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Abstract 
 
An identification procedure designed to be part of an 
autotuning method for event-based proportional-
integral (PI) control systems is proposed in this 
contribution. The rationale of the identification 
method is based on the information obtained from the 
limit cycle that the event based sampler plus an 
adequate tuning of the PI controller can generate in 
the closed loop. From the information of two limit 
cycles at different frequencies, the parameters of the 
common transfer function used for tuning of PI 
controllers will be deduced. Simulations demonstrate 
the effectiveness of the method. 
 
Keywords: send-on-delta, limit cycle, events, 
identification, autotuning, PI controller. 
 
1 Introduction 
 
Methods for the identification of transfer functions 
parameters in event-based PI control loops have been 
proposed in the last years in several publications. The 
first investigation was described in [4]. In that work, 
the process parameters are estimated considering a 
limit cycle generated by a pre-tuned event-based PI 
controller. Other two methods are described in [5, 6]. 
In such contributions, the rationale of the estimation 
methods is based on curving fitting and state-space 
approaches. Contributions on specific methods for 
identification in an event-based control loop have 
been recently reported in [10, 11]; both methods are 
based on forcing a limit cycle.  
 
The identification approach described in this paper is 
based on [11] but taking into account the full PI 
controller. In [11], the integral part of the controller 
is deactivated during the identification and only the 
proportional part is used to generate the limit cycle; it 
is also necessary to add a bias to the sampler output 
to introduce asymmetry in the limit cycle to calculate 
the dc gain. However, one of the cons described in 
[11] is that in lower frequencies the identification of 
processes with integration can be not very accurate as 
some of the critical points necessary to estimate the 
parameters are located in the first and second 
quadrants of the Nyquist plot (it is due to the fact that 

such points correspond to the third and fifth 
harmonics of the output system). In the procedure 
described here, the PI controller works on-line during 
the identification as the proportional and integral 
parts are taken into account to generate the limit 
cycle. Also, the issue of providing accurate results at 
low frequencies is worked out by adding an 
additional delay in order to reduce the frequency of 
the limit cycle. 
 
The paper is organised as follows. In Section 2 the 
event-based architecture is presented. The event-
based identification procedure is described in Section 
3. Section 4 explains how to improve the procedure. 
Finally, conclusions are given in Section 5. 
 
 

 
Fig. 1. Event-based control architecture. 

 
2 Event-based PI control architecture 
 
The control architecture considered in this 
contribution is shown in Figure 1. In this event-based 
control system, when the sampler detects an event, it 
sends the information to the PI controller C(s). Many 
logical conditions have been proposed in the 
literature for the occurrence of an event. The one 
employed here is the Symmetric Send-On-Delta 
(SSOD) sampling [4]. Its behaviour is described as 
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With this logical condition, the sampler receives a 
continuous signal e(t) and generates a sampled signal 
e∗(t) that is multiple of . The key of the relationship 
between e(t) and e∗(t) is that it can be considered as a 
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generalization of a relay with hysteresis. This implies 
that its describing function can be derived [7].  
 

 
Figure 2: Nyquist plot of ),(1 AN .  

 
The describing function of the SSOD sampler is 
given by [9]  
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where A is the amplitude of a sinusoidal input signal, 
and  Am  . The portrait of ),(1 AN  is shown 

in Figure 2 for   ,A . Each intersection in Figure 

2 of the system )()()( sPsCsG   with an arc of 

),(1 AN  produces an oscillation (or limit cycle) 

of a different amplitude: Intersections with the arc 
starting in C1 produce oscillations with   2,A , 

intersections with the arc starting in C2 generate 
oscillations with   3,2A , and so on. So, for 

example, the intersection of a system )(sG  with the 

point jC
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  in the Nyquist map represents 

the existence of a limit cycle of amplitude A  and 
frequency osc ; this frequency satisfies the 

expression 1)( CjG osc   . 

 
3 Identification procedure 
 
The identification method is based on the stable 
oscillations induced in the system G(s) thanks to the 
existence of the event-based sampler. It must be 
noticed that the current process to identify must 
intersect the negative real axis (if not, it should be 
added a certain delay). Once the system is in a stable 
limit cycle, experimental measurements derived from 
the oscillatory signals are taken and used to obtain 

the parameters of the transfer functions used for 
tuning a PI controller.  
 
The rationale of the procedure consists in forcing the 
system to oscillate at a frequency osc  by the 

detuning of the PI controller C(s). As said before, the 
system will oscillate at osc  as consequence of the 

intersection of )()()( sPsCsG   with the reciprocal 

of the SSOD sampler describing function in the 
Nyquist map, that is, 
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As the condition for the existence of limit cycles is 
given by (3), a convenient detuning of C(s) will 
produce an oscillatory behaviour of the system. So, if 
the Nyquist point where the system is oscillating at 

osc  is measured experimentally, that is, )( oscjG  , 

it is feasible to derive the parameters of a given 
transfer function model )(ˆ sP .  

 
Thus, once the system is oscillating, the procedure 
for fitting a model is:  
 
(a) To measure )( oscjG  ,  

(b) To get the experimental value of the process at 
the oscillation frequency, that is, )( oscjP  , by 

removing )( oscjC   from (3), 

(c) To obtain )( oscjP   and )(arg oscjP  , 

(d) To equate the two values obtained in the previous 
step to the magnitude and argument expressions of 
the transfer function selected to fit, and  
(e) To solve the equations system and get the model 
parameters.  
 
These steps are now explained in a more detailed 
way. 
 
The solution adopted to get )( oscjG   during a test is 

first presented in [14] and is proved in [11]. As in a 
limit cycle, y(t) and u(t) are periodic and piecewise 
signals, using the Laplace transform of both, it can be 
written 

dtetu

dtety

jU

jY
jG

osc
osc

osc
osc

tj

tj

osc

osc
osc
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where y(t) and u(t) are measured during a test. It must 
be noticed that (4) cannot be applied to determine the 
steady gain ( 0osc ) because the oscillations 

produced by the SSOD block are symmetric and the 
integration of the periods will be zero. How the 
procedure is applied to get the steady gain will be 
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explained afterwards, but we anticipate that the 
inclusion of an additional delay will play a key role. 
 
As the PI control parameters and osc  are known, it 

is possible to obtain the value of )( oscjC  ,  
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Using (4) and (5), it is easy to obtain the 
experimental value of the process at the oscillation 
frequency, 
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The transfer function models considered in this work 
to explain the procedure are: 
 
Model FOPTD: 
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Model IFOPTD: 
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Model SOPTD: 
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and their argument and magnitude expressions are: 
 
Model FOPTD: 
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 LTjP oscoscosc   )arctan()(ˆarg  (11) 

 
Model IFOPTD: 
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Model SOPTD: 
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   LTjP oscoscosc   arctan2)(ˆarg  (15) 

 
To get K and T it is necessary to equate )( oscjP   

with the magnitude of a transfer function )(ˆ
oscjP   

and solve the system of equations. As there are two 
unknowns, K and T, in the magnitude expressions, it 
is necessary to run two tests to get two experimental 

values, that is, )( 1_oscjP   and )( 2_oscjP  . Notice 

that each test will be run with a different set of 
control parameters to force the system to oscillate at 
different frequencies, that is, 1_osc  and 2_osc . It 

will be explained how to modify the PI parameters in 
the following paragraphs depending on the process 
and the model to identify. Once K and T are known, 
the delay L is obtained by equating )(arg 1_oscjP   

with the argument expression of the selected transfer 
function model to fit, that is, with (11), (13) or (15). 
 
The following expressions are the result of solving 
the equations for the three models. For the sake of 

simplicity, i  represents iosc_ , iP  represents 

)( _ ioscP  , and iParg  corresponds to 

)(arg _ ioscjP  . 
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Model FOPTDI: 
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Model SOPTD: 
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As said before, it is necessary to run two tests to 
measure )( 1_oscjG   and )( 2_oscjG  . The first test is 

done just by increasing the proportional gain Kp until 
the system reaches a limit cycle and oscillates at a 
frequency 1_osc . The second test is prepared by a 
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second increase of Kp to reach a new limit cycle at 
another frequency 1_2_ oscosc   .  

 
However, the previously defined procedure just 
works when the current process and the model to fit 
have the same order and structure. This is due to the 
following reasons: 
 

- If the transfer function template to fit )(ˆ sP  is 

exactly equal to the actual process to identify, the 
identification procedure will provide an exact 
result. This is due to the fact that the template is 
fitted with the same degrees of freedom than the 

true process. As result, the behaviour of )(ˆ sG will 

be equal to )(sG  in all the frequencies range. 

 
- If the process has a higher order than the template 

or a different structure, this will produce the 
result to be exact at the range of frequencies 
between 1_osc  and 2_osc  but with 

discrepancies at other frequencies. This is a 
consequence of fitting the template with lesser 
degrees of freedom than the true process. The 
effect is that the behavior of the model at 
frequencies out of the range Modofy can become 
very inaccurate. Such fact will be especially 
notorious and visible at frequencies below 1_osc  

or at the steady state when the fitted model is a 
FOPTD or a SOPTD, that is, when the current 
process does not have integral dynamics.  

 
The solution proposed in this work consists of 
forcing the system to oscillate during the second test 
at a very low frequency as close to zero as possible. 
To reduce the frequency of the limit cycle below 

1_osc  an additional delay will be added to the 

system during the second test. Next some examples 
are given in order to explain better the problem and 
present the solution. 
  
3.2. Identification of IFOPD processes 
 
Example 1: To start illustrating the event-based 
identification procedure, let considering the process 
[8],  
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e
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Initially, the process is controlled by a PI tuned to 
force the system to oscillate. The controller 
parameters selected for such a goal are 

]10,1[  ip TK . In all the simulations, measurement 

noise was not considered and   was set to 1. The data 
obtained in the first test were 

)6357.08542.0()( 1_ jjG osc   at frequency

755.01_ osc . For the second test, pK was 

increased to 1.2 to obtain a limit cycle at a higher 
frequency and Ti was not changed. Now, the second 
test data were 8671.02_ osc  and 

)5652.08878.0()( 2_ jjG osc  . The model 

parameters were obtained by applying (5) and (6) to 
the previous data to get )( 1_oscjP   and )( 2_oscjP  , 

and after that, using (19), (20) and (21). The resulting 
model and results obtained from other relay-based 
identification methods are presented in Table I. It can 
be appreciated that the event-based procedure gives 
results of the same quality as more elaborated methods 
based on state-space [1] and curve-fitting [8] 
approaches. 
 
Table I: Models and errors for (25) where 16.2pc . 

Method Model E
~

Event-based 
procedure  10000.1

0000.1 2015.0





ss

e s

 0.00349 

By [8]  19998.0

0000.1 2.0





ss

e s

 0.00027 

By [1]  19999.0

0000.1 2.0





ss

e s

 0.00013 

 
The accuracy of the estimated process model is 
computed using the frequency domain estimation 

error index ( E
~

) for each of the process models is 
found by applying integral of absolute error (IAE) 
criterion as 

 





d
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where pc  is the phase cross over frequency of the 

actual process )(sP , that is, the frequency where  

phase shift is equal to -180º.  
 
Example 2: Let now considering the identification of 
the higher-order process presented in [8], 
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 (26) 

 
After two consecutive tests with the two set of control 
parameters ]50,1.0[  ip TK  and  

]50,12.0[  ip TK , the model obtained is shown 

and compared in Table II. The obtained data were 
098.01_ osc  and )4.7364 --8.8169()( 1_ jjP osc   
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for the first test, and 1167.02_ osc  and 

)2.3685--7.996()( 2_ jjP osc   for the second one. 

 

 
Figure 3: Plots of (26) and the identified model.  

 
In the Example 2, the Nyquist plots of the model and 
the process are apparently similar in the third 
quadrant (see Figure 3). In particular, the model and 

the process behave in a similar way between 1_osc  

and 2_osc . However, there are discrepancies at 

lower frequencies. Indeed, at the frequencies
01.0 , 0.001 and 0.0001, the differences between 

the true process and model, that is, )(ˆ)(  jPjP  , 

are 0.088, 0.87, and 8.73, respectively (see detail in 
Figure 3 of the Nyquist points at 001.0 ). 
 

Table II: Models and errors for (26) where 143.0pc . 

Method Model E
~

By the event-
based 

procedure  19670.1

9991.0 0526.9





ss

e s

 0.00019 

By [8]  10051.21953.3

7319.0 5.0





ss

e s

 0.52121 

By [13]  15293.2

018.1 5278.8





ss

e s

 0.00156 

 
3.3. Identification of FOPTD processes 
 
Example 3: Consider the following process 
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 (27) 

 
that is being well controlled by a SSOD-PI tuned 
with ]10,2[  ip TK . By increasing the 

proportional gain, the sets of parameters used to enter 
the system into two different stable limit cycles are 

found to be ]10,5[  ip TK  and ]10,6[  ip TK . 

The results of the fitting can be found in Table III. It 
must be noticed that the result of the event-based 
procedure is very accurate because the actual process 
has the same order that the template to fit. 
 
Example 4: Now the following high-order process is 
going to be identified as a FOPTD model 
 

 4)1()(  ssP  (28) 

 
where 1pc . Applying the procedure as before, 

that is, with two sets of control parameters that force 
the system to oscillate, for example, 

]3,5.1[  ip TK  and ]3,6.1[  ip TK , the 

estimated model is 
 

 
17939.8

9113.2
)(ˆ

1751.1






s

e
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Table III: Models and errors for (27) where 844.0pc . 

Method Model E
~

By the event-based 
procedure 19999.9

9999.0 0015.2





s

e s

 0.00054 

By [2] 
19957.9

999.0 0.2





s

e s

 0.00055 

By [12] 
13.10

03.1 3.2





s

e s

 0.1140 

 
Obviously, such result is not acceptable as the steady 
gain is far from the correct value of one producing an 

estimation error index very high ( 347.0
~
E ). With 

the identification procedure as originally defined, the 
fitting of the model is good around the two Nyquist 
points defined by the frequencies of the two limit 
cycles but not at 0 . In this example, such 
oscillations frequencies are 0.55061_ osc   and 

0.57392_ osc , and the differences are small, 

 

0004.0)(ˆ)( 1_1_  oscosc jPjP   

01949.0)(ˆ)( 2_2_  oscosc jPjP   

 
but not for 0 ,  
 

9113.1)0(ˆ)0(  PP  

 
It can be observed in Figure 4 that the identified 
model fits correctly around the oscillation 
frequencies measured in the two tests. In particular, 
the fitting is exact for 1_osc  as it is the frequency 

440



selected for getting L with (18) once K and T are 
known by (16) and (17).  
 

 
Figure 4: Nyquist plots of (28) and the fitted model.  

 
 
If a fitting of a SOPTD model is tried, the new result 
improves with respect to the previous FOPTD model, 
 

 
2

9142.0

)17102.1(

1110.1
)(ˆ






s

e
sP

s

 

 

with 0753.0
~
E , but there is still a 10% of 

discrepancy at 0 , 
 

 1110.0)0(ˆ)0(  PP  

 
4 Modifying the procedure  
 
A practical solution to make a correct identification 
is to generate in the second test a limit cycle at a 
frequency 2_osc  as near zero as possible. A point of 

)(sG  with a frequency 1_2_ oscosc    are, in 

general, far from the intersection with the DF of the 
even-based sampler and, also, due to the integral 
action of the PI controller, the point will be located 
along the negative real axis of the Nyquist map. The 
solution is to add new dynamics to )(sG  to allow 

that the very low frequency range of the new system 
)(' sG intersects in some point with ),(1 AN . To 

understand how to modify the estimation procedure 
to make the second test with a low frequency limit 
cycle, see the steps depicted in Figure 5. 
 
Step 1 consists in rotating a unknown Nyquist point 

)( 2_1 oscjGP  , where 2_osc  is a very low 

frequency, to the grey area depicted in Figure 5. That 
area represents the theoretical section of the Nyquist 
map where the intersection of )(' sG  with the 

negative reciprocal of ),( AN can be produced after 

a radial movement of the point P2 (Step 2). This 

theoretical section is located between 
  )),(/1arg( N   and 

 75.0)),(/1arg(  N , that is, between -180º 

and -135º.  
 

 
Figure 5: Steps to modify the second test to get 

oscillations at frequencies near zero. 
 
A way to get that is by rolling )(sG around the center 

of Nyquist map. As the rotation can be done by 
adding a delay Lad to )(sG , that is, 

adsLesGsG  )()(' , bounds for Lad to assure that P1 

will be rotated inside the grey area are given by, 
 

 
2_

1

2_

1 arg75.0arg

osc
ad

osc

P
L

P





 




 (29) 

 
Assuming that the frequency 2_osc  selected for the 

second test is low enough (e.g., 1_1.0 osc ), and 

because of the integral action of the PI controller, we 
can consider 5.0arg 1 P (that is, -90º) at very low 

frequencies. Thus, from (29) practical bounds for Lad 
could be, 

 
2_2_

25.05.0

osc
ad

osc

L






  (30) 

 
and fixing 1_2_ 1.0 oscosc   , 

 

 
1_1_

5.25

osc
ad

osc

L






  (31) 

 
Now, as the unknown point  

adosc Lj
osc ejGP 2_)( 2_2

  is located in the grey 

area but far from the intersection with ),(/1 AN , it 

is necessary to give a second step. This step consists 

in a radial translation of the new system adsLesG )(  

looking for an intersection with ),(/1 AN . That 

must be done by reducing the proportional gain as it 
can be appreciated in Figure 5. Unfortunately, the 
calculation of this gain is not intuitive and must be 
done by trial and error. 
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Example 5: We identify the previous process 
4)1()(  ssP  by applying the modified 

procedure. The first test is run with the same 
parameters as in the previous example, that is, 

]3,5.1[  ip TK , and the result is 

55067.01_ osc  and º146)(arg 1_ oscjG  . By 

fixing 1_2_ 1.0 oscosc    and according to (30), we 

obtained 2.145.28  adL . The second test is run 

with the following set of parameters 
]4.21,3,15.0[  adip LTK  and the frequency 

measured is 049.02_ osc , that is close to 

1_1.0 osc . In Table IV and Figure 6, the new 

estimation is presented and compared with the model 
obtained by a more elaborated method. 
 

Table IV: FOPTD models of (28) where 1pc . 

Method Model E
~

By the event-based 
procedure 15032.2

0026.1 9450.1





s

e s

 0.0993 

By [3] 
11036.3

987.0 889.1





s

e s

 0.1426 

 
Example 6: Table V shows the fitting of 

4)1()(  ssP  to a SOPTD model using the 

results of the two tests of the Example 5.  
 
As said before, if the structure of the actual process 
and the model to fit are the same, the original method 
is valid for any model and it is not necessary in the 
second test to force the system to oscillate at a very 
low frequency. But if the structure of the actual 
process is higher than the model template it will be 
necessary to modify the method as explained before.  
 
However, the original method is valid for FOPTDI 
fitting of high-order processes with one pole at the 
origin (see Example 7). It is due to the double 
integral action introduced by the process and the 
controller. Forcing the second limit cycle at a very 
low frequency can be done by reducing the 
proportional gain used in the first test. The effect of 
this action produces two consequences in the Nyquist 
plot of )(sG : (a) to be moved radially towards the 

origin, and (b) the reduction of the phase margin as 
consequence of a lower integral gain ( ip TK / ). The 

radial movement produced an approach of the low 
frequencies to the origin, and the reduction of the 
phase margin reassures the intersection of )(sG with 

the reciprocal of the describing function of the event-
based block. 
 

 
Figure 6: Nyquist plots of 4)1()(  ssP and the 

identified model with the modified procedure. 
 

Table V: SOPTD models of (28) where 1pc . 

Method Model E
~

By the event-based 
procedure 2

127.1

)15189.1(

0007.1





s

e s

 0.0472 

By [3] 2

004.1

)1762.1(

054.1





s

e s

 0.0827 

 
Example 7: To produce a new limit cycle at a very 
low frequency using the process of the Example 2, a 
new simulation is run with the control parameters 

]50,001.0[  ip TK . It must be noticed that the 

proportional gain has been significantly reduced with 
respect to the parameters applied in the second test in 
Example 2 (that are ]50,12.0[  ip TK ). Now, the 

frequency of this new limit cycle is 
004.0_2_ newosc . It can be observed in Figure 7 

the differences in the frequencies of the limit cycles 
depending on the selected set of controller parameter. 
The identified FOPTDI model of (26) using data 
from the limit cycles at 098.01_ osc  and 

004.02_ osc  is 

 

  10233.2

0001.1
)(ˆ

9984.8






ss

e
sP

s

 (32) 

 
With this new model, the discrepancies at lower 
frequencies with respect to (26) have been reduced. 
For the frequencies 01.0 , 0.001 and 0.0001, the 

differences )(ˆ)(  jPjP   are 0.027, 0.167, and 

1.66, respectively (compare these values with those 
presented at the end of Example 2). 
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Figure 7: Plots of )(sG  where 

55 )1()1()(   sessP s and  )(sC changes its 

parameters. 
 
Conclusions 
 
In this paper, an autotuning method completely 
designed for event-based PI control loops has been 
presented. The identification approach is based on 
the information obtained from two limit cycles 
produced by the SSOD sampler and the PI controller. 
Simulation examples have proven the effectiveness 
of the method. However, there are some issues that 
need to be improved. 
 
For example, regarding the identification of FOPTD 
and SOPTD models, it is necessary to improve the 
procedure to determine the second test, especially the 
estimation of the new proportional gain to apply in 
the Step 2. This will be part of future investigations. 
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