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Presented by Jesús M.F. Castillo Received November 18, 2014
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1. Introduction

The motivation behind this problem traces its origin back to [4], in con-
nection with the Banach-Stone theorem. There are natural situations under
which, if two metric functions spaces (A(X), d) and (A(Y ), d′) –defined on the
Banach spaces (X, ∥·∥X) and (Y, ∥·∥Y ) respectively– are isometrically isomor-
phic, then (X ×R, ∥·∥X×R) and (Y ×R, ∥·∥Y×R) are isometrically isomorphic
as Banach spaces under the norms ∥(x, t)∥X×R := ∥x∥X+|t|, for (x, t) ∈ X×R
and ∥(y, t)∥Y×R := ∥y∥Y + |t|, for (y, t) ∈ Y ×R. So, with the aim of obtaining
a version of the Banach-Stone theorem, it is natural to investigate whether
this situation implies that (X, ∥·∥X) and (Y, ∥·∥Y ) are isometrically isomor-
phic. Notice that if (X, ∥·∥X) and (Y, ∥·∥Y ) are isometrically isomorphic,
then we generally have that (A(X), d) and (A(Y ), d) are also isometrically
isomorphic. This problem was solved positively in [4] for norms of the form

∥(x, t)∥X×R := (∥x∥pX + |t|p)
1
p for all (x, t) ∈ X×R when p ∈ [1,∞[\ {2}. The

property proposed in this paper is more general.

We provide applications of our main theorem to the space of continuously
differentiable functions and the spaces of affine functions. We also provide
counterexamples for norms which do not satisfy our property.
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2. The main theorem.

We use the following property.

Definition 1. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be two normed vector spaces.
Let ∥·∥X×R and ∥·∥Y×R be two norms defined onX×R and Y ×R respectively.
We say that the pair of norms (∥·∥X×R, ∥·∥Y×R) satisfies the property (P ) if

(i) ∥(x, t)∥X×R ≥ ∥(x, 0)∥X×R = ∥x∥X for all (x, t) ∈ X × R and
∥(y, t)∥Y×R ≥ ∥(y, 0)∥Y×R = ∥y∥Y for all (y, t) ∈ Y × R.

(ii) for all x ∈ X and y ∈ Y :

∥x∥X = ∥y∥Y ⇒ ∥(x, λ)∥X×R = ∥(y, λ)∥Y×R, ∀λ ∈ R.

(iii) Let (a, u) ∈ X × R and (b, v) ∈ Y × R such that a ̸= 0 and b ̸= 0. If for
all (α, β) ∈ R2, ∥(α(0, 1) + β(a, u)∥X×R = ∥(β(0, 1) + α(b, v)∥Y×R then
u = v = 0.

Remark 1. Let us note that property (P ) in this paper does not appear to
be related to the notion of orthogonality. However there exists some similarity
between these two notions. For interesting results on the various notions of
orthogonality in normed vector spaces, we refer to [1], [2] and [3].

Theorem 1. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be two normed vector spaces.
Suppose that (∥·∥X×R, ∥·∥Y×R) satisfies the property (P ). Then (X × R,
∥·∥X×R) and (Y × R, ∥·∥Y×R) are isometrically isomorphic if and only if
(X, ∥·∥X) and (Y, ∥·∥Y ) are isometrically isomorphic.

Our theorem applies to many norms, see for instance Example 1 and more
generally Proposition 1. We give now a generic counterexample showing that
Theorem 1 fails for arbitrary norms.

Counterexample 1. Let X = Y = R2. For each norm ∥·∥X on X there
exist a norm ∥·∥Y on Y , a norm ∥·∥X×R on X × R and a norm ∥·∥Y×R on
Y × R such that:

(1) (X, ∥·∥X) is not isometrically isomorphic to (Y, ∥·∥Y ).
(2) (X × R, ∥·∥X×R) is isometrically isomorphic to (Y × R, ∥·∥Y×R).

(3) ∥·∥X×R coincide with ∥·∥X on X × {0} and ∥·∥Y×R coincide with ∥·∥Y
on Y × {0}.
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Proof. Let p ∈ [1,+∞[. Let us define ∥·∥X×R and ∥·∥Y×R as follows:

∥(x1, x2, t)∥X×R :=
(
∥(x1, x2)∥pX + |t|p

) 1
p , ∀(x1, x2, t) ∈ X × R

and

∥(y1, y2, s)∥Y×R :=

(
|y2|p +

∥(y1, s)∥pX
cp

) 1
p

, ∀(y1, y2, s) ∈ Y × R,

where c = ∥(1, 0)∥X . Let us define the norm ∥·∥Y,p on Y as follows:

∥(y1, y2)∥Y,p :=
(
|y1|p + |y2|p

) 1
p ,

for all (y1, y2) ∈ Y . Clearly,

∥(x1, x2, 0)∥Y×R = ∥(x1, x2)∥X , ∀(x1, x2) ∈ X

and

∥(y1, y2, 0)∥Y×R =
(
|y1|p + |y2|p

) 1
p := ∥(y1, y2)∥Y,p, ∀(y1, y2) ∈ Y.

(Since
∥(y1,0)∥pX

cp = |y1|p
∥(1,0)∥pX

cp = |y1|p). On the other hand, the following map
is an isometric isomorphism:

Θ : (X × R, ∥·∥X×R) → (Y × R, ∥·∥Y×R)

(x1, x2, t) 7→ (cx1, t, cx2).

There exist two cases:

Case 1: If every point of the sphere SX of X is an extreme point, we choose
p = 1 and so the sphere SY of Y has no extreme point: indeed, in this case
∥(y1, y2)∥Y := ∥(y1, y2)∥Y,1 = |y1| + |y2|. (For example (12 ,

1
2) is not extreme

for ∥·∥Y,1). Consequently (X, ∥·∥X) and (Y, ∥·∥Y ) cannot be isometrically
isomorphic.

Case 2: If there exists some point of the sphere SX which is not extreme,
then choosing p = 2 we get that every point of the sphere SY is an extreme
point: indeed in this case ∥(y1, y2)∥Y := ∥(y1, y2)∥Y,2 = (|y1|2 + |y2|2)

1
2 is

the Euclidean norm. Again (X, ∥·∥X) and (Y, ∥·∥Y ) cannot be isometrically
isomorphic.

The idea of the above counterexample can be extended to infinite dimen-
sions.
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Counterexample 2. Let (X, ∥·∥X) be a smooth normed vector space
(The norm ∥·∥X is Gâteaux differentiable outside 0). Then there exist another
norm ∥·∥ on X and two norms N1 and N2 on X × R such that:

(1) (X, ∥·∥X) is not isometrically isomorphic to (X, ∥·∥).
(2) (X × R, N1) is isometrically isomorphic to (X × R, N2).

(3) N1 coincide on X×{0} with ∥·∥X and N2 coincide on X×{0} with ∥·∥.

Proof. Let H be an hyperplane of (X, ∥·∥X). So, there exists e ∈ X such
that for each x ∈ X, there exists a unique (xH , tH) ∈ H × R such that
x = xH + tHe. We define the norm ∥·∥ on X as follow ∥x∥ := ∥xH∥X + |tH |
for all x ∈ X. We define N1 and N2 as follows.

N1(x, t) := ∥x∥X + |t|; ∀(x, t) ∈ X × R

N2(x, t) := ∥xH + te∥X + |tH |; ∀(x, t) ∈ X × R.

Clearly,
N1(x, 0) = ∥x∥X ; ∀x ∈ X

and
N2(x, 0) = ∥xH∥X + |tH | = ∥x∥; ∀x ∈ X.

On the other hand, the following map is an isometric isomorphism

Θ : (X × R, N1) → (X × R, N2)

(x, t) 7→ (xH + te, tH)

But (X, ∥·∥X) and (X, ∥·∥) cannot be isometrically isomorphic since the norm
∥·∥X is smooth and the norm ∥·∥ is not smooth.

We give now examples of norms satisfying our theorem.

Example 1. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be two normed vector spaces.

(1) Let p ∈ [1,+∞[\ {2}; we define the l2p-norms as follows:

∥(x, t)∥X×R := (∥x∥pX + |t|p)
1
p ,

or
∥(x, t)∥X×R := max(∥x∥X , |t|),

for all (x, t) ∈ X × R. We define ∥·∥Y×R in an analogous manner as we did
for the norm ∥·∥X×R. Then the pair (∥·∥X×R, ∥·∥Y×R) satisfies the property
(P ).
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Note that the part (iii) of the property (P ) fails for the l2p-norms with
p = 2. However, we obtain from the Proposition 1 below a criterion which
provides the property (P ) through a general class of norms N on R2. Recall
that a norm N on a vector lattice space E is absolute if N(|x|) = N(x) for
all x ∈ E ; and monotone if N(x) ≤ N(y) whenever 0 ≤ x ≤ y. If the norm is
both absolute and monotone, it is called a Riesz norm. It is easy to show that
a norm is Riesz if and only if N(x) ≤ N(y) whenever |x| ≤ |y|. Any absolute
norm on Rn (equipped with the usual order) is already monotone, hence a
Riesz norm (see [6, Theorem 2], and [7]). We set now E = R2 and let N be a
Riesz norm on R2. We denote by Isom(R2, N) the group of all automorphism
isometric of (R2, N). Let S2 be the group of permutations of {1, 2}. For
σ ∈ S2 and λ := (λ1, λ2) ∈ (R∗)2, we denote by uσ,λ the automorphism of R2

defined by uσ,λ : (t1, t2) 7→ (λ1tσ(1), λ2tσ(2)). By I2 we denote the following
group of automorphisms

I2 :=
{
uσ,λ/σ ∈ S2;λ ∈ (R∗)2

}
.

Recall (see [5]) that the group of isometries of the l2p-norms on R2 for p ∈
[1,+∞] \ {2} is exactly the set

{
uσ,λ/σ ∈ S2;λ ∈ {−1, 1}2

}
⊂ I2.

Proposition 1. For each Riesz norm N on R2, if Isom(R2, N) ⊂ I2 then
the pair (∥·∥X×R, ∥·∥X×R) satisfies the property (P ) where ∥(x, t)∥X×R :=
cN(∥x∥X , |t|) for all (x, t) ∈ X × R and ∥(y, t)∥Y×R := cN(∥y∥Y , |t|) for all
(y, t) ∈ Y × R with c := 1

N(1,0) .

Proof. The part (i) and (ii) in Definition 1 are easy to verify. Let us prove
that if Isom(R2, N) ⊂ I2 then the part (iii) of Definition 1 is verified. Indeed,
let (a, u) ∈ X × R and (b, v) ∈ Y × R be such that

N
(
|α|∥a∥X , |αu+ β|

)
= N

(
|β|∥b∥Y , |βv + α|

)
; ∀(α, β) ∈ R2. (1)

Suppose that a ̸= 0 and b ̸= 0, then the map φ : (α∥a∥X , αu + β) 7→
(β∥b∥Y , βv + α) is an automorphism of R2. Since the norm N is absolute,
from the formula (1) we get

N
(
β∥b∥Y , βv + α

)
= N

(
|β|∥b∥Y , |βv + α|

)
= N

(
|α|∥a∥X , |αu+ β|

)
= N

(
α∥a∥X , αu+ β

)
.

(2)
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Using a change of variables by putting t1 = α∥a∥X and t2 = αu+ β we have

φ : (t1, t2) 7→
(
−u∥b∥Y
∥a∥X

t1 + ∥b∥Y t2,
1− uv

∥a∥X
t1 + vt2

)
for all (t1, t2) ∈ R2 and from (2) we obtain:

N
(
φ(t1, t2)

)
= N(t1, t2), ∀(t1, t2) ∈ R2. (3)

The formula (3) means that φ is isometric for the norm N . So, by our hy-
pothesis φ must be an element of I2, which implies that φ = uσ,λ for some

σ ∈ S2 and λ ∈ (R∗)2. Since b ̸= 0, the unique possibility is that −u∥b∥Y
∥a∥X = 0

and v = 0. Thus we have u = v = 0 which implies the property (P ).

Remark 2. Using Minkowski functional of appropriate convex and sym-
metric sets of R2, we can easily construct Riesz norms satisfying the hypothesis
of Proposition 1. For example the set

Cϵ :=
(
[−1, 1]× [−1 + ϵ, 1− ϵ]

)∩{
(x, y) ∈ R2 : x2 + y2 ≤ 1

}
(for 0 < ϵ < 1) is the closed unit ball of some Riesz norm NCϵ (the Minkowski
functional of Cϵ) satisfying Isom(NCϵ ,R2) = {±i,±u} ⊂ I2 where i denotes
the identity map of R2 and u : (t1, t2) → (−t1, t2) for all (t1, t2) ∈ R2. Note
that ∥·∥2 ≤ NCϵ ≤ 1

1−ϵ∥·∥2 where ∥·∥2 denotes the euclidean norm on R2.

3. Notation

Let (X, ∥·∥X) and (Y, ∥·∥Y ) be two normed vector spaces and let ∥·∥X×R
be a norm on X × R and ∥·∥Y×R be a norm on Y × R. Let

Θ : (X × R, ∥·∥X×R) → (Y × R, ∥·∥Y×R)

be an isomorphism. There exists two linear operators T : X → Y and S :
Y → X, two real valued linear maps p : X → R and q : Y → R and two
vectors (a, u) := Θ−1(0, 1) ∈ X × R and (b, v) := Θ(0, 1) ∈ Y × R, such that:

Θ(x, t) =
(
Tx+ tb, p(x) + tv

)
; ∀(x, t) ∈ X × R (4)

and

Θ−1(y, t) =
(
Sy + ta, q(y) + tu

)
; ∀(y, t) ∈ Y × R. (5)
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Using the fact that Θ−1(Θ(x, t)) = (x, t) for all (x, t) ∈ X ×R, we obtain the
following formulas

S ◦ Tx+ p(x)a = x; ∀x ∈ X, (6)

Sb = −va, (7)

q(Tx) + p(x)u = 0; ∀x ∈ X, (8)

q(b) = 1− uv. (9)

By inverting, the roles of Θ and Θ−1 we obtain:

T ◦ Sy + q(y)b = y; ∀y ∈ Y, (10)

Ta = −ub, (11)

p(S(y)) + q(y)v = 0; ∀y ∈ Y, (12)

p(a) = 1− uv. (13)

Finally, we denote Ker(p) :=
{
x ∈ X : p(x) = 0

}
and Ker(q) :=

{
y ∈ Y :

q(y) = 0
}
.

4. Proof of the main theorem

Before proving our main theorem, we need the following lemmas.

Lemma 1. Suppose that Θ : (X × R, ∥·∥X×R) → (Y × R, ∥·∥X×R) is an
isometric isomorphism. Then, the spaces Ker(p)× {0} and Ker(q)× {0} are
isometrically isomorphic. More precisely, the map

Θ :
(
Ker(p)× {0} , ∥·∥X×R

)
→

(
Ker(q)× {0} , ∥·∥Y×R

)
(x, 0) 7→ Θ(x, 0)

(14)

is an isometric isomorphism.

Proof. Since Θ is an isomorphism isometric, it suffices to show that Θ
sends Ker(p) × {0} into Ker(q) × {0} and Θ−1 sends Ker(q) × {0} into
Ker(p) × {0}. Indeed, suppose that x ∈ Ker(p). Using the formula (4) we
have Θ(x, 0) = (Tx, 0). Now, by using the formula (8) we have q(Tx) = 0
since p(x) = 0. It follows that Tx ∈ Ker(q) and so Θ sends Ker(p)×{0} into
Ker(q) × {0}. In a similar way we prove that Θ−1 sends Ker(q) × {0} into
Ker(p)× {0}.
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Lemma 2. We have that a ̸= 0 if and only if b ̸= 0.

Proof. Let a ̸= 0 and suppose that b = 0. By the formula (7) we have
that va = 0, which implies that v = 0 since a ̸= 0. Using the formula (9) we
obtain that q(b) = 1 which is a contradiction since b = 0. So we have that
a ̸= 0 ⇒ b ̸= 0. In a similar way we prove the converse.

We give now the proof of the main result.

Proof of Theorem 1. For the “if” part, suppose that (X, ∥·∥X) and (Y, ∥·∥Y )
are isometrically isomorphic and let T : (X, ∥·∥X) → (Y, ∥·∥Y ) be an isomor-
phism isometric. Let us define Θ : (X × R, ∥·∥X×R) → (Y × R, ∥·∥Y×R) by
Θ(x, λ) = (T (x), λ) for all (x, λ) ∈ X ×R. Then, clearly Θ is an isomorphism
and by part (ii) of the property (P ), it is also isometric.

We prove now the “only if part”. Indeed, suppose that there exists an
isomorphism isometric Θ : (X × R, ∥·∥X×R) → (Y × R, ∥·∥Y×R). We need to
consider two cases: a = 0 or a ̸= 0.

Case 1. If a = 0 then b = 0 by Lemma 2. Using the formulas (6) and
(10) we obtain that T is an isomorphism from X onto Y with the inverse S.
To see that T is an isometry, we use the formula (4) and (5) to obtain that
Θ(x, 0) = (Tx, p(x)) and Θ−1(y, 0) = (T−1(y), q(y)) for all x ∈ X and y ∈ Y .
Replacing y by Tx we obtain Θ−1(T (x), 0) = (x, q(Tx)). Now, using the part
(i) of the property (P ) and the fact that Θ is isometric, we get

∥x∥X = ∥Θ(x, 0)∥Y×R = ∥(Tx, p(x))∥Y×R ≥ ∥Tx∥Y

and

∥Tx∥Y = ∥Θ−1(Tx, 0)∥X×R = ∥(x, q(Tx))∥X×R ≥ ∥x∥X .

By combining the two inequalities we have that T is isometric. Thus (X, ∥·∥X)
and (Y, ∥·∥Y ) are isometrically isomorphic.

Case 2. If a ̸= 0 then b ̸= 0 by Lemma 2. Since Θ is isometric then for all
(α, β) ∈ R2 we have∥∥α(a, u) + β(0, 1)

∥∥
X×R =

∥∥Θ(α(a, u) + β(0, 1)
)∥∥

Y×R

=
∥∥α(0, 1) + β(b, v)

∥∥
Y×R.

This implies that u = v = 0 by the part (iii) of the property (P ). Thus we have
Θ−1(0, 1) = (a, 0) and Θ(0, 1) = (b, 0). We first show that X×{0} = Ker(p)×
{0} ⊕R(a, 0) and Y × {0} = Ker(q)× {0} ⊕R(b, 0). Indeed, For each x ∈ X
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we can write x = (x−p(x)a)+p(x)a. Since u = 0 then p(a) = 1 from formula
(13). Thus x− p(x)a ∈ Ker(p) and so X × {0} = Ker(p)× {0} ⊕R(a, 0). In
a similar way we prove the second part. Now we prove that the map

∆ : X × {0} = Ker(p)× {0} ⊕ R(a, 0) → Y × {0} = Ker(q)× {0} ⊕ R(b, 0)

(x, 0) + λ(a, 0) 7→ Θ(x, 0) + λ(b, 0)

is an isomorphism isometric. Indeed, the fact that ∆ is linear and onto map
is clear by using Lemma 1. Let us prove that ∆ is isometric. For all (x, 0) ∈
Ker(p) × {0}, by Lemma 1 there exists (y, 0) ∈ Ker(q) × {0} such that
Θ(x, 0) = (y, 0) and we have ∥x∥X = ∥(x, 0)∥X×R = ∥(y, 0)∥Y×R = ∥y∥Y ,
since Θ is isometric. On the other hand, since

(x, 0) + λ(a, 0) = Θ−1(Θ(x, 0)) + λΘ−1(0, 1)

= Θ−1 (Θ(x, 0) + (0, λ))

= Θ−1(y, λ)

then, using the fact that Θ−1 is isometric we have

∥(x, 0) + λ(a, 0)∥X×R = ∥Θ−1(y, λ)∥X×R

= ∥(y, λ)∥Y×R
(15)

On the other hand we know that (b, 0) = Θ(0, 1), so Θ(x, 0) + λ(b, 0) =
Θ(x, 0) + λΘ(0, 1) = Θ(x, λ). Thus, using the fact that Θ is isometric we
have,

∥∆((x, 0) + λ(a, 0)) ∥Y×R = ∥Θ(x, 0) + λ(b, 0)∥Y×R

= ∥Θ(x, λ)∥Y×R

= ∥(x, λ)∥X×R.

(16)

Now, since ∥x∥X = ∥y∥Y and since (∥·∥X×R, ∥·∥Y×R) satifies the property
(P ), then ∥(x, λ)∥X×R = ∥(y, λ)∥Y×R. Thus, using the formulas (15) and (16)
we obtain that ∆ is isometric. Finally, since ∥·∥X×R, and ∥·∥Y×R coincide
with ∥·∥X and ∥·∥Y on X × {0} and Y × {0} respectively, we obtain that
(X, ∥·∥X) and (Y, ∥·∥Y ) are isometrically isomorphic.

By induction, we can easily extend our main theorem (see the corol-
lary below) to X × Rn and Y × Rn (n ∈ N∗) with the norms ∥·∥X×Rn

and ∥·∥Y×Rn defined inductively as follows: Let N be a Riesz norm on R2.
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For all (a, t1, . . . , tn) ∈ R+ × Rn, we set N1(a, |t1|) := N(a, |t1|) and for all
k ∈ {1, . . . , n− 1}, Nk+1(a, |t1|, . . . , |tk+1|) := N(Nk(a, |t1|, . . . , |tk|), |tk+1|).
We then define

∥(x, t1, t2, . . . , tn)∥X×Rn := Nn

(
∥x∥X , |t1|, . . . , |tn|

)
; ∀(x, t1, . . . , tn) ∈ X×Rn

and

∥(y, t1, t2, . . . , tn)∥Y×Rn := Nn

(
∥y∥Y , |t1|, . . . , |tn|

)
; ∀(y, t1, . . . , tn) ∈ Y ×Rn.

Example 2. Let p ∈ [1,+∞[\ {2}, and let N be the norm on R2 defined

by N(s1, s2) := (|s1|p + |s2|p)
1
p
(
respectively, N(s1, s2) := max(|s1|, |s2|)

)
for

all (s1, s2) ∈ R2, then we have

∥(x, t1, . . . , tn)∥X×Rn := Nn

(
∥x∥X , |t1|, . . . , |tn|

)
=

(
∥x∥pX +

n∑
k=1

|tk|p
) 1

p

,

(
respectively, ∥(x, t1, . . . , tn)∥X×Rn := Nn(∥x∥X , |t1|, . . . , |tn|) = max(∥x∥X ,
|t1|, . . . , |tn|)

)
for all (x, t1, . . . , tn) ∈ X × Rn.

Corollary 1. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed vector spaces. Let
N be a Riesz norm on R2 such that Isom(R2, N) ⊂ I2 and let n ∈ N∗. Then
(X×Rn, ∥·∥X×Rn) and (Y ×Rn, ∥·∥Y×Rn) are isometrically isomorphic if and
only if (X, ∥·∥X) and (Y, ∥·∥Y ) are isometrically isomorphic.

Remark 3. Note that the spaces lnp and lnq are not isometric if p ̸= q
except in the case where p, q ∈ {1,∞} and n = 2. Here, lnp denotes the

space Rn endowed with the norm ∥t∥p := (
∑n

k=1 |tk|p)
1
p
(
respectively ∥t∥∞ :=

max(|t1|, . . . , |tn|)
)
for all t = (t1, . . . , tn) ∈ Rn. For more information see [10].

So from Corollary 1 we deduce that for all p, q ∈ [1,+∞], r ∈ [1,+∞] \ {2}
and n,m ∈ N∗ the spaces lnp ⊕︸︷︷︸

l2r

lmr and lnq ⊕︸︷︷︸
l2r

lmr are not isometric except in

the case where p, q ∈ {1,∞} and n = 2.

5. Applications

We give in this section some applications of Theorem 1. In what fol-
lows, N denotes a Riesz norm on R2, such that Isom(R2, N) ⊂ I2. We de-
note by C1[0, 1] the space of continuously differentiable functions on [0, 1], by
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(C[0, 1], ∥·∥∞) the space of continuous functions on [0, 1] endowed with the
supremum norm. Let (X, ∥·∥X) be a Banach space. We consider the following
norms on C1[0, 1], X × R and C[0, 1]× R respectively (see Proposition 1).

∥f∥C1[0,1] := N(∥f ′∥∞, |f(0)|)

∥(x, t)∥X×R := N(∥x∥X , |t|)

∥(g, t)∥C[0,1]×R := N(∥g∥∞, |t|).

Proposition 2. We have (X × R, ∥·∥X×R)
∼= (C1[0, 1], ∥·∥C1[0,1]) if and

only if (X, ∥·∥X) ∼= (C[0, 1], ∥·∥∞).

Proof. Let us consider the map

χ : (C1[0, 1], ∥·∥C1[0,1]) → (C[0, 1]× R, ∥·∥C[0,1]×R)

f 7→ (f ′, f(0))

Clearly, χ is an isomorphism isometric. So we have (X × R, ∥·∥X×R)
∼=

(C1[0, 1], ∥·∥C1[0,1]) if and only if (X ×R, ∥·∥X×R)
∼= (C[0, 1]×R, ∥·∥C[0,1]×R).

Since the pair (∥·∥X×R, ∥·∥C[0,1]×R) satisfies the property (P ) by Proposi-
tion 1 then using Theorem 1 we obtain that (X × R, ∥·∥X×R)

∼= (C[0, 1] ×
R, ∥·∥C[0,1]×R) if and only if (X, ∥·∥X) ∼= (C[0, 1], ∥·∥∞).

Finally we give an application to the spaces of affine functions. Let K and
C be convex subsets of vector spaces. A function T : K → C is said to be
affine if for all x, y ∈ K and 0 ≤ λ ≤ 1, T (λx+(1−λ)y) = λT (x)+(1−λ)T (y).
The set of all continuous real-valued affine functions on a convex subset K of
a topological vector space will be denoted by Aff (K). Clearly, all translates
of continuous linear functionals are elements of Aff (K), but the converse in
not true in general (see [9, page 22]). However, we do have the following
relationship.

Proposition 3. ([9, Proposition 4.5]) Assume that K is a compact con-
vex subset of a separated locally convex space X then{

a ∈ Aff (K) : a = r + x∗|K for some x∗ ∈ X∗ and some r ∈ R
}

is dense in (Aff (K), ∥·∥∞), where ∥·∥∞ denotes the norm of uniform conver-
gence.
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But in the particular case when (X, ∥·∥X) is a Banach space and K =
(BX∗ , w∗) is the unit ball of the dual space X∗ endowed with the weak star
topology, the well known result due to Banach and Dieudonné states that:

Theorem 2. (Banach-Dieudonné). The space (Aff 0(BX∗), ∥·∥∞) of all
affine weak star continuous functions that vanish at 0, is isometrically iden-
tified to (X, ∥·∥X). In other words, Aff 0(BX∗) =

{
ẑ|BX∗ : z ∈ X

}
. Where

ẑ : p 7→ p(z) for all p ∈ X∗ and ẑ|BX∗ denotes the restriction of ẑ to BX∗ .

Now, let (X, ∥·∥X) and (Y, ∥·∥Y ) be two Banach spaces. We consider the
following norms on Aff (BX∗) and Aff 0(BX∗)×R respectively (and in a similar
way, we define norms on Aff (BY ∗) and Aff 0(BY ∗)×R by replacing X by Y ).
(See Proposition 1).

∥f∥Aff (BX∗ ) := N(∥f − f(0)∥∞, |f(0)|); ∀f ∈ Aff (BX∗)

∥(f0, t)∥Aff 0(BX∗ )×R := N(∥f0∥∞, |t|); ∀(f0, t) ∈ Aff 0(BX∗)× R.

We obtain the following version of the Banach-Stone theorem for affine func-
tions. For more information about the Banach-Stone theorem see [8].

Proposition 4. The following assertions are equivalent.

(1) (Aff (BX∗), ∥·∥Aff (BX∗ )) and (Aff (BY ∗), ∥·∥Aff (BY ∗ )) are isometrically
isomorphic.

(2) (Aff 0(BX∗), ∥·∥∞) and (Aff 0(BY ∗), ∥·∥∞) are isometrically isomorphic.

(3) (X, ∥·∥X) and (Y, ∥·∥Y ) are isometrically isomorphic.

Proof. Let us consider the map,

χ :
(
Aff (BX∗), ∥·∥Aff (BX∗ )

)
→

(
Aff 0(BX∗)× R, ∥·∥Aff 0(BX∗ )×R

)
f 7→ (f − f(0), f(0)).

Clearly, χ is an isometric isomorphism. Thus, (Aff (BX∗), ∥·∥Aff (BX∗ )) and
(Aff (BY ∗), ∥·∥Aff (BY ∗ )) are isometrically isomorphic if and only if(
Aff 0(BX∗)×R, ∥·∥Aff 0(BX∗ )×R

)
and

(
Aff 0(BY ∗)×R, ∥·∥Aff 0(BX∗ )×R

)
are iso-

metrically isomorphic. Using Proposition 1 and Theorem 1, this is equivalent
to the fact that (Aff 0(BX∗), ∥·∥∞) and (Aff 0(BY ∗), ∥·∥∞) are isometrically
isomorphic, which is equivalent by Theorem 2 to the fact that (X, ∥·∥X) and
(Y, ∥·∥Y ) are isometrically isomorphic.
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