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2 Departamento de Matemática, Universidad Centroccidental Lisandro Alvarado

Barquisimeto, Venezuela

mireyabracamonte@ucla.edu.ve , mrbracam@espol.edu.ec , jesus.medina@ucla.edu.ve
mvivas@ucla.edu.ve , mjvivas@espol.edu.ec , mjvivas@puce.edu.ec

Presented by David Yost Received May 9, 2016

Abstract : We establish some Hermite-Hadamard and Fejér type inequalities for the class of
strongly reciprocally convex functions.

Key words: strongly reciprocally convex functions, Hermite-Hadamrd, Fejér.

AMS Subject Class. (2010): 26D15, 52A40, 26A51.

1. Introduction

Due to its important role in mathematical economics, engineering, man-
agement science, and optimization theory, convexity of functions and sets has
been studied intensively; see [1, 5, 7, 8, 9, 11, 13, 15, 16] and the references
therein. Let R be the set of real numbers and I ⊆ R be a interval. A function
f : I → R is said to be convex in the classical sense if it satisfies the following
inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

for all x, y ∈ I and t ∈ [0, 1]. We say that f is concave if −f is convex.
In recent years several extensions and generalizations have been consid-

ered for classical convexity, and the theory of inequalities has made essential
contributions in many areas of mathematics. A significant subclass of convex
functions is that of strongly convex functions introduced by B.T. Polyak [20].
Strongly convex functions are widely used in applied economics, as well as in
nonlinear optimization and other branches of pure and applied mathematics.
In this paper we present a new class of strongly convex functions, mainly the
class of strongly harmonically convex functions. Our investigation is devoted
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110 m. bracamonte, j. medina, m. vivas

to the classical results related to convex functions due to Charles Hermite,
Jaques Hadamard [10] and Lipót Fejér [8]. The Hermite-Hadamard inequal-
ities and Fejér inequalities have been the subject of intensive research, and
many applications, generalizations and improvements of them can be found
in the literature (see, for instance, [1, 7, 15, 18, 19, 21, 24] and the references
therein).

Many inequalities have been established for convex functions but the most
famous is the Hermite-Hadamard inequality, this asserts that the mean value
of a continuous convex functions f : [a, b] ⊆ R → R lies between the value of
f at the midpoint of the interval [a, b] and the arithmetic mean of the values
of f at the endpoints of this interval, that is,

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x) dx ≤ f(a) + f(b)

2
. (1.1)

Moreover, each side of this double inequality characterizes convexity in
the sense that a real-valued continuous function f defined on an interval I is
convex if its restriction to each compact subinterval [a, b] ⊆ I verifies the left
hand side of (1.1) (equivalently, the right hand side on (1.1)). See [17].

In [8], Lipót Fejér established the following inequality which is the weighted
generalization of Hermite-Hadamard inequality (1.1): If f : [a, b] → R is a
convex function, then the inequality

f

(
a+ b

2

)∫ b

a
p(x) dx ≤ 1

b− a

∫ b

a
f(x)p(x) dx

≤ f(a) + f(b)

2

∫ b

a
p(x) dx

(1.2)

holds, where p : [a, b] → R is nonnegative, integrable and symmetric about
x = (a+ b)/2.

Various generalizations have been pointed out in many directions, for re-
cent developments of inequalities (1.1) and (1.2) and its generalizations, see
[5, 6, 7, 4, 9, 13].

In [13], Imdat Iscan gave the definition of harmonically convex functions:

Definition 1.1. [13] Let I be an interval in R\{0}. A function f : I → R
is said to be harmonically convex on I if the inequality

f

(
xy

tx+ (1− t)y

)
≤ tf(y) + (1− t)f(x) (1.3)

holds, for all x, y ∈ I and t ∈ [0, 1] .
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If the inequality in (1.3) is reversed, then f is said to be harmonically
concave.

The following result of the Hermite-Hadamard type for harmonically con-
vex functions holds.

Theorem 1.2. Let f : I ⊆ R\{0} → R be a harmonically convex function
and a, b ∈ I with a < b. If f ∈ L[a, b], then the following inequalities hold

f

(
2ab

a+ b

)
≤ ab

b− a

∫ b

a

f(x)

x2
dx ≤ f(a) + f(b)

2
. (1.4)

In [4], F. Chen and S. Wu proved the following Fejér inequality for har-
monically convex functions.

Theorem 1.3. ([4]) Let f : I ⊆ R \ {0} → R be a harmonically convex
function and a, b ∈ I with a < b. If f ∈ L(a, b), then one has

f

(
2ab

a+ b

)∫ b

a

p(x)

x2
dx ≤

∫ b

a

f(x)

x2
p(x) dx

≤ f(a) + f(b)

2

∫ b

a

p(x)

x2
dx ,

(1.5)

where p : [a, b] → R is nonnegative and integrable and satisfies

p

(
ab

x

)
= p

(
ab

a+ b− x

)
.

2. Strongly reciprocally convex functions

In 1966 Polyak [20] introduced the notions of strongly convex and strongly
quasi-convex functions. In 1976 Rockafellar [23] studied the strongly convex
functions in connection with the proximal point algorithm. They play an
important role in optimization theory and mathematical economics. Nikodem
et al. have obtained some interesting properties of strongly convex functions
(see [7, 12, 14]).

Definition 2.1. (See [12, 16, 22]) Let D be a convex subset of R and
let c > 0. A function f : D → R is called strongly convex with modulus c if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− ct(1− t)(x− y)2 (2.1)

for all x, y ∈ D and t ∈ [0, 1].
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The usual notion of convex function correspond to the case c = 0. For
instance, if f is strongly convex, then it is bounded from below, its level sets
{x ∈ I : f(x) ≤ λ} are bounded for each λ and f has a unique minimum
on every closed subinterval of I [18, p. 268]. Any strongly convex function
defined on a real interval admits a quadratic support at every interior point
of its domain.

The proofs of the next two theorems can be found in [22].

Theorem 2.2. Let D be a convex subset of R and let c be a positive
constant. A function f : D → R is strongly convex with modulus c if and
only if the function g(x) = f(x)− cx2 is convex.

Theorem 2.3. The following are equivalent:

(i) f(tx+(1−t)y) ≤ tf(x)+(1−t)f(y)−t(1−t)c(x−y)2, for all x, y ∈ (a, b)
and t ∈ [0, 1].

(ii) For each x0 ∈ (a, b), there is a linear function T such that f(x) ≥
f(x0) + T (x− x0) + c(x− x0)

2 for all x, y ∈ (a, b).

(iii) For differentiable f , for each x0 ∈ (a, b): f(x) ≥ f(x0)+f ′(x0)(x−x0)+
c(x− x0)

2, for all x, y ∈ (a, b).

(iv) For twice differentiable f , f ′′(x) ≥ 2c, for all x, y ∈ (a, b).

In [3] we proved the following sandwich theorem for harmonically convex
functions:

Theorem 2.4. Let f, g be real functions defined on the interval (0,+∞).
The following conditions are equivalent:

(i) There exists a harmonically convex function h : (0,+∞) → R such that
f (x) ≤ h (x) ≤ g (x) for all x ∈ (0,+∞).

(ii) The following inequality holds

f

(
xy

tx+ (1− t)y

)
≤ tg(y) + (1− t)g(x) (2.2)

for all x, y ∈ (0,+∞) and t ∈ [0, 1].

On the other hand, in [2] we introduced the notion of harmonically strongly
convex function as follows:
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Definition 2.5. Let I be an interval in R\{0} and let c ∈ R+. A function
f : I → R is said to be harmonically strongly convex with modulus c on I, if
the inequality

f

(
xy

tx+ (1− t)y

)
≤ tf(y) + (1− t)f(x)− ct(1− t)(x− y)2, (2.3)

holds, for all x, y ∈ I and t ∈ [0, 1].

The symbol SHC(I,c) will denote the class of functions that satisfy the
inequality (2.3). We also establish some Hermite-Hadamard and Fejér type
inequalities for the class of harmonically strongly convex functions.

Next we will explore a generalization of the concept of harmonically convex
functions which we will call reciprocally strongly convex functions, it is a
concept parallel to the definition presented in the definition 2.5.

Definition 2.6. Let I be an interval in R \ {0} and let c ∈ (0,∞). A
function f : I → R is said to be reciprocally strongly convex with modulus c
on I, if the inequality

f

(
xy

tx+ (1− t)y

)
≤ tf(y) + (1− t)f(x)− ct(1− t)

(
1

x
− 1

y

)2

, (2.4)

holds, for all x, y ∈ I and t ∈ [0, 1].

The symbol SRC(I,c) will denote the class of functions that satisfy the
inequality (2.4).

Theorem 2.7. Let I ⊂ R \ {0} be a real interval and c ∈ (0,∞). If
f ∈SRC(I,c), then f es harmonically convex.

Proof. Since ct(1− t)

(
1

x
− 1

y

)2

≥ 0, it is a immediate consequence of the

definition.

For the rest of this paper we will use I ⊂ R \ {0} to denote a real interval
and c ∈ (0,∞).

Theorem 2.8. Let f : I → R be a function. f ∈SRC(I,c) if and only if

the function g : I → R, defined by g(x) := f(x)− c

x2
es harmonically convex.
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Proof. Assume that f ∈SRC(I,c), then

g

(
xy

tx+ (1− t)y

)
= f

(
xy

tx+ (1− t)y

)
− c

(
tx+ (1− t)y

xy

)2

≤ tf(y) + (1− t)f(x)− ct(1− t)

(
1

y
− 1

x

)2

− c

(
t
1

y
+ (1− t)

1

x

)2

= tf(y) + (1− t)f(x)

− ct(1− t)

(
1

y2
− 2

xy
+

1

x2

)
c

(
t2

y2
+

2t(1− t)

xy
+

(1− t)2

x2

)
= tf(y) + (1− t)f(x)− c

(
t

y2
− 2t

xy
+

t

x2
− t2

y2
+

2t2

xy

− t2

x2
+

t2

y2
+

2t

xy
− 2t2

xy
+

1

x2
− 2t

x2
+

t2

x2

)
= tf(y) + (1− t)f(x)− c

(
t

y2
+

1

x2
− t

x2

)
= tf(y) + (1− t)f(x)− c

(
t

y2
+ (1− t)

1

x2

)
= t

(
f(y)− c

y2

)
+ (1− t)

(
f(x)− c

x2

)
= tg(y) + (1− t)g(x),

for all x, y ∈ I and t ∈ [0, 1]. Which proves that g is harmonically convex.

Conversely, if g is harmonically convex, then

f

(
xy

tx+ (1− t)y

)
= g

(
xy

tx+ (1− t)y

)
+ c

(
tx+ (1− t)y

xy

)2

≤ tg(y) + (1− t)g(x) + c

(
t
1

y
+ (1− t)

1

x

)2

= tg(y) + (1− t)g(x) + c

(
t2

y2
+

2t(1− t)

xy
+

(1− t)2

x2

)
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= tg(y) + (1− t)g(x) + c

(
t(1− 1 + t)

y2
+

2t(1− t)

xy
+

(1− t)(1− t)

x2

)
= tg(y) + (1− t)g(x) + c

(
t(1− 1 + t)

y2
+

2t(1− t)

xy
+

(1− t)(1− t)

x2

)
= tg(y) + (1− t)g(x) + c

(
t

y2
− t(1− t)

y2
+

2t(1− t)

xy
+

1− t

x2
− t(1− t)

x2

)
= t

(
g(y) + c

1

y2

)
+ (1− t)

(
g(x) + c

1

x2

)
− ct(1− t)

(
1

y2
− 2

xy
+

1

x2

)
= tf(y) + (1− t)f(x)− ct(1− t)

(
1

y
− 1

x

)2

,

for all x, y ∈ I and t ∈ [0, 1], showing that f ∈SRC(I,c).

Example 2.9. (a) The constant function is harmonically convex but
not reciprocally strongly convex.

(b) The function f : (0,+∞) → R defined by f(x) = −x2, is not a har-
monically convex function, since f is a not convex and nonincreasing
function. Based on Theorem 2.7, we obtain f /∈ SRC(I,c).

(c) Since g(x) = log(x) is a harmonically convex function, the function

f(x) := log(x) +
c

x2
is a reciprocally strongly convex function.

Lemma 2.10. If f is a reciprocally strongly convex function, then the
function φ = f + ϵ is also a reciprocally strongly convex function, for any
constants ϵ. In fact,

φ

(
xy

tx+ (1− t)y

)
= f

(
xy

tx+ (1− t)y

)
+ ϵ

≤ tf(y) + (1− t)f(x) + ct(1− t)

(
1

x
− 1

y

)2

+ ϵ

= tf(y) + tϵ+ (1− t)f(x) + (1− t)ϵ+ ct(1− t)

(
1

x
− 1

y

)2

= t(f(y) + ϵ) + (1− t)(f(x) + ϵ) + ct(1− t)

(
1

x
− 1

y

)2

= tφ(y) + (1− t)φ(x) + ct(1− t)

(
1

x
− 1

y

)2

.
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Theorem 2.11. If f : [a, b] ⊂ R\{0} → R and if we consider the function

g :
[
1

b
,
1

a

]
→ R, defined by g(t) = f

(
1

t

)
, then f ∈SRC([a,b],c) if and only if g is

strongly convex in
[
1

b
,
1

a

]
.

Proof. If for all x, y ∈ [a, b] and t ∈ [0, 1], we have

f

(
1

t 1y + (1− t) 1x

)
≤ tf(y) + (1− t)f(x)− ct(1− t)

(
1

x
− 1

y

)2

;

this last inequality may be changed by another equivalent one:

g (tw + (1− t)u) ≤ tg (w) + (1− t)g (u)− ct(1− t) (u− w)2 ,

where u,w ∈
[
1

b
,
1

a

]
and t ∈ [0, 1]. To complete the proof.

It is easy to see that the result is also valid for intervals (a, b) ⊂ R \ {0}.

Theorem 2.12. The following are equivalent:

(i) f ∈SRC((a,b),c).

(ii) For each x0 ∈ (a, b), there is a linear function T such that

f

(
1

x

)
≥ c(x−x0)

2+T (x−x0)+f

(
1

x0

)
, for all x ∈

(
1

b
,
1

a

)
. (2.5)

(iii) For differentiable f and x0 ∈ (a, b),

f

(
1

x

)
≥ f

(
1

x0

)
− f

(
1

x0

)
x− x0
x2

+ c(x− x0)
2, (2.6)

for all x, y ∈ (a, b).

(iv) For twice differentiable f ,

1

x4

[
f ′′
(
1

x

)
+ 2xf ′

(
1

x

)]
≥ 2c , for all x ∈

(
1

b
,
1

a

)
.

Proof. (i) ⇒ (ii) : Assume that f ∈ SRC((a,b),c). Since all the assumptions

of Theorem 2.11 are satisfied, then the function g(x) := f
(
1

x

)
is strongly
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convex in
(
1

b
,
1

a

)
. Then by Theorem 2.3, for each x0 ∈

(
1

b
,
1

a

)
, there is a

linear function T such that g(x) ≥ g(x0) + T (x − x0) + c(x − x0)
2, for all

x, y ∈
(
1

b
,
1

a

)
. This is equivalent to the inequality (2.5).

(i) ⇒ (iii) : Assume that f ∈SRC((a,b),c). By Theorem 2.11, the function

g(x) := f
(
1

x

)
is strongly convex in

(
1

b
,
1

a

)
, then by Theorem 2.3, for each

x0 ∈
(
1

b
,
1

a

)
, g(x) ≥ g(x0) + g′(x0)(x − x0) + c(x − x0)

2, for all x, y ∈ (a, b).

This is equivalent to the inequality (2.6).
(ii) ⇒ (i) , (iii) ⇒ (i) are shown using the reciprocals of the theorem and

lemma that we have used in the above part.
(i) ⇐⇒ (iv) : Suppose f is twice differentiable over (a, b). f ∈ SRC((a,b),c)

if only if the function g(x) := f
(
1
x

)
is strongly convex in

(
1

b
,
1

a

)
(by the

theorem 2.11). It follows from Theorem 2.3 that g is a strongly convex function
with modulus c if only if g′′(x) ≥ 2c. Hence it is equivalent to

1

x4

[
f ′′
(
1

x

)
+ 2xf ′

(
1

x

)]
≥ 2c , for all x ∈

(
1

b
,
1

a

)
.

3. Main results

In this section, we derive our main results.

3.1. Hermite-Hadamard type inequalities The following result is
a counterpart of the Hermite-Hadamard inequality for strongly reciprocally
convex functions.

Theorem 3.1. Let I ⊂ R \ {0} be a real interval. If f : I → R is a
strongly reciprocally convex function with modulus c, a, b ∈ I with a < b and
f ∈ L[a, b] then

f

(
2ab

a+ b

)
+

c

12

(
b− a

ab

)2

≤ ab

b− a

∫ b

a

f(x)

x2
dx

≤ f(a) + f(b)

2
− c

6

(
b− a

ab

)2

.

(3.1)

Proof. By Theorem 2.11 the function g : I → R, defined by g(x) :=

f(x)− c

x2
is harmonically convex, since f ∈SRC(I,c).
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Consequently, by the Hermite-Hadamard type inequality for harmonically
convex functions (see [13, Theorem 1]), we have

g

(
2ab

a+ b

)
≤ ab

b− a

∫ b

a

g(x)

x2
dx ≤ g(a) + g(b)

2
,

f

(
2ab

a+ b

)
− c

(
a+ b

2ab

)2

≤ ab

b− a

∫ b

a

f(x)− c
x2

x2
dx ≤

f(a)− c
a2

+ f(b)− c
b2

2
.

This last inequality can be simplified to

f

(
2ab

a+ b

)
− c

(
a+ b

2ab

)2

≤ ab

b− a

∫ b

a

f(x)

x2
dx− abc

3(b− a)

[
b3 − a3

a3b3

]
≤ f(a) + f(b)

2
− c

2

(
a2 + b2

a2b2

)
,

which in turn is equivalent to the inequality

f

(
2ab

a+ b

)
+

c

12

(
b− a

ab

)2

≤ ab

b− a

∫ b

a

f(x)

x2
dx

≤ f(a) + f(b)

2
− c

6

(
b− a

ab

)2

.

Remark 3.2. Letting c → 0+, in the inequalities (3.1), we obtain (1.4),
which is the Hermite-Hadamard type inequalities for harmonically convex
functions.

We establish some new inequalities of Hermite-Hadamard type for func-
tions whose derivatives are strongly reciprocally convex.

We need the following lemma, which can be found in [13].

Lemma 3.3. ([13]) Let f : I ⊂ R \ {0} → R is a differentiable function
on I◦ and a, b ∈ I with a < b. If f ′ ∈ L[a, b], then

f(a) + f(b)

2
− ab

b− a

∫ b

a

f(x)

x2
dx

=
ab(b− a)

2

∫ 1

0

1− 2t

(tb+ (1− t)a)2
f ′
(

ab

tb+ (1− t)a

)
dt .
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Theorem 3.4. Let f : I ⊂ (0,+∞) → R be a differentiable function on
I◦, a, b ∈ I with a < b, and f ′ ∈ L[a, b]. If |f ′|q is strongly reciprocally convex
with modulus c on [a, b] for q ≥ 1, then∣∣∣∣f(a) + f(b)

2
− ab

b− a

∫ b

a

f(x)

x2
dx

∣∣∣∣
≤ ab(b− a)

2
λ
1− 1

q

1

[
λ2|f ′(a)|q + λ3|f ′(b)|q − c

(
1

b
− 1

a

)2

λ4

] 1
q

,

(3.2)

where

λ1 =
1

ab
− 2

(b− a)2
ln

(
(a+ b)2

4ab

)
,

λ2 = − 1

b(b− a)
+

3a+ b

(b− a)3
ln

(
(a+ b)2

4ab

)
,

λ3 =
1

a(b− a)
− 3b+ a

(b− a)3
ln

(
(a+ b)2

4ab

)
,

λ4 = − 1

b(b− a)
+

1

(b− a)4

[
[a(a+ 2b) + b(b+ 2a)] ln

(
(a+ b)2

4ab

)
− (a+ b)2(2a− b)

2b
+ b2 − 3a2

]
.

Proof. From Lemma 3.3, and letting p :=
q

q − 1
, we get

∣∣∣∣f(a) + f(b)

2
− ab

b− a

∫ b

a

f(x)

x2
dx

∣∣∣∣
=

∣∣∣∣ab(b− a)

2

∫ 1

0

1− 2t

(tb+ (1− t)a)2
f ′
(

ab

tb+ (1− t)a

)
dt

∣∣∣∣
≤ ab(b− a)

2

∫ 1

0

∣∣∣∣ 1− 2t

(tb+ (1− t)a)2

∣∣∣∣ ∣∣∣∣f ′
(

ab

tb+ (1− t)a

)∣∣∣∣dt
(3.3)

=
ab(b− a)

2

∫ 1

0

∣∣∣∣ 1− 2t

(tb+ (1− t)a)2

∣∣∣∣ 1p
(∣∣∣∣ 1− 2t

(tb+ (1− t)a)2

∣∣∣∣ 1q ∣∣∣∣f ′
(

ab

tb+ (1− t)a

)∣∣∣∣
)
dt .
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We apply Hölder’s inequality to the right-hand side of (3.3) and using the
hypothesis that |f ′|q ∈ SRC([a,b,c), we get

≤ ab(b− a)

2

[∫ 1

0

(∣∣∣∣ 1− 2t

[tb+ (1− t)a]2

∣∣∣∣ 1p
)p

dt

] 1
p

·

[∫ 1

0

(∣∣∣∣ 1− 2t

[tb+ (1− t)a]2

∣∣∣∣ 1q ∣∣∣∣f ′
(

ab

tb+ (1− t)a

)∣∣∣∣
)q

dt

] 1
q

=
ab(b− a)

2

[∫ 1

0

∣∣∣∣ 1− 2t

[tb+ (1− t)a]2

∣∣∣∣ dt
]1− 1

q

·
[∫ 1

0

∣∣∣∣ 1− 2t

[tb+ (1− t)a]2

∣∣∣∣ ∣∣∣∣f ′
(

ab

tb+ (1− t)a

)∣∣∣∣q dt
] 1

q

≤ ab(b− a)

2

[∫ 1

0

∣∣∣∣ 1− 2t

[tb+ (1− t)a]2

∣∣∣∣ dt
]1− 1

q

(3.4)

·

[∫ 1

0

|1− 2t|
[tb+ (1− t)a]2

(
t|f ′(a)|q + (1− t)|f ′(b)|q − ct(1− t)

(
1

b
− 1

a

)2
)

dt

] 1
q

.

It can be shown that

λ1 :=

∫ 1

0

|1− 2t|
[tb+ (1− t)a]2

dt =
1

ab
− 2

(b− a)2
ln

(
(a+ b)2

4ab

)
,

λ2 :=

∫ 1

0

|1− 2t|t
[tb+ (1− t)a]2

dt =

∫ 1
2

0

(1− 2t)t

[tb+ (1− t)a]2
dt−

∫ 1

1
2

(1− 2t)t

[tb+ (1− t)a]2
dt

= − 1

b(b− a)
+

b+ 3a

(b− a)3
ln

(
(a+ b)2

4ab

)
,

λ3 :=

∫ 1

0

|1− 2t|(1− t)

[tb+ (1− t)a]2
dt = λ1 + λ2 ,

λ4 :=

∫ 1

0

t(1− t)|1− 2t|
[tb+ (1− t)a]2

dt ,

= − 1

b(b− a)
+

1

(b− a)4

[
[a(a+ 2b) + b(b+ 2a)] ln

(
(a+ b)2

4ab

)
− (a+ b)2(2a− b)

2b
+ b2 − 3a2

]
.
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Now if we replace this values in (3.4), we get (3.2).

3.2. Fejér type inequalities The following result is a counterpart of
the Fejér inequality for strongly reciprocally convex functions.

Theorem 3.5. Let I ⊂ R \ {0} be a real interval. If f : I → R is a
strongly reciprocally convex function with modulus c, a, b ∈ I with a < b and
f ∈ L[a, b] then

f

(
2ab

a+ b

)∫ b

a

p(x)

x2
dx+ c

∫ b

a

[
1

x2
−
(
a+ b

2ab

)2
]
p(x)

x2
dx

≤
∫ b

a

f(x)

x2
p(x) dx (3.5)

≤ f(a) + f(b)

2

∫ b

a

p(x)

x2
dx− c

∫ b

a

[
1

2

(
a2 + b2

a2b2

)
− 1

x2

]
p(x)

x2
dx ,

where p : [a, b] → [0,∞) is an integrable function and satisfies

p

(
ab

x

)
= p

(
ab

a+ b− x

)
. (3.6)

Proof. By Theorem 2.11 the function g : I → R, defined by g(x) := f(x)−
c

x2
is harmonically convex, then in virtue of Theorem 1.3, we have that

g

(
2ab

a+ b

)∫ b

a

p(x)

x2
dx ≤

∫ b

a

g(x)

x2
p(x) dx ≤ g(a) + g(b)

2

∫ b

a

p(x)

x2
dx .

The above inequality is equivalent to[
f

(
2ab

a+ b

)
− c

(
a+ b

2ab

)2
]∫ b

a

p(x)

x2
dx ≤

∫ b

a

f(x)− c
x2

x2
p(x) dx

≤
f(a)− c

a2
+ f(b)− c

b2

2

∫ b

a

p(x)

x2
dx .
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This last inequality can be simplified to

f

(
2ab

a+ b

)∫ b

a

p(x)

x2
dx− c

(
a+ b

2ab

)2 ∫ b

a

p(x)

x2
dx+ c

∫ b

a

p(x)

x4
dx

≤
∫ b

a

f(x)

x2
dx

≤ f(a) + f(b)

2

∫ b

a

p(x)

x2
dx

− c

2

(
1

a2
+

1

b2

)∫ b

a

p(x)

x2
dx+ c

∫ b

a

p(x)

x4
dx ,

which in turn is equivalent to the inequality

f

(
2ab

a+ b

)∫ b

a

p(x)

x2
dx+ c

∫ b

a

[
1

x2
−
(
a+ b

2ab

)2
]
p(x)

x2
dx

≤
∫ b

a

f(x)

x2
p(x) dx

≤ f(a) + f(b)

2

∫ b

a

p(x)

x2
dx− c

∫ b

a

[
1

2

(
a2 + b2

a2b2

)
− 1

x2

]
p(x)

x2
dx .

Remarks 3.6. (a) Letting c → 0+, in inequality (3.5), we obtain (1.5)
which is the Fejér type inequality for harmonically convex functions.

(b) Putting p(x) ≡ 1 into Theorem 3.5, we obtain the inequality (3.1).

Now, we establish a new Fejér-type inequality for strongly reciprocally
convex functions.

Theorem 3.7. Suppose f : I ⊂ R \ {0} → R is a strongly reciprocally
convex function with modulus c on I. If a, b ∈ I, a < b, and f ∈ L[a, b], then

f

(
2ab

a+ b

)∫ b

a

p(x)

x2
dx+

c

2ab

∫ b

a

p (x)

x4
[2ab− (a+ b)x] dx

≤
∫ b

a

f(x)

x2
p(x) dx (3.7)

≤ a [f(a) + f(b)]

b− a

∫ b

a
(b− x)

p(x)

x3
dx− c

ab

∫ b

a
(b− x)(x− a)

p(x)

x4
dx ,

where p : [a, b] → R is a nonnegative integrable function that satisfies (3.6).



strongly reciprocally convex functions 123

Proof. According to (3.6), for x = tb+ (1− t)a, we have

p

(
ab

tb+ (1− t)a

)
= p

(
ab

ta+ (1− t)b

)
. (3.8)

Since f ∈ SRC([a,b],c), from the definition 2.6, we obtain

f

(
2xy

x+ y

)
≤ f(y) + f(x)

2
− c

4

(
1

x
− 1

y

)2

, x, y ∈ [a, b] . (3.9)

Let x =
ab

tb+ (1− t)a
and y =

ab

ta+ (1− t)b
in (3.9), then

f

(
2ab

a+ b

)
≤

f
(

ab
ta+(1−t)b

)
+ f

(
ab

tb+(1−t)a

)
2

− c

4

(
tb+ (1− t)a

ab
− ta+ (1− t)b

ab

)2

.

Thus,

f

(
2ab

a+ b

)
p

(
ab

tb+ (1− t)a

)
≤ 1

2

[
f

(
ab

ta+ (1− t)b

)
p

(
ab

ta+ (1− t)b

)
+ f

(
ab

tb+ (1− t)a

)
p

(
ab

tb+ (1− t)a

)]

− c

4

(
tb+ (1− t)a

ab
− ta+ (1− t)b

ab

)2

p

(
ab

tb+ (1− t)a

)
.

Integrating both sides of the above inequalities with respect to t over [0, 1],
we obtain

f

(
2ab

a+ b

)∫ 1

0
p

(
ab

tb+ (1− t)a

)
dt

≤ 1

2

∫ 1

0
f

(
ab

ta+ (1− t)b

)
p

(
ab

ta+ (1− t)b

)
dt

+
1

2

∫ 1

0
f

(
ab

tb+ (1− t)a

)
p

(
ab

tb+ (1− t)a

)
dt

− c

4

∫ 1

0

(
tb+ (1− t)a

ab
− ta+ (1− t)b

ab

)2

p

(
ab

tb+ (1− t)a

)
dt .
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By simple computation,

f

(
2ab

a+ b

)
ab

b− a

∫ b

a

p(x)

x2
dx

≤ 1

2

ab

b− a

∫ b

a

f (x)

x2
p (x) dx+

ab

b− a

∫ b

a

f (x)

x2
p (x) dx

− c

4

2

b− a

∫ b

a

p (x)

x4
[2ab− (a+ b)x] dx .

On the other hand,

f

(
ab

ta+ (1− t)b

)
p

(
ab

ta+ (1− t)b

)

≤

[
tf(b) + (1− t)f(a)− ct(1− t)

(
1

a
− 1

b

)2
]
p

(
ab

ta+ (1− t)b

)
.

Again, integrating both sides of the above inequalities with respect to t
over [0, 1], we obtain∫ 1

0
f

(
ab

ta+ (1− t)b

)
p

(
ab

ta+ (1− t)b

)
dt

≤
∫ 1

0

[
tf(b) + (1− t)f(a)− ct(1− t)

(
1

a
− 1

b

)2
]
p

(
ab

ta+ (1− t)b

)
dt .

By simple computation,∫ b

a

f (x)

x2
p (x) dx

≤ a [f(a) + f(b)]

b− a

∫ b

a
(b− x)

p (x)

x3
dx− c

ab

∫ b

a
(b− x) (x− a)

p (x)

x4
dx .

This concludes the proof.

Remarks 3.8. (a) Letting c → 0+ in the inequalities (3.7), we obtain the
left-hand side of inequality of Fejér type inequalities for harmonically convex
function (see [4]).

(b) Letting p(x) ≡ 1 in the inequalities (3.7) we obtain inequalities of
Hermite-Hadamard type (see Theorem 3.1).
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[3] M. Bracamonte, J. Giménez, J. Medina, M. Vivas, A sandwich
theorem and stability result of Hyers-Ulam type for harmonically convex
functions, submitted for publication (2016).

[4] F. Chen, S. Wu, Fejér and Hermite-Hadamard type inequalities for harmon-
ically convex functions, J. Appl. Math. 2014, Art. ID 386806, 6 pp.

[5] S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions
on linear spaces, Proyecciones 34 (2015), 323 – 341.

[6] S. Dragomir, R. Agarwal, Two inequalities for differentiable mappings
and applications to special means of real numbers and to trapezoidal formula,
Appl. Math. Lett. 11 (5) (1998), 91 – 95.

[7] S. Dragomir, C. Pearce, “ Selected Topics on Hermite-Hadamard Inequal-
ities and Applications ”, RGMIA Monographs n. 17, Austral Internet Pub-
lishing, 2000.
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