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Abstract : In the present paper, we study the ascent of a linear relation everywhere defined
on a Banach space X and the related essential ascent spectrum. Some properties and
characterization of such spectra are given. In particular, we show that a Banach space X
is finite dimensional if and only if the ascent and the essential ascent of every closed linear
relation in X is finite. As an application, we focus on the stability of the ascent and the
essential ascent spectrum under perturbations. We prove that an operator F in X has some
finite rank power, if and only if, σe

asc(T + F ) = σe
asc(T ), for every closed linear relation T

commuting with F .
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1. Introduction

Let X denote a linear space over K = R or C. A multivalued linear
operator in X or simply a linear relation in X is a mapping from a subspace
D(T ) ⊂ X, called the domain of T , into the collection of nonempty subsets
of X such that T (α1x1 + α2x2) = α1Tx1 + α2Tx2, for all nonzero scalars
α1, α2 ∈ K and x1, x2 ∈ D(T ). We use the convention that the domain of T is
D(T ) := {x ∈ X : Tx ̸= ∅}. Then we have Tx = ∅, for all x ∈ X\D(T ). The
class of such linear relations T is denoted by LR(X). The subspace T (0) is
called the multivalued part of T , and we say that T is a single valued linear
operator or simply an operator if T (0) = {0}, that is equivalent to T maps
the points of its domain to singletons. A linear relation T in X is uniquely
determined by its graph, G(T ), which is defined by G(T ) := {(x, y) ∈ X×X :
x ∈ D(T ), y ∈ Tx}, so that we can identify T with G(T ). We say that
T ∈ LR(X) is closed if its graph G(T ) is a closed subspace of X × X. We
designate by CR(X) the class of all closed linear relations in X.

Given a subset A ⊂ X, the image of A is defined by T (A) := ∪{Ta :
a ∈ A ∩D(T )}, while R(T ) := T (D(T )) is called the range of T . The linear
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relation T is said to be surjective whenever its range R(T ) coincides with X.
The inverse of T is the linear relation T−1 given by G(T−1) := {(y, x) : (x, y) ∈
G(T )}. Let ∅ ̸= B ⊂ X, then the inverse image of B under T is defined to
be the set T−1(B) := {x ∈ D(T ) : B ∩ Tx ̸= ∅}. The kernel of T is the
subspace N(T ) := T−1(0) = {x ∈ D(T ) : 0 ∈ Tx}, and T is called injective
if N(T ) = {0}. When T is injective and surjective we say that T is bijective.
The quantities α(T ) := dimN(T ) and β(T ) := dimX/R(T ) are called the
nullity and the conullity of T , respectively, and the index of T is defined by
ind(T ) := α(T )−β(T ) provided α(T ) and β(T ) are not both infinite. If α(T )
and β(T ) are both infinite, then T is said to have no index.

Let M be a subspace of X such that M ∩D(T ) ̸= ∅. Then the restriction
of T to M , denoted by T/M , is given by G(T/M ) := {(m, y) ∈ G(T ) : m ∈
M ∩ D(T )}. For linear relations S and T such that D(T ) ∩ D(S) ̸= ∅ and
λ ∈ C, the linear relations S+T and λT are given by G(S+T ) := {(x, y+z) :
(x, y) ∈ G(S), (x, z) ∈ G(T )} and G(λT ) := {(x, λy) : (x, y) ∈ G(T )}. T − λ
stands for T − λI, where I is the identity operator on X. Let S, T ∈ LR(X)
such that R(T ) ∩ D(S) ̸= ∅. The product ST is defined as the relation
G(ST ) := {(x, z) : (x, y) ∈ G(T ), (y, z) ∈ G(S) for some y ∈ X}. The
product of linear relations is clearly associative. Hence for T ∈ LR(X) and
n ∈ Z, Tn is defined as usual with T 0 = I and T 1 = T . It is easily seen that
(T−1)n = (Tn)−1, n ∈ Z. The singular chain manifold Rc(T ) of T is defined
by

Rc(T ) :=

( +∞∪
n=1

Tn(0)

)
∩
( +∞∪

n=1

N(Tn)

)
and we say that the linear space Rc(T ) is trivial if Rc(T ) = {0}.

For a given closed subspace M of a normed space X, let QM denote the
natural quotient map from X onto X/M. If T ∈ LR(X), then we shall denote
Q

T (0)
by QT . Clearly QTT is single valued, and T is closed, if and only

if, QTT and T (0) are both closed (see [12, II.5.3]). For x ∈ X, we define
∥Tx∥ := ∥QTTx∥ and thus ∥T∥ = sup{∥Tx∥ : ∥x∥ ≤ 1} = ∥QTT∥. The
quantity ∥T∥ is referred as the norm of T , though we note that it is in fact
a pseudonorm, since ∥T∥ = 0 does not imply T = 0. A linear relation T is
said to be continuous if for each open subset V in R(T ), T−1(V ) is an open
subset in D(T ), equivalently ∥T∥ < ∞, open if its inverse T−1 is continuous
and bounded below if T is injective and open. Continuous everywhere defined
linear relations are referred to as bounded relations.

It is very well known (see [22, Lemmas 3.4 and 3.5]) that (N(Tn))n∈N is an
increasing sequence and if N(Tm) = N(Tm+1), for some nonnegative integer
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m, thenN(Tm) = N(Tn), for all n ≥ m. Similarly, (R(Tn))n∈N is a decreasing
sequence and if R(Tm) = R(Tm+1), for some m ∈ N, then R(Tm) = R(Tn)
for all n ≥ m. These statements lead to the introduction of the ascent and
the descent of a linear relation T in X by

a(T ) := min{r ∈ N : N(T r) = N(T r+1)};

d(T ) := min{s ∈ N : R(T s) = R(T s+1)};

respectively, whenever these minima exist. If no such numbers exist the ascent
and the descent of T are defined to be ∞.

Likewise, the statements of Lemma 2.5 below lead to the introduction of
the essential ascent of a linear relation T , which are due to Chafai and Mnif
[7], by

ae(T ) := min{n ∈ N : αn := dimN(Tn+1)/N(Tn) < ∞},

where the minimum over the empty set is taken to be infinite. If ae(T ) is
finite, we denote

p(T ) := min{p ∈ N : αn(T ) = αp(T ), ∀n ≥ p}.

In the sequel, X will be a complex Banach space and T ∈ CR(X). We say
that T is upper semi-Fredholm, usually denoted T ∈ Φ+(X), if R(T ) is closed
and α(T ) is finite. Clearly, every upper semi-Fredholm linear relation has a
finite essential ascent precisely we have ae(T ) = 0. The such class of linear
relations contains every linear relation with finite ascent.

The resolvent set of T is the set

ρ(T ) := {λ ∈ C : T − λ is bijective };

and the spectrum of T is defined as the set σ(T ) : C\ρ(T ). It is shown (see
[12, VI.1.3]), that ρ(T ) is an open set and hence σ(T ) is closed. The descent
resolvent, the ascent resolvent and the essential ascent resolvent sets of T are
defined by

ρdes(T ) := {λ ∈ C : d(T − λ) < ∞};
ρasc(T ) := {λ ∈ C : a(T − λ) < ∞ and R((T − λ)a(T−λ)+1) is closed};
ρeasc(T ) := {λ ∈ C : ae(T − λ) < ∞ and R((T − λ)ae(T−λ)+1) is closed};
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respectively. The descent spectrum σdes(T ), the ascent spectrum σasc(T ) and
the essential ascent spectrum σe

asc(T ) are defined by

σdes(T ) := C\ρdes(T ); σasc(T ) := C\ρasc(T ); σe
asc(T ) := C\ρeasc(T );

respectively.

Linear relations were introduced into Functional Analysis by J. von Neu-
mann [24], motivated by the need to consider adjoints of non-densely defined
linear differential operators which are considered by Coddington [9], Codding-
ton and Dijksma [10], Dikjsma, Sabbah and De Snoo [13], among others. One
main reason why linear relations are more convenient than operators is that
one can define the inverse, the closure and the completion for a linear rela-
tion. Interesting works on multivalued linear operators include the treatise
on partial differential relations by Gromov [18], the application of multival-
ued methods to solution of differential equations by Favini and Yagi [15], the
development of fixed point theory for linear relations to the existence of mild
solutions of quasi-linear differential inclusions of evolution and also to many
problems of fuzzy theory (see, for example [1]) and several papers on semi-
Fredholm linear relations and other classes related to them (see, for examples
[5] and [4]).

For an operator in a linear space, the notion of ascent and essential ascent
was studied in several articles, for instance, we cite [6], [8], [16], [17], [19],
[20] and [23]. Later, these concepts are extended to the multivalued case. In
particular, some well known results concerning the ascent and the essential
ascent for the case of linear operators remain valid in the context of linear
relations. Sometimes, an additional condition is needed which is the linear
relation having a trivial singular chain manifold. In [6], the authors study the
ascent and the essential ascent spectrum of an operator acting on a Banach
space. They show that a Banach space X has a finite dimension, if and only
if, the essential ascent of every operator on X is finite. The aim of this paper
is to find conditions under which results of the type mentioned above will still
be true in the most general setting of multivalued linear operators between
Banach spaces.

The structure of this work is as follows. Throughout Section 2, we give
some auxiliary results, sometimes purely algebraic, which are used to prove the
main results. Section 3 is devoted to the study of the ascent spectrum and the
essential ascent spectrum of a closed linear relation acting on a Banach space.
We show that they are closed subsets of the spectrum, and that σe

asc(T ) is
empty precisely when σasc(T ) is empty. We shall also prove that X has a finite
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dimension, if and only if, the essential ascent of every closed linear relation is
finite. Finally, in Section 4, we are concerned with the stability of the essential
ascent spectrum under finite rank perturbations. We prove that F k has a
finite dimensional range, for some k ∈ N, if and only if, σe

asc(T +F ) = σe
asc(T )

(equivalently, σasc(T + F ) = σasc(T )) for every closed linear relation T in the
commutant of F.

2. Preliminary and auxiliary results

In this section we collect some algebraic results of the theory of multivalued
linear operators which will be needed in the following sections. Firstly, we
recall the next elementary lemma.

Lemma 2.1. ([12, I.3.1]) Let X be a linear space and T ∈ LR(X). Then

(i) TT−1(M) = M ∩R(T ) + T (0), for all M ⊂ X.

(ii) T−1T (M) = M ∩D(T ) +N(T ), for all M ⊂ X.

(iii) T (M +N) = T (M) + T (N), for all M ⊂ X and N ⊂ D(T ).

A proof of the next lemma can be found in [22].

Lemma 2.2. ([22, Lemmas 4.1 and 4.4]) Let T be a linear relation in a
linear space X and let n,m ∈ N. Then

(i) D(Tm)/(R(Tn) +N(Tm)) ∩D(Tm) ≃ R(Tm)/R(Tm+n).

(ii) If, moreover, Rc(T ) = {0}, then N(Tm+n)/N(Tn) ≃ N(Tm) ∩R(Tn).

As an immediate consequence of Lemma 2.2, we mention the following
useful result which is valid for every linear relation everywhere defined in a
linear space and having a trivial singular chain manifold.

N(T ) ∩R(T p) = N(T ) ∩R(T p+n), for all n ∈ N, where p := p(T ).

The inverse image of a closed linear space M of a Banach space X under
a linear relation T in X is not, in general, a closed subspace of X. In the
following lemma, we give conditions for which T−1(M) remains closed.

Lemma 2.3. Let T be an everywhere defined linear relation in a Banach
space X and let M be a closed subspace of X such that T (0) ⊂ M . Then
T−1(M) is closed.
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Proof. According to [12, III.4.2] and, since T is closed and everywhere
defined, one can deduce that T is bounded. So that, QTT is a bounded
operator. On the other hand, since M and T (0) are both closed, it follows,
from [3, Lemma 13]), that QT (M) = (M + T (0))/T (0) = M/T (0) is also
closed. Therefore (QTT )

−1QT (M) is closed. But clearly, (QTT )
−1QT (M) =

T−1(M +N(QT )) = T−1(M + T (0)) = T−1(M).

The next lemma is used to prove Lemma 3.2 below.

Lemma 2.4. Let X be a Banach space, T ∈ CR(X) be everywhere defined
and let M be a closed subspace of X such that T (0)∩M = {0} or T (0) ⊂ M .
Suppose that M +R(T ) and M ∩R(T ) are closed. If either T (0) or M ∩R(T )
has a finite dimension then, R(T ) is closed.

Proof. Write for short N = (M + T (0)) ∩ R(T ) = M ∩ R(T ) + T (0) if
T (0) ∩ M = {0} and N = M ∩ R(T ) if T (0) ⊂ M . Clearly N is a closed
subspace of X and hence, using Lemma 2.3, it follows that T−1(N) is also
closed . Now, let us consider the linear relation

T̂ : (X/T−1(N))⊕ (M/N) → (R(T ) +M)/N

defined canonically by

T̂ (x+m) := {y +m : y ∈ Tx}.

It is easy to check that T̂ is correctly defined. Moreover, for y ∈ T (0), we have
y = 0 (as T (0) ⊂ N), so that T̂ (0) = 0. Which implies that T̂ is an operator.
On the other hand, if x ∈ X and m ∈ M such that T̂ (x + m) = 0, then
Tx+m ⊂ N and hence Tx ⊂ (M +N) ∩ R(T ) = N . It follows that m ∈ N
and x ∈ T−1(N), so that x + m = 0. This implies that T̂ is injective and,
obviously, T̂ is surjective. Thus T̂ is bijective. Now, since TT−1(N) = N ,
then for all x ∈ X,m ∈ M and y ∈ Tx we have

∥T̂ (x+m)∥ = ∥y +m∥ = d(y +m,N)

≤ d(y,N) + d(m,N)

= d(y, TT−1(N)) + d(m,N)

= inf
x′∈T−1(N)

d(y, Tx′) + d(m,N).
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Which implies that

∥T̂ (x+m) ≤ inf
x′∈T−1(N)

d(Tx, Tx′) + d(m,N)

= inf
x′∈T−1(N)

∥Tx− Tx′∥+ d(m,N)

≤ ∥T∥ inf
x′∈T−1(N)

∥x− x′∥+ d(m,N)

= ∥T∥d(x, T−1(N)) + d(m,N)

≤ (1 + ∥T∥)[d(x, T−1(N)) + d(m,N)]

= (1 + ∥T∥)∥x+m∥.

Thus T̂ is bounded and, since T̂ is bijective, then, by the open mapping
theorem of linear operators, T̂ (X/(T−1(N))) is closed. Now let us consider
P : R(T ) + M → (R(T ) + M)/N the canonical projection. Then R(T ) =
P−1(R(T )/N) = P−1(T̂ (X/T−1(N))). Consequently, R(T ) is closed.

In order to introduce the ascent and the essential ascent of linear relations
we will need the next result.

Lemma 2.5. Let T be a linear relation in a linear space X such that
Rc(T ) = {0}. Then, for n ≥ 1,

(i) dimN(Tn+1)/N(Tn) ≤ dimN(Tn)/N(Tn−1).

(ii) If there exists n ∈ N such that dimN(Tn+1)/N(Tn) is finite then
dimN(Tm+1)/N(Tm) is finite, for all m ≥ n.

(iii) dimN(Tn+1)/N(Tn) < ∞ if and only if dimN(Tn+k)/N(Tn) < ∞, for
all k ≥ 1.

Proof. (i) We note, by Lemma 2.2, that

N(Tn+1)/N(Tn) ≃ R(Tn) ∩N(T ) ⊂ R(Tn−1) ∩N(T ) ≃ N(Tn)/N(Tn−1).

Thus, obviously, dimN(Tn+1)/N(Tn) ≤ dimN(Tn)/N(Tn−1).

(ii) Follows immediately from the part (i).

(iii) Suppose that dimN(Tn+1)/N(Tn) < ∞ then, for any k ≥ 1,

dimN(Tn+k)/N(Tn) =

k−1∑
i=0

dimN(Tn+i+1)/N(Tn+i) < ∞.

The reverse implication is trivial.
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We close this section with the next lemma which is sometimes useful.

Lemma 2.6. Let T be a linear relation in a Banach space X. Then

(i) Rc(T ) = {0} if and only if Rc(T − λ) = {0} for every λ ∈ C.
(ii) If ρ(T ) ̸= ∅ then Rc(T ) = {0}.

Proof. (i) See [22, Lemma 7.1].

(ii) Follows immediately from [21, Lemma 6.1].

3. Ascent and essential ascent spectrum of linear relations

Throughout this section, X will denote a complex Banach space. The
regular spectrum (see Definition 3.1 below) of T is defined as those complex
numbers λ for which T − λ is not regular. In this section, our interest con-
centrates on proving that, if 0 /∈ σe

asc(T ), then either T is regular or 0 is an
isolated point of its regular spectrum. This extend the result of Theorem 2.3,
described in [6], to the multivalued case. The proof requires the following
technical lemmas.

Lemma 3.1. Let T ∈ LR(X) be everywhere defined. Then

(i) d(T ) is finite if and only if R(T ) +N(T d) = X for some d ∈ N.
If, moreover, Rc(T ) = {0}, then

(ii) a(T ) is finite if and only if N(T ) ∩R(T p) = {0} for some p ∈ N.
(iii) ae(T ) is finite if and only if N(T ) ∩ R(T p) has a finite dimension in X

for some p ∈ N.

Proof. Follows immediately from Lemma 2.2.

Lemma 3.2. Let T ∈ CR(X) be everywhere defined such that ρ(T ) ̸= ∅
and ae(T ) is finite. If R(Tn) is closed, for some n > ae(T ), then R(Tn) is
closed, for all n ≥ ae(T ).

Proof. The use of [14, Lemma 3.1] proves that Tn is closed and everywhere
defined, for all n ∈ N. Moreover, from Lemma 2.6, we get Rc(T ) = {0}.
Now, suppose that R(Tn) is closed, for some n > ae(T ). We need only to
show that R(Tn−1) and R(Tn+1) are both closed. Since T is continuous and
T (0) ⊂ R(Tn), then, by Lemma 2.3, one can deduce that T−1(R(Tn)) =
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R(Tn−1)+N(T ) is closed. Now, using Lemma 3.1, we get R(Tn−1)∩N(T ) is
finite dimensional and hence it is closed. According to Lemma 2.4, it follows
that R(Tn−1) is closed. Let T0 be the restriction of T to the Banach space
R(Tn−1) onto the Banach space R(Tn). Evidently, T0 is surjective and closed,
which implies that T0 is open. Write for short M := R(Tn) + N(T0) =
R(Tn) + N(T ) ∩ R(Tn−1). Clearly, since M and T0 are both closed, T1 :=
T0/M is also closed . According to [12, II.6.1] and the fact that T0 is open,
it follows that T1 is open. Consequently, from [12, II.5.3], we deduce that
R(T1) = T (M) = R(Tn+1) + T (N(T ) ∩ R(Tn−1) = R(Tn+1) is closed. This
completes the proof.

Remark 3.1. Since ae(T ) ≤ a(T ), we obviously see, by Lemma 3.2, for
T ∈ CR(X) everywhere defined such that Rc(T ) = {0}, that

σe
asc(T ) ⊆ σasc(T ) ⊆ σ(T ).

The following purely algebraic lemma helps to read Definition 3.1 below.
There exhibits some useful connections between the kernels and the ranges
of the iterates Tn of a linear relation T in X.

Lemma 3.3. ([2, Lemma 3.7]) Let T ∈ LR(X). Then the following state-
ments are equivalent.

(i) N(T ) ⊂ R(Tn) for each n ∈ N.
(ii) N(Tm) ⊂ R(T ) for each m ∈ N.
(iii) N(Tm) ⊂ R(Tn) for each m ∈ N and n ∈ N.

Definition 3.1. We say that a linear relation T ∈ LR(X) is regular if
R(T ) is closed and T verifies one of the equivalent conditions of Lemma 3.3.

Trivial examples of regular linear relations are surjective multivalued op-
erators as well as injective multivalued operators with closed range. The next
perturbation results are shown in [2] and used in the sequel.

Lemma 3.4. ([2, Theorems 23, 25 and 27]) Let T ∈ CR(X).

(i) If T is regular then there exists γ > 0 such that T − λ is regular for all
|λ| < γ.

(ii) If T ∈ Φ+(X) then there exists γ > 0 such that T − λ ∈ Φ+(X) and
α(T − λ) is constant in the annulus 0 < |λ| < γ. Moreover T is regular
if and only if α(T − λ) = α(T ) for all 0 < |λ| < γ.
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We shall make frequent use of the following result which is the multivalued
version of the corresponding result for operators.

Lemma 3.5. Let T ∈ LR(X) be regular with finite-dimensional kernel
and such that Rc(T ) = {0}. Then

α(Tn) = n α(T ).

Proof. Since T is regular then N(Tn−1) ⊂ R(T ). This implies, by Lemma
2.2, that dimN(Tn−1) = dim(N(Tn−1) ∩ R(T )) = dim(N(Tn)/N(T )). Thus
dimN(Tn) = dimN(Tn−1) + dimN(T ). By induction, we get dimN(Tn) =
n dimN(T ) for all n ∈ N.

Remark 3.2. As a consequence of [11, Theorem 3.1], if T is an everywhere
defined linear relation in X with an index and such that Rc(T ) = {0}, then
ind(Tn) = n ind(T ).

Now, we are ready to give our first main result of this section.

Theorem 3.1. Let T ∈ CR(X) be everywhere defined and such that
ρ(T ) ̸= ∅, ae(T ) < ∞ and R(T ae(T )+1) is closed. Let p := p(T ). Then there
exists γ > 0 such that for each 0 < |λ| < γ the following assertions hold:

(i) T − λ is regular.

(ii) dim(N(T − λ)n) = n dim(N(T p+1)/N(T p)) for each n ∈ N.

(iii) codimR(T − λ)n = n dim(R(T p)/R(T p+1)) for each n ∈ N.

Proof. According to [12, III.4.2(a)] and, since T is closed and everywhere
defined, we deduce that T is bounded and T (0) is closed. On the other
hand, from Lemma 3.2, we infer that R(T p+1) and R(T p) are closed. Let
T0 := T/R(T p), be the restriction of T to R(T p), then T0 is closed (as T and
R(T p) are both closed). However, N(T0) = N(T )∩R(T p) = N(T )∩R(T p+n),
for all n ∈ N. It follows, from Lemma 3.1(iii), that N(T0) is finite dimensional
and that N(T0) ⊂ R(T p+n) = R(Tn

0 ). Therefore T0 is both regular and
upper semi-Fredholm. According to Lemma 3.4, there exists γ > 0 such that
T0 − λ is both regular and upper semi-Fredholm with α(T0) = α(T0 − λ), for
each 0 < |λ| < γ. Furthermore, Rc(T ) = {0} (since ρ(T ) ̸= ∅) and hence
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Rc(T0) ⊂ Rc(T ) = {0}. Which implies that Rc(T0 − λ) = {0} (by Lemma
2.6). It follows that

dim(N(T − λ)n) = dim(N(T − λ)n ∩R(T p)) ([22, Lemma 7.2])

= dim(N(T0 − λ)n) = n dimN(T0 − λ) (Lemma 3.5)

= n dimN(T0) (Lemma 3.4)

= n dim(N(T ) ∩R(T p))

= dim(N(T p+1)/N(T p)) (Lemma 2.2).

Now, for n ≥ 1 and λ ̸= 0, we let us consider the polynomials P and Q
defined by P (z) = (z − λ)n and Q(z) = zp, for all z ∈ C. Clearly P and Q
have no common divisors. Then there exist two polynomials u and v such that
1 = P (z)u(z)+Q(z)v(z) for all z ∈ C. It follows that X = R(T−λ)n+R(T p),
and therefore

codimR(T − λ)n = dimX/R(T − λ)n

= dim[(R(T p) +R(T − λ)n)/R(T − λ)n]

= dim[R(T p)/R(T p) ∩R(T − λ)n] ([22, Lemma 2.3])

= codimR(T0 − λ)n

= dimN(T0 − λ)n − ind(T0 − λ)n

= n[dimN(T0 − λ)− ind(T0 − λ)] (Lemma 3.5 and

= n[dimN(T0)− ind(T0)] Remark 3.2)

= n codimR(T0) = n dimR(T p)/R(T p+1).

Finally, N(T−λ) = N(T−λ)∩R(T p) = N(T0−λ) ⊆ R(T0−λ)n ⊆ R(T−λ)n.
Which means that T − λ is regular.

The next corollary is an immediate consequence of Theorem 3.1.

Corollary 3.1. Let T ∈ CR(X) be everywhere defined such that
a(T ) < ∞, ρ(T ) ̸= ∅ and R(T a(T )+1) is closed. Then there exists γ > 0
such that, for each 0 < |λ| < γ, the following assertions holds.

(i) T − λ is regular.

(ii) T − λ is bounded below.

(iii) codimR(T − λ)n = n dim(R(T a(T ))/R(T a(T )+1)).
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Corollary 3.2. Let T ∈ CR(X) be everywhere defined such that
ρ(T ) ̸= ∅. Then σasc(T ) and σe

asc(T ) are two closed subsets of σ(T ). Moreover
σasc(T )\σe

asc(T ) is an open set.

Proof. The closedness of σe
asc(T ) and σasc(T ) are two immediate conse-

quences of Theorem 3.1 and Corollary 3.1, respectively. For the last assertion,
let λ ∈ σasc(T )\σe

asc(T ) and let p := p(T − λ). Then by Theorem 3.1 there
exists a deleted open neighborhood U of λ such that U ∩ σe

asc(T ) = ∅ and, for
all α ∈ U and n ∈ N,

dimN(T − α)n ≥ n dim(N(T − λ)p+1/N(T − λ)p).

But, since T−λ has an infinite ascent, dim(N(T−λ)p+1/N(T−λ)p) is nonzero,
and consequently the sequence (dimN(T−α)n)n is strictly increasing, for each
α ∈ U . Thus U ⊂ σasc(T ), which completes the proof.

In the following we denote E(T ) := ρasc(T ) ∩ ρdes(T ) ∩ σ(T ).

Corollary 3.3. Let T ∈ CR(X) be everywhere defined such that
ρ(T ) ̸= ∅. If λ ∈ E(T ) then λ is an isolated point of the boundary of σ(T ).

Proof. Let λ ∈ E(T ). Then T−λ has a finite descent and ascent, moreover
R((T−λ)a(T−λ)+1) is closed. On the other hand, since T is closed and Rc(T ) =
{0}, one can deduce, by virtue of Lemma 2.6 and [12, II.5.16], that T − λ is
closed and Rc(T − λ) = {0}. Furthermore, applying Corollary 3.1 to T − λ
instead to T , we conclude that there exists γ > 0 such that T − α is injective
and surjective, for all 0 < |α− λ| < γ. This implies that D(λ, γ)\{λ} ⊂ ρ(T ).
Thus λ is isolated and it is in the boundary of the spectrum of T .

The ascent and the essential ascent spectrum of a linear relation T can be
empty. As a consequence of the following theorem, we show that this occurs
precisely when the boundary of the spectrum of T is a subset of the essential
ascent resolvent.

Theorem 3.2. Let T ∈ CR(X) be everywhere defined such that
ρ(T ) ̸= ∅. Then

ρeasc(T ) ∩ ∂σ(T ) = ρasc(T ) ∩ ∂σ(T ) = E(T ). (3.1)

Proof. From Corollary 3.3, we have the obviously inclusions E(T ) ⊂
ρasc(T ) ∩ ∂σ(T ) ⊂ ρeasc(T ) ∩ ∂σ(T ). For the reverse inclusions, it suffices
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to show that ρeasc(T ) ∩ ∂σ(T ) ⊂ E(T ). Let λ be an element of the boundary
of σ(T ) such that T − λ has a finite essential ascent and R(T ae(T−λ)+1) is
closed. Then R(T a(T−λ)+1) is closed (see Lemma 3.2), T − λ is closed (by
[3, Lemma 14]) and Rc(T − λ) = {0} (by [22, Lemma 7.1]). Moreover ac-
cording to Theorem 3.1, there exists a punctured neighborhood V of λ such
that dimN(T − α) = dim(N(T − λ)p)/(N(T − λ)p) and codimR(T − α) =
dim(R(T − λ)p/R(T − λ)p+1), for some p ∈ N and all α ∈ V . Since T − α
is closed, for all α (see [3, Lemma 14] ) and λ ∈ ∂σ(T ), then there exists
α0 ∈ V \σ(T ) ̸= ∅. Hence

0 = dimN(T − α0) = codimR(T − α0)

= dim(N(T − λ)p+1)/N((T − λ)p)

= dim(R((T − λ)p)/R((T − λ)p+1)).

It follows that T −λ is of finite ascent and descent and R(T a(T−λ)+1) is closed.
This means that λ ∈ E(T ).

Corollary 3.4. Let T ∈ CR(X) be everywhere defined such that
ρ(T ) ̸= ∅. Then the following assertions are equivalent.

(i) σasc(T ) = ∅.
(ii) σe

asc(T ) = ∅.
(iii) ∂σ(T ) ⊆ ρasc(T ).

(iv) ∂σ(T ) ⊆ ρeasc(T ).

Proof. All the implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) follow immediately
from (3.1). For the implication (iv) ⇒ (i), assume that ∂σ(T ) ⊆ ρeasc(T )
then ∂σ(T ) = E(T ). According to Corollary 3.3, it follows that all points of
∂σ(T ) are isolated and hence ∂σ(T ) = σ(T ). Now we get, by (3.1), σ(T ) ⊂
ρdes(T ) ∩ ρasc(T ). Which means that C = σ(T ) ∪ ρ(T ) ⊂ ρdes(T ) ∩ ρasc(T ).
Hence ρasc(T ) = C, and consequently σasc(T ) = ∅.

Corollary 3.5. Let K(X) := {T ∈ CR(X) : D(T ) = X and ρ(T ) ̸= ∅}.
The following assertions are equivalent.

(i) X has a finite dimension.

(ii) Every T ∈ K(X) has a finite ascent and R(T a(T )+1) is closed.

(iii) Every T ∈ K(X) has a finite essential ascent and R(T ae(T )+1) is closed.
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(iv) σasc(T ) is empty, for every T ∈ K(X).

(v) σe
asc(T ) is empty, for every T ∈ K(X).

Proof. First observe that T ∈ K(X), if and only if, T − λ ∈ K(X), for
every λ ∈ C. However, all the implications (i) ⇒ (ii) ⇒ (iii) and (iv) ⇒ (v) are
obvious. From Corollary 3.4, it follows immediately that (iii) ⇒ (iv). Now,
suppose that σe

asc(T ) is empty for every T ∈ K(X), then σe
asc(T ) is empty, for

every bounded linear operator on X. It follows, from [6, Corollary 2.8], that
X has a finite dimension. Thus (v) ⇒ (i).

Theorem 3.3. Let T ∈ CR(X) be everywhere defined such that
ρ(T ) ̸= ∅. If Ω be a connected component of ρeasc(T ) then

Ω ⊂ σ(T ) or Ω\E(T ) ⊂ ρ(T ).

Proof. Let Ωr := {λ ∈ Ω : T − λ is both regular and upper semi-
Fredholm}. From Theorem 3.2, clearly that Ω1 := Ω\Ωr is at most count-
able and therefore Ωr is connected. Suppose that Ω ∩ ρ(T ) is non-empty, so
that is Ωr ∩ ρ(T ). Let λ ∈ Ω ∩ ρ(T ). The use of Lemma 3.4 and [3, Corol-
lary 17] leads to dimN(T − λ) = 0 and, by continuity of the index (see [3,
Theorem 15]), codimR(T − λ) = 0. This implies that Ωr ⊂ ρ(T ). Thus Ω\Ωr

consists of isolated points of the spectrum with finite essential ascent, so that

Ω\Ωr ⊂ ρeasc(T ) ∩ ∂σ(T ) = E(T ).

Consequently Ω\E(T ) ⊂ Ωr ⊂ ρ(T ).

Corollary 3.6. Let T ∈ CR(X) be everywhere defined such that
ρ(T ) ̸= ∅. The following assertions are equivalent.

(i) σ(T ) is at most countable.

(ii) σasc(T ) is at most countable.

(iii) σe
asc(T ) is at most countable.

In this case, σasc(T ) = σe
asc(T ) and σ(T ) = σasc(T ) ∪ E(T ).

Proof. All the implications are obvious except (iii) ⇒ (i). To show this,
assume that σe

asc(T ) is at most countable, then ρeasc(T ) is connected. The
use of Theorem 3.3 leads to ρeasc(T )\E(T ) ⊂ ρ(T ). Consequently, σ(T ) =
σe
asc(T ) ∪ E(T ) is at most countable.
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For the last assertion, suppose that σ(T ) is at most countable, then
σasc(T )\σe

asc(T ) is at most countable and open (see Corollary 3.2). Conse-
quently it is empty, which means that σe

asc(T ) = σasc(T ).

4. Ascent, essential ascent spectrum and perturbations

In this section we are interested to investigate the stability of the ascent
spectrum and the essential ascent spectrum of a linear relation, everywhere
defined in a complex Banach space, under commuting finite rank perturba-
tions. We start this section by some technical lemmas which are used in the
sequel.

Lemma 4.1. Let A and B be two linear relations in a linear space X and
let C be an operator in X. Assume that D(A) = D(C) = X, AB = BA,
AC = CA and A(0) ⊂ B(0). Then

An(B + C) = (B + C)An = AnB +AnC, for all n ∈ N. (4.1)

Proof. First consider the case n = 1. From [12, I.4.2 (e)], we have

An(B + C) = AnB +AnC, for all ∈ N, (4.2)

and, by using [12, I.4.3 (c)], it follows that

(B + C)A ⊂ A(B + C). (4.3)

Now, let y ∈ G(AB + AC). Then y ∈ ABx+ ACx = BAx+ CAx, for some
x ∈ X. Which implies that y ∈ By1 + Cy2, for some y1, y2 ∈ Ax, so that
y ∈ By1+Cy1+C(y2− y1) = By1+Cy1 = (B+C)y1 ⊂ (B+C)Ax, because
C(y2 − y1) ∈ CA(0) = AC(0) = A(0) ⊂ B(0). Therefore

AB +AC ⊂ (B + C)A. (4.4)

The use of (4.2), (4.3) and (4.4) leads to A(B+C) = (B+C)A holds. Assume
now that (4.1) holds, for some positive integer n. Then An+1(B + C) =
AAn(B + C) = A(B + B)An = (B + C)AAn = (B + C)An+1. Thus (4.1)
holds, for all n ∈ N.

Lemma 4.2. Let T be an everywhere defined linear relation in a linear
space X and let F be an operator in X such that D(F ) = X and TF = FT .
Then,



160 e. chafai, m. mnif

(i) (T + F )n =
n∑

i=0

(ni )T
n−iF i, for all n ∈ N.

(ii) Tn − Fn =
( n−1∑

i=0

Tn−1−iF i
)
(T − F ), for all n ≥ 1.

Proof. (i) For n = 0 and n = 1 the result is trivial. Suppose that

(T + F )n =

n∑
i=0

(ni )T
n−iF i, for some n ≥ 1. It follows that

(T + F )n+1 = (T + F )(T + F )n

= (T + F )
( n∑

i=0

(ni )T
n−iF i

)
=

n∑
i=0

(ni )(T + F )Tn−iF i ([12, I.4.2 (e)])

=

n∑
i=0

[(ni )T
n−i(T + F )F i] (Lemma 4.1)

=
n∑

i=0

[(ni )T
n−iF i(T + F )] (Lemma 4.1)

=
n∑

i=0

(ni )T
n−iF iT +

n∑
i=0

(ni )T
n−iF iF ([12, I.4.2 (e)]

=

n∑
i=0

(ni )T
n−i+1F i +

n∑
i=0

(ni )T
n−iF i+1 (as TF = FT )

=
n∑

i=0

(ni )T
n−i+1F i +

n+1∑
i=1

( n
i−1)T

n−i+1F i

= Tn+1 +
n∑

i=1

(n+1
i )Tn−i+1F i + Fn+1

=
n+1∑
i=0

(n+1
i )Tn+1−iF i.

Therefore the required equality holds, for all n ∈ N.
(ii) We can easily seen that Tn + T kF j − T kF j = Tn, for all 0 ≤ k ≤ n and
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j ∈ N. Applying this together with Lemma 4.1 and [12, I.4.2 (e)] we obtain( n−1∑
i=0

Tn−1−iF i
)
(T − F )

= (Tn−1 + Tn−2F + · · ·+ Fn−1)T − (Tn−1 + Tn−2F + · · ·+ Fn−1)F.

We shall now to show, by induction on n, that

(Tn−1 + Tn−2F + · · ·+ Fn−1)T = T (Tn−1 + Tn−2F + · · ·+ Fn−1). (4.5)

The case n = 1 is evident. Assume that (4.5) holds for some positive integer
n and take A = T,B = T (Tn−1 + Tn−2F + · · · + Fn−1) and C = Fn. Then,
D(A) = D(C) = X, A(0) = T (0) ⊂ B(0) = Tn(0), AC = TFn = FnT = CA
(as TF = FT ) and AB = T (T (Tn−1 + Tn−2F + · · · + Fn−1)) = T (Tn−1 +
Tn−2F + · · · + Fn−1)T = BA. Now, this fact together with Lemma 4.1 and
[12, I.4.2 (e)]), lead to

(Tn + Tn−1F + · · ·+ Fn)T = [T (Tn−1 + Tn−2F + · · ·+ Fn−1) + Fn]T

= (B + C)A

= A(B + C)

= T [T (Tn−1 + Tn−2F + · · ·+ Fn−1) + Fn]

= T (Tn + Tn−2F + · · ·+ Fn).

Hence (4.5) holds for all n ≥ 1. We prove, arguing in a similar way as in
preceding, that

(Tn−1 + Tn−2F + · · ·+ Fn−1)F = F (Tn−1 + Tn−2F + · · ·+ Fn−1). (4.6)

Combining (4.5) and (4.6) we get( n−1∑
i=0

Tn−1−iF i
)
(T − F ) = T (Tn−1 + Tn−2F + · · ·+ Fn−1)

− F (Tn−1 + Tn−2F + · · ·+ Fn−1)

= (Tn + Tn−1F + · · ·+ TFn−1)

− (Tn−1F + Tn−2F 2 + · · ·+ Fn)

= Tn + (Tn−1F − Tn−1F + · · ·
+ TFn−1 − TFn−1)− Fn

= Tn − Fn.
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In the rest of this section, X, unless otherwise stated, will be a complex
Banach space.

Lemma 4.3. Let T ∈ CR(X).

(i) Let F ∈ LR(X) be single valued with finite rank. If T ∈ Φ+(X) then
T + F ∈ Φ+(X).

(ii) Let S ∈ LR(X) be bounded. If ST ∈ Φ+(X), then T ∈ Φ+(X).

Proof. Follows immediately from [12, V.3.2 and V.2.16].

Lemma 4.4. Let F be a bounded operator in X such that F k is of finite
rank, for some k ≥ 1, and let T ∈ CR(X) be everywhere defined. Suppose that
FT = TF . If T is upper semi-Fredholm then T +F is upper semi-Fredholm.

Proof. According to Lemma 4.2, we can write T k−F k = S(T −F ) where

S :=

k−1∑
i=0

T k−1−iF i. Furthermore, since T is closed and upper semi-Fredholm,

then so is T k (see [2, Proposition 24]). From this together with Lemma 4.3, it
follows that T k − F k is also upper semi-Fredholm. On the other hand, since
T is closed and everywhere defined and F is bounded, then S is bounded.
This means, using Lemma 4.3, that T − F is upper semi-Fredholm. Now, by
interchanging F and −F , we obtain T + F is upper semi-Fredholm.

Lemma 4.5. Let X be a linear spaces and let T ∈ LR(X) be injective.
Then dimD(T ) ≤ dim(R(T )).

Proof. We have, by [12, I.6.4], dimD(T )+dimT (0) = dimR(T )+dimN(T ).
Therefore, since N(T ) = {0}, we have obviously dimD(T ) ≤ dim(R(T )).

Remark 4.1. As a direct consequence of the above lemma we have, for
T ∈ LR(X), dimD(T )/N(T ) ≤ dimR(T ).

Lemma 4.6. Let F be a bounded operator in X such that F k is of finite
rank, for some nonnegative integer k, and let T ∈ CR(X) be everywhere
defined. Assume that FT = TF . Then

dim
(
N(Tn)/N((T + F )n+k−1) ∩N(Tn)

)
< dim

(
R(F k)

)
< ∞,

for all n ≥ 1.
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Proof. First, observe, since TF = FT , that Tm(0) = (TF )m(0) =
(FT )m(0) = Fm(Tm(0)) ⊂ R(Fm), for all m ∈ N. Let n ≥ 1 and let M
be a subspace of N(Tn) such that

N(Tn) =
[
N((T + F )n+k−1) ∩N(Tn)

]
⊕M.

It follows, by Lemma 4.2, that (T + F )n+k−1 maps N(Tn) into Tn+k−1(0) +
R(F k) = R(F k). Now, since (T +F )n+k−1 is injective on M , and according to
Lemma 4.5, we get dim(M) ≤ dim(T +F )n+k−1(N(Tn)) ≤ dim(R(F k)) < ∞.
This proves the Lemma.

Now, we are in the position to give the main theorem of this section.

Theorem 4.1. Let F be a bounded operator on X such that F k is of
finite rank, for some nonnegative integer k, and let T ∈ CR(X) be everywhere
defined such that ρ(T ) ̸= ∅ and ρ(T +F ) ̸= ∅. Suppose that TF = FT . Then

(i) a(T ) is finite if and only if a(T + F ) is finite.

(ii) ae(T ) is finite if and only if ae(T + F ) is finite.

In this case R(T ae(T )+1) is closed if and only if R((T +F )ae(T+F )+1) is closed.

Proof. Clearly, since F is a bounded operator and using Lemma 4.3, it
suffices to show only one direction.
(i) Let a := a(T ) and, for n ≥ a, we let us consider the sequences (an(T ))n∈N
and (bn(T ))n∈N defined as

an(T ) := dim
(
N(Tn)/N(T + F )n+k−1 ∩N(Tn)

)
= dim

(
N(T a)/N(T + F )n+k−1 ∩N(T a)

)
;

bn(T ) := dim
(
N(T + F )n/N(T + F )n ∩N(Tn+k−1)

)
= dim

(
N(T + F )n/N(T + F )n ∩N(T a)

)
;

respectively. Clearly (an(T ))n is a decreasing sequence, which implies that
there exists p ≥ a such that an(T ) = ap(T ), for all n ≥ p. It follows that

N(T + F )n+k−1 ∩N(T a) = N(T + F )p+k−1 ∩N(T a), for all n ≥ p.

Furthermore (bn(T ))n is an increasing sequence and, by interchanging T and
T + F in Lemma 4.6, we may infer that bn(T ) ≤ dim(R(F k)) < ∞. So, there
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exists q ≥ a such that bn(T ) = bq(T ), for all n ≥ q. Hence, for n ≥ q ≥ p+k−1,

dim
(
N(T + F )q/N(T + F )q ∩N(T a)

)
= dim

(
N(T + F )n+k−1/N(T + F )n+k−1 ∩N(T a)

)
= dim

(
N(T + F )n+k−1/N(T + F )p+k−1 ∩N(T a)

)
= dim

(
N(T + F )n+k−1/N(T + F )q ∩N(T a)

)
.

This implies that N(T + F )q = N(T + F )n+k−1, for all n ≥ q. Thus
a(T + F ) ≤ q.

(ii) Suppose that T has a finite essential ascent and let p := p(T ). Given
n ≥ k + p, it follows, by Lemma 4.6, that

dim
(
N(Tn)/N((T + F )n+k−1) ∩N(Tn)

)
< ∞. (4.7)

By interchanging T and T + F in (4.7), we obtain

dim
(
N(T + F )n/N(Tn+k−1) ∩N(T + F )n

)
< ∞.

On the other hand, since ae(T ) < ∞, then dimN(Tn+k−1)/N(T p) < ∞,
which means that

dim
(
N((T + F )n)/N(T + F )n ∩N(T p))

)
< ∞. (4.8)

Furthermore, N(F k) ∩N(T p) ⊂ N(T + F )n ∩N(T p) ⊂ N(T p) and, since F k

is finite dimensional range, it follows that

dim
(
N(T p)/(N(F k) ∩N(T p))

)
< ∞. (4.9)

Hence
dim

(
N(T p)/(N(T + F )n ∩N(T p))

)
< ∞ (4.10)

Now, the use of (4.8) combined with (4.9), leads to

dim
(
N(T + F )n/N(F k) ∩N(T p)

)
= dim

(
N(T + F )n/N(T + F )n ∩N(T p)

)
+ dim

(
N(T + F )n ∩N(T p)/N(F k) ∩N(T p)

)
≤ dim

(
N(T + F )n/N(T + F )n ∩N(T p)

)
+ dim

(
N(T p)/N(F k) ∩N(T p)

)
< ∞.
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Therefore dim(N(T + F )n+1/N(T + F )n) = dim(N(T + F )n+1/N(F k) ∩
N(T p))− dim(N(T + F )n/N(F k) ∩N(T p)) < ∞.

Thus ae(T + F ) ≤ p + k. Now, assume that R(T ae(T )+1) is closed and
let n ≥ k + q, where q := max(p(T ), p(T + F )). Denote by T0 and F0 the
restrictions of T and F , respectively, to R(T q). Since R(T q) is closed (by
Lemma 3.2) and T is closed, then T0 is closed. On the other hand, N(T0) =
N(T ) ∩ R(T q) is finite dimensional (by Lemma 3.1), which means that T0 is
upper semi-Fredholm. Moreover T0 + F0 is closed (as T0 is closed and F0 is
a bounded operator). Furthermore, clearly T0(0) = T (0) ⊂ N(F ) ∩ R(T q) =
N(F0), and hence, by Lemma 4.4, T0+F0 is upper semi Fredholm. It follows,
from [2, Proposition 24], that (T0 + F0)

n is also upper semi-Fredholm. This
means that T q(R(T + F )n) = R(T0 − F0)

n is closed. Therefore, since T q

is everywhere defined and closed and T q(0) ⊂ T q(R(T + F )n), we infer that
T−qT q(R(T+F )n) is closed. Thus R((T+F )n)+N(T q) = T−qT q(R(T+F )n)
is closed. On the other hand, using (4.10), we get

dim
(
R(T + F )n ∩N(T q)/R(T + F )n ∩N(T + F )n ∩N(T q)

)
< ∞.

However, since ae(T +F ) < ∞ and using Lemma 2.2, we deduce that N(T +
F )n ∩R(T + F )n has a finite dimension. This implies that dimR(T + F )n ∩
N(T q) < ∞, in particular R(T + F )n ∩ N(T q) is closed. By the hypothesis
Rc(T ) = {0}, we infer that (T + F )n(0) ∩ N(T q) = Tn(0) ∩ N(T q) = {0}.
Further, since T +F is closed and ρ(T +F ) ̸= ∅, then (T +F )n is closed. The
use of [14, Lemma 3.2] leads to R(T +F )n is closed. Hence, applying Lemma
3.2, it follows that R(T + F )ae(T+F )+1 is closed. For the reverse implication
it suffices to interchange T and T + F .

As applications of Theorem 4.1 we give the following corollaries.

Corollary 4.1. Let F be a bounded operator in X and let

KF :=
{
T ∈ CR(X) : D(T ) = X, TF = FT, ρ(T ) ̸= ∅ and ρ(T + F ) ̸= ∅

}
.

Then the following assertions are equivalent.

(i) F k has a finite rank, for some k ≥ 1.

(ii) σasc(T + F ) = σasc(T ), for every T ∈ KF .

(iii) σe
asc(T + F ) = σe

asc(T ), for every T ∈ KF .

The proof of this Corollary requires the following lemma.
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Lemma 4.7. ([6, Theorem 3.2]) Let F be a bounded operator in X. The
following conditions are equivalent:

(i) There exists a positive integer n such that Fn has a finite rank.

(ii) σe
asc(T +F ) = σe

asc(T ), for all bounded operator T ∈ LR(X) commuting
with F .

(iii) σasc(T +F ) = σasc(T ), for all bounded operator T ∈ LR(X) commuting
with F .

Proof of Corollary 4.1. The implications (i) ⇒ (ii) and (i) ⇒ (iii) follow
immediately from Theorem 4.1. Now, since all bounded operators commuting
with F on X belong to KF and using Lemma 4.7, we conclude that (ii) ⇒ (i)
and (iii) ⇒ (i).

Corollary 4.2. Let T ∈ CR(X) be everywhere defined such that
ρ(T ) ̸= ∅. Then

σe
asc(T ) ⊂

∩
F∈FT (X)

σasc(T + F )

where FT (X) denotes the set of all bounded finite-rank operators F on X
commuting with T and such that ρ(T + F ) ̸= ∅.
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[3] T. Álvarez, Small perturbation of normally solvable relations, Publ. Math.
Debrecen 80 (1-2) (2012), 155 – 168.
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