26 0.29 0.336s

B. Robot Grasping Experiments

Next, we conducted an experiment in which a humanoid

robot was used to grasp household objects located in front of

it. We also placed several other objects as clutter on the table.

Given the depth image all objects were reconstructed using

compact object representations. After that, the robot planned

and executed grasps using the normal at a point as an approach

direction and the method described in Sec. IV for ensuring

manipulability and obstacle avoidance. We conducted trials

with 4 objects which were placed at 4 different locations on

the table. Each trial was repeated three times. A grasp was

regarded successful if the robot was able to lift the object.

Tab. II summarizes the results of the experiment. We can see

that the approach using superquadrics performs well on most

objects with the exeption of the roll. In contrast, the extrusion-

based approach seems to have difficulties with a specific

location (C3). Analyzing the robot executions, we found that

superquadric approach typically leads to approximate shapes

which are slightly larger than the original object. Hence,

the executed grasp includes a ”buffer” zone that allows it

to succeed in the presence of sensor and calibration noise.

Grasps planned for the shapes generated by the symmetry

detection, however, are tighly fit to the object. This often lead

to premature contact with the object during grasp execution.

In Tab. II we also see the number of different grasps found

using the two approaches. We can see that the symmetry based

approach leads to a larger number of different grasps, due

to the invariance along the axis of extrusion. Images of the

executed grasp and the experimental setup can be found in

Fig. 8.

TABLE II: Experimental results, 3 trials per object per location

Location Creamer Dove Roll Micro

Success

Extrusion

B4 100% 100% 0% 100%

C3 0% 0% 0% 0%

C4 100% 100% 100% 100%

SQ

B4 100% 100% 0% 100%

C3 100% 100% 66% 100%

C4 100% 100% 0% 100%

Grasps

Extrusion

B4 1040 900 1200 640

C3 800 400 2200 800

C4 1270 320 800 1020

SQ

B4 11 11 7 11

C3 7 3 1 7

C4 10 5 5 13

VI. DISCUSSION AND CONCLUSION

In this paper we introduced methods for generating compact

and complete object representations that are particularly useful

for robot grasping applications. The approach exploits natural

patterns found in many shapes, e.g., symmetries, linear extru-

sions, and rotational extrusions to generate a complete mesh

from a single depth image. We also showed that the extraction

of this information can be used to improve the efficiency and

quality of the grasp planning step. The work presented in

this paper can be seen as a first step towards shape priors

that can be used by a robot to generate hypotheses about the

shape of an object in invisible regions. Other cues, such as

curvature and texture may also be helpful in predicting the

complete shape from partial observations. At the moment the

introduced approach is limited to household objects, which

are often based on linear and rotational extrusions. However,

it can also be extended to work in a hierarchy to complete

more complex objects. In future work, we hope to investigate

this aspect in more detail.

The performed robot experiments showed that the approach

can be used to create a variety of grasps. In particular, we

can generate grasps that extend to parts of the object that are

not seen. This is in contrast to other methods which limit the

approach direction of the robot to the visible part of the object.

We have shown in the experiments that the method can be

used to reconstruct objects in a cluttered scene without prior

3707

77

Fig. 8: Grasps on household objects generated via grasp planning on compact object representations. All objects on the table

were reconstructed. Objects that were not grasps were regarded as obstacles to be avoided during the manipulation task.

information. Yet, the additional information gained by creating

complete meshes also imposes additional requirements on the

accuracy of the robot controller. Planning grasps with more

accurate reconstructions of the observed object means that the

robot needs to be very precise in the task execution. So far,

we do not have a model of the inherent sensor and actuation

noise. We hope to investigate Bayesian approaches to object

fitting, which would allow us to use information about the

uncertainty during task execution.

ACKNOWLEDGMENTS

This work is dedicated to the memory of Mike Stilman,

whose enthusiasm for making robots do cool things will

always be remembered.

REFERENCES

[1] R. Balasubramanian, L. Xu, P. D. Brook, J.R. Smith, and Y. Matsuoka.
Human-guided grasp measures improve grasp robustness on physical
robot. In IEEE Int. Conf. on Robotics and Automation (ICRA), 2010.

[2] G. Biegelbauer and M. Vincze. Efficient ”3d” object detection by fitting
superquadrics to range image data for robot’s object manipulation. In
IEEE Int. Conf. on Robotics and Automation (ICRA), 2007.

[3] J. Bohg, M. Johnson-Roberson, B. León, J. Felip, X. Gratal,
N. Bergstrom, D. Kragic, and A. Morales. Mind the gap: Robotic
grasping under incomplete observation. In IEEE Int. Conf. on Robotics

and Automation (ICRA), 2011.
[4] R. Diankov. Automated Construction of Robotic Manipulation Pro-

grams. PhD thesis, Robotics Institute, Carnegie Mellon University, 2010.
[5] K. Duncan, S. Sarkar, R. Alqasemi, and R. Dubey. Multi-scale

superquadric fitting for efficient shape and pose recovery of unknown
objects. In IEEE Int. Conf. on Robotics and Automation (ICRA), 2013.

[6] C. Ferrari and J. Canny. Planning optimal grasps. In IEEE Int. Conf.

on Robotics and Automation (ICRA), 1992.
[7] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm

for model fitting with applications to image analysis and automated
cartography. Communications of the ACM, 1981.

[8] C. Goldfeder and P. Allen. Data-driven grasping. Autonomous Robots,
2011.

[9] C. Goldfeder, P. Allen, C. Lackner, and R. Pelossof. Grasp planning via
decomposition trees. In IEEE Int. Conf. on Robotics and Automation

(ICRA), 2007.
[10] K. Hsiao, S. Chitta, M. Ciocarlie, and E. Jones. Contact-reactive

grasping of objects with partial shape information. In IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems (IROS), 2010.
[11] K. Huebner and D. Kragic. Selection of robot pre-grasps using box-

based shape approximation. In IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems (IROS), 2008.
[12] Y. Jiang, S. Moseson, and A. Saxena. Efficient grasping from rgbd

images: Learning using a new rectangle representation. In IEEE Int.

Conf. on Robotics and Automation (ICRA), 2011.
[13] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction.

In Proc. of the Fourth Eurographics Symposium on Geometry Process-

ing, 2006.

[14] U. Klank, D. Pangercic, R.B. Rusu, and M. Beetz. Real-time cad model
matching for mobile manipulation and grasping. In 9th IEEE-RAS Int.

Conf. on Humanoid Robots (Humanoids), 2009.
[15] D. Kragic, A. Miller, and P. Allen. Real-time tracking meets online grasp

planning. In IEEE Int. Conf. on Robotics and Automation (ICRA), 2001.
[16] O. Kroemer, H. Ben Amor, M. Ewerton, and J. Peters. Point cloud com-

pletion using extrusions. In Int. Conf. on Humanoid Robots(Humanoids),
2012.

[17] A. Miller, S. Knoop, H. I. Christensen, and P. Allen. Automatic grasp
planning using shape primitives. In IEEE Int. Conf. on Robotics and

Automation (ICRA), 2003.
[18] Niloy J. Mitra, Leonidas J. Guibas, and Mark Pauly. Partial and

approximate symmetry detection for 3d geometry. In ACM SIGGRAPH

2006 Papers, SIGGRAPH ’06, pages 560–568, New York, NY, USA,
2006. ACM.

[19] Y. Nakamura and H. Hanafusa. Inverse kinematic solutions with
singularity robustness for robot manipulator control. Journal of dynamic

systems, measurement and control, 1986.
[20] E. Parzen. On estimation of a probability density function and mode.

The Annals of Mathematical Statistics, 1962.
[21] M. Przybylski, T. Asfour, and R. Dillmann. Unions of balls for shape

approximation in robot grasping. In IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems (IROS), 2010.
[22] F. Solina and R. Bajcsy. Recovery of parametric models from range

images: The case for superquadrics with global deformations. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 1990.
[23] D. Yuret and M. de la Maza. Dynamic hill climbing: Overcoming the

limitations of optimization techniques. In Second Turkish Symposium

on Artificial Intelligence and Neural Networks, 1993.

3708

78CHAPTER 6. EXP. SYMMETRIES AND EXTRUSIONS FOR GRASPING HOUSEHOLD OBJS.

Chapter 7

SPAM for a Manipulator by BNM in
Unknown Environments

79

Simultaneous Planning and Mapping (SPAM) for a Manipulator by
Best Next Move in Unknown Environments

Dugan Um1, Marco A. Gutiérrez2, Pablo Bustos2 and Sungchul Kang3

Abstract— In this paper, we propose a SPAM (Simultaneous
Planning and Mapping) technique for a manipulator type robot
working in an uncertain environment via a Best Next Move
algorithm. Demands for a smart decision to move a manipulator
such as humanoid arms in uncertain or crowded environments
call for a simultaneous planning and mapping technique. We
assume no a priori knowledge of either the obstacles or the
rest of the environment exits. For rapid map building and
path planning, we use a skin type setup based on 3D depth
camera sensors that completely encompass the entire body of a
manipulator. The 3D sensors capture the point clouds used to
create an instantaneous c-space map whereby a Best Next Move
algorithm directs the motion of the manipulator. The Best Next
Move algorithm utilizes the gradient of the density distribution
of the k-nearest-neighborhood sets in c-space. It has tendency
to travel along the direction by which the point clouds spread
in space, thus rendering faster mapping of c-space obstacles.

The proposed algorithm is compared with several sensor
based algorithms for performance measurement such as map
completion rate, distribution of samples, total nodes, etc. Some
improved performances are reported for the proposed algo-
rithm. Several possible applications include semi-autonomous
tele-robotics planning, humanoid arm path planning, among
others.

I. INTRODUCTION

Motion planning in unknown environments is a chal-
lenging problem in path planning. Sensor based approaches
have been the dominant trends in the study of unknown
environment planning for decades. When it comes to un-
known environment planning, a planner calls for continuous
perception and planning, thereby closing the loop between
sensation and actuation. Due to the limited sensing distance
of most of the depth sensor or visual occlusion, only the
local area is known to the robot for local path planning. No
optimum global path generation idea is reported so far due to
the uncertainty innate by an unknown environment. However,
if a planner can produce a global map rapidly, optimum path
planning is feasible in unknown environment.

Sequential mapping of a local area and path planning is
a natural step for sensor based motion planning. In [1], a
novel framework for an unknown environment path planning
of a manipulator type robot is proposed. The framework
described in [1] is a sensor based planner composed of a
sequence of multiple MBPs (Model Based Planners) in the

1D. Um is with Texas A&M University Corpus Christi, USA
dugan.um at tamucc.edu

2 M. A. Gutiérrez and P. Bustos are with Robolab, University of
Extremadura, Spain marcog at unex.es

3S. Kang is with Korea Institute of Science and Technology (KIST)
kasch at kist.re.kr

Fig. 1. IPA sensor installation on a three Degrees Of Freedom (3-DOF)
robotic linkage

notion of cognitive planning using realtime rehearsal. C-
space Entropy is examined in [2] for planning and explo-
ration for a robot with an eye-in-hand sensor system. Natural
planning and expanding steps of the c-space is repeated
in the paper for an unknown environment path planning
algorithm. However, the eye-in-hand sensor has limitation
in reporting collision or c-space mapping in realtime due to
visual occlusion.

Other studies in sensor based planning of manipulators
include [3] whereby an avoidance ability of a redundant
manipulator is studied with a moving camera on the ceiling.
In [4], trajectory planning for a redundant mobile manip-
ulator is studied using avoidance manipulability concept.
Manipulability is the point of study for best path selection
in multiple available configurations with singularity and
manipulability ellipsoid. In [5] and [6], kinematic analysis in
local or global motion planning for a manipulator has been
studied in the notion of singularity for a redundant robot
as well. Topological analysis in conjunction with singularity
concern for a redundant manipulator is dealt with the study
on critical point surfaces in configuration space. In summary,
the result in the paper implies that a manipulator has to stay
in a continuous c-sheet to avoid singularity, which means that
a motion planning with inverse kinematic concern is neither
robust nor efficient due to the limited utility of a given c-
space.

As a result, majority of the manipulator planning schemes
we investigated are either hindered by the sensor configu-
ration or by motion constraints for a realtime manipulator
motion planning especially for a crowded unknown envi-
ronments. More flexible sensor configurations for maximum

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6358-7/$31.00 ©2013 Crown 5273

coverage in conjunction with a supportive planning algorithm
is, therefore, in essential need.

To that end, we propose a skin type sensor made out
of cameras with 3D depth sensing capability to tackle an
unknown environment manipulator motion planning problem
(see 1 for a 3-DOF robot example). Our approach is a
probabilistic path planning with Simultaneous Planning and
Mapping, thus SPAM. For rapid map building and path plan-
ning, we use the skin type sensors that completely encompass
the entire body of a manipulator. Such sensor can generate
realtime point clouds of obstacles from any posture of the
robot; thereby a realtime local c-space construction becomes
feasible. However, an appropriate guidance algorithm of the
robot in global motion planning is of utmost importance for
maximum exploration and convergence capability. To that
end, we envision a 3D point cloud registration method a
possible guidance algorithm for manipulatorś motion.

3D point cloud registration calls for various descriptors for
object recognition [7]. We take advantage of such registration
processes to propose a guidance method of a manipulator in
a partially constructed c-space environment. Amongst many
registration methods, is the Group Averaging Features, an
invariant feature for point cloud registration [8], in which a
gradient of the density distribution is used to log essential
points for 3D shape identification.

We discuss rationale of why and how we utilize the steps
of the invariant feature extraction method for sensor based
motion planning in Section II. We discuss results of the
comparison between simulations of the proposed algorithm
and another sensor based planning algorithm in Section III.
Map completion rate, distribution of samples, and total nodes
are measured for comparison. Section IV shows a real device
used to validate the proposed method. Finally in section
V improved performances are reported for the proposed
algorithm along with some lines of interesting future work.

II. BEST NEXT MOVE PLANNER

Due to the higher order complexity of the manipulator type
robot path planning, probabilistic sampling based search is
common in general. Several sampling based path planners
are reported to be a complete planner so that they either find
a path or terminate otherwise. Manipulator path planning in
unknown environment, however, is challenging in that neither
the path optimality nor the plannerś completeness can be
guaranteed.

Gradual but rapid construction of the c-space map, if
feasible, allows a planner to complete a mission in path
search with higher probability. C-space mapping especially
in a crowded environment is the most daunting task in manip-
ulator path planning though. In [9], Best Next View (BNV)
in conjunction with a sensor-based roadmap planner is used
for object mapping in unknown environment. Utilization of
BNV in the object recognition in an unknown environment
is through the concept of detecting key events in the set of
range data such as discontinuity of the range data in the
scene. These key events are used to drive the global motion

of the manipulator to reduce the ignorance level of the given
workspace.

Similarly, we propose the Best Next Move algorithm as
a guidance strategy of the robotś global motion in uncertain
environment. By the BNM algorithm, the local motion in
each step is designed to reveal the maximum environmental
map possible. We use the point cloud registration scheme
in [8] as the best next move strategy since it calls for rapid
point cloud identification and collection of a 3D shape.

When it comes to unknown environment manipulator mo-
tion planning, two subjects have to be addressed in parallel:
map construction and navigation for convergence. We con-
sider map construction and goal convergence as two separate
tasks for unknown environment manipulator planning. The
more complete c-space map a planner generates, the better
chance of convergence to the goal achieved. To that end,
objectives of motion strategy are set such that:

1) Rapid map construction stage: steering global motion
to build a maximum environment map

2) Goal convergence stage: achieving search complete-
ness

For the first objective we propose a combinatory motion
planning of sampling based search and the point cloud
registration inspired approach to determine the Best Next
Move (BNM) of the global motion. Best Next Move is the
direction possibly to collect maximum information of c-space
obstacles.

Group Average Feature (GAF) method, one of the 3D
point cloud registration methods is designed to search point
cloud sets to register the uniqueness of a 3D object as on
[8]. With the sensitive skin type sensor, we can construct
a workspace of the robot in realtime and map out the c-
space obstacle instantaneously. That workspace will then
correspond to the point cloud data obtained by the collision
shield developed around the robotic manipulator at a certain
point of time. First we collect point cloud data by 3D depth
sensors attached on the manipulator.

In order to maximize the benefit of the GAF point cloud
registration scheme, we propose a directional navigation of
the point automaton in c-space similar to the kernel function
to extract features. To that end, for a given Pc (workspace
point cloud) at an instance, we propose a virtual c-space
sensor model with which, the point automaton in c-space
senses c-space obstacles. The virtual sensor in c-space is
assumed to have a sensing range, r, and FOV (Field of View),
θ , thus it forms a hyper conical sensing range in n-DOF c-
space (see Figure 2).

The sensitive skin-setup of sensors covers the entire body
of a manipulator, meaning that we can obtain 3D point data
all around the robot manipulator. Thanks to that, a collision
shield is formed and point clouds of all the obstacles in the
workspace at a time t will be collected such that:

Pt
s :=

{
pi

j ∈ R| j = 1, ...,N
}

(1)

where, pi
j is the point cloud from sensor j situated at

5274

81

Fig. 2. Algorithm 1&2 at a glance

link i, R is the workspace, N is the total number of point
clouds collected by all sensors. Therefore Ps constitutes the
set of all point clouds obtained by the robotic manipulator
installed sensors at time t. For a given set of joint space
variables θ1,θ2, ...,θn, that define a certain configuration
of the manipulator, the forward kinematic model provides
transformation matrix such that:

Ti =

[
Ri ti
0 1

]
(2)

where, Ri is the rotational matrix and t i is the translational
vector for each ith link respectively. Then by the forward
kinematics, Pt

w , the point cloud of the collision shield at a
certain time t in the workspace coordinate, becomes:

Pt
w =

N⋃
j

pi
j ∗Ti (3)

Finally, Pt
w becomes the set of points formed by all the

points from the sensors point clouds at time t translated
and rotated by its corresponding ith link Ti matrix to the
workspace generic coordinates. An example of this in a two
link manipulator is shown at Figure 3

For a given point cloud set, Pt
w, at an instance, we create a

local c-space map in realtime using RRT (Rapid expanding
Random Tree), one of probabilistic sampling algorithm, such
that Pt

w
RRT→ Pc, so that:

Pc :=
{

pn ∈Ck|n = 1, ...,M
}

(4)

where, C is the c-space for the robot, k the degree of freedom
of the c-space, and M is the number of point clouds produced
by the mapping process.

Now we define an ‘intensity function’ X : Ck → C indi-
cating the presence of the point in c-space. We choose to

Fig. 3. Two link manipulator showing the relationship between the set of
point clouds Pt

s and the final resulting one, Pt
w

represent the point set Pc as the sum of overlapping Gaussian
distributions. The function X at point p ∈ Pc is defined as:

X(p) = ∑
i

exp
−
(
‖pi−p‖

σG

)2

(5)

The gradient of the X is then:

OX(p) =
−2
σ2

G
∑

i
(pi− p)exp

−
(
‖pi−p‖

σG

)
(6)

To get an intuition for the meaning of the density gradient,
please refer to [8]. For point cloud registration, they further
develop kernel functions for object identification. We use
the most dominant gradient vector as a guidance to direct
the global motion of the point automaton in c-space. Then
the planner will steer the point automaton along the most
dominant gradient to maximize exploration capability, thus
rapidly searches c-space obstacles. The planner may look
similar to potential field planner because it steers the robot
along the gradient of the cloud density. However, it is
different in that it does not always move away from the
obstacle, but it has tendency to travel along the direction by
which the point clouds spread in space, thus faster mapping
of c-space obstacles possible.

The point cloud data, then, becomes following:

pi = [xi,yi,zi,OXi]
T (7)

Total framework of the proposed SPAM cycle is shown in
Figure 4. Note that no inverse kinematic solution is necessary
for the planner, thus the algorithm is simple and robust.
Detail algorithm of c-space mapping is shown in Algorithm
1.

σd in Algorithm 1 is the Standard Distance Distribution
as shown in Equation 8. Λn, occupied c-space or a collection
of c-space point clouds at step n will be added to the c-space
point clouds, Pn

c , at the end of each mapping loop.

5275

82CHAPTER 7. SPAM FOR A MANIPULATOR BY BNM IN UNKNOWN ENVIRONMENTS

Algorithm 1: c-space mapping
// Initialize RRT tree for expansion:
Λn←∅;
T n

RRT ←∅;
// workspace point clouds:
Pn

w← Pn−1
w ∪∑

n
i=1
(
Pi

s ·Ri + t i);
do while σd(Λn)> δΛ do

grow T n
RRT forward OXn(Pd);

pc← a branch grown from T n
RRT ;

// if robot collides with workspace
point cloud:

if BROBOT (pc)∩Pn
w 6= 0 then

// Collect c-space point cloud:
Λn← Λn∪ pc;
remove pc from T n

RRT ;
end

end
// Update c-space point cloud:
Pn

c = Pn−1
c ∪Λn;

return (Pn
c ,T n

RRT);

σd =

√
1
N

N

∑
i=1

(θi−θmean)2 (8)

Collision check takes place in the virtual workspace by
comparing BROBOT (Pc), the workspace occupied by the robot
model, and Pn

w, the point clouds of workspace obstacles.
Detail algorithm of Path planning is shown in Algorithm
2.

The condition of the while loop provides the search com-
pleteness of the algorithm via space filling. Search continues
until either the goal is found, or SDD of the free c-space is
too dense (< σT), thus no more exploration is meaningful.

Fig. 4. SPAM cycle

The SPAM cycle is composed of two parallel processes
with 5 main functions (See Figure 4). In c-space mapping,
main area of work is to convert the workspace point clouds
into c-space point clouds by RRT (Rapid growing Random
Tree). In a virtual environment, a robot will move by RRT
algorithm and whenever collision occurs with a point cloud,
the robotś configuration will be sampled and stored as a c-
space point cloud data. Based on the registered c-space point
clouds in the mapping process, the BNM path planner will
guide the robot to the direction obtained by the gradient of
the intensity function. Intuitive operation of the algorithm is

Algorithm 2: BNM path planning
qi← initial location for nth expansion;
TRRT ←∅;
Pc←∅;
do while σd(TRRT)> σT do

if min d(q.,Pc)< ε then
// a path has been found!
return success

else
// N: number of point cloud in Λn
for i← 1 to N do

OX(p)← −2
σ 2

G
∑i(pi− p)exp

−
(
‖pi−p‖

σG

)2

;
end
OXn(pd)← OXn(p)|minp∈Λn d(qi,Λn);

end
if ‖qi+1−qi‖< ε then

// jump to a new free conf with min
density distribution

qi+1 = q|minq∈C f X(q);
else

// initial location for next expansion
qi+1 = q|maxq∈Λn d1(q,qi);

end
call Algorithm1();
// Update RRT Tree
TRRT ← TRRT ∪T n

RRT ;
Pc← Pc

⋃
Pn

c ;
end

shown in Figure 3. As shown in Figure 3, the BNM algorithm
has a tendency of directing the point automaton to glide along
the surface of c-space objects. This tendency allows rapid
search of an object surface so that a systematic unknown
environment explorations is feasible.

III. SIMULATION RESULTS

In order to test the proposed algorithm, we setup a 2 DOF
revolutionary link robot as a testbed for simulation. Two
algorithms are tested for comparison: Sensor-based RRT (see
[1] for more detail) and BNM algorithm, introduced in this
paper. Using the algroithms the system will try to find a
path in an unknown environment with different obstacles in
order to reach a certain target. The same sensor model and
workspace configurations are applied on both algorithms.

Figures 5(a) and 5(b) show the result of the path search for
RTT and BNM respectively. The steps that the robot makes
in the different algorithms is shown figures 6(a) and 6(b).
For 30 runs of each simulation some statistics are shared
in table 1. Total search time is the time in seconds from
the beginning to the end of the search operation. No. of Pc
stands for the total number of c-space point clouds generated
during the search period. The Mapping efficiency in Table 1
is a measure of how efficiently the algorithm generates the
c-space map of a given environment. This measure is useful
and important since rapid and complete map generation is the
key strategy in SPAM in unknown environments. The more
information we obtain about the unknown environment, the
better the planner can plan a path converging to the goal

5276

83

(a)

(b)
Fig. 5. a) Sensor-based RRT algorithm; b) Sensor-Based BNM algorithm.
Each red dot reperesent a point cloud obtained by the 3D sensors.

point. We define the mapping efficiency such that:

Mapping e f f iciency =
% o f map built

No. o f point clouds in cspace
(9)

With the sensor-based RRT algorithm, about 45% of the
c-space map is constructed upon termination, see figure 5(a)
for a visual overview and table I for quantified data. Figure
6(a) shows the different positions the robot takes following
the RRT algorithm. As milestone in workspace reveals, in
the latter figure, overlapping occurs densely in certain areas.

To the contrary, in the second test, BNM algorithm demon-
strated about 82% of the c-space construction before the
termination (see figure 5(b) and table I). In the magnified
window on the right, one can see the red dots that depict 12th
k-nearest neighborhood by which the surface of the c-space
obstacle is identified. If the window is carefully examined,
there are two vectors that show the directions of the gradient
of density function. Figure 6(a) shows the milestones in
workspace for the robot. You can appreciate that they are
more evenly distributed over the entire workspace as a result.

As a summary, overall search time of the sensor-based

(a)

(b)
Fig. 6. Milestones in workspace for robot movement by Sensor based: a)
RRT algorithm; b) BNM algorithm. Position in blue is the starting postion
while the black one is the final position, in which the robot reaches the target.
Black dots are the obstacles randomly placed in the unknown environment.

TABLE I
SIMULATION RESULTS

Algorithm Total time No. of Pc Mapping efficiency
S-RRT 6205 sec. 1201 45%
BNM 3134 sec. 1144 82%

RRT planner is about twice as much as that of the BNM
algorithm. Another thing noticeable, upon the completion of
the path search, is the rate of environmental map completion.
If you look at figure 5(a) and figure 5(b) for comparison,
significantly more environmental map is revealed by the
BNM algorithm compared to that of Realtime-RRT planner.

IV. EXPERIMENTS

Two IPA sensors (see [10]) are installed on a manipulator
type robot to generate a collision shield around it follow-
ing the skin type sensor setup (Figure 1). Transformation
matrices for local coordinates to the global coordinate for
each camera configuration have been setup using Equation
1. The robot tries to reach an object, set as goal, through the
unknown environment where an obstacle (a big white box)
has ben placed. In Figure 7, the robot stops and takes depth
map from each sensor, by which a workspace point cloud

5277

84CHAPTER 7. SPAM FOR A MANIPULATOR BY BNM IN UNKNOWN ENVIRONMENTS

Fig. 7. Point cloud registration with depth data from sensor #1 and sensor
#2

is generated. With the point cloud map, BNM kicks in to
generate a c-space point cloud map as shown in Figure 8.
Now the robot is guided along the intensity gradient for the
next step generating the maximum environment map until it
reaches the goal point (Figure 9).

Fig. 8. C-Space point cloud registration by RRT expansion + path planning

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a SPAM (Simultaneous Plan-
ning and Mapping) technique for a manipulator type robot
working in an uncertain environment via a Best Next Move
algorithm. Motivation is in that better map construction
capability assures higher success ratio for the convergence
to the goal. BNM algorithm offers a means for SPAM of
the manipulator planning in uncertain environments thus
improving mapping and planning at the same time. For rapid
map building and path planning, we use a 3D depth camera
based skin type sensors setup that completely encompass
the entire body of a manipulator. Captured cloud points by
3D sensors create an instantaneous c-space map whereby a
Best Next Move algorithm guides the global motion of the
manipulator. We proposed mapping efficiency as a measure
of SPAM capability. The proposed BNM algorithm demon-
strated up to 82% mapping efficiency in average of 30 runs.
As shared in Table 1, BNM not only creates a c-space map
with higher mapping efficiency, but also it directs the point

Fig. 9. Robot reaches the goal via BNM algorithm

automaton to the goal twice as faster as the sensor based RRT
algorithm. We also implemented the BNM algorithm with a
sensitive skin sensor setup equipped two linkage manipulator
for verification in a real world. Realtime workspace point
cloud generation capability from 3D depth sensor data is
demonstrated for SPAM technique as well.

The need for the FOV of the camera to cover the entire
range of a link could be avoided. Further development of
the algorithm in order to make it able to work with less and
more spread sensors might end up in great improvements.

REFERENCES

[1] Dugan Um, Dongseok Ryu, “A Framework for Unknown Environment
Manipulator Motion Planning via Model Based Realtime Rehearsal,”
Journal of automation, Mobile Robotics & Intelligent Systems, vol. 5,
no. 1, 2011.

[2] Young Yu, Kamal Gupta, “C-space Entropy: A Measure for View Plan-
ning and Exploration for General Robot-Sensor Systems in Unknown
Environments,” Int. Journal of Robotics Research, Vol. 23, No. 12, pp.
1197-1223, Dec. 2, 2004.

[3] Keiji Kieda, Hiroshi Tanaka, Tong-xiao Zhang, “On-line Optimization
of Avoidance Ability for Redundant Manipulator,” Proc. of IEEE/RSJ
Int. Conf. on Intelligent Robotics and Systems, Oct, 9-15, 2006,
Beijing, China

[4] Ze Chu, Peng Cao, Yan-Ming Shao, Dong-Hai Qian, Xiang-Can Wang,
“Trajectory Planning for a Redundant Mobile Manipulator using
Avoidance Manipulability,” Proc. of IEEE Int. Conf. on Automation
and Logistics, Aug, 2009, Shenyang, China.

[5] Wang Qizhi, Xu De, “On the Kinematics Analysis and Motion
Planning of the Manipulator of a Mobile Robot,” Proc. on Chinese
Control and Decision Conference, 2011.

[6] Joel W. Burdick, “Global Kinematics for Manipulator Planning and
Control,” Proc. on Signals, Systems and Computers, vol. 2, pp. 1002-
1007, 1989.

[7] Paul J. Besl, Neil D. McKay, “A Method for Registration of 3-
D Shapes,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, No.2, pp. 239-255, Feb., 1992.

[8] Maja Temerinac, Marco Reisert, Hans Burkhardt, “Invariant Features
for Searching in Protein Fold Databases,” International Journal of
Computer Mathematics, Vol. 84, No. 5, pp 635-651.2007.

[9] Liila Torbi, Kamal Gupta, “Integrated View and Path Planning for
an Autonomous six-DOF Eye-in-hand Object Modeling System,”
IEEE/RSJ Int. Conf. on Intelligent Robots an Systems, Oct. 2010,
Taipei, Taiwan.

[10] Dugan Um, Dongsuk Ryu, MyungJoon Kal, “Multiple Intensity Dif-
ferentiation for 3D Surface Reconstruction with Mono-Vision Infrared
Proximity Array Sensor,”IEEE Sensors Journal, vol. 11, no. 12, pp
3352-3358, Jun, 2011.

5278

85

86CHAPTER 7. SPAM FOR A MANIPULATOR BY BNM IN UNKNOWN ENVIRONMENTS

Chapter 8

Perceptive Parallel Processes.
Coordinating Geometry and Texture

87

Perceptive Parallel Processes Coordinating Geometry and Texture

Marco A. Gutierrez1, Rafael E. Banchs2 and Luis F. D'Haro2

Abstract— Finding and classifying specific objects is a key
part in most of the tasks autonomous systems could face.
Properly being able to reach objects and find their exact
location is very important for successfully achieving higher
level robotic behaviors. To perform full object detection and
recognition tasks in a wide environment several perception
approaches need to be brought together to achieve a good
performance. In this paper we present a dual parallel system
for object finding in wide environments. Our system implements
two main parts. One texture based approach for wide scenes,
composed by a Multimodal Deep Learning Neural Network
and a syntactic distribution based parser. And another specific
geometry based process, using three dimensional data and
geometry constrains to look for specific objects and their
position within a whole scene. Both systems run in parallel and
compliment each other to fulfill an object search and locate task.
The major contribution of this paper consists on the success
of combining texture and geometry based solutions running in
parallel and sharing information in real time to allow a full
generic solution to be able to find almost any present object
in a wide environment. To validate our system we test it with
real environment data injected into a simulated environment.
We test 25 tasks in a household environment obtaining a 92%
overall success rate finally delivering the correct position of the
object.

I. INTRODUCTION

Significant amount of work has been done in scene under-
standing from 2D images since the beginnings of computer
vision research, achieving significant results. Hand-designed
features such as SIFT [1], ORB [2] or HOG [3] underpin
many of these successful object recognition approaches.
They basically capture low-level textured information with
the difficulty on effectively capturing mid-level cues (like
edge intersections) or high-level representation (like dif-
ferent object parts). Recent developments in deep learning
based solutions have shown how hierarchies of features
can be learned in an unsupervised manner directly from
data. Learned features based solutions proved significant
improvements on object recognition and detection, achieving
some of them up to around 90% success rates on differ-
ent benchmark training/testing sets (i.e. The Pascal VOC
Challenge [4]). Recently even full semantical well structured
image descriptions are generated by the latest multimodal
neural language models [5]. Still when using 2D based scene
understanding a lot of valuable information about the shape
and geometric layout of objects is not considered. Adding

*This work was supported by by the A*STAR Research Attachment
Programme.

1Marco A. Gutiérrez is with the robotics and artificial vision laboratorio
(RoboLab), University of Extremadura, Spain marcog@unex.es

2Rafel E. Banchs and Luis F. D'Haro are with the HLT dept.,
I2R, A*STAR, Singapore. rembanchs@i2r.a-star.edu.sg,
luisdhe@i2r.a-star.edu.sg

Fig. 1. Our system combines the best of 2D and 3D data information
through to coordinated parallel process.

geometric information on these solutions could generally
improve their results as well as enrich the information they
deliver as an output.

On the other hand, 3D model based approaches make
easy to reason about a variety of properties from volumes,
3D distances and local convexities. Solutions focusing on
object shapes and geometric characteristics have had also
intense computer vision research focus, specially due to the
recent new range of inexpensive and fast RGB-D sensors
available in the market. 3D features such as FPFH [6] or
NARF [7] are some examples of robust features that describe
the local geometry around points for 3D point cloud datasets.
However 3D solutions have some drawbacks when dealing
with heavily clustered scenes or very general views of the
environment.

Although good solutions exist on both, image and point
cloud based approaches, when it comes to solving tasks in
real environments, a more generic approach to achieve a
solution for the problem is needed. Systems with a use of
both 2D images based solutions and 3D geometry aware
processes can provide a more generic purpose robotics
architecture with more reliable and rich information. Our
approach combines the rich information obtained from new
multimodal neural networ object classification techniques on
general 2D image scenes with a 3D geometric, distance and
shape aware process (figure 1). This allows us to minimize
the drawbacks of each of each approach with the strengths
of the other.

For the evaluation of our model we used a hybrid
simulation-real scenario. A simulator tool was used to man-

Workshop on Multimodal Semantics for Robotic Systems (MuSRobS)

IEEE/RSJ International Conference on Intelligent Robots and Systems 2015

30

age the robot movements around the environment while
sensor data was injected into the system from real scenario
captures. This allowed us to test our approach with real
environment data, since all perception information used as
an input for our application comes from real sensors. As a
result we obtain quite promising results on the object finding
tasks tested.

The remaining of the paper is organized as follows: in
section II we provide an overview of some related works.
Following section III gives a detailed general description
of the perception system. Section IV and V explain more
specific details regarding each of the two main processes, the
texture aware process and the geometry aware one respec-
tively. Finally we evaluate the system with an experiment
in section VI and give some conclusions and future lines of
work in section VII.

II. RELATED WORKS

There is a wide range of research in the area of scene
understanding and object recognition from 2D and point
cloud data. With RGB-D increased popularity, bringing an
easy to access way to RGB and depth data at the same time,
several researches have tried combining the two sources of
information.

Sensor fusion approaches are the most common ones, they
take both sources of data and combine them into one system
to improve performance. I.e. in [8] they associate groups of
pixels with 3D points into multimodal regions that they call
regionlets, then they measure the structure of each regionlet
using bottom-up cues from image and range features. This
way they are able to determine the scene structure separating
it into the meaningful parts discarding the background clutter.
Although they do not relay on any rigid assumptions about
the scene like we do (we consider objects are placed on
tables), the output provides a basic structure discovery over
a scene with detection of the main objects while our solution
solves a specific object search and locate task on a wider
environment.

The machine learning based approaches take features from
both depth and color data sources and combine them into
one multimodal space to perform later searches for a given
input. Koppula et al. [9] perform a labeling task on over-
segmented 3D RGBDSLAM sensed scenario. They build
a graphical model capturing 2D images information (local
color, texture, gradients of interests, etc.) as well as local
shape and geometry, and geometrical context (where object
most commonly lay to each other). This model then uses ap-
proximate inference and is trained using a maximum-margin
learning approach. They show the benefits of using image
and shape against separated solutions. Also, Lai et al [10]
present an RGB-D Object Dataset and evaluate some object
recognition and detection techniques. They combine 2D
SIFT descriptors with efficient match kernel (EMK) features
computed over spin images on randomly subsamples set of
3D points. These features are then used for the evaluation of
three classifiers: a linear support vector machine (LinSVM),
a gaussian kernel support vector machine (kSVM) and a

Fig. 2. Overview of the architecture of the perception system.

random forest (RF). The main difference with these works
is that they restrict the search to a certain scene while our
solution provides a framework to solve a find and locate an
object in an entire household environment.

The work on [11] combine high-resolution 3D laser sans
with 2D images to improve object detection. Their solution
relies in using a sliding window approach over a combination
of visual and depth channels and use those patches to train
a classifier. It solves the same problem as the one presented
here although they do not perform any optimization in terms
of the path to reach the object most probably leading to a
slower solution for an object search and location like the one
explained here.

Also in [12] they use binary logistic classifiers on 2D and
3D features. The 2D features are small patches selected from
images on a training set. They, then, compute 3D features
from distance from robot estimation, surface variation and
orientation and object dimensions. These features are then
learned by the classifier over two-split decision for each
object class. The difference with our solution is that they
learn multimodal models per object while here the rgb and
point cloud data are used by two different process and the
outcome combined in a final solution.

III. THE PERCEPTION SYSTEM

As shown in figure 2, the system's architecture has a
control manager for decisions and mediation among two
perception parallel process. This manager takes care of
the information shared between both processes and delivers
notifications according to them.

The texture aware perceptive process (showed in figure 2
in green) exploits 2D images information data. It runs a
multimodal neural language model as described in [13]
along with a syntactic frequency distribution based parser to
process and evaluate the neural network output. The second
one, the geometry aware perceptive process is exploiting the
geometric features of the environment. This one takes care
of two main tasks, looking for tables through the point cloud
data and segmenting tabletop setups, recognizing the object

Workshop on Multimodal Semantics for Robotic Systems (MuSRobS)

IEEE/RSJ International Conference on Intelligent Robots and Systems 2015

31

89

Fig. 3. Flow of the different states and process on the system.

and estimating its position through a shape and position
aware histogram based feature matching system.

Figure 3 describes the states and process of the system
for a certain object search and locate task. Green tasks are
performed by the texture aware perceptive process while the
ones in red belong to the geometry aware perceptive process.
A restriction the system assumes is that objects are placed
on tables. A simple task is given to the robot in the form of
“Look for the OBJECT”, and the object name is extracted
and passed to the texture aware perceptive process for the
“look for places to visit” step. A list of generic images for
each available place is stored in our database and evaluated
by this perceptive process. A frequency of appearance of
possible objects histogram is built for each place. Places
to visit are then ordered according to highest appearance
of label of the object on this output. Places with no object
appearances are left to visit last and ordered randomly.

Once the list of places to visit is ready, the robot visits
them in order. When the first place is reached both processes
start to work in parallel for the required object. The texture
aware perceptive process provides a frequency distribution
of objects on images taken from the current place while the
geometry aware one will start looking for tables on the scene
point cloud data. If the object is found in a scene image and
a table has been detected the robot will start moving towards

the table. Once a table is reached the texture aware perceptive
process keeps validating the appearance of this object in the
scene, then a tabletop segmentation process will be started by
the geometry aware perceptive process in order to segment,
recognize and locate the object.

If no object seems to be present when the tabletop segmen-
tation is performed, the robot continues with the next table
or with the next place in list if no more tables are available
in the current place. We will only conclude that we cannot
find an object once all places have been visited and no object
has been found.

IV. TEXTURE AWARE PERCEPTIVE PROCESS

This texture based perceptive process is intended to get
quick scene labeling from wide overviews of the environ-
ment. It contains a previously trained multimodal neural
model that outputs image descriptions. Then, taking into
account the top nearest descriptions in the model, a parser
extracts the object candidates and builds a frequency distri-
bution histogram on the appearances of these objects class
names. This frequency distribution histogram helps obtain a
more robust output against false positives as the objects that
are present in the scene tend to keep appearing with higher
frequency over time in the sentences while the false positives
have usually a much lower frequency.

A. Mulitmodal neural model

As previously mentioned the multimodal neural model
follows the structure in [13]. This is a neural model pipeline
that learns multimodal representations of images and text.
The pipeline uses a long short-term memory [14] (LSTM)
recurrent neural network for encoding sentences. We use a
convolutional network architecture provided by the Toronto
Convnet [15] in order to extract 4096 dimensional image
features for the neural model. These image features are
then projected into the embedding space of the LSTM
hidden states. A pairwise ranking loss is minimized in
order to learn to rank images and their descriptions. For
decoding, the structure-content neural language model (SC-
NLM) disentangles the structure of a sentence to its content,
conditioned on distributed representations produced by the
encoder. Finally, the output is generated by sampling from
the SC-NLM the image top descriptions.

B. Syntactic frequency distribution parser

After the system obtains the top scenes generated descrip-
tions, it extracts potential object classes from them, using a
syntactic parser. Using the Neural Language Toolkit [16] we
syntactically analyze the sentences to extract object candi-
dates that could be present in the image. A frequency dis-
tribution histogram is computed over this object candidates.
This histogram is then used to evaluate the believe that an
object is present in a scene, allowing us to compare different
scenes according to the probability of finding an object there
and therefore discriminate possible false positives.

Workshop on Multimodal Semantics for Robotic Systems (MuSRobS)

IEEE/RSJ International Conference on Intelligent Robots and Systems 2015

32

90CHAPTER 8. PERC. PARALLEL PROCS. COORDINATING GEOMETRY AND TEXTURE

Fig. 4. Tabletop segmentation and object recognition pipeline using point
cloud data.

V. GEOMETRY AWARE PERCEPTIVE PROCESS

This process exploits the geometry present in the envi-
ronment to extract a wide variety of information. For our
approach we have restricted the task of finding objects,
to objects placed on top of tables. Therefore this process
performs two main tasks, one is looking for tables in broad
scenes and another one consists on a tabletop segmentation
with shape based object recognition and pose estimation.

A. Looking for tables

We describe tables as planes that are parallel to the
floor and found at a height between 40 and 110 centime-
ters. Therefore, we use the RANdom SAmple Consensus
(RANSAC) [17] for plane model fitting in the scene point
cloud data with a previous downsample of 1cm. Using
this algorithms we recursively look for planes matching the
previously mentioned constrains and label them as tables.

B. Object recognition and pose estimation

The tabletop segmentation is used when a table is ap-
proached and in order to recognize the objects on top of it
as well as to estimate their final position.

In the first part, shown in figure 4.b, the RANSAC
algorithm provides us with the plane equation and the points
that match that equation. Since the RANSAC uses a threshold
to deal with sensor noise, points matching the model are
not in a perfect plane but within a certain range, so we first
project this points to fit the plane equation to obtain a perfect

Fig. 5. Example of one of the tabletop setup used in the experiment.

plane point cloud. Then we obtain the convex hull of these
plane point cloud and perform a bounding box on top of it
up to a certain high. Points within the bounding box are then
considered to correspond to objects sitting on top the table.
Then it is performed an euclidean clustering extraction to
segment the object candidates point clouds.

As the next step (figure 4.c) we compute these point clouds
Viewpoint Feature Histograms [18] (VFH) and look for the
nearest match in our database. For this database we have a
previously computed VFH of single views of objects. These
VFHs are stored and retrieved through fast approximate
K-Nearest Neighbors (KNN) searches using kd-trees [19].
The construction of the tree and the search of the nearest
neighbors places an equal weight on each histogram bin in
the VFH and spin images features.

Finally the system would check if any of the labels from
the objects correspond to the one we are looking for, see
figure 4.d, and call it a success or not.

VI. EXPERIMENT

We perform several experiments sending the robot to re-
trieve different objects in a wide household environment. For
the experiment an hybrid simulator-real data environment has
been used. We used the simulator for the robot movements
between places, while sensor data has been acquired with
real RGB and RGB-D cameras (i.e. the tabletop showed in
figure 5) and matched to the specific locations on the virtual
plane. When the robot needs to move around the simulator
takes care of it, once certain positions in the map are reached,
the previously obtained real data is injected and used as input
for the algorithms. The robot always starts at the entrance
of the apartment and from there performs the most optimal
way to find the object and delivers its estimated position as
a final result.

A. System setup

The LSTM encoder and SC-NLM decoder from the mul-
timodal neural model have been trained using a combina-
tion of the Flikr30k [20] dataset and the Microsoft COCO

Workshop on Multimodal Semantics for Robotic Systems (MuSRobS)

IEEE/RSJ International Conference on Intelligent Robots and Systems 2015

33

91

TABLE I
SUCCESS RATES ON THE DIFFERENT PARTS OF THE ALGORITHM

OBJECT 1. Places to visit Ordering 2. False Negative 3. False Positive 4. Success Rate

Cereal box 5 0 0 100%

Cup 5 0 1 80%

Bottle 5 0 1 80%

Laptop 5 0 0 100%

Monitor 5 0 0 100%

Overall rate 100% 0% 8% 92%

Fig. 6. An overview of the simulation household environment. The rooms
are labeled as follows: 1.- Entrance, 2.- Living room, 3.- Patio, 4.- Bathroom
5.- Hallway, 6.- Kitchen, 7.- Bedroom. Circled in yellow is the robot at its
starting point.

dataset [21]. The 4096 dimensional image features for the
multimodal neural model training are extracted using the
Toronto Convnet with their provided models. The frequency
histogram is built using the NLTK toolbox on the top 5
generated sentences over at least 5 frames, to achieve a
robustness on the objects observed. This NLTK tagging and
syntactic analysis is performed using the Treebank Part of
Speech Tagger (Maximum entropy) they have available. For
the rooms representation, images in the house 5 generic
different images of parts of a house are used for each
of the places in the house: entrance, room, kitchen, living
room, bathroom, patio and bedroom. This images have been
selected so they contain the usual set of items presents in

those rooms. For the point cloud analysis a kd-tree stores
3729 VFH from different views of 75 different objects.

All the system is developed using the RoboComp robotics
framework [22] and the simulation is performed in a virtual
scenario using the RoboComp simulator tool. See figure 6
for an overview of the simulation environment.

B. Results on the experiments

We run 5 different tasks 5 times and collect the results in
the table I. First we measure if the ordering of places to visit
after the “Look for places to visit” step in our system was
optimal (check figure 3 for details). This turned out to work
perfect for all of our test cases, basically because some of
the description pictures of the places contained those items
and the texture aware perceptive process was able to detect
them. It is important for this step to select a good range of
images representing the different places to visit (see figure 6),
specially those images that clearly show an average of the
objects you can usually find in those places.

Then we count the false negatives occurrences, this is
when we are done with the searching and no object was
found. Along our testing this never happened and an object
was always found. However we obtained two false positives
when the system mistaken a cup for a bottle and when a
bottle was mistaken for a bottle of glue. Those mistakes are
basically due to the similarity on these objects shape. We
could avoid this in the future reinforcing this step with other
object features. Specially since the objects to be found where
actually present in the table being segmented at the time.

The final success rate on obtaining the proper location of
the object and pose estimation is quite high which results
promising for further real applications of the system.

Workshop on Multimodal Semantics for Robotic Systems (MuSRobS)

IEEE/RSJ International Conference on Intelligent Robots and Systems 2015

34

92CHAPTER 8. PERC. PARALLEL PROCS. COORDINATING GEOMETRY AND TEXTURE

VII. CONLUSIONS AND FUTURE WORK

We presented a hybrid perception system that combines
2D data based solutions and approaches using point clouds
running in parallel and sharing information in real time in
order to achieve a finding object task. The system is able to
successfully predict a route through the places with higher
probability of finding this objects. We obtained a high rate
of success in our experiments as we only obtained two false
positives among all our test cases.

An interesting future work would be to perform further
testings with a wider range of objects. This could help
find some weak points on the system that we might have
not found yet and that should be worth to strength with
more processes interaction. In the same line and although
the sensor data used in the testing where taken from real
sensors, integrating the solution with a real robot could bring
a more accurate overview of how the system performs in real
environments.

False positives obtained during experiments are mainly be-
cause of a bad performance of the geometry aware perceptive
process. Since similarity on the shape of different objects
confuses the VFH search, exploiting texture based features
on this last step could most probably benefit the whole
system final output. Also, since we are using an euclidean
clustering extraction method for objects on top of the table,
our system cannot deal with heavy cluttered scenes or objects
touching each other. Adding alternatives to the segmentation
process could help improve this in order to cover a more
varied range of scenarios. It would be also desirable to avoid
the assumption that objects are always on tables, so we
should look into new ways of scene segmentation to improve
this step.

Finally adding a learning process in the system would
be an interesting enhancement, both parallel process could
complement each other, correcting each other mistakes and
providing the fixed mistake as a new source of learning,
leading to improvements in the following overall system
performances.

REFERENCES

[1] D.G. Lowe. Object recognition from local scale-invariant features.
In Computer Vision, 1999. The Proceedings of the Seventh IEEE
International Conference on, volume 2, pages 1150–1157 vol.2, 1999.

[2] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb:
An efficient alternative to sift or surf. In Proceedings of the 2011
International Conference on Computer Vision, ICCV ’11, pages 2564–
2571, Washington, DC, USA, 2011. IEEE Computer Society.

[3] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for
human detection. In Cordelia Schmid, Stefano Soatto, and Carlo
Tomasi, editors, International Conference on Computer Vision &
Pattern Recognition, volume 2, pages 886–893, INRIA Rhône-Alpes,
ZIRST-655, av. de l’Europe, Montbonnot-38334, June 2005.

[4] Mark Everingham, S.M.Ali Eslami, Luc Van Gool, ChristopherK.I.
Williams, John Winn, and Andrew Zisserman. The Pascal visual object
classes challenge: A retrospective. International Journal of Computer
Vision, 111(1):98–136, 2015.

[5] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Er-
han. Show and tell: A neural image caption generator. CoRR,
abs/1411.4555, 2014.

[6] R.B. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms
(fpfh) for 3d registration. In Robotics and Automation, 2009. ICRA
’09. IEEE International Conference on, pages 3212–3217, May 2009.

[7] Bastian Steder, Radu Bogdan, Rusu Kurt, and Konolige Wolfram
Burgard. Narf: 3d range image features for object recognition. In
Workshop on Defining and Solving Realistic Perception Problems in
Personal Robotics, Int. Conf. on Intelligent Robots and Systems, IROS
’11. IEEE Computer Society, 2010.

[8] Alvaro Collet, Siddhartha S. Srinivasa, and Martial Hebert. Structure
discovery in multi-modal data: A region-based approach. In ICRA,
pages 5695–5702. IEEE, 2011.

[9] Hema S Koppula, Abhishek Anand, Thorsten Joachims, and Ashutosh
Saxena. Semantic labeling of 3d point clouds for indoor scenes. In
Advances in Neural Information Processing Systems, pages 244–252,
2011.

[10] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-
scale hierarchical multi-view rgb-d object dataset. In Robotics and
Automation (ICRA), 2011 IEEE International Conference on, pages
1817–1824. IEEE, 2011.

[11] M. Quigley, Siddharth Batra, S. Gould, E. Klingbeil, Quoc Le, Ashley
Wellman, and A.Y. Ng. High-accuracy 3d sensing for mobile manip-
ulation: Improving object detection and door opening. In Robotics
and Automation, 2009. ICRA ’09. IEEE International Conference on,
pages 2816–2822, May 2009.

[12] Stephen Gould, Paul Baumstarck, Morgan Quigley, Andrew Y. Ng,
and Daphne Koller. Integrating Visual and Range Data for Robotic
Object Detection. In ECCV workshop on Multi-camera and Multi-
modal Sensor Fusion Algorithms and Applications (M2SFA2), 2008.

[13] Ryan Kiros, Ruslan Salakhutdinov, and Richard S. Zemel. Unifying
visual-semantic embeddings with multimodal neural language models.
CoRR, abs/1411.2539, 2014.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735–1780, November 1997.

[15] Toronto University. Convolutional Neural Nets. https://
torontodeeplearning.github.io/convnet/, 2015. [On-
line; accessed 04-March-2015].

[16] Steven Bird. Nltk: The natural language toolkit. In Proceedings
of the COLING/ACL on Interactive Presentation Sessions, COLING-
ACL ’06, pages 69–72, Stroudsburg, PA, USA, 2006. Association for
Computational Linguistics.

[17] Martin A. Fischler and Robert C. Bolles. Random sample consensus:
A paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM, 24(6):381–395, June 1981.

[18] R.B. Rusu, G. Bradski, R. Thibaux, and J. Hsu. Fast 3d recognition and
pose using the viewpoint feature histogram. In Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on, pages
2155–2162, Oct 2010.

[19] Marius Muja and David G. Lowe. Fast approximate nearest neighbors
with automatic algorithm configuration. In In VISAPP International
Conference on Computer Vision Theory and Applications, pages 331–
340, 2009.

[20] Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier.
From image descriptions to visual denotations: New similarity metrics
for semantic inference over event descriptions. Transactions of the
Association for Computational Linguistics, 2:67–78, 2014.

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft
COCO: common objects in context. CoRR, abs/1405.0312, 2014.

[22] P. Bustos Marco A. Gutiérrez, A. Romero-Garcés and J. Mart ńez.
Progress in robocomp. Journal of Physical Agents, 7(1), 2013.

Workshop on Multimodal Semantics for Robotic Systems (MuSRobS)

IEEE/RSJ International Conference on Intelligent Robots and Systems 2015

35

93

94CHAPTER 8. PERC. PARALLEL PROCS. COORDINATING GEOMETRY AND TEXTURE

Chapter 9

Integrating Planning Perception and
Action for Informed Object Search

95

Part II

Conclusions and Future Works

97

Chapter 10

Review and contributions

Throughout this thesis a system for object informed search using different planned perception
processes was researched. The different steps were carefully developed and tested to form
a complete system able to make a real robot deliver objects in a large household scenarios.
Several techniques were developed for each one of these steps that enhance current state of the
art and boost the performance of the robot in a complete search and find task. The goal of
this system is to make the robot able to fulfill requests from a human asking it to bring specific
objects in a large real environment. The contributions of this thesis were made, in their majority,
with a real robot in an apartment-like environment (the Shelly robot). The idea was to provide
robust solutions for each and everyone of the stages of the perception system.

Most of the perception processes that were used in the system have a cognitive connotation.
The system makes use of internal information of the robot in combination with the sensed data
when a search is performed in order to enhance the results. This is called informed search, as
it is an aided search that not only uses the data obtained by the sensors in the specific moment
of the search. Consequently, in this work, when the robot has to search for an object, it takes
advantage of its extra cognitive information. The robot combines information from its own
internal knowledge, acquired along its lifetime, with the information obtained from its sensors.
The use of prior information –the robot’s internal world model, which includes knowledge about
objects– is considered in every search and allows the robot to reduce search times.

The different steps of the cognitive perception were planned accordingly to the goal of the
task, the cognitive knowledge in the robot and the sensed data from the environment. An internal
world model in the robot was used to maintain an internal state of the surroundings, while
some extra information regarding perceptions was also stored through the form of embeddings.
Planning was made through the internal model but also taking into account information from
the embeddings and other extra sources such as sensor information. This helped maintain a
flexible set of stages that robustly guide the high level tasks of the robot, making it able to react
to unexpected situations and to deliver the requested item.

After the object is detected and reached, the exact location, along with some extra informa-
tion, is estimated for the final grasping. The object location is determined to let the robot know
where exactly is the target object. Some techniques were developed to improve the information
obtained from the object, such as volume or shape, in order to perform a final grasping move-
ment. Finally, a SPAM technique was proposed to help the robot arm find its way to the target
to grasp it and deliver it to the human.

Along the research conveyed in this work, several contributions to open source robotics and

99

100 CHAPTER 10. REVIEW AND CONTRIBUTIONS

perception projects took place. These contributions not only help improve the state of the art,
but, in the form of open source tools, help the research community allowing them to reuse the
work from this dissertation. These projects constitute an essential means for research, easing
the reuse of the algorithms, their improvement, deployment or even the development of new
ones. Most of the source code of these tools available through open source repositories along
with instructions and manuals for easy understanding.

The major contributions in software were made to RoboComp, as it was the main robotic
framework in almost all the works involved in this dissertation. Contributions were made to
its model-oriented design which helps building components through different Domain Specific
Languages (DSL). Efforts were also made in its set of libraries, tools and components that help
improve the robotics development cycle, specially on those related to perception.

OpenDetection was developed and improved as part of the work in this dissertation. It aims
to unify perception algorithms into one common interface to ease their use by roboticists. It
offers frame generators, trainers, detectors and detections. Frame generators are used to grab
the data from camera sensors (either RGB or RGBD). Trainers are used for those algorithms
that need training. Detectors are the ones performing the actual detection and the ones that
will produce, as an output, a certain detection. With this library a scene can now be easily
processed through different (trained or not) detectors and producing different detections through
a common API. All detections were structured in a similar way so they can be easy to compare
and or combine for enhanced results. In OpenDetection, algorithms for both 3D and 2D data
were integrated. It was designed to be easy to use and to reduce code complexity.

Some other minor contributions to robotics software were also developed and pub-
lished. A data grabber for IPA sensors [Um et al., 2011] was developed and integrated as
part of the Point Cloud Library. A perception pipeline was developed for a KUKA Om-
niRob [Shepherd and Buchstab, 2014]. Also some other perception developments were created
for the RoCKin robot challenge and are now integrated in the perception component layer of
RoboComp.

Chapter 11

Future works

Although a full setup of a delivery robot in a household environment was successfully achieved
with this dissertation, further work is still needed if we want to bring these solutions to real
world scenarios where constant changes are common. Even though through the real delivery
robot was deployed and tested in a real apartment, further exhaustive testing and debugging
is needed to make this application robust enough for a day to day usage. Some small and
specific autonomous robotic applications might be able to make it now to a final market product,
however, for most of the real high level ones there are still a lot of issues to improve.

Sensing is a field that has seen a lot of improvement in the last few years, specially with
the mass production of PrimeSense devices and the price drop of Velodyne 3D LIDAR sensors
after research efforts pushed by programmes such as the DARPA Challenge. However, further
research in this area is still needed as the sensors currently available are still not perfect. As
an example, PrimeSense devices have an average of 1 to 2 cm. of noise and LIDAR sensors
don’t work properly under rainy conditions or against some materials such as glass. These
drawbacks produce errors that propagate and make more difficult the whole perception process
for an autonomous robot.

Regarding the room modeling work presented here, a clear improvement would be the re-
laxation of the rectangle assumption. Although this assumption is true for most of the rooms
in indoor environments it is not true for all of them. Other structures can also appear when
working indoors such as corridors or stairs.

Selection of possible initial search spaces needs of prior information in the robot. Further
work using Internet based information retrieved through search engines or shared databases
(e.g., the RoboEarth project) can help improve this informed search step of the robot. Other
semantic relationship tools can also be tested in order to improve the reasoning on the semantic
information that different labels provide.

Even though the object detection, recognition and location techniques presented here
worked well for our delivery robot use case, they are hard to be directly extrapolated to other
high level tasks, specially if the objects used are completely different. These methods should be
expanded to cover more and different objects. They can also be improved to increase the suc-
cess rate. Cognitive interaction with the object detection process should be increased in order
to help the robot reason about the scene and reduce the possibility of failures.

Expanding the algorithms regarding shape retrieval can help cover more complex object
forms. It would be desirable to be able provide shape information on asymmetrical objects to
the grasping stage. Fitting generic meshes into objects shapes or breaking non symmetrical

101

102 CHAPTER 11. FUTURE WORKS

objects into their symmetrical parts could be a starting point in this direction. Extending the
use of cognitive information in this step can also be helpful to decide different approaches that
might improve the shape fitting process. Other cues, such as curvature and texture may also be
helpful in predicting the complete shape for single viewed objects.

The whole integration of the system can also be improved increasing the world details in-
cluded in internal model for a more accurate planning. Attention mechanisms can be added to
the system in order to make the robot actively look for objects while moving. This can improve
the speed of finding objects or can even enable the robot to look for more than one object at a
time. Finally, other and higher level tasks are also desirable, therefore integrating this “object
delivery task” into higher level ones would be a good improvement towards more intelligent
and autonomous robots.

Appendix A

Robotic Software Contributions

“There’s nothing sadder than a puppet
without a ghost, especially the kind with
red blood running through them.”

— Batô, Ghost in the Shell

A.1 The Needs of Specific Software for Robotics

The development of a complete autonomous robot is a very hard task that involves a challenging
intersection of numerous software and hardware modules. It comprises a wide range of disci-
plines that ranges from Electronics, Artificial Intelligence, Mechatronics, Software Develop-
ment, Computer Vision all the way to areas like Psychology, Neuroscience or even Philosophy.
The problems that are usually faced when carrying out the development of a complete robot
easily surpass the possible efforts of a single roboticist. Therefore development and integration
is usually accomplished by several people and more than usually involving different teams from
different research institutes. On top of that, the reuse of software is often needed to achieve a
full autonomous system in order to integrate state of the art developments from the different
fields involved in a robotś develepment.

Software complexity, from the developer point of view, is an important issue because scal-
ability decreases as complexity increases. When trying to implement heterogeneous robotics
solutions the complexity of the software involved increases by orders of magnitude as we add
new functionalities to the system. Dealing with this complexity aims for specific deploying,
management and testing tools that would help a roboticist achieve a smooth integration process.

Because of the nature and purpose of autonomous robotics solutions they are doomed to
share their environment of action with human beings. Robustness becomes a key asset in these
situations as unexpected or failure robot actions my not only change the outcome of a designated
task but end up with devastating consequences such as damages to the environment materials
or even harm to surrounding humans. Achieving robustness is not easy, specially when dealing
with state of the art solutions and the mentioned complexity that these systems bring. Tools
that can help perform heavy tests on the software and hardware modules are needed, like sim-
ulated environments where the software can be tested without real harm to surrounding when
unexpected situations happen.

103

104 APPENDIX A. ROBOTIC SOFTWARE CONTRIBUTIONS

Figure A.1: The third generation of the autonomous robot Shelly entirely constructed and de-
veloped at Robolab at the RoCKin Challenge 2014 in Tolouse, France.

Due to the big challenges that research on these fields arise more than often a single roboti-
cists research focuses on one of these fields. In the end different software modules that are
needed for the integration of one robot come in different programming languages or even tar-
geting different platforms. On top of that robots usually do not only have a unique computer ar-
chitecture but they integrate different types of hardware like from regular x86/ARM64 personal
computers , ARM based solutions (Like Raspberry Pi, Odroid, Cell Phones, etc.), arduinos or
even microcontrollers and specific hardware. Problems also arise when integrating third party
hardware in a robotic platform. Vendors may only provide support on certain platforms (The In-
tel Real Sense platform or Microsoft Kinnect 2 drivers are initially only provided for Windows
Operating Systems), therefore support for software modules written in different languages and
running on different platforms must be provided by the relying software.

Since the number of different architectures mentioned and the continuous upgrades a robot
suffers, hardware independence becomes a desirable feature. Minor changes to configuration
should be required to adapt existing software and allow reuse when changing the underliying
hardware. The Hardware Abstraction Layers that are usually included in the different robotics
frameworks are developed with the goal to achieve this hardware independence and allow the
reuse of software modules among different robots or when changes to hardware occur.

Since the high complexity of the software and the amount of different architectures a robot
holds it is also desirable to be able to distribute the execution of this software. Being able to
distribute the software helps balance the high CPU and memory load involved algorithms use.
Developers can even choose different architectures that better fit the different algorithms like
using GPU clusters for algorithms that are intensive on matrix operations, i.e. computer vision
algorithms.

As stated here, robotics development has a very wide range of specific needs that need to be
addressed. Robot software developers have commonly agreed the need of usage of components
oriented programming in order to be able to decompose the problem of a robot development into
smaller parts. This way these modules can be reused, distributed (to achieve Robotics frame-

A.2. COMPONENT ORIENTED PROGRAMMING 105

works have become quite popular among roboticists as they provide the means to support these
components development and testing with the necessary tools and libraries. A full overview
and comparision of the main current robotic frameworks can be found on Section A.4.

A.2 Component Oriented Programming
This section introduces the basics of component-oriented programming (COP) [He et al., 2005],
a programming paradigm very important in the robotics field. COP enables software solutions
to be constructed through prebuilt software components, that are reusable, self-contained blocks
of computer code. These components need to follow certain predefined standards including in-
terface, connections, versioning, and deployment. Every one of the components in the solution
should be reusable and independent of context. In COP interfaces and composition are empha-
sized. In this sense, we could say that COP is an interface-based programming. Clients in COP
do not need any knowledge of how a component implements its interfaces. As long as interfaces
remain unchanged, clients are not affected by changes in interface implementations.

Although initial works on COP are relatively old [McIlroy, 1969], its widely used in almost
any software that is designed for robotics. Almost any robot runs COP based software, anything
ranging from autonomous manipulators, assistive robots, mobile platforms, social robots up to
even small education oriented platforms. The main reason for this wide spreading of COP in
robotics is that it offers developers an easy way to create scalable, flexible and reusable software,
key features for robotics software developers.

A.2.1 Main Characteristics

The idea behind component-oriented programming (COP) is designing and developing com-
plex systems as networks of standalone modules, so that the goal of the whole system is
achieved through the interaction among the elements of the network. These independent pro-
grams are called components, and the software layer they use to communicate is usually called
middleware. Each component has a component interface which other components can use to
interact with it. When using component interfaces they can be seen as the API that other compo-
nents can use to communicate with each other, much like C++ class definitions. In fact, as vir-
tual classes, component interfaces can be implemented by more than one component (e.g., the
same interface can be provided by several components).

The main purpose of COP is to develop software by assembling components that exchange
some sort of information. The definition of component might be quite blurry and overloaded,
making the term confusing in current software engineering. In different contexts a component
my refer to different things, however in robotics its used to refer to integral entities that perform
some specific work or service. Components can act as servers, clients or both depending on
the system state. In the case of robotics all the components usually have a similar structure that
helps build the communication and other common interfaces, such as testing. Then only the
specific behavior in the component is added as a behavioral differentiation among them.

As said components can communicate with each other through different communication
patterns [Schlegel, 2006]. For this components behave as either service requestors or service
providers at a certain point. Most of them act as both depending on the needs of the system.
Two regular communication patters are commonly used among roboticists. A shincronous one

106 APPENDIX A. ROBOTIC SOFTWARE CONTRIBUTIONS

where the client requests the information from the server usually in the form of a function call
such as Remote Producedure Calls (RPC). And an ashyncronous one where the server publishes
the information and clients get called once this information is avalable, this one is usually
reffered as publication/subscription. Robotics frameworks use these patterns to communicate
their components. It does not usually make a huge difference to choose one or another, both
have their advantages and disadvantages. Lately most of the frameworks support both and users
can choose whatever they prefer for each component to comunicate.

A.2.2 Advantages and disadvantages

One of the main advantages of using components for development is the possibility of reusing
the same components on and on again, as stated in [McIlroy et al., 1968]. Since these com-
ponents are individual units that perform very specific tasks, they can be reused in different
occasions that the task is needed. e.g., A component in charge of obtaining images from a cam-
era and exposing them to the rest of the system can be reused anytime images from the camera
are needed. In robotics this is a key advantage since building a whole robot implies a strong
effort an expertise usually taking several years of development. Having key reusable parts from
one robot to the other or even from one developer group to the rest helps mitigate this huge
amount of work.

Another key feature that heavily helps roboticits on their task is the ability of balancing the
load of the algorithms. Having different units providing services that run as separate compo-
nents helps the operating system schedule and paralelice these processes, which then translates
into a more efficient usage of the computer resources. On top of that, due to the distributed
aspect of COP, components can be deployed in different machines provided that they are in-
terconnected in some way or another. This way the load of the components can be distributed
among different machines with different capabilities that matches the needs of the algorithms.
This is extremely helpful for robotics development since some of the algorithms like the ones
used for the robot’s cogntive vision make a heavy use of memory and CPU. Therefore these
component that need lots of resources can be isolated in their own machines or even in specific
architectures for their tasks such as GPU clusters or high performance computers.

Decoupling the software into small modules that take care of specific purposes also brings
benefits to future code mainteniance tasks. Apart from the mention reusability code also gains
in readability, since there is a somewhat a predefined structure that software must follow. Hav-
ing small units of functionalities also helps with the testing. Since these units usually have a
very specific and predefined purpose they can be easily tested with a set of inputs and desired
outputs. However in the robotics field individual testing of the components does not mean a
good performance of the overall system. Specially due to the fact that usually lots of these com-
ponents are needed for a single task and that they also depend on the environment conditions
final behavior is not guaranteed and full system testing in real environments is always required.

Usually, although it might depend on the tools used, components can most of the time be
developed in a wide range of languages. This means developers can use the full qualities of a
certain language for one component and then use another language that might match the algo-
rithm needs better for another component, taking full advantage of the avilability of languages
and even their associated libraries. It also helps developers to easily port and use software writ-
ten in different languages. This is very important as the reuse of software for roboticists is
crucial. Sometimes certain work is the product of one or two full PhDs and it might be written

A.2. COMPONENT ORIENTED PROGRAMMING 107

in a certain language different from the usual one used in the robot system. Porting the work to
a new language might require intensive work, however being able to import it as a component
in its own language can save roboticits lots of time. This way the roboticist only has to add
the code to a certain component and communicate with it through the network to obtain the
algorithm output.

In the same line they can be compiled and run in different Operating Systems (OS). This
allows the developer to have different machines with different OS Although robotics is mostly
developed under GNU/Linux based systems as a norm, sometimes there are cases that require
software to be run in other OS such as the Shunk motor drivers which have their latest drivers
only available for Windows [sch, 2016] or the Microsoft Kinect 2 which only gives support for
a specific OS [kin, 2016].

One of the drawbacks of the COP is that it puts a certain load on the network. Specially
when the data exchanged among components is considerably big this load can become quite
big and the frequency of update of the client components gets pen pennaliced by the throughput
available in the network. This is actually a common issue in robotics, since some of the updates
might be critical,e.g., a late update on the localization system might cause the whole robot
to crash into some obstacle. Therefore it is encouraged to try to use networks with higher
bandwidth and try to minimize the data that goes through low bandwidth ones such as a WiFi
network.

However there are also disadvantages when you run a distributed system of components.
One of the main drawbacks are the communication parameters. A component will need the
information on who it needs to communicate with. This information is usually provided in
the form of configuration files, which adds some extra work and manteinance over the actual
development. Moreover this configuration more than often differs from one deployment to
another, where you might need information such as ports, addresses and/or interface names.
Maintaining this configurations is a problem that still takes time on robotics deployments and
has most probably has no easy solution.

It is also worth mention that even though COP is meant for the development of high reusable
code and even though it usually works that way this might not be always the case. A problem
that often arises and very specifically in the robotics field is the hardware dependence. Low
level components that are meant to directly manage hardware pieces, which are very common
in robotics, are not as reusable as one might desire. More than often these components are tied
to a specific piece of hardware without which the component becomes useless. Therefore in
the case of hardware updates development of new software to access it is required, reducing the
reusability of the components of the system.

A.2.3 Why Component Oriented Programming for Robots?
There is a high level of complexity when developing autonomous robots that extends to hard-
ware and software design. Due to the hardware differences among robotics platforms specific
configuration and development might be needed for each of them. Also this complexity makes
robotics to require software with characteristics such as easy ways for heavy testing, code reuse,
scalability, distribution, hardware independence, concurrency or support for different languages
and platforms. In order to suffice the needs of roboticists the proper software engineering tech-
niques and the specific tools should be provided.

One might argue that most of the robotics modules are usually composed of image and

108 APPENDIX A. ROBOTIC SOFTWARE CONTRIBUTIONS

point cloud processing, linear algebra or machine learning algorithms that can be packaged
as dynamic libraries. Actually a lot of them are currently packaged as so for their reuse not
only in the robotics field. However the development of monolithic software that uses tons
of libraries will not be a good solution as software for a robot. Delivering all the reusable
code of a robot in the form of libraries will actually bring several issues. e.g., One of them
is that having different versions of the same library for testing purposes will not only mean
different compilation processes but also will bring complexity to the compilation structure of
the system as it might cause symbol collisions if not properly configured. Since the field of
robotics is mostly in an early research state often changes are quite common and having to deal
with different versions of code is occurs almost every day. Therefore having a decomposed
system with modules in charge of very specific tasks that solve small problems help with code
mantainance and reusability

One big problem in robotics is the software load, which more than often becomes very
high, specially when running stochastic algorithms through big search spaces. The recent and
extended usage of Deep Neural Networks (DNNs) [Goodfellow et al., 2016] also increased the
need for faster and more specific hardware that matches application needs. On top of that
the amount of computation available in a robot is limited and is usually desirable to be stuck
to a minimum in order to reduce the weight load of the robot. Therefore having the ability
of distributing the load of the algorithms by executing the different components in different
machines, even sometimes with specific hardware that helps speed up their execution is a huge
advantage.

Another hard-to-obtain feature is hardware independence. Although it might not always be
achievable, the use of small modules in developed software to manage each piece of hardware
from the robot helps with this independence. This allows the software developer to reuse this
component everywhere the same hardware piece is being used, independent of the rest of the
system. i.e., this would allow the roboticist to change the cameras of the robot or the platform
for new ones with the same capabilities as the old ones without having to modify the soft-
ware. Due to the importance of this abstraction a “Player Abstract Device Interface (PADI)”
was presented in [Vaughan et al., 2003] for the Player/Stage project [Gerkey et al., 2003]. In
this work a set of interfaces are defined in order to communicate sensors with actuators through
standarized APIs. However defining these interfaces might not be an easy task when trying to
achieve hardware independence. Similar robotic parts might provide or need different param-
eters which should be included in these interfaces. If all of these parameters are added to the
interface to make it usable by different hardware pieces the complexity might make it hard to
use and understand. On the other hand, if too few are added the number of robotic parts it can
support might be to small. i.e., an RGB camera will produce different data than an RGB-D
camera, in this case the software developer has to decide between two interfaces with different
parameters or to consider both cases in a single one making it a bit more complex. Therefore a
trade of between complexity and abstraction should be achieved, since one of the main features
of hardware abstraction is that similar hardware is accessed through the same interface. It is
also arguable that libraries can give a similar independence from hardware, however it is hard
to maintain different versions of one library in a system. On the contrary having this small mod-
ules makes it easy to have different versions of the same software that can match perfectly to
the specifics of different hardware updates. A desirable hardware abstraction would mean that
once changing or updating hardware in the system, changes in the software should be minimal,
like changing components or some configuration parameters.

A.3. MODEL DRIVEN ENGINEERING FOR ROBOTICS 109

Each programming language has its own capabilities, not only due to the intrinsic specifica-
tions of the language but also due to the libraries developed for them. Libraries are a huge help
when it comes to code reusability and using the best and most advanced ones is often critical
for robotics development. These libraries are sometimes only available for certain languages
restricting the choices for the component developer. This also can be applied to platforms, spe-
cially when software support to certain hardware parts is restricted to those platforms. People
are also a variable to take into account here as different developers might have different prefer-
ences, in terms of platforms or languages. On top of that there are specific platforms such as the
recently developed NVIDIA Jetson TX1 [jet, 2016]) that might be able to speed up specific op-
erations such as an R-CNN Multi-Object Detector [Mhalla et al., 2016]. Being able to execute
and combine code on a wide range of these languages and platforms is also a desirable feature.
Also depending on the system a web interface or specific cell devices might be required for re-
mote interaction, making it essential that different modules interact remotely independently of
their platform and language. The communications middleware in charge of communicating the
components of the developed software is the one in charge of these support. It should be able
to translate the interface calls into the specific component platform/language call. The more
languages and platforms supported by the used middleware the better for the developers and the
heterogeneity of the developed systems.

In order to be able to make software able to provide this features in such a complex and het-
erogeneus distributed system communications should also be provided. Since modules perform
different tasks while interacting with each other, the middleware in charge of their communcia-
tions should also be able to deal with the different synchronization problems. Most of the time,
messages passed between modules, specially if the communications middleware is platform
and language independent, must be serialized,e.g., to convert between different data structures
available in different languages. The opposite process would be executed on the reception mod-
ule, although the new representation might be different and specific to the receptor language or
platform.

All the mentioned aspects are desirable for robotics development. Software engineering
techniques should be applied to different frameworks in order to make the full development
cycle of robots as efficient as possible. Due to the wide range of problems and huge expertise
that involves robotics development, people with different skills will be involved in this work.
Therefore it should never be assumed the developer with have high level of software engineering
knowledge. Having tools to address these experts needs and making them able to contribute to
the robotics development is a key task of the robotics software. Configuring robot deployments,
testing modules and solving their problems are more than often a task that involves more time
than even programming the solution itself. Therefore software that, along with improving the
reusability, reduces the time involved in development (including configuration for deployment,
testing and problem solving tasks) would be a major achievement towards improving software
for robots.

A.3 Model Driven Engineering for Robotics

Model Driven Engineering (MDE) is a generic methodology that exploits domain models in
order to create generic models, which are conceptual models of all the topics related to a spe-
cific problem. This enables software developers to work in higher levels of abstraction in order

110 APPENDIX A. ROBOTIC SOFTWARE CONTRIBUTIONS

which increases their efficiency. It also helps users that are not familiar with general-purpose
programming languages by abstracting the implementation and making development easier and
simpler. Through the use of MDE standardized models can be reused between system, reduc-
ing development time and efforts. Since MDE uses models of recurring design patterns within
the application domain, it helps easing the whole process of design. Additionally due to the
standardization of the terminology in the application domain promotes and helps with commu-
nication between developers, different teams and users of the application domain. If a modeling
paradigm for MDE is properly designed, a user familiar with the domain should be able to
recognize the models and they should be able to be used for implementing systems.

There are different MDE initiatives, in particular, it is worth noting the OMGs Model-Driven
Architecture (MDA) [Brown, 2004]. This methodology keeps the system specification (model)
separated from the system implementation. MDA models are structured by layers with dif-
ferent levels of abstraction. With this structure, platform-independent models (PIM) cab be
built which provide high-level designs, and platform-specific models (PSM) which contain
those elements that depend on the final system implementation. Transformations from PIM
to PSM are described in MDA so developers can obtain their low-level designs from high-level
ones. Languages in MDA are called meta-models and are described using a common root meta-
metamodel: the Meta Object Facility (MOF) [omg, 2006]. The main advantage of MOF is that,
once metamodels have been created, developers can benefit from model to model transforma-
tions (M2M) or model to text transformations (M2T) to obtain source code in an automatic
way.

There are strong relations between Domain Specific Languages (DSLs) and models, spe-
cially as a generalization of MDE that may help to solve complex problems in more efficient
ways [Kurtev et al., 2006]. DSLs are computer languages designed to fit a particular application
domain. They are designed to be useful with a domain and the set of process it entails. Contrary
to the more extended general purposed languages that are widely used across different domains,
the syntax is usually small, although the division between them might be blurry sometimes. As
DSLs have a clearly defined concrete problem domain it is able to represent the state of affairs
in this domain. It introduces the basic abstractions of the domain and their mutual relations.
When this abstract entity is explicitly represented as a model it becomes the reference model
for the models expressed in the DSL, that is, it is a metamodel, the domain definition metamodel
(DDMM). Which plays a key part in the definition of a DSL, letting us define a DSL as a set of
coordinated models.

Another worth mentioning initiatives are the Eclipse Modeling Frame-
work (EMF) [Steinberg et al., 2008] which is a basic MOF implementation;
Xtext [Efftinge and Völter, 2006] which is a framework to create textual representations
and notations from visual models and metamodels; and MOFScript [Oldevik, 2006] which pro-
vides a template language to perform M2T transformations. Xtext is a recent tool that facilities
the creation of new Domain Specific Languages (DSLs) and provides some interesting and
useful characteristics such as code completion, syntax error checking and syntax highlighting
among others. Moreover, its integration with EMF allows Xtext models to be represented as
Graphical Modeling Framework [omg, 2006] visual models at any moment. The textual model
representations from Xtext allows developers to build their DSLs as they usually do when
working with any other programming languages, textually, and switch to visual models when
necessary. d

When it comes to robotics a lot of effort has been placed to develop tools and provide bet-

A.3. MODEL DRIVEN ENGINEERING FOR ROBOTICS 111

ter software scalability and reusability. The modules developed through component oriented
programming have a life cycle that can sometimes be of high complexity. This includes all
common activities that are present during the life-cycle of any program: requirements analysis,
design, implementation, unit testing, system integration, verification and validation, operation
support, maintenance and disposal. The life-cycle of robotics modules is always in continuous
development due to constant requirement changes [Brugali and Scandurra, 2009]. This makes
the modification of structural properties of these modules a common thing during any time of
their life-cycle [Brugali and Shakhimardanov, 2010]. In these cases, it generally entails per-
forming changes in middleware-related code continuously. To help developers in these tasks,
specific tools are required. Model Driven Engineering can provide robotics developers with the
specific tools needed to automate the continuous changes in middleware-related code.

Because software development for robots can benefit from the use of MDA-Based tools,
there are several robotics software examples making use of this techniques. An interesting ex-
ample of this is the CoSMIC visual toolkit [Gokhale et al., 2002]. It is a complete open source
MDA tool that allows the visual design, deployment and configuration of components based on
the CORBA Component Model (CCM) [Wang et al., 2001]. However, CCM and its associated
specifications are not widely used. In spite of that, the OMG aims at their future adoption within
the robotics community by standardizing its novel Robotic Technology Component Specifica-
tion (RTC) [OMG, 2008], which focuses on the structural and behavioral features required by
robotics software as a supplement to a general component model. In this vein, it is worth not-
ing OpenRTM-aist [Ando et al., 2011], a free RTC implementation that has appeared recently.
OpenRTM-aist is a framework for robotics that provides developers with a set of tools to create
and manage components. Two of these tools are Eclipse-based GUI tools: RTBuilder and RT-
SystemEditor. RTBuilder allows developers to create components defining their names, connec-
tors (ports), parameters, programming language or their operating system. This tool can then be
used to automatically generate source code templates. RTSystemEditor provides a mechanism
to edit and configure components which are registered on a known name service. RTSystemEd-
itor can start, stop or reset components, add and remove links and use introspection capabilities
to monitor components at run time.

Another interesting tool is the 3-View Component MetaModel (V3CMM)
[Alonso et al., 2010]. It is a platform-independent modeling language for component-
based applications that makes use of MOF-based metamodels. V3CMM provides three
views that are loosely coupled and allow users to design a complete system. With V3CMM
it is possible to model the static structure of components (named as structural view), the
behavior of these components (coordination view) and to model the functionality of these
components, described asalgorithms (algorithmic view). Two of these views are based on
UML [Rumbaugh et al., 2004]:

1. The coordination view uses a simplified version based on UML state machines in order
to model the different states of a component

2. The algorithmic view, based on UML activity diagrams, executes a specific behavior
depending on the current state of the component

The structural view is used to define components and their dependencies by specifying both
its required and provided interfaces. Once users model the system using these three views,
it is possible to perform M2M to reduce the level of abstraction and M2T transformations to
automatically obtain the final source code.

112 APPENDIX A. ROBOTIC SOFTWARE CONTRIBUTIONS

The SmartSoft [Schlegel et al., 2010] robotics framework also provides an MDA tool based
on a UML profile implementation. The development process starts modeling an idea at a high-
level of abstraction. This model is then refined through several transformations to obtain the
software components source code. First, developers have to describe the system in a model
independent platform (PIM) where information about middleware, operating system, program-
ming languages and other properties are unknown. Then the PIM is transformed to a platform-
specific model (PSM), where details about middleware or operating systems are specified. This
PIM is also transformed to a platform-specific implementation (PSI) where developers can add
their code and libraries. The next step is to deploy the components. In this vein SmartSoft uses
the platform description model (PDM) to define the target platform properties. The model is
extended with this platform information and finally the system can be run following the spec-
ified deployment model. During the development process users can guide the transformations
in order to obtain a specific component by selecting the desired real-time and QoS properties
of the component and the communication middleware it will use. A set of well-defined com-
munication patterns provides the necessary abstraction from the final communication model
and its reference implementation. Currently, it supports the ACE [Schmidt and Huston, 2002]
(SmartSoft/ACE) and ACE/-TAO [Schmidt et al., 1997] (SmartSoft/CORBA) communication
middlewares and provides other interesting features, such as a mechanism to guarantee real-
time properties using an external scheduler analyzer or dynamic wiring for components.

A.4 Robotic Frameworks
In an effort to bring all these features to developers, software engineering techniques has been
put together into robotic frameworks. There are different frameworks available for robotics
development. They all try to provide a supporting layer for modules development and commu-
nications in order to ease the tedious tasks involved in the whole development cycle (program-
ming, testing, bug fixing...). However each one of them offers different characteristics which
lead to some advantages and disadvantages on each of them.

These are the most well known and used robotics frameworks:

• Artoo [art, 2017]: A Ruby microframework for robotics and physical computing with
support for 15 platforms.

• CLARAty [Volpe et al., 2001]: A robotics software developed by the Jet Propulsion Lab-
oratory from NASA as part of the Mars program.

• EEROS [Brown, 2015]: An Easy, Elegant, Reliable, Open and Safe Real-Time Robotics
Software Framework for the development of educational and industrial robots.

• JAUS [Rowe and Wagner, 2008]: A framework by the United States Department of De-
fense to develop an open architecture for the domain of unmanned systems.

• JDE [Canas et al., 2013]: A robotics and computer vision framework developed in C++
and using ICE as a middleweare to provide support for a distributed component-based
programming environment. It also includes several tools and libraries.

• leJOS NXJ [Bagnall, 2011]: An open-source Java programming environment for the
Lego NXT robot kit.

A.4. ROBOTIC FRAMEWORKS 113

• MOOS [Newman, 2008]: A C++ cross platform framework for robotics research.

• MyRobotLab [myr, 2017]: An open source Java service based framework for robotics
control.

• OpenRTM-aist [Ando et al., 2008]: A robotics middleware developed by the Japanese
National Institute of Advanced Industrial Science and Technology. It is based on the RT
middleware standard [Ando et al., 2005].

• Orca [Makarenko et al., 2006]: An open source framework for developing component
based robots.

• OROCOS [Bruyninckx et al., 2003]: C++ framework for component-based robot control
software.

• RoboComp [Gutiérrez et al., 2013]: An open-source robotics framework providing the
tools to easily create and modify software components that communicate through public
interfaces. More details on this framework are given in section ??.

• Rock [Joyeux et al., 2014]: The Robot Construction Kit, a software integration frame-
work for robotic systems based on Orocos/RTT. It was mainly designed for space robotics
and it uses a model driven approach to handle the complexity of component networks
which can reconfigure at run-time.

• ROS (Robot Operating System) [Quigley et al., 2009] provides libraries and tools to help
software developers create robot applications. It provides hardware abstraction, device
drivers, libraries, visualizers, message-passing, package management and more. Cur-
rently, ROS 2, a completely rebuild of this framework is under development.

• URBI [Baillie, 2005] A robotics framework based on the UObject distributed C++ com-
ponent architecture. It uses the urbiscript orchestration language which is a parallel and
event-driven script language.

Since some of these frameworks do not offer the whole set of tools needed for robotics
development, some of them rely on other projects for that. Sometimes it has even been de-
cided to keep separated projects in order to make them more independent and usable by dif-
ferent communities of developers. e.g., the Gazebo project [Koenig and Howard, 2004] is an
independent multi-robot simulator used as main simulator of the Robotics Operating System
(ROS) [Quigley et al., 2009], which is even developed by the same team (the Open Source
Robotics Foundation, OSRF). These are the main tools that compliment the main robotics
framework and help in the development ant testing of robotics:

• Player [Gerkey et al., 2003]: A robot control interface, often used along with its simula-
tion backends, Stage and Gazebo.

• CARMEN [Montemerlo et al., 2002]: Carnegie Mellon Robot Navigation Toolkit, col-
lection of modular software for mobile robot navigation.

114 APPENDIX A. ROBOTIC SOFTWARE CONTRIBUTIONS

• Gazebo [Koenig and Howard, 2004]: A robotics simulator that allows users to simulate
populations of robots in complex indoor and outdoor environments. It contains physics
engine, high-quality graphics and graphical interfaces. It is often the main simulator used
in combination with the ROS framework.

• LSTS Toolchain [Pinto et al., 2013]: is a set of tools and frameworks for the development
of Networked Vehicle Systems.

• miniBloq [da Silva Gillig, 2017]: A graphical programming interface to program robotic
boards (Arduino Compatibles).

• Open Dynamics Engine [Smith et al., 2005]: A library for simulating rigid body dynam-
ics. It has a C/C++ API and integrates collision detection with friction.

• OPRoS [Jang et al., 2010]: The Open Platform for Robotic Services is a component based
open source platform for robotics with Integration Development Environment (IDE)
tools, a server, and a test and verification tool.

• Robot Overlord [rob, 2017]: A multi-robot simulator written in Java and OpenGL.

• Simbad [Hugues and Bredeche, 2006]: Is a robot simulator written in JAVA.

• STDR Simulator [std, 2017]: The Simple Two Dimensional Robot Simulator is a multi-
robot 2D simulator implemented through a distributed, server-client based architecture.
It also provides a GUI developed in QT, for visualization purposes and some other func-
tions.

• TeamBots [Balch, 2002]: A Java-based collection of application programs and Java pack-
ages for multiagent mobile robotics research.

A.4.1 RoboComp
RoboComp is a free software robotics framework (licensed under General Public License,
GPL). It is a component oriented framework, that supports a wide range of different platforms
and languages. It is model-driven and built around three key elements: a component model,
a communications middleware and a set of tools that facilitates the writing and maintaining
of robotics code. It started in 2005 as a way to create and reuse code written by many dif-
ferent people and that was meant to be used in many different robots. The central idea is to
define a processing and coding entity that can be created and maintained largely decoupled
from the rest of the system. These units or components are full fledged processes when running
and occupy its own subdirectory in the global code repository. They communicate with other
components using a public interface and through an underlying communications middleware.
Building on this generic idea, RoboComp is now the result of many years of further elaboration
and adaptation to our everyday research and engineering activity and, nevertheless, many more
improvements are in the way now due to the increasing complexity of current robots and their
control and cognitive architectures. The repository holds now more than one hundred com-
ponents, along with classes and tools specifically designed to improve and ease the robotics
software designer experience. It covers functionalities of different robotics and artificial vision
topics mainly through integration of third party libraries.

A.4. ROBOTIC FRAMEWORKS 115

RoboComp has its own component model, inspired by the ORCA model and making it
evolve to fit robotics needs along years of development. As a middleware, RoboComp primarily
uses ICE/ZeroC [ZeroC, 2016] and there is ongoing experimental work to make RoboComp
middleware agnostic, so its components can be re-generated to use other middlewares. Actually
currently has support to communicate with ROS components.

A.4.1.1 Component Model

The component model is fairly simple and easy to use. Components may implement, sub-
scribe, or publish interfaces in order to communicate among them. Two main Domain Specific
Languages (DSLs) that have been created to define a component at a very high level of abstrac-
tion. An ”Interface Definition Specific Language” (IDSL) is used to describe the component
Interfaces. With IDSL you write the data structures and functions that a component can im-
plement, require, subscribe to or publish. A component can implement several interfaces, of-
fering different views of its internal functioning. Also, the same interface can be implemented
by many components. It currently corresponds to a subset of Ice’s Slice interface language.
CDSL stands for ”Component Definition Specific Language” and allows the user to specifiy
its name, accesible interfaces, communication connections, target language and other available
modules or libraries that you want to include in the building scripts. The design and imple-
mentation of this DSLs was part of a collaborative work among developers furtherer explained
in [Romero-Garces et al., 2011]. Using these two DSLs, RoboComp can generate the source
code of the component using a tool designed to this end. The complete, functioning code of a
component is created ready to be compiled and executed. We use a smart inheritance mecha-
nism to separate the generic stuff from the user specific stuff and, based on it, the next time you
generate a component, your code will remain untouched but access to new defined proxies will
be there.

A.4.1.2 Libraries, Tools and Files

RoboComp also provides extra libraries and tools. Different libraries and classes have been
developed to ease the components development. Among them, the proprioception library stands
out, called InnerModel. It plays an important role in the development of robotics components as
it helps with representation and geometric transformation between different reference frames.
It is based on an XML description of the robot kinematic stored as a file. In the file all the
joints an links of the kinematic tree should be described. The library also provides methods to
estimate projections and frame transformations.

Several tools are provided along with the core of RoboComp. These tools are meant to help
perform different operations mostly over components such as monitoring, record and replay or
automated generation from the DSL specifications. Specially interesting and extensively used
is the robocomp simulation tool (rcis) used to simulate robots and environments to make the
initial testing of algorithms easy and safe. Figure A.2 shows a screenshot of the simulator with
a model of the robot in an apartment with five tables and objects on them.

A set of binary files are provided through the git-annex tool. This tool is used to avoid the
overhead that the store of binaries can cause in git repositories. Using this tool all the extra
needed binary files can be stored to share them with the rest of developers. Among them you
can find files such as datasets for testing, 3D models for simulation purposes or trained models

116 APPENDIX A. ROBOTIC SOFTWARE CONTRIBUTIONS

Figure A.2: RoboComp simulation tool with a model of the robot in an apartment with 5 tables
and objects on them.

for Deep Neural networks.
As RoboComp was the robotic framework used for the support of this thesis. Therefore,

mostly all the research and development showcased here is publicly available under Robo-
Comp’s repository1. Publications such as [Romero-Garces et al., 2011], [Gutiérrez et al., 2013]
or [Gutiérrez et al., 2013] are prove of these developments. Extra contributions not covered
here have been done, specially notable are those made through the administration and mentor-
ing of several editions of the Google Summer of Code programme.

A.5 Robot Perception Software

Part of the software development of this dissertation was made in the form of open source col-
laboration to perception software. Here we review the two main visual libraries that have been
contributed, the Point Cloud Library [Rusu and Cousins, 2011] with a strong focus on 3D in-
formation processing and OpenDetection [Sarkar and Gutierrez, 2016], a library that combines
the use of geometry and texture information in a unified API.

Robots working in unstructured environments have to perceive the world in order to act
accordingly. The visual perception is still a field open for research. Lots of problems remain
unsolved and to develop solutions for them the use of the latest development becomes a need.
Therefore the need of reuse and easy and fast deployment of state-of-the-art solutions.

One of the main wanted characteristics in software engineering is software reusability. This
is specially needed when it comes to research algorithms and specially for robotics where the
complexity of problems makes it impossible to develop a whole system on your own .

Since the main focus of this dissertation is in perception, along with the specific research
described here, some contributions to visual perception software have been made.

1https://github.com/robocomp

A.5. ROBOT PERCEPTION SOFTWARE 117

A.5.1 Point Cloud Library
The Point Cloud Library was born right after the massive production of 3D sensors which lead
to their price drop. The use of these devices became more and more common among roboticists
and the research and development involving point clouds grew significantly.

PCL is built using modern C++ and written with a focus on high performance making the
most use of modern CPUs and GPUs. It makes extensive use of templates and the underly-
ing data structures use Streaming SIMD Extensions for optimization. For the mathematical
operations the Eigen open source library for linear algebra is used [Guennebaud et al., 2010].
OpenMP (see http://openmp.org) and Intel Threading Building Blocks (TBB) [Reinders, 2007]
library are supported for parallelization purposes. Boost libraries [Karlsson, 2005] are used for
shared pointers management.

PCL contains numerous 3D processing algorithms that operate on point cloud data. The
number of these algorithms are continuously growing as the library has numerous vision re-
searches contributing and updating the algorithms. Among them you can find: filtering, fea-
ture estimation, surface reconstruction, model fitting, segmentation, registration and more. The
algorithms are implemented through base classes in an effort to make them share common
functionalities that keep the implementation of them clean and compact. This way common
pipelines can be applied to different algorithms.

Figure A.3: Point Cloud from a cup on a table obtained using the PCL Dinast grabber.

As part of the development on paper 7, a new driver for Dinast Cameras was produced for
PCL 1.7. This driver makes use of the generic grabber interface present int he library since
PCL 1.0. It was tested with IPA-1110, Cyclopes II and the IPA-1002 ng T-Less NG cameras
however it is expected to work accordingly with the rest of Dinast devices since development
was supervised and approved by the manufacturer. Figure [?] shows the point cloud of a cup on
a table obtained using the developed PCL grabber. This work was performed under the Dinast
Code Sprint programme. For further information on how to make use of this driver please refer
to the official tutorial in [Gutiérrez, 2015]

Part of work on chapter 6 was also a development for the PCL. The superquadrics fitting
and point cloud completion research was produced under the 2014 Google Summer of Code
programme. For more information on the progress of this work you can check the development
blog in [Quispe and Gutiérrez, 2014].

118 APPENDIX A. ROBOTIC SOFTWARE CONTRIBUTIONS

A.5.2 OpenDetection
Open Detection (OD) [Sarkar and Gutierrez, 2016] is a standalone open source project for ob-
ject detection and recognition in images and 3D point clouds. Open Detection is released under
the terms of the BSD license. The project was originated as part Google Summer of Code 2015
programme with the aims of having a vision tool for robotics (in particular for the RoboComp
framework).

The library is built with a very specific goal to answer the fundamental problem of Computer
Vision Object Recognition and Detection. It is meant to make the existing algorithms to process
images and 3D data available to everyone in a common, intuitive and user-friendly API.

The basic classes in OD are Trainers and Detectors. A Trainer (the offline stage)
of a detection method acts on training input data to produce an intermediate output called trained
data. A corresponding Detector (the online stage) of the same method uses the trained data
produced by Trainer to detect or recognize objects in a given Scene. A Scene is a structure
that contains data sensed from a specific view of the robot (e.g., image or point cloud). Trained
data is usually stored in a preconfigured directory structure depending on the method starting
from the base directory set for OpenDetection.

The data produced by a Trainer can be used by any of the Detector classes. The
Decector can use data of different types of Trainers (or no trainers at all). Therefore there
is many-to-many mapping between trainers and detectors which is currently resolved by Docu-
mentation. The documentation provides the information regarding what Trainer to use for a
given Detector.

Each Trainer implements a virtual function train with the following signature:

1 virtual int train() = 0;

Each Detector implements two functions of the following signature:

1 detect()
2 detectOmni()

detectOmni() performs a detection/recognition on the entire scene (unsegmented and
unprocessed) and provides information about the detection as well as its exact location.
detect() takes an ’object candidate’ or a segmented/processed scene as an input and identi-
fies if the entire scene is a detection.

1 virtual ODDetections* detect(ODScene *scene);
2 virtual ODDetections* detectOmni(ODScene *scene);

Depending on the type of provided by the scene, detectors are categorized in
od::Detector2D and od::Detector3D.

The result of a Detector is returned as a Detection. A detection contains detec-
tion/recognition details as well as location information within the scene (for example bounding
box for od::ODDetection2D and location/orientation for od::Detection3D)

An example of a typical code covering most of the pipeline looks like:

1 //train:
2 od::g2d::ODHOGTrainer *trainer = new od::g2d::ODHOGTrainer("", trained_data_dir);
3 trainer->setPosSamplesDir(pos_samples);
4

A.5. ROBOT PERCEPTION SOFTWARE 119

5 //set all the configurations as required by the trainer, default values are also provided
6 trainer->setNegSamplesDir(neg_samples);
7 trainer->setNOFeaturesNeg(10);
8 trainer->setTrainHardNegetive(true);
9 trainer->train(); //train!

10
11 //detect:
12 ODDetector *detector = new od::g2d::ODHOGDetector; //chose a detector type
13 detector->setTrainingDataLocation(trained_data_dir);
14 detector->init(); //init with the required options
15
16 //do as may detections as needed in a loop using the initialized settings
17 //Use the detect* methods for detection. scene is a Scene object from frameGenerator
18 ODDetections2D *detections = detector->detectOmni(scene);
19
20 //infer
21 showimage(detections->renderMetainfo(*scene).getCVImage()) //do something with detections,

This library is continuous development and new algorithms and improvements are added
frequently. For further documentation you can refer to the examples and tutorials provided
along with the source code of the library. Also a workshop video is available on the official
website2.

2https://www.youtube.com/watch?v=d7JWTqsJ5DQ

120 APPENDIX A. ROBOTIC SOFTWARE CONTRIBUTIONS

Appendix B

Publications not covered in this thesis

.
2016:
• “A Multimodal Control Architecture for Autonomous Unmanned Aerial Vehicles”.

Marco A. Gutiérrez, Luis Fernando DH́aro, Rafael E. Banchs. HAI ’16 Proceedings
of the Fourth International Conference on Human Agent Interaction, Pages 107-110, Oc-
tober, 2016.

2015:
• “Multi-robot collaborative platforms for humanitarian relief actions”. Marco A

Gutiérrez, Suraj Nair, Rafael E Banchs, Luis Fernando D’Haro Enriquez, Andreea I
Niculescu, Aravindkumar Vijayalingam. Humanitarian Technology Conference (R10-
HTC), 2015 IEEE Region 10. pp. 1-6. 9-12 December 2015. Cebu, Philippines.

• “Enhancing Multimodal Embeddings with Word Semantic Relations for Image Search
Applications”. Marco A. Gutiérrez. International Workshop on Embeddings and Se-
mantics (IWES 2015). 15 September 2015. Alicante, Spain.

• “Gualzru’s path to the Advertisement World”. Fernando Fernández, Moisés Martı́nez,
Ismael Garcı́a-Varea, Jesús Martı́nez-Gómez, Jose Pérez-Lorenzo, Raquel Viciana, Pablo
Bustos, Luis Manso, Luis Calderita, Marco Gutiérrez, Pedro Núñez, Antonio Bandera,
Adrián Romero-Garcés, Juan Bandera, Rebeca Marfil. Proceedings FinE-R Workshop,
IROS 2015. pp. 55-65. 2 October, 2015. Hamburg, Germany.

2014:
• “Ursus Team - Team Description Paper”. Marco A. Gutiérrez, LJ Manso, LV Calderita,

P Bustos, F Cid, M Paoletti, A Sánchez, JP Bandera, J Martınez, M Martınez, J Garcıa.
RoCkiN Robotics Challenge, 26 - 30 November 2014, Tolouse, France.

121

122 APPENDIX B. PUBLICATIONS NOT COVERED IN THIS THESIS

2013:
• “Recent Advances in RoboComp”. Marco A Gutiérrez, A Romero-Garcés, P Bustos,

J Martınez. Journal of Physical Agents. Special Issue on advances on Physical Agents.
Vol. 7, No. 1 pp. 38-47, 2013.

2012:
• “The spatial change detection problem in robotics: a probabilistic approach based on

mixture of Gaussians”. Marco A. Gutiérrez, L Manso, P Drews Jr, P Nunez. 5th Inter-
national Conference on Spatial Cognition (ICSC2012), September 2012. Roma, Italia.

• “Progress in RoboComp.” Marco A. Gutiérrez, A. Romero-Garcés, P. Bustos, J.
Martı́nez In Proc. of Workshop of Physical Agents, WAF 2012, September 2012. Santi-
ago de Compostela, Spain.

• “Graph Grammars for Active Perception”. Lj Manso, Pablo Bustos, Pilar Bachiller,
Marco A. Gutierrez. Proc. of 12th International Conference on Autonomous Robot
Systems and Competitions ISSN 978-972-98603-4-8, pp 63-68. April 2012.

2011:
• “Improving the life cycle of robotics components using Domain Specific Languages”.

A. Romero-Garces, L.J. Manso, Marco A. Gutiérrez, R. Cintas and P. Bustos.. In 2nd
International Workshop on Domain-Specific Languages and models for ROBotic systems
(DSLRob’2011). September 2011. San Francisco, USA.

Bibliography

[OMG, 2008] (2008). Object management group, robot technology component specification.
http://www.omg.org/spec/RTC, Last acessed on Dec 31 2016.

[kin, 2016] (2016). Kinect oficial driver, microsoft corp. https://www.microsoft.
com/en-us/download/details.aspx, Last accessed on Dec 30, 2016.

[sch, 2016] (2016). Motors drivers, schunk gmbh & co. kg. https://br.schunk.
com/br_en/services/tools-downloads/software/, Last accessed on Dec 30,
2016.

[jet, 2016] (2016). Nvidia jetson tx1. https://www.nvidia.com/object/jetson-tx1-module.html,
Last accessed on Dec 30, 2016.

[art, 2017] (2017). artoo, ruby on robotics. http://artoo.io, Last accessed on Feb 19,
2017.

[myr, 2017] (2017). Mrl, myrobotlab. http://myrobotlab.org, Last accessed on Feb
19, 2017.

[rob, 2017] (2017). Robot overlord. urlhttps://github.com/MarginallyClever/Robot-Overlord-
App, Last accessed on Feb 19, 2017.

[std, 2017] (2017). Simple two dimensional robot (stdr) simulator. urlhttp://stdr-simulator-ros-
pkg.github.io/, Last accessed on Feb 19, 2017.

[Alonso et al., 2010] Alonso, D., Vicente-Chicote, C., Ortiz, F., Pastor, J., and Alvarez, B.
(2010). V3cmm: A 3-view component meta-model for model-driven robotic software devel-
opment. Journal of Software Engineering for Robotics, 1(1):3–17.

[Ando et al., 2011] Ando, N., Kurihara, S., Biggs, G., Sakamoto, T., Nakamoto, H., and Ko-
toku, T. (2011). Software deployment infrastructure for component based rt-systems. Journal
of Robotics and Mechatronics, 23(3):350–359.

[Ando et al., 2005] Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T., and Yoon, W.-K. (2005).
Rt-middleware: distributed component middleware for rt (robot technology). In Intelligent
Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on, pages
3933–3938. IEEE.

[Ando et al., 2008] Ando, N., Suehiro, T., and Kotoku, T. (2008). A software platform for
component based rt-system development: Openrtm-aist. In International Conference on
Simulation, Modeling, and Programming for Autonomous Robots, pages 87–98. Springer.

123

https://www.microsoft.com/en-us/download/details.aspx
https://www.microsoft.com/en-us/download/details.aspx
https://br.schunk.com/br_en/services/tools-downloads/software/
https://br.schunk.com/br_en/services/tools-downloads/software/
http://artoo.io
http://myrobotlab.org

124 BIBLIOGRAPHY

[Ayache and Lustman, 1991] Ayache, N. and Lustman, F. (1991). Trinocular stereovision for
robotics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(1).

[Bagnall, 2011] Bagnall, B. (2011). Intelligence unleashed: Creating LEGO NXT robots with
Java. Variant Press.

[Baillie, 2005] Baillie, J.-C. (2005). Urbi: Towards a universal robotic low-level programming
language. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ Interna-
tional Conference on, pages 820–825. IEEE.

[Balch, 2002] Balch, T. (2002). The teambots environment for multi-robot systems develop-
ment. Working notes of Tutorial on Mobile Robot Programming Paradigms, ICRA.

[Bird et al., 2009] Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with
Python: analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”.

[Bohg et al., 2011] Bohg, J., Johnson-Roberson, M., León, B., Felip, J., Gratal, X., Bergstrom,
N., Kragic, D., and Morales, A. (2011). Mind the gap: Robotic grasping under incomplete
observation. In IEEE Int. Conf. on Robotics and Automation (ICRA).

[Bradski, 2000] Bradski, G. (2000). Open source computer vision library (opencv). Dr. Dobb’s
Journal of Software Tools.

[Brown, 2004] Brown, A. W. (2004). Model driven architecture: Principles and practice. Soft-
ware and Systems Modeling, 3(4):314–327.

[Brown, 2015] Brown, N. (2015). Expanding the Impact of the EEROS Open Source Robotics
Framework. PhD thesis, Worcester Polytechnic Institute.

[Brugali and Scandurra, 2009] Brugali, D. and Scandurra, P. (2009). Component-based robotic
engineering. part i: Reusable building blocks. IEEE Robotics and Automation Magazine,
16(4):84–96.

[Brugali and Shakhimardanov, 2010] Brugali, D. and Shakhimardanov, A. (2010).
Component-based robotic engineering. part ii: Models and systems. IEEE Robotics
and Automation Magazine, 17:100–112.

[Bruyninckx et al., 2003] Bruyninckx, H., Soetens, P., and Koninckx, B. (2003). The real-time
motion control core of the orocos project. In Robotics and Automation, 2003. Proceedings.
ICRA’03. IEEE International Conference on, volume 2, pages 2766–2771. IEEE.

[Bustos et al., 2016] Bustos, P., Manso, L., Bandera, J., Romero-Garcés, A., Calderita, L.,
Marfil, R., and Bandera, A. (2016). A unified internal representation of the outer world
for social robotics, volume 418.

[Canas et al., 2013] Canas, J., González, M., Hernández, A., and Rivas, F. (2013). Recent
advances in the jderobot framework for robot programming. In Proceedings of RoboCity2030
12th Workshop, Robótica Cognitiva, pages 1–21.

[Chen and Medioni, 1992] Chen, Y. and Medioni, G. (1992). Object modelling by registration
of multiple range images. Image and vision computing, 10(3):145–155.

BIBLIOGRAPHY 125

[da Silva Gillig, 2017] da Silva Gillig, J. (2017). Minibloq. http://minibloq.org, Last
accessed on Feb 19, 2017.

[Drews et al., 2010] Drews, P., Núñez, P., Rocha, R., Campos, M., and Dias, J. (2010). Nov-
elty detection and 3d shape retrieval using superquadrics and multi-scale sampling for au-
tonomous mobile robots. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 3635–3640. IEEE.

[Duncan et al., 2013] Duncan, K., Sarkar, S., Alqasemi, R., and Dubey, R. (2013). Multi-scale
superquadric fitting for efficient shape and pose recovery of unknown objects. In Robotics
and Automation (ICRA), 2013 IEEE International Conference on, pages 4238–4243. IEEE.

[Efftinge and Völter, 2006] Efftinge, S. and Völter, M. (2006). oaw xtext: A framework for
textual dsls. In Workshop on Modeling Symposium at Eclipse Summit, volume 32, page 118.

[Everingham et al., 2010] Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and
Zisserman, A. (2010). The pascal visual object classes (voc) challenge. International Journal
of Computer Vision, 88(2):303–338.

[Fischler and Bolles, 1981] Fischler, M. A. and Bolles, R. C. (1981). Random sample con-
sensus: a paradigm for model fitting with applications to image analysis and automated
cartography. Communications of the ACM, 24(6):381–395.

[Gerkey et al., 2003] Gerkey, B. P., Vaughan, R. T., and Howard, A. (2003). The player/stage
project: Tools for multi-robot and distributed sensor systems. In In Proceedings of the 11th
International Conference on Advanced Robotics, pages 317–323.

[Girshick et al., 2016] Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2016). Region-
based convolutional networks for accurate object detection and segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 38(1):142–158.

[Gokhale et al., 2002] Gokhale, D. C. S. A., Natarajan, R., Neema, E., Bapty, T., Parsons,
J., Gray, J., Nechypurenko, A., and Wang, N. (2002). Cosmic: An mda generative tool
for distributed real-time and embdedded component middleware and applications. In In
Proceedings of the OOPSLA 2002 Workshop on Generative Techniques in the Context of
Model Driven Architecture. ACM.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning.
MIT Press. http://www.deeplearningbook.org.

[Guennebaud et al., 2010] Guennebaud, G., Jacob, B., et al. (2010). Eigen v3.
http://eigen.tuxfamily.org.

[Gutiérrez, 2015] Gutiérrez, M. A. (2015). The pcl dinast grabber framework.
http://pointclouds.org/documentation/tutorials/dinast grabber.php.

[Gutierrez et al., 2011] Gutierrez, M. A., Martinena, E., Sánchez, A., Rodrıguez, R. G., and
Nunez, P. (2011). A cost-efficient 3d sensing system for autonomous mobile robots. In Proc.
of XII Workshop of Physical Agents.

http://minibloq.org
http://www.deeplearningbook.org

126 BIBLIOGRAPHY

[Gutiérrez et al., 2013] Gutiérrez, M. A., Romero-Garcés, A., Bustos, P., and Martınez, J.
(2013). Recent advances in robocomp. Proceedings of the Workshop of Physical Agents
(WAF2013).

[Gutiérrez et al., 2013] Gutiérrez, M. A., Romero-Garcés, A., Bustos, P., and Martı́nez, J.
(2013). Progress in RoboComp. Journal of Physical Agents, 7(1):38–47.

[He et al., 2005] He, J., Li, X., and Liu, Z. (2005). Component-based Software Engineering:
the Need to Link Methods and their Theories, pages 70–95. Proc. of ICTAC 2005, Lecture
Notes in Computer Science 3722. Springer.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural computation, 9(8):1735–1780.

[Hugues and Bredeche, 2006] Hugues, L. and Bredeche, N. (2006). Simbad: an autonomous
robot simulation package for education and research. In International Conference on Simu-
lation of Adaptive Behavior, pages 831–842. Springer.

[Jang et al., 2010] Jang, C., Lee, S.-I., Jung, S.-W., Song, B., Kim, R., Kim, S., and Lee, C.-H.
(2010). Opros: A new component-based robot software platform. ETRI journal, 32(5):646–
656.

[Joo et al., 2010] Joo, K., Lee, T.-K., Baek, S., and Oh, S.-Y. (2010). Generating topological
map from occupancy grid-map using virtual door detection. In Evolutionary Computation
(CEC), 2010 IEEE Congress on, pages 1–6. IEEE.

[Joyeux et al., 2014] Joyeux, S., Schwendner, J., Roehr, T. M., and Center, R. I. (2014). Mod-
ular software for an autonomous space rover. In The 12th International Symposium on Arti-
ficial Intelligence, Robotics and Automation in Space (i-SAIRAS 2014).

[Karlsson, 2005] Karlsson, B. (2005). Beyond the C++ standard library: an introduction to
boost. Pearson Education.

[Kazhdan et al., 2006] Kazhdan, M., Bolitho, M., and Hoppe, H. (2006). Poisson surface re-
construction. In Proc. of the Fourth Eurographics Symposium on Geometry Processing.

[Kiros et al., 2014] Kiros, R., Salakhutdinov, R., and Zemel, R. S. (2014). Unifying
visual-semantic embeddings with multimodal neural language models. arXiv preprint
arXiv:1411.2539.

[Koenig and Howard, 2004] Koenig, N. and Howard, A. (2004). Design and use paradigms for
gazebo, an open-source multi-robot simulator. In Intelligent Robots and Systems, 2004.(IROS
2004). Proceedings. 2004 IEEE/RSJ International Conference on, volume 3, pages 2149–
2154. IEEE.

BIBLIOGRAPHY 127

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet
classification with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105.

[Kurtev et al., 2006] Kurtev, I., Bézivin, J., Jouault, F., and Valduriez, P. (2006). Model-based
dsl frameworks. In Companion to the 21st ACM SIGPLAN Symposium on Object-oriented
Programming Systems, Languages, and Applications, OOPSLA ’06, pages 602–616, New
York, NY, USA. ACM.

[Makarenko et al., 2006] Makarenko, A., Brooks, A., and Kaupp, T. (2006). Orca: Compo-
nents for robotics. In International Conference on Intelligent Robots and Systems (IROS),
pages 163–168.

[Manso et al., 2010] Manso, L., Bachiller, P., Bustos, P., Núñez, P., Cintas, R., and Calderita,
L. (2010). RoboComp: a Tool-based Robotics Framework, pages 251–262. Springer.

[Manso et al., 2015] Manso, L., Bustos, P., Bachiller, P., and Núñez, P. (2015). A perception-
aware architecture for autonomous robots. International Journal of Advanced Robotic Sys-
tems, 12(174):13.

[Manso et al., 2016] Manso, L., Calderita, L., Bustos, P., and Bandera, A. (2016). Use and ad-
vances in the active grammar-based modeling architecture. Proceedings of the International
Workshop on Physical Agents 2016, pages 31–36.

[Marfil et al., 2014] Marfil, R., Calderita, L. V., Bandera, J. P., Manso, L. J., and Bandera, A.
(2014). Toward Social Cognition in Robotics : Extracting and Internalizing Meaning from
Perception. In Workshop of Physical Agents WAF2014, number June, pages 1–12, Leon,
Spain.

[McIlroy, 1969] McIlroy, M. D. (1969). Mass produced software components. NATO, Scientific
Affairs Division, pages 79–85.

[McIlroy et al., 1968] McIlroy, M. D., Buxton, J., Naur, P., and Randell, B. (1968). Mass-
produced software components. In Proceedings of the 1st International Conference on Soft-
ware Engineering, Garmisch Pattenkirchen, Germany, pages 88–98. sn.

[Meguro et al., 2007] Meguro, J.-i., Takiguchi, J.-i., Amano, Y., and Hashizume, T. (2007).
3d reconstruction using multibaseline omnidirectional motion stereo based on gps/dead-
reckoning compound navigation system. The International Journal of Robotics Research,
26(6):625–636.

[Mhalla et al., 2016] Mhalla, A., chateau, T., Gazzah, S., and Ben Amara, N. E. (2016). A faster
r-cnn multi-object detector on a nvidia jetson tx1 embedded system: Demo. In Proceedings
of the 10th International Conference on Distributed Smart Camera, ICDSC ’16, pages 208–
209, New York, NY, USA. ACM.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient esti-
mation of word representations in vector space. arXiv preprint arXiv:1301.3781.

128 BIBLIOGRAPHY

[Montemerlo et al., 2002] Montemerlo, M., Roy, N., and Thrun, S. (2002). Carnegie mellon
robot navigation toolkit. Software package, download at www.cs.cmu.edu/carmen.

[Moravec, 1996] Moravec, H. (1996). Robot spatial perceptionby stereoscopic vision and 3d
evidence grids. Perception.

[Newman, 2008] Newman, P. M. (2008). Moos-mission orientated operating suite. Mas-
sachusetts Institute of Technology, Tech. Rep, 2299(08).

[Oldevik, 2006] Oldevik, J. (2006). Mofscript eclipse plug-in: metamodel-based code genera-
tion. In Eclipse Technology Workshop (EtX) at ECOOP, volume 2006.

[omg, 2006] omg (2006). Meta Object Facility (MOF) Core Specification Version 2.0.

[Pinto et al., 2013] Pinto, J., Dias, P. S., Martins, R., Fortuna, J., Marques, E., and Sousa, J.
(2013). The lsts toolchain for networked vehicle systems. In OCEANS-Bergen, 2013 MT-
S/IEEE, pages 1–9. IEEE.

[Quigley et al., 2009] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J.,
Wheeler, R., and Ng, A. Y. (2009). Ros: an open-source robot operating system. In ICRA
workshop on open source software, volume 3, page 5. Kobe, Japan.

[Quispe and Gutiérrez, 2014] Quispe, A. H. and Gutiérrez, M. A.
(2014). Fitting segmented pointclouds to superquadrics online.
http://www.pointclouds.org/blog/gsoc14/ahuaman/index.php.

[Rangel et al., 2016] Rangel, J. C., Cazorla, M., Garcı́a-Varea, I., Martı́nez-Gómez, J.,
Fromont, É., and Sebban, M. (2016). Scene classification based on semantic labeling. Ad-
vanced Robotics, 30(11-12):758–769.

[Reinders, 2007] Reinders, J. (2007). Intel threading building blocks: outfitting C++ for multi-
core processor parallelism. ” O’Reilly Media, Inc.”.

[Romero-Garces et al., 2011] Romero-Garces, A., Manso, L. J., Gutiérrez, M. A., Cintas, R.,
and Bustos, P. (2011). Improving the life cycle of robotics components using Domain Spe-
cific Languages. In 2nd International Workshop on Domain-Specific Languages and models
for ROBotic systems (DSLRob’2011).

[Romero-González et al., 2017] Romero-González, C., Martı́nez-Gómez, J., Garcı́a-Varea, I.,
and Rodrı́guez-Ruiz, L. (2017). On robot indoor scene classification based on descriptor
quality and efficiency. Expert Systems with Applications, 79:181–193.

[Rosenfeld, 1969] Rosenfeld, A. (1969). Picture processing by computer. ACM Computing
Surveys (CSUR), 1(3):147–176.

[Rowe and Wagner, 2008] Rowe, S. and Wagner, C. R. (2008). An introduction to the joint
architecture for unmanned systems (jaus). Ann Arbor, 1001:48108.

[Rubner et al., 1998] Rubner, Y., Tomasi, C., and Guibas, L. J. (1998). A metric for distribu-
tions with applications to image databases. In Computer Vision, 1998. Sixth International
Conference on, pages 59–66. IEEE.

BIBLIOGRAPHY 129

[Rumbaugh et al., 2004] Rumbaugh, J., Jacobson, I., and Booch, G. (2004). Unified Modeling
Language Reference Manual, The. Pearson Higher Education.

[Russakovsky et al., 2015] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015).
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252.

[Rusu et al., 2010] Rusu, R. B., Bradski, G., Thibaux, R., and Hsu, J. (2010). Fast 3d recog-
nition and pose using the viewpoint feature histogram. In Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on, pages 2155–2162. IEEE.

[Rusu and Cousins, 2011] Rusu, R. B. and Cousins, S. (2011). 3D is here: Point Cloud Library
(PCL). In IEEE International Conference on Robotics and Automation (ICRA), Shanghai,
China.

[Sarkar and Gutierrez, 2016] Sarkar, K. and Gutierrez, M. A. (2016). Opendetection library
(od). http://opendetection.com, Last accessed on Dec 30, 2016.

[Scharstein et al., 2001] Scharstein, D., Szeliski, R., and Zabih, R. (2001). A taxonomy and
evaluation of dense two-frame stereo correspondence algorithms. In Stereo and Multi-
Baseline Vision, 2001.(SMBV 2001). Proceedings. IEEE Workshop on, pages 131–140.
IEEE.

[Schlegel, 2006] Schlegel, C. (2006). Communication Patterns as Key Towards Component-
Based Robotics. International Journal of Advanced Robotic Systems, 3(1):49–54.

[Schlegel et al., 2010] Schlegel, C., Steck, A., Brugali, D., and Knoll, A. (2010). Design ab-
straction and processes in robotics: from code-driven to model-driven engineering. In Inter-
national Conference on Simulation, Modeling, and Programming for Autonomous Robots,
pages 324–335. Springer.

[Schmidt and Huston, 2002] Schmidt, D. and Huston, S. D. (2002). C++ Network Program-
ming, Volume 2: Systematic Reuse with ACE and Frameworks. Addison-Wesley Profes-
sional.

[Schmidt et al., 1997] Schmidt, D. C., Gokhale, A., Harrison, T. H., Levine, D., and Cleeland,
C. (1997). Tao: A high performance endsystem architecture for real-time corba. IEEE
Communications Magazine, 14(2).

[Shepherd and Buchstab, 2014] Shepherd, S. and Buchstab, A. (2014). Kuka robots on-site. In
Robotic Fabrication in Architecture, Art and Design 2014, pages 373–380. Springer.

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Very deep convo-
lutional networks for large-scale image recognition. CoRR, abs/1409.1556.

[Smith et al., 2005] Smith, R. et al. (2005). Open dynamics engine.

[Steinberg et al., 2008] Steinberg, D., Budinsky, F., Merks, E., and Paternostro, M. (2008).
EMF: eclipse modeling framework. Pearson Education.

http://opendetection.com

130 BIBLIOGRAPHY

[Szegedy et al., 2015] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Er-
han, D., Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9.

[Temerinac et al., 2007] Temerinac, M., Reisert, M., and Burkhardt, H. (2007). Invariant fea-
tures for searching in protein fold databases. International Journal of Computer Mathemat-
ics, 84(5):635–651.

[Torabi and Gupta, 2010] Torabi, L. and Gupta, K. (2010). Integrated view and path planning
for an autonomous six-dof eye-in-hand object modeling system. In Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 4516–4521. IEEE.

[Um et al., 2011] Um, D., Ryu, D., and Kal, M. (2011). Multiple intensity differentiation for
3-d surface reconstruction with mono-vision infrared proximity array sensor. IEEE Sensors
Journal, 11(12):3352–3358.

[Um et al., 2013] Um, D., Ryu, D., and Kang, S. (2013). A framework for unknown envi-
ronment manipulator motion planning via model based realtime rehearsal. Intelligent Au-
tonomous Systems 12, pages 623–631.

[Vaughan et al., 2003] Vaughan, R. T., Gerkey, B. P., and Howard, A. (2003). On device ab-
stractions for portable, reusable robot code. In Proceedings 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), volume 3,
pages 2421–2427 vol.3.

[Volpe et al., 2001] Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., and Das, H. (2001).
The claraty architecture for robotic autonomy. In Aerospace Conference, 2001, IEEE Pro-
ceedings., volume 1, pages 1–121. IEEE.

[Wang et al., 2001] Wang, N., Schmidt, D. C., and O’Ryan, C. (2001). Overview of the corba
component model. In Component-Based Software Engineering, pages 557–571. Addison-
Wesley Longman Publishing Co., Inc.

[Woodman and Chun, 2006] Woodman, G. F. and Chun, M. M. (2006). The role of working
memory and long-term memory in visual search. Visual Cognition, 14(4-8):808–830.

[Yamauchi, 1997] Yamauchi, B. (1997). A frontier-based approach for autonomous explo-
ration. In Computational Intelligence in Robotics and Automation, 1997. CIRA’97., Pro-
ceedings., 1997 IEEE International Symposium on, pages 146–151.

[Yuret and De La Maza, 1993] Yuret, D. and De La Maza, M. (1993). Dynamic hill climbing:
Overcoming the limitations of optimization techniques. In The Second Turkish Symposium
on Artificial Intelligence and Neural Networks, pages 208–212. Citeseer.

[ZeroC, 2016] ZeroC (2016). Internet communications engine (ice). https://zeroc.
com/products/ice, Last accessed on May 10, 2017.

https://zeroc.com/products/ice
https://zeroc.com/products/ice

	Introduction
	Why planning-based cognitive perception?
	The case study: A delivery robot
	Motivation
	Environment Sensing and Cognitive Modeling of Rooms
	Semantic Relations for Scene and Object Discovery
	Modeling and Planning for Grasping
	Informed Search for Planning Perception

	List of Publications

	I Publications
	A Cost-efficient 3D Sensing System for Autonomous Mobile Robots
	An Incremental Hybrid Approach to Indoor Modeling
	A Passive Learning Sensor Architecture for Multimodal Image Labeling: An Application for Social Robots
	Semantic Exp. of Auto-Gen. Scene Desc. to Solve Robotic Tasks
	Exploiting Symmetries and Extrusions for Grasping Household Objects
	SPAM for a Manipulator by BNM in Unknown Environments
	Perceptive Parallel Processes. Coordinating Geometry and Texture
	Integrating Planning Perception and Action for Informed Object Search

	II Conclusions and Future Works
	Review and contributions
	Future works
	Robotic Software Contributions
	The Needs of Specific Software for Robotics
	Component Oriented Programming
	Main Characteristics
	Advantages and disadvantages
	Why Component Oriented Programming for Robots?

	Model Driven Engineering for Robotics
	Robotic Frameworks
	RoboComp
	Component Model
	Libraries, Tools and Files

	Robot Perception Software
	Point Cloud Library
	OpenDetection

	Publications not covered in this thesis

