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Máster en Ingenieŕıa de Telecomunicación

Trabajo Fin de Máster
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Abstract

This project aims to explore the most common network topologies of data-
center environments its technologies and some of their defining properties as
redundancy, number of devices required, and the costs to implement it. As
well as reviewing and testing the main layer-2 convergence protocols that
make this redundant networks usable.

Besides that, we will take a look at the concept of Software Defined Net-
working and the main concepts behind it such as; data and control layer
separation, and centralized management. Additionally some SDN technolo-
gies and tools will be briefly reviewed to better understand the concepts.

The test of the convergence protocols have been realized in a simulated
environment built on GNS3, a network simulation tool that uses VMWare to
run the GNS3 VM and a variety of docker containers for the different devices
that conform the data-center network.

Keywords:
convergence, time, spanning, tree, protocol, STP, link, layer, software, de-

fined, networks, SDN, rapid, RSTP, docker, GNS3, OpenDaylight, controller,
Open, vSwitch, time, data-center, data, center

1



2



Chapter 1

Introduction.

This project has been motivated by the increasingly important role that com-
puter networks have taken in today’s economy and the drive to know how
high availability and redundancy is achieved and how the problems associ-
ated with its implementation are solved.

The typical data-center was historically just a fast and fairly scalable
LAN to connect all data-center devices and equipment. But with the ap-
pearance of cloud computing arose a need for better integration with storage
and computing resources within the network e.g, private clouds.

Those data center networks (DCN) are a key component of enterprises
revenue and communications infrastructure of modern companies and its
importance is enough for businesses keep spending on updating their infras-
tructure [1]. Those expectations are why data-center networks should be a
example of resiliency and high-availability.

However, architecting for high availability means that the data center
network will show redundancy of its links and nodes, and in most cases this
redundancy will create loops in the topology that may cause network traffic
issues if improperly managed.

Those problems with loops within the network is why convergence proto-
cols and traffic engineering techniques are needed. Also, data center networks
are usually built using high performance layer 2 devices and that rules out
routing protocols that work over IP like OSPF or EIGRP.

With this in mind, the present document aims to analyze these conver-
gence protocols, their performance, and the environments where they are

3



primarily used.
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Chapter 2

Objectives.

The objectives of this project are aimed towards understanding layer 2 con-
vergence protocols and their use. Additionally, to understand these protocols
is necessary to know the network environment they are present in.

The main objectives of this project will be:

• Identify the layer-2 protocols used to achieve convergence.

• Review these protocols and how they work.

• Analyze data center environments where these protocols could be used.

• Identify possible tools to test and simulate these environments.

• Identify and review technologies deployed in this environments.

• Simulate a test environment using the tools reviewed.

• Implement the protocols in the test environment.

• Test the performance of these protocols and analyze the results.

• Review use cases of SDN technologies related to convergence.

These objectives are proposed as a way to achieve a better understanding
of data center networks, the technologies used in them and to take a glimpse
at how future technology trends like Software Defined Networking (SDN)
may be used as an alternative.

5



6



Chapter 3

Precedents & State of the art.

3.1 Convergence protocols.

3.1.1 Introduction.

In order to say that a network has achieved convergence, the devices of the
network must share the same topological view of the network they are part of.

To achieve convergence is necessary to implement protocols that enable
the network to build a logical loop-free topology. Also, these protocols allow
networks to implement redundancy links which are used to provide backup
links in case the active path gets shut down.

In this chapter the two main link layer convergence protocols will be re-
viewed, that is: the Spanning Tree Protocol and its evolution, the Rapid
Spanning Tree Protocol. Vendor specific implementations will not be ex-
plained in this text but they may be briefly commented.
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3.1.2 Spanning Tree Protocol.

”Spanning Tree Protocol (STP) is a Layer 2 protocol that runs on bridges
and switches. The specification for STP is IEEE 802.1D. The main purpose
of STP is to ensure that you do not create loops when you have redundant
paths in your network. Loops are deadly to a network.”[2]

As the Cisco website states, logical loops should never be present in net-
works. If for any reason a loop appears the network will eventually become
congested due to the effects of broadcast radiation.1

STP works by creating a spanning tree within the layer 2 network. This
means that between two network nodes there will only be one possible path,
which prevents logical loops. To easily understand this concept we can ex-
amine Figure 3.1.

Figure 3.1: Grid network with spanning tree (in blue).Wikipedia

1Broadcast radiation is the accumulation of broadcast and multicast traffic on a com-
puter network. Extreme amounts of broadcast traffic constitute a broadcast storm. A
broadcast storm can consume sufficient network resources so as to render the network
unable to transport normal traffic.
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In Figure 3.1 a grid network topology is shown and the spanning-tree of
the network is drawn in blue. We can observe that for two given nodes there
is only one possible path and the other physical links are deactivated. All
the nodes of the network share the same topological view, the network has
converged. What STP tries to achieve is this functional and stable network
state.

STP Operation

In order to create the spanning tree this protocols follows these steps:

Root Bridge Selection. The first step is selecting the Root Bridge
(RB) of the network, this means identifying the bridge with the lowest ID.
The ID of a bridge is the concatenation of the bridge priority (32768 by
default) and the bridge MAC address. E.g., a bridge with MAC address
1111.1111.1111 will have a default ID of 32768.1111.1111.1111 . The priority
can be changed in multiples of 4096. If two bridges have the same priority
there is a tie and the MAC addresses are compared.

When configuring STP in the bridges we can select the Root Bridge sim-
ply by changing its priority to 4096 and is advisable to pick a secondary Root
Bridge using a priority of 8192. This way in case the Root Bridge losses con-
nectivity we know how the network will behave.

Computing least cost paths to the RB. In this second step the
bridges start exchanging Bridge Protocol Data Units (BPDU) which contain
the cost of their link to the Root Bridge in the Root Path Cost field. To
better understand the how the protocol communicates take a glance at how
a BPDU frame looks in Table 3.1

Table 3.1: BPDU frame structure
Protocol ID Version Message type Flags

2 bytes 1 byte 1 byte 1 byte

Root ID Root Path Cost Bridge ID Port ID
8 bytes 4 bytes 8 bytes 2 bytes

Message Age Maximum Age Hello Time Forward Delay
2 bytes 2 bytes 2 bytes 2 bytes

• Protocol ID: zeros for STP specification 802.1D.
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• Version: zero

• Message type: Configuration BPDU or Topology Change Notification
(TCN).

• Flags: MSB in this field is the Topology Change flag and the LSB is
the Topology Change ACK flag.

• Root ID: Root bridge identity. 2-byte priority plus its 6-byte MAC
address.

• Root Path Cost: The cost of the path connecting the sender bridge (of
this BPDU) to the Root Bridge.

• Bridge ID: Sender identity. 2-byte priority plus its 6-byte MAC address.

• Port ID: 2-byte fields with the identity of the sender port.

• Message Age: Specifies the age of the configuration data since it was
sent from the Root Bridge.

• Maximum Age: If the Message Age exceeds the Maximum Age it’s
dropped.

• Hello Time: Time between Root Bridge Configuration messages.

• Forward Delay: How much time the bridge has to wait after receiving
a TCN.

The Root Bridge starts by sending configuration messages with Root
Path Cost of 0 with a periodicity specified in the Hello Time field. Each
subsequent bridge adds the cost of the link in which they received the BPDU
to the Root Path Cost and resends the newly computed BPDU through
the remainder links until it reaches the edges of the network.

Different link technologies and configurations have different link costs.
The link cost for STP can be found in Table 3.2. Also an administrator can
manually specify the cost of a particular network segment.

A bridge compares the BPDU’s it receives in its ports and selects the
port that received the least cost path BPDU as its root port (RP).

Then the bridges start the configuration of Designated Ports (DP). Those
are the ports in a LAN segment used to communicate directly with Root
Ports.

10



Table 3.2: STP link costs. IEEE 802.1D
Data Rate STP path cost
4 Mbps 250
10 Mbps 100
16 Mbps 62
100 Mbps 19
1 Gbps 4
2 Gbps 3
10 Gbps 2

In Figure 3.2 we can see the path cost and the computed spanning tree
with root ports, designated ports and blocked ports in an example mesh net-
work. This example network has achieved convergence with no logical loops
but with many redundant links.2

Figure 3.2: Spanning tree example. Shows the links cost and port roles
assigned. In blue links to the root. In green links to hosts. In red blocked
links.

2Additional rules exist to decide the role of ports when there are ”ties”, e.g., if the
Root Bridge has more than one port connected to other bridge it will use the port with
the lowest port ID (priority + interface number) as designated port and block the others.
All additional rules revolve around the bridges and ports priorities and ID’s.
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3.1.3 Rapid Spanning Tree Protocol.

The Rapid Spanning Tree Protocol (RSTP) defined in the IEEE 802.1w is
the evolution of the IEEE 802.1d Spanning Tree Protocol. It was published
when the popularity of layer 3 routing environments was increasing and a
new link-layer convergence protocol was needed. Before that Cisco had intro-
duced additional STP features in their devices but these required additional
configuration and were vendor specific [3]. Even with these modifications to
STP, RSTP performs better than the Cisco-modified protocol. Later Cisco
will also develop its own modifications for RSTP to further improve the per-
formance.

Ports in RSTP can have 3 different states, that is: discarding, learning,
and forwarding. The old disabled, blocking, and listening states of STP are
unified in the RSTP discarding state (Table 3.3). However RSTP still has the
same root, designated, and blocked port roles but it also adds the alternate
and back-up roles.

Table 3.3: STP & RSTP Port States
STP RSTP

Disabled Discarding
Blocking Discarding
Listening Discarding
Learning Learning

Forwarding Forwarding

The BPDU that RSTP uses have few differences with STP’s BPDU. It
uses the same format but all bits in the flag field are used. These bits are
used to manage the proposal/agreement method implemented in RSTP, and
to encode the state and role of the source port. These similarities make
RSTP compatible with STP bridges but if it inter-operates it loses most of
its advantages and speed.

RSTP Operation

In contrast with STP, bridges generate their own BPDUs every hello-time
which is 2 seconds by default and don’t just relay the BPDUs that the Root
Bridge sends. If a bridge does not receive BPDUs from an adjacent bridge,
3 times in a row, this bridge will consider that they have lost connectivity.
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Edge ports, those connected to a host, can not create loops and therefore
will change directly to a forwarding state.

Bridges start with their ports in the blocked port role (Figure 3.3) and
will start to learn the network topology from their neighbors BPDUs. Two
bridges will decide which one is the Root Bridge or which one has the least
cost path to the Root Bridge.

Figure 3.3: RSTP Initial state.

Once a bridge (ID:3) finds a Root Bridge (ID:1) or a least cost path to
the Root Bridge, it blocks all non-edge ports and communicates to the Root
Bridge (ID:1) that it should put its port in a forwarding state ( and it will
be a Designated Port). This negotiation process is unique to RSTP and it
is not present in STP. When this happens the bridge (ID:3) puts its port in
the forwarding state too and it becomes a Root Port (Figure 3.4).

This bridge will then communicate this newly discovered path to the Root
Bridge in the BPDUs that it sends every hello-time, propagating this infor-
mation through the network (Figure 3.5).

The algorithm will block ports in order to prevent logical loops, but
blocked ports in RSTP can be alternate or backup ports. In Figure 3.6
the blocked port will become an alternate port because it is receiving a ”bet-

13



Figure 3.4: RSTP First negotiation (Shown only bridges 1 & 3).

Figure 3.5: RSTP Second negotiation.

ter” BPDU in other port. A backup port will exist when a bridge has more
than one port connected to same LAN segment.

When RSTP achieves convergence it should have the same topology as

14



Figure 3.6: RSTP Convergence.

STP but it will theoretically do so in a shorter time. This is caused by
the proposal/agreement method of deciding port roles, and because bridges
don’t just relay the information from the Root Bridge but communicate
autonomously with their neighbors.
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3.2 Data Center environments.

Data center infrastructure has received a lot of interest from researchers
and academics. The growing importance of Internet-based applications like
search engines, video distribution and social networks as well as data mining,
or high performance computation has pushed the growth of data centers and
companies in this market.

The importance of the data centers role in today’s economy makes all
aspects of these data center subject to study and enhancement including
data center networking. Data center networking should be cost-effective in
its implementation and its maintenance.

The topology of data centers is usually based on Servers connected to Top
of Rack (ToR) switches, connected to End of Rack (EoR) switches which are
connected through core switches. This forces core switches to support most
of the bandwidth of the network and has motivated researches to come up
with alternate approaches for scalable network architectures.

Data center network architectures are classified in fixed and flexible ar-
chitectures and can be further classified as we can see in Figure 3.7.

Figure 3.7: Data center networks [4].
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3.2.1 Tree-based topologies.

These are the classic data center architectures with ToR, EoR and core
switches but depending on the variant they show redundancy in the differ-
ent levels. This classification includes Basic-Tree, Fat-tree and Clos network
architectures.

Basic-tree architecture consist on two or more level of switches, usu-
ally core, aggregation and edge, with the servers being the leaves of the three.
These architecture does not show any redundancy and the core switch (top
level) has to be able to manage almost all the traffic in the network. An
example Basic-tree is shown in Figure 3.8.

Figure 3.8: Basic Tree.

Fat-tree architecture is an evolution of the basic-tree. Take n-port
edge switches connected to n/2 servers and to n/2 distribution switches, this
construction is called a pod[5]. Then the remaining n ports in the distribution
switches are connected to n core switches. Then pods may be added until
all core switches have their ports used. This architecture and its variations
have been for a long time the de-facto standard architecture for data-center
networks. This architecture shows strong redundancy on almost all network
levels but its core switches still have to support most of the network traffic.
An example Fat-tree architecture is shown in Figure 3.9.

Clos network architecture is a variant of the three level tree network.
The levels in this architecture are originally called intermediate, aggregation

17



Figure 3.9: Fat-Tree.

and ToR. The number of switches in each level is given by the number of
ports in the intermediate and aggregation levels. It will have n/2 n-port in-
termediate switches, n n-port aggregation switches and each one connected
to n/2 ToR switches. The ToR switches are connected to 2 aggregation
switches and to n-2 servers. This architecture exhibits a redundancy similar
to that of the Fat-tree but uses less switches to do so. An example of n=6
Clos network is shown in Figure 3.10.

Figure 3.10: Clos network 6-ports.
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3.2.2 Recursive topologies.

While it is beyond the scope of this document to explain this topologies, for
illustrative purposes the DCell topology will be shown.

Recursive topologies are created from a basic Cell or Cube called Cell0
or Cube0 and higher level architectures Cellns are created interconnecting n
Cell0s [6]. The servers in this cells may be connected to different level switches
or, sometimes to other servers.

A DCell topology is composed of smaller components called DCell0s.

Figure 3.11: DCell−0 with 4-port switch.

Each DCell0 has n servers connected to the same 1 n-port switch (Figure
3.11). A DCell1 is composed of n + 1 DCell0s with one link to every other
DCell0. The links are made between the servers of the DCell0s (Figure 3.12).

Figure 3.12: DCell−1 with 4-port switches.
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3.2.3 Flexible architectures.

Flexible architectures make possible re-configuring the network architec-
ture easily once deployed but use far more complex and costly network de-
vices.

Once again this topologies are beyond the scope of this document but we
can see it’s main characteristics.

Hybrid architectures use both types of switching devices, electrical
and optical.

In this category we find the c-Through network architecture which is
composed of a typical tree network of electrical switching devices and a
parallel optical re-configurable point-to-point network which automatically
changes its configuration based on the current weights of the flows between
servers [7].

Another example of hybrid architectures is the Helios topology. This is
usually a two level tree topology in which the ToR switches are electrical but
the core switches use optical technologies.[8] This topology have the advan-
tage of addressing the bandwidth over-subscription that core switches have
to support and are cheaper to maintain and deploy.

Lastly we can find fully optical networks which abandon the use of
electrical switching. This fully optical architectures, like OSA[9], use optical
switching devices which make this architectures fully re-configurable and
capable of handling huge bandwidths.
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3.3 Software Defined Networks

3.3.1 History.

The 90’s saw the Internet grow with intensity and it experienced the ap-
pearance of more diverse applications and a greater use by the public. This
new found demand drew researchers to test new protocols aimed to improve
network services.

The way to do so was long and cumbersome and involved taking their
ideas to the IETF (Internet Engineering Task Force) to approve and stan-
dardise them, which, over time, proved to be a slow and frustrating process.

Active Networking

Some researchers started working on an alternative way of network control.
This approach was roughly based on the analogy of reprogramming a com-
puter, which can be done relatively easy. Traditional networks are not pro-
grammable and this so called Active Networking involved a programming
interface (API) that was capable of implementing custom functionality for a
group of packets in a selected network node.

The issues that were to be solved by Active Networking included short-
ening the time needed to develop and deploy network services, more detailed
control to meet the needs of applications or network conditions, and unified
control of middleboxes as firewalls, proxies or transcoders, which started to
be a concern for their vendor specific programming models.

It would seem that the problems that motivated the research on Active
Networking were surprisingly similar to the ones that have motivated the
push for SDN research today. Despite the similarities, it wasn’t until the
publication of an article about the OpenFlow API in 2009 that the term
Software Defined Network (SDN) was used[13].

Software Defined Networks

Even though the term Software Defined Network appeared later, the concept
of data-plane and control-plane separation appeared in the early 2000’s and
in a few years it would be one of the core concepts of what today is called
SDN.
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During this time the constant growth of traffic volumes and the need of a
greater network reliability and performance revealed that the tools and meth-
ods used for traffic engineering were outdated and insufficient. Conventional
routers and switches show a complete integration of data and control planes
and this makes controlling the behavior of networks as a whole difficult.

Throughout the next years the OpenFlow API was developed within the
Stanford University [15] and by the year 2010 it was the most used open
interface with the help of controller platforms such as NOX.

OpenFlow compliant switches use a set of packet-handling rules called
flow tables. These flow tables enable fine-grained network control and mon-
itoring without the need of upgrading the present switches hardware. The
SDN controllers are able to obtain a complete view of the network topology
and modify the flow tables when needed.

OpenFlow initial target scenario was campus networks. So in the late
2000’s the OpenFlow group at Stanford started an effort to deploy test net-
works on US campuses. As SDN materialized in universities, data center
engineers started to use it to better manage network traffic at a large scale.
It proved more cost-effective to write complex traffic controller programs us-
ing those SDN switches than to continue using vendor specific appliances
with their own vendor specific programming and control models.

Additionally this new networking approach has made possible for smaller
companies to compete in the established network equipment market by of-
fering network devices which support SDN APIs such as OpenFlow.
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3.3.2 SDN Architecture.

As stated before one of the main features of Software Defined Networks is
the detachment of the control and data planes. This means that the main
purpose of the network devices is forwarding and dropping packets while the
routing protocols and other logic of the network is centralized in controllers.

The controller is the logical entity that receives the requirements of the
network from an upper layer and a configures the network devices to fulfill
these requirements. The controller has a general view of the network topol-
ogy and it may be said that it acts as the ”brain” of the network devices.

The network devices are responsible of forwarding and dropping data in
the network. Being much less complex than their traditional counterparts
are less costly and much easier to implement in virtualized environments.

We can compare the traditional switches and the SDN switches in Figures
3.13 and 3.14. Those are over simplifications for illustrative purposes.

Figure 3.13: Data and Control Planes in a traditional switch.

It exists an additional layer in the SDN architecture, that is the applica-
tion layer. This layer implements the business logic and manages the control
plane as needed. Figure 3.15 shows a more complete view of the SDN archi-
tecture.

The separation of planes makes necessary to use APIs to communicate
the different network layers. The southbound interface (SBI), which commu-

23



Figure 3.14: Data and Control Planes detached in switches and controller.

Figure 3.15: SDN architecture overview. [10]

nicates the controller with the network elements, is an API called OpenFlow.
Others exist but OpenFlow is the standard for a lot of vendors and in open
source projects. For the northbound interface (NBI), connecting the control
and application layer, there is no standard API and usually each controller
has its own implementation [11], for instance, OpenDaylight uses the Open-
Daylight API.
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3.3.3 Advantages & Disadvantages.

Advantages

The implementation of SDN can be difficult but it comes with important
advantages:

• Agility and speed. Setting up an SDN can be as easy as configur-
ing VMs. This makes them a much better candidate than traditional
networks when working with VM-heavy environments.

• Network flexibility. The holistic network view of SDN means that
experimenting with configurations does not have permanent conse-
quences. You can always revert to a previous network configuration
with ease.

• Granular configuration and security. The flexibility of SDN makes
it able to implement security policies in a fine grained way. Making
things like new VM or new devices easy to secure.

• More efficiency & less Operating Expenditures. The ease of
management that comes with SDN means less down-times due to main-
tenance. And while changing all the devices on a network to be Open-
Flow compliant is a big upfront investment, the long term benefits are
important.

Disadvantages

Every new technology also comes with new problems and rough edges that
need to be polished:

• Centralized architecture.This is both an advantage and a problem,
the separation of control planes brings a new problem in security. SDN
have a vector of attack that was not present in previous networks and
could be potentially exploited in yet unknown ways.

• Non-vendor support. There still is a lack of code and, in some
implementations, a lack of features. This is a temporary disadvantage
that will be resolved with time and further technology adoption.

• New network paradigm. Network engineers are not programmers
and programmers are not network engineers. SDN lives in the middle
ground between this two jobs and professionals will need time to adapt
to the challenge.
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Chapter 4

Tools & Methodology

This chapter is composed of an overview of the tools used in this project, the
test environment used and how the convergence times are measured.

4.1 Tools

4.1.1 GNS3

GNS3 is a software which allows the user to configure, emulate, test and ex-
periment with computer networks. GNS3 can be used with physical devices
or can be emulated devices. In its origin it was only compatible with CISCO
but it has added compatibility with many other vendors.

GNS3 has two components; the GUI and the emulation virtual machine.

The GUI(Graphical User Interface) is where the user configures the net-
work devices and topology. It uses a drag & drop system to add devices in
the topology and other tools for connecting devices, adding labels,etc. In
figure a network with emulated switches and VMs is shown.

In the last figure we can see a Firefox client running on a tinyLinux docker
container, an ubuntu docker container and 4 OpenvSwitch instances. As we
can see, with GNS3 you are able to deploy VMs and test network with sim-
plicity. You can also use the GNS3 marketplace to download new appliances
for your networks.

The second component of GNS3 is the virtual machine. All the compo-
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Figure 4.1: GNS3 Graphical User Interface

nents of a network, including the network devices and other appliances are
run as a separate process within a virtual machine. This virtual machine can
be a local server running in the same computer as GNS3 or a separate vir-
tual machine running in a virtualization software as VMWare or VirtualBox
or even in a remote machine. It is recommended to use a separate virtual
machine to run GNS3 simulated devices because you can limit the resources
allocated to them and are less prone to fail.

Figure 4.2: GNS3 VM
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4.1.2 Docker

Docker gives the user the ability to package and deploy an application in an
isolated environment called a container. This isolation allows you to deploy
many of this containers in a host with security. Containers are lightweight
since they don’t need an hypervisor and guest OS to run, they are executed
directly within the host. This means that you could run more docker con-
tainer than virtual machines in a given hardware (Figure 4.3).

Figure 4.3: Docker vs traditional VMs [12]

Docker advantages

Fast delivery of applications. Making changes to a deployed applica-
tions is as easy as updating the image the docker container is running. This
simplifies the deployment process in your own projects or in the customer
machines or cloud.

Lightweight and scalability. Docker containers are lightweight and can
run on a laptop, containers don’t waste resources running guest OS. Since
they are easy and fast to set-up you can add or remove containers to tackle
the needs of the project.
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4.1.3 OpenDaylight

The OpenDaylight Project is a collaborative open source project hosted by The
Linux Foundation. The goal of the project is to promote software-defined net-
working (SDN) and network functions virtualization (NFV). The software is
written in the Java programming language. - Wikipedia.

OpenDaylight was created by several networking companies to develop an
open virtual networking platform on top of existing standards as OpenFlow.
The approach taken for this project resembles what happened with Open-
Stack, where companies come together to develop an open source project
together instead of pushing their own vendor specific solutions.

The project encompass several components as an SDN Controller, pro-
tocol add-ons, and the API that make everything communicate and work
together. This combination makes a complete SDN solution with a con-
troller managing the data flows of the underlying infrastructure.

The open source nature of the project has encouraged vendors to build
on top of it. For example, Cisco has an open source application OpenFlow
Manager (OFM) [14] that enables users to visualize, program and monitor
OpenFlow topologies and paths.

The first release of OpenDaylight saw the light on February 2014. It has
been in continuous development since then enjoying a one or two of major
updates every year.
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4.1.4 OpenFlow

As previously explained in the SDN Architecture Section, SDN enabled de-
vices separate the data plane and control plane of the classical network de-
vices. However, detaching this planes means that we need a solution to
communicate this two planes.

If the control plane, resides in the controller and the data plane resides on
the switch, OpenFlow is the protocol that enables this two devices to commu-
nicate. This permits the abstraction of the physical and logical configurations
and to develop solutions that work with independence of the equipment man-
ufacturer. These characteristics open a faster path for network innovation
and new the deployment of new services.

”OpenFlow R© is the first standard communications interface defined be-
tween the control and forwarding layers of an SDN architecture. OpenFlow R©
allows direct access to and manipulation of the forwarding plane of network
devices such as switches and routers, both physical and virtual (hypervisor-
based).” -Open Networking Foundation.

OpenFlow is maintained by the Open Networking Foundation (ONF) but
was developed at the Stanford university[13] before the ONF was founded.
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4.1.5 Open vSwitch

Open vSwitch is an open source virtual switch used typically in virtual envi-
ronments to interconnect virtual machines or different hosts through a net-
work. It is compatible with the OpenFlow protocol which makes it a good
candidate when deploying SDN solutions.Open vSwitch is a production qual-
ity virtual switch and one of the most popular implementations of OpenFlow.

Open v Switch includes features as:

• VLAN tagging.

• 802.1q trunking protocol.

• Spanning Tree Protocol (STP).

• Rapid Spanning Tree Protocol (RSTP).

• 802.3ad Link Aggregation Control Protocol.

• Tunneling (IPSec, GRE, VXLAN).

• QoS administration.

• ...and more.

These included features make it a perfect candidate for our test environ-
ment, since it supports the two main layer 2 convergence protocols that are
going to be tested.

OpenvSwitch is composed of three principal components, the ovsdb-server,
the ovs-vswitchd and the kernel module [16] . ovsdb-server is lightweight
database where the switch configuration and status is stored. ovs-vswitchd
is the daemon that executes the functionality of the switch.

This two components are interconnected to enable the daemon to write
and read information from the database. The information stored in the
database is organized in tables, some tables are:

• Open vSwitch configuration.

• Bridge configuration.

• Port configuration.

• Interface configuration.
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• OpenFlow configuration.

• QoS configuration.

• QoS output queue.

...
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4.2 Methodology

4.2.1 Test Environment Overview.

For this project we are going to simulate a network within GNS3 making use
of all the tools reviewed in the previous section of this document. We will
use GNS3 as a graphical user interface to build our data center architecture.

The fat-tree architecture has been chosen as our test environment topol-
ogy for the following reasons:

• Extensively used in real-world data center architectures[5].

• Big enough number of switches to test the simulation capabilities of
GNS3.

• Tree topology with several recursive paths to do real performance test
of the convergence algorithms.

• Good hardware redundancy in the Core and Distribution layers[4].

• Ease of scaling.

• Comprehensive visual representation.

GNS3 hosts only support one network interface.Due to this limitations
on GNS3 hosts, recursive topologies with alternative host to host paths have
been discarded.

For this environment we will be using a total of 20 4-port Open vSwitch
switches simulated inside Docker containers.

This switches have an additional management interface in a different
adapter, this management interfaces will be connected to a couple of general
purpose switches to communicate with OpenDaylight, the chosen SDN con-
troller.

The environment will also include a TinyCore Linux distribution with
Firefox installed, also simulated with Docker. This appliance will be used to
access Karaf which is the OpenDayLight WebUI used. Karaf will enable us
to access a topological view of the whole network and to inspect the flows of
every node.
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Lastly a NAT cloud appliance connected to TinyCore Linux, OpenDay-
light and the management interfaces will be used to assign usable IP addresses
for the management network.
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As stated earlier one of the advantages of this architecture is its scalabil-
ity. Just by adjusting the number of ports available on each switch we are
able to increase the potential number of servers of the data center. For our
4-port switches we can have a maximum of 16 servers, but if we had 16-port
switches the potential number of servers increases to 1024 (Table 4.1).

Table 4.1: number of servers for Tree-based topologies
n-ports Basic Tree Fat-tree Clos network

4 64 16 8
6 216 54 36
8 512 128 96
16 4096 1024 896
48 110592 27648 24496

Of course increasing the number of servers means that more switches
will be needed, e.g for a 8-port switches Fat-tree topology 80 switches are
necessary. The number of switches on tree topologies can be calculated with
the formulas in Table4.2) .

Table 4.2: number of switches for Tree-based topologies.[4]
Basic Tree Fat-tree Clos network

n of Switches n2+n+1
n3 N 5N

n
3
2
n + n2

4

In table 4.2 N is the number of servers running within the data center.

In total this test environment will be composed of:

• Docker container: Ubuntu + OpenDayLight + Apache Karaf +Dlux

• Docker container: TinyCore Linux with Firefox to access Karaf.

• 3 GNS3 general purpose switches.

• 20 Open vSwitches also running in Docker containers.

• 2 Docker container: Ubuntu + nettools to test the connectivity and
convergence time of the network.

• 1 GNS3 NAT cloud.
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A total of 24 Docker containers will be running over the GNS3 Linux VM
within VMWare hyper-visor with allocated resources of 4 physical cores and
8GB RAM. The ”bare-metal” consist on an AMD FX-8350 8-core CPU at
4.2GHz with a total of 16GB RAM.

Configuration

OpenDayLight is installed over an Ubuntu 14.04 container. To be able
to run ODL we have to take the following steps:

• Import the Ubuntu appliance from the GNS3 market place.

• Open the file /etc/network/interfaces with vi or nano and uncomment
the DHCP configuration for eth0 and restart.

• Install the Java run time environment, unzip and wget.

• Download the last available version of OpenDayLight from their repos-
itories with wget and decompress it.

• Check the IP of this machine and run ./”ODL folder”/bin/karaf to
start the controller.

TinyCore + Firefox is an appliance available on the GNS3 marketplace.
It’s ready to use just need to check if DHCP is enabled in the file /etc/net-
work/interfaces. If it is commented uncomment and restart.

Open vSwitch is also a Docker container. In order to see them within
DLux, the OpenDaylight WebUI, we need to ensure they have a proper IP
address. The best way to do that is enabling DHCP in their configuration
to request one from the NAT cloud device. The last step is to give them
the IP address where the controller is running and executing the following
OpenFlow commands:
ovs-vsctl set-controller br0 tcp:aaa.bbb.ccc.ddd:6633 - with the controller’s IP
ovs-vsctl show - to check the connection.
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Once it is assured that the controller can talk with the switches, we can
start to build the data center architecture (Figure 4.5).

Figure 4.5: Successful bridge and controller connection

One last thing to do is check if we can access DLux, the WebUI, from the
Firefox client in the TinyCore container (Figure 4.6).

Figure 4.6: Accessing Dlux through the Firefox+TinyCore container.
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Building the Fat-tree

This tree will be built using 4-port switches. A Fat-tree topology constructed
with 4-port switches can have a maximum of 16 servers. Then ,per tables
4.1 and 4.2, this topology will need 20 4-port switches.

As explained in Section 3.2.1 of this document the Fat-tree will be com-
posed of 4 core switches connected to 4 pods. A pod is a group of n/2
distribution switches connected to n/2 edge switches. This means 2 distri-
bution switches and 2 edge switches.

Figure 4.7: A 4-port switch pod.

Distribution 1 will connect to Core 1 and 2 and Distribution 2 to Core 3
and 4. Same connections in the remaining pods.
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4.2.2 Convergence time measurement.

In order to measure the convergence time of the algorithms and how loss of
connectivity or changes in the DCN topology affect the exchange of infor-
mation we need to have a constant flow of information. This constant flow
enable us to pin-point when the connectivity is lost and when it is restored.
In order to perform this test two servers of the data center will exchange
pings, while we will modify the architecture to simulate loss of connectivity
of ports, a whole switch within the different layers of the architecture.

Since the convergence protocols react differently to topology changes (new
links) and loss of connectivity both cases will be tested for.

Spanning Tree Protocol 802.1d configuration.

To test STP performance we will configure the bridges as follows:

• Core 1 Priority:0, Root bridge.

• Core 2 Priority: 4096 Alternate root bridge.

• Core 3 & 4: Priority: 8192.

• The first distribution node of each pod hasbetter priority than the rest.

• Edge bridges have the lowest priority in the network.

As explained in Chapter 3, priorities should be expressed as a product of
4096 decimal or products of 1000 if expressed in hexadecimal. In Figure 4.9
we can see the topology with its bridges priorities.

With this information STP will start to build the spanning tree sending
BPDUs from the root every hello time interval, by default 2 seconds.

In Figure 4.10 the roles for each switch port is shown. We can see that
every bridge has only one root port, which denotes the path with least cost to
the Root bridge. To prevent loops and a potential congestion of the network
some ports are blocked by STP

The logical link tree of the network can be seen in Figure 4.11.

As it can be seen the protocol maintains connectivity between all the
nodes, and prevent the creation of logical loops. The nodes in grey (Figure
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Figure 4.9: STP priorities in the test environment.

Figure 4.10: Port roles in the test environment.
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4.11) are part of the STP but will act as alternate paths if the main path
through C1 or one of the distribution switches is severed.

Also, we should remember that STP works in a per VLAN basis so in
different VLANs different spanning trees could exist redistributing the net-
work load in the other nodes, effectively sharing the total load of the network.

However, other thing that should be noted is that for the most part the
inside traffic in a data center is made within the same pod, and pod to pod
communication should be infrequent. This is mainly because the applications
and deployments of a given client are usually within the same VM.

Figure 4.11: Spanning tree logical links computed.
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Rapid Spanning Tree Protocol 802.1w configuration.

In order to be able to realize a valid time comparison we must maintain the
priorities of every bridge. This way we will be sure that the resulting span-
ning trees will be similar to those used with STP.

To configure the bridges to use Rapid Spanning Tree Protocol instead of
Spanning Tree Protocol we will issue ovs-ctl commands to every switch to
activate RSTP. This needs to be done in a per bridge basis.

To make sure that the computed spanning tree is the same to that of STP
we can take a look at the topology reported to the SDN controller in Figure
4.12.

Figure 4.12: RSTP spanning tree computed as shown in OpenDaylight con-
troller.
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Times measurement

Now with the network fully functional we can test the performance of the
protocols. To do that, we need to be able to identify when the connectivity
is lost and when it is restored. Restoring the connectivity means that the
tree has been rebuilt and the network is able to function as usual.

In order to be as exact as possible we will measure in parallel with two
different methods:

First method. Using the ping command a constant flow of packets can
be achieved using the -f (flood) modifier and using the -i (interval) option
we can specify the time interval between packets. Also using the -c (count)
option we can specify the number of packets that should be sent, e.g: ping
-c 6000 -f -i 0.01 192.168.123.3 with this command this host will send 6000
pings in 0.01s interval without waiting for a response to send the next ping.
This means 60 seconds sending a constant flow of packets at known intervals.
If we measure the packet loss we can deduce the time the network wasn’t
functioning properly.

Second method. The second method consist in using WireShark in the
receiving end to compare the time stamps of the incoming ping request. And
see when the connection is restored.

Test cases. We will do several test cases. Loss of connectivity (port), loss
of connectivity (whole bridge), new link(port), new link(bridge). This cases
will be done in both the Core Layer and the Distribution layer of the DCN.
This amounts to a total of 8 test cases for each protocol

Number of tests. For each test case 10 measurements will be produced
using each one of the described methods. The results of this tests are shown
in the next chapter.
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Chapter 5

Results & Discussion

In this chapter the results from the measurements for every test case pre-
viously mentioned are presented. After reviewing the test results a brief
discussion and explanation of the numbers is presented.

5.1 Topology after changes

For the first round of measurements we will force the shutdown of the link
that connects D1(11) and E1(21). Forcing the convergence protocols to re-
converge to adapt to this change. The resulting topology is as shown in
Figure 5.1.

For the second test D1(11) will be shutdown entirely. The topology in
this case will remain as seen in Figure 5.2

For the next test the link that connects D1(11) and C1(1) will be cut.
The topology in this case will converge in the spanning treeshown in Figure
5.3.

The last test will be done shutting down Core Bridge 1 completely. This
will force a new spanning tree that will use the alternate root bridge Core 2
as its root bridge. The spanning tree can be seen in Figure 5.4.

These topology changes can be easily seen and detected in the OpenDay-
light GUI. As it is constantly getting updates of the flow tables from the
OpenFlow enabled switches.
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Figure 5.1: Spanning tree after shutdown of port connecting D1(11) and
E1(21).

Figure 5.2: Spanning tree after shutdown of bridge D1(11).
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Figure 5.3: Spanning tree after shutdown of port connecting D1(11) and
E1(1).

Figure 5.4: Spanning tree after shutdown of bridge C1(1).

5.2 STP Convergence Time.

This section will show all the convergence time test results obtained when
using STP as the convergence protocol. Each test has its own subsection and
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the convergence times are presented in table format.

5.2.1 STP Connectivity loss on a port. Distribution
layer.

Test was done checking connectivity between server 2 and 17. These servers
are connected to E1 (Edge 1) and E7 (Table 5.1).

The connectivity loss on a port was forced on interface eth3 of switch D1
(Distribution 1) which is connected to E1 and therefore to server 2.

Table 5.1: Convergence times after connectivity loss on a port (s)
test n Method 1 (s) Method 2 (s) Mean (s)

1 36,056 40,1282 38,0921
2 42,664 46,1923 44,42815
3 40,801 47,6075 44.20425
4 34,437 39,5674 37,0022
5 37,532 42,4875 40,00975
6 35,512 41,8246 38,6683
7 39,186 46,4164 42,8012
8 38,154 44,9346 41,5443
9 37,764 41,7613 39,76265
10 35,941 40,0681 38,00455

Average 37,8047 43,09879 40,451745

We can observe the ”homogeneity” of the results obtained. These results
coincide with the sum of timers that STP uses to communicate changes in
its topology.
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5.2.2 STP Connectivity restored on a port. Distribu-
tion layer.

Test done checking connectivity between server 2 and 17. These servers are
connected to E1 (Edge 1) and E7(Table 5.2).

Restored connectivity on interface eth3 of switch D1 (Distribution 1)
which is connected to E1 and therefore to server 2. This port is part of the
original least cost path to the root, so the spanning-tree will configure itself
again to use this port.

Table 5.2: Convergence times after restoring connectivity on a port (ms)
test n Method 1 (ms) Method 2 (ms) Mean (ms)

1 885 1045 965
2 1837 2050 1943.5
3 1812 1988 1900
4 1613 1650 1631.5
5 921 1004 962.5
6 1536 1638 1587
7 1749 1833 1791
8 1234 1301 1267.5
9 1811 1894 1852.5
10 984 1056 1020

Average 1438,2 1545,9 1492.05

The moment when the original port goes back again, D1 switches the
communication from the alternate path to the original path and communi-
cates that topology change to E1 in the next Hello Message which are sent
every 2 seconds.
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5.2.3 STP Connectivity loss on a bridge. Distribution
layer.

Test was done checking connectivity between server 2 and 17. These servers
are connected to E1 (Edge 1) and E7(Table 5.3).

The connectivity loss was forced on switch D1 (Distribution 1) which is
connected to E1 and therefore to server 2.

Table 5.3: Convergence times after full connectivity loss on a bridge (s)
test n Method 1 (s) Method 2 (s) Mean (s)

1 47,359 48,1172 47,738
2 42,712 50,5319 46,622
3 42,165 48,5577 45,361
4 42,246 48,6006 45,423
5 46,084 48,6590 47,371
6 45,615 48,1480 46,881
7 45,125 49,3498 47,237
8 43,457 47,9856 45,721
9 44,965 50,1248 47,545
10 46,471 48,6423 47,557

Average 48,8716 44,6198 46,74575

In this test case the topology change is much more severe and it takes a
lot more of communication within the nodes to achieve convergence. Even
then the 30 seconds from Learning + Forwarding time are the baseline for
this times and then the accumulation of Hello Times to communicate the
topology change through the bridges.
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5.2.4 STP Connectivity restored on a bridge. Distri-
bution layer.

Test done checking connectivity between server 2 and 17. These servers are
connected to E1 (Edge 1) and E7 (Table 5.4).

Restored connectivity on interface eth3 of switch D1 (Distribution 1)
which is connected to E1 and therefore to server 2. This switch was part of
the original spanning tree and will be restored as a bridge once it is booted.

Table 5.4: Convergence times after restoring a bridge (s)
test n Method 1 (s) Method 2 (ss) Mean (s)

1 27,023 29,4561 28,239
2 28,977 29,7995 29,3883
3 28,443 30,3087 29,3757
4 25,930 29,5714 27,7508
5 28,861 29,8029 29,3320
6 27,847 29,7877 28,8173
7 28,012 29,8540 28,9328
8 27,819 30,1423 28,9804
9 27,694 29,8317 28,7627
10 28,946 30,0975 29,0719

Average 27,8651 29,86517 28,86517

It this case the time needed to restore connectivity through bridge D1
is roughly the sum of the learning time and forwarding time, during those
times the bridge stop forwarding packets to give time to the bridges in the
topology to receive the new spanning tree.
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5.2.5 STP Connectivity loss on a port. Core layer.

Test was done checking connectivity between server 2 and 17. These servers
are connected to E1 (Edge 1) and E7 (Table 5.5).

The connectivity loss on a port was forced on interface eth1 of switch C1
(Core 1) which is connected to D1 and therefore to E1 and server 2. This
switch is also the root bridge of the topology.

Table 5.5: Convergence times after connectivity loss on a port in the Core
layer(s)

test n Method 1 (s) Method 2 (s) Mean (s)
1 44,337 49,5083 46,9206
2 42,924 50,0389 46,4813
3 47,027 50,3183 48,6728
4 47,574 49,8047 49,6891
5 47,699 49,9268 48,8130
6 46,911 49,7534 48,3322
7 45,462 50,2276 47,8448
8 43,853 49,9562 46,9046
9 44,967 50,1037 47,5354
10 46,742 49,7495 48,2458

Average 45,7496 49,9382 47,8440

Those results are similar to those obtained in the distribution layer. The
connectivity loss on a port forces bridges to go through the Learning and
Forwarding Timers and on top of that the time that the topology changes
takes to spread to all bridges.
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5.2.6 STP Connectivity restored on a port. Core layer.

Test done checking connectivity between server 2 and 17. These servers are
connected to E1 (Edge 1) and E7(Table 5.6).

Restored connectivity on interface eth1 of switch C1 (Core 1) which is
connected to D1 connected to E1 and therefore to server 2. This is the root
bridge so the port will necessary be a designated port connected to D1 and
the port on D1 will necessarily be a Root port, because is connected directly
to the root bridge.

Table 5.6: Convergence times after restoring connectivity on a port in the
Core layer(ms)

test n Method 1 (ms) Method 2 (ms) Mean (ms)
1 2022 2171 2096,7
2 1011 1077 1044,1
3 808 1049 928,6
4 1213 1373 1293,1
5 1010 1175 1093,1
6 1213 1369 1291,1
7 1051 1209 1130
8 1109 1235 1147,2
9 1088 1272 1190,9
10 1059 1252 1170,5

Average 1158 1318,7 1238,5

As before restoring the port loss on a bridge does not provoke a significant
loss of packets. It will take at most the time between Hello Times (2s) to
revert connectivity through the original port.
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5.2.7 STP Connectivity loss on a bridge. Core layer.

Test was done checking connectivity between server 2 and 17. These servers
are connected to E1 (Edge 1) and E7(Table 5.7).

The connectivity loss was forced on switch C1 (Core 1) which is connected
to D1 connected to E1 and therefore to server 2.

Table 5.7: Convergence times after full connectivity loss on a bridge in the
core layer (s)

test n Method 1 (s) Method 2 (s) Mean (s)
1 45,963 49,4509 47,7071
2 45,844 48,3762 47,1101
3 44,438 51,2099 47,8237
4 47,116 49,4129 48,2646
5 47,047 49,5571 48,3022
6 46,082 49,6014 47,8415
7 46,105 49,6315 47,8684
8 46,158 49,8826 48,0201
9 46,502 49,6171 48,0594
10 46,379 49,6579 48,0183

Average 46,163 49,6398 47,9015

We can observe that the results are similar when a bridge is loss on the
distribution layer or the core layer. A base time of 30 seconds and the time
needed for the Hello messages to be sent to every bridge from the topology.
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5.2.8 STP Connectivity restored on a bridge. Core
layer.

Test done checking connectivity between server 2 and 17. These servers are
connected to E1 (Edge 1) and E7 (Table 5.8).

Restored full connectivity on switch C1 (Core 1) which is connected to
D1 connected to E1 and therefore connected to server 2. This switch was
part of the original spanning tree and will be restored as a root bridge.

Table 5.8: Convergence times after restoring a bridge in the core layer (s)
test n Method 1 (s) Method 2 (s) Mean (s)

1 27,964 28,8285 28,3965
2 26,509 29,0819 27,7956
3 28,760 29,5747 29,1675
4 27,412 28,3321 27,8723
5 27,897 28,8211 28,3592
6 27,709 28,9277 28,3182
7 27,658 28,9475 28,3026
8 27,887 28,9206 28,4040
9 27,713 28,7898 28,2513
10 27,773 28,8813 28,3270

Average 27,728 28,9105 28,3194

Once again we can not observe differences with the results obtained with
the test in the distribution layer. This times are approximately the learning
times + forwarding times needed for the STP protocol to converge 30s.
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5.3 RSTP Convergence Time.

5.3.1 RSTP Connectivity loss on a port. Distribution
layer.

As with the STP tests this was done checking connectivity between server 2
and 17. These servers are connected to E1 (Edge 1) and E7 (Table 5.9).

To force the connectivity lost of the port interface eth3 of switch D1 (Dis-
tribution 1) was pulled down. This interface is directly connected to E1 and
was part of the original least cost path.

Table 5.9: RSTP Convergence times after connectivity loss on a port (s)
test n Method 1 (s) Method 2 (s) Mean (s)

1 5,262 5,6290 5,4455
2 3,242 3,5040 3,3728
3 4,872 5,2159 5,0437
4 3,316 4,0033 3,6598
5 3,508 4,4363 3,9722
6 4,040 4,5577 4,2988
7 3,796 4,3434 4,0695
8 3,906 4,5113 4,2088
9 3,713 4,3704 4,0418
10 3,793 4,4438 4,1182

Average 3,945 4,5015 4,2231

In this case D2(12) has to unblock its link with E1(21) this is done in
roughly two hello times, 4 seconds, since the bridges are able to craft their
own BPDU( STP only relays the BPDU originating from the root) and com-
municate the topology change much faster.
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5.3.2 RSTP Connectivity restored on a port. Distri-
bution layer.

As before this test was done by checking connectivity of the servers in 1ms
intervals. These servers are connected to E1 (Edge 1) and E7(Table 5.10).

The connectivity restoration was done by pulling up eth3 of switch D1
(Distribution 1) which is connected to E1 and therefore to server 2. This
port is part of the original least cost path to the root, so the spanning-tree
will configure itself again to use this port.

Table 5.10: Convergence times after restoring connectivity on a port (ms)
test n Method 1 (ms) Method 2 (ms) Mean (ms)

1 1,006 25,4372 11,7875
2 1,007 22,5680 11,7877
3 1,005 27,8730 14,4389
4 1,008 34,2600 17,6339
5 1,589 26,8470 14,2180
6 1,123 22,3096 11,7163
7 1,146 26,7715 13,9590
8 1,174 27,6122 14,3932
9 1,208 27,5601 14,3841
10 1,248 26,2201 13,7341

Average 1,151 24,2021 12,6768

During this test it was found that checking with method 1 (replies to the
ping requests) gave us a constant of 1 lost packet per test. Since the
actual time of the test is not exactly 60 seconds the numbers differ a bit
from each other. Meanwhile checking the time stamps of the ping requests
in WireShark gave broadly different values but, as with method 1, only 1
ping request/reply was lost in the process. This may be caused by packets
bouncing on loops before the network achieves real convergence.

In any case, we should note that convergence is achieved in less than 1
second and with minimal packet loss.
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5.3.3 RSTP Connectivity loss on a bridge. Distribu-
tion layer.

Test done checking connectivity between server 2 and 17. Servers are con-
nected to E1 (Edge 1) and E7(Table 5.11).

Switch D1 (Distribution 1) was brought down completely, and since it was
part of the least cost path this forces the network to rebuild the spanning
tree.

Table 5.11: Convergence times after full connectivity loss on a bridge (s)
test n Method 1 (s) Method 2 (s) Mean (s)

1 4,358 4,9930 4,6756
2 5,011 6,0753 5,5431
3 4,934 5,9457 5,4396
4 4,642 5,7457 5,1940
5 4,093 5,0656 4,5794
6 4,608 5,5651 5,0864
7 4,658 5,6795 5,1685
8 4,587 5,6003 5,0936
9 4,517 5,5312 5,0244
10 4,493 5,4883 4,9904

Average 4,590 5,5690 5,0795

Similar numbers obtained by both methods, the results appear to resem-
ble twice the Hello Time (2 seconds). This is the time it takes C4(4) to
communicate its root path to D2(12) plus the time D2 takes to update its
BPDU and send it to E1(21).
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5.3.4 RSTP Connectivity restored on a bridge. Dis-
tribution layer.

Test done checking connectivity between server 2 and 17. These servers are
connected to E1 (Edge 1) and E7 (Table 5.12).

Restored connectivity on interface eth3 of switch D1 (Distribution 1)
which is connected to E1 and therefore to server 2. This switch was part of
the original spanning tree and will be restored as a bridge once it is booted.

Table 5.12: Convergence times after restoring a bridge (s)
test n Method 1 (s) Method 2 (s) Mean (s)

1 12,273 14,6915 13,4824
2 11,517 14,0444 12,7807
3 12,142 14,6955 13,4187
4 12,735 14,5547 13,6449
5 12,152 13,9669 13,0596
6 12,164 14,3906 13,2773
7 12,142 14,3304 13,2363
8 12,267 14,3876 13,3274
9 12,292 14,3260 13,3091
10 12,204 14,2803 13,2419

Average 12,189 14,3668 13,2778

In this test we can observe that the result are fairly homogeneous. This
time it takes more time to the topology to converge since the change is also
greater compared to the loss of a link.
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5.3.5 RSTP Connectivity loss on a port. Core layer.

Test was done checking connectivity between server 2 and 17. These servers
are connected to E1 (Edge 1) and E7 (Table 5.13).

The connectivity loss on a port was forced on interface eth1 of switch C1
(Core 1) which is connected to D1 and therefore to E1 and server 2. This
switch is also the root bridge of the topology.

Table 5.13: Convergence times after connectivity loss on a port in the Core
layer(s)

test n Method 1 (s) Method 2 (s) Mean (s)
1 3,410 4,1920 3,8008
2 2,968 3,6828 3,3253
3 3,200 3,9303 3,5652
4 3,195 3,7276 3,4614
5 4,501 5,7087 5,1049
6 3,455 4,2483 3,8515
7 3,464 4,2595 3,8617
8 3,563 4,3749 3,9690
9 3,636 4,4638 4,0497
10 3,724 4,6110 4,1674

Average 3,512 4,3199 3,9157

In this test we obtained very similar results to those of the distribution
layer. It takes roughly two Hello Times for the topology change to spread
within the network and recover connectivity.
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5.3.6 RSTP Connectivity restored on a port. Core
layer.

Test done checking connectivity between server 2 and 17. These servers are
connected to E1 (Edge 1) and E7(Table 5.14).

Restored connectivity on interface eth1 of switch C1 (Core 1) which is
connected to D1 connected to E1 and therefore to server 2. This is the root
bridge so the port will necessary be a designated port connected to D1 and
the port on D1 will necessarily be a Root port, because is connected directly
to the root bridge.

Table 5.14: Convergence times after restoring connectivity on a port in the
Core layer(ms)

test n Method 1 (ms) Method 2 (ms) Mean (ms)
1 10,037 - -
2 70,548 - -
3 10,043 - -
4 40,201 - -
5 50,480 - -
6 30,262 - -
7 41,507 - -
8 30,699 - -
9 40,830 - -
10 40,956 - -

Average 36,556 - -

In this case we only show the first method (ping) results because with the
second method it was not clear when the messages got through or how many
packets where lost. The frames where delivered in an erratic order making
it impossible to obtain the time. This may be caused by frames bouncing in
temporary loops formed in the transient state of convergence.

Nevertheless we could obtain the number of packets that were lost and
saw that connectivity is not severely affected by the topology change.
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5.3.7 RSTP Connectivity loss on a bridge. Core layer.

Test was done checking connectivity between server 2 and 17. These servers
are connected to E1 (Edge 1) and E7(Table 5.15).

The connectivity loss was forced on switch C1 (Core 1) which is connected
to D1 connected to E1 and therefore to server 2.

Table 5.15: Convergence times after full connectivity loss on a bridge in the
core layer (s)

test n Method 1 (s) Method 2 (s) Mean (s)
1 13,761 11,4156 12,5882
2 11,910 7,5081 9,7088
3 13,666 4,8476 9,2568
4 10,879 4,3863 7,6327
5 14,628 8,6899 11,6588
6 12,969 7,3695 10,1691
7 12,810 6,5603 9,6852
8 12,990 6,3707 9,6805
9 12,855 6,6753 9,7653
10 13,250 7,1331 10,1918

Average 12,972 7,0956 10,0337

The results of this test are similar to those on the distribution layer. The
disconnection of a complete bridge takes more time to be absorbed by the
network. It takes around twelve seconds in total for the connectivity to be
fully restored.
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5.3.8 RSTP Connectivity restored on a bridge. Core
layer.

Test done checking connectivity between server 2 and 17. These servers are
connected to E1 (Edge 1) and E7 (Table 5.16).

Restored full connectivity on switch C1 (Core 1) which is connected to
D1 connected to E1 and therefore connected to server 2. This switch was
part of the original spanning tree and will be restored as a root bridge.

Table 5.16: Convergence times after restoring a bridge in the core layer (s)
test n Method 1 (s) Method 2 (s) Mean (s)

1 12,043 14,3465 13,1948
2 12,151 14,7856 13,4682
3 11,876 14,2587 13,0672
4 12,323 14,6463 13,4845
5 11,906 14,0736 12,9898
6 12,060 14,4221 13,2409
7 12,063 14,4373 13,2501
8 12,045 14,3676 13,2065
9 12,079 14,3894 13,2344
10 12,031 14,3380 13,1843

Average 12,058 14,4065 13,2321

As with the previous test, the results are similar when the bridge is re-
stored in the distribution layer. It takes twelve seconds to register the addi-
tion of the bridge and modify the topology to use C1 as the root bridge of
the spanning tree.
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Chapter 6

Conclusions

After analyzing the results obtained in the tests we can conclude that RSTP
was an important advance in terms of time needed for the topology to remake
the spanning tree.

We should note how fast both STP and RSTP converge when a port gets
shutdown but we could argue that this scenario may be be less frequent than
the loss of a full bridge.

The biggest disadvantage of those protocols maybe the loss of bandwidth
that comes with blocking ports. This effect may be dampened using multi-
ples VLAN to create multiple spanning trees. Even then, it is not possible
to use multiple links for the same purpose and take advantage of the parallel
capacity of the network.

This disadvantages may be the reason why layer-2 convergence protocols
are steadily losing presence in today’s networks. The alternatives maybe
using layer-21

2
protocols like SPB (Shortest Path Bridge) or Cisco’s TRILL

(Transparent Interconnection of Lots of Links) to achieve convergence and
even use multiple paths to take advantage of redundant links but with them
comes the cost of using layer-3 enabled switches and a much more complex
configuration.

Another alternative would be using layer-3 IP protocols as IGP over
routers but that maybe ruled out if the data-center network architecture
is built with layer-2 devices and the throughput of routers is less than those
of switches.

In any case, the suitability of the usual convergence protocols for the next
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generation of data-center networks is heavily questioned.

The most future-proof and flexible choice would be to use software defined
traffic engineering. While it is true that SDN changes the network paradigm
and poses a new set of challenges it would give us the means to implement a
resilient and highly available data-center network.

In addition, it would enable our network to be easily re-configured based
on different business decisions like QoS, security, power management, multi-
tenancy, auto-scalable applications... This may probably be the only way to
achieve a network ready for the next challenges that enterprise networks will
face as Hyper-Convergent Infrastructure and Private Clouds.
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