
applied
sciences

Article

A New Metaheuristic Inspired by the Vapour-Liquid
Equilibrium for Continuous Optimization

Enrique M. Cortés-Toro 1,2,*, Broderick Crawford 2, Juan A. Gómez-Pulido 3 , Ricardo Soto 2

and José M. Lanza-Gutiérrez 4

1 Facultad de Ingeniería, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2340000, Chile
2 Pontificia Universidad Católica de Valparaíso, Av. Brasil 2950, Valparaíso 2374631, Chile;

broderick.crawford@pucv.cl (B.C.); ricardo.soto@pucv.cl (R.S.)
3 Escuela Politécnica, Universidad de Extremadura, Campus Universitario s/n, Cáceres 10003, Spain;

jangomez@unex.es
4 Centro de Electrónica Industrial, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2,

Madrid 28006, Spain; jm.lanza@upm.es
* Correspondence: enrique.cortes@upla.cl; Tel.: +56-32-220-5538

Received: 27 September 2018; Accepted: 23 October 2018; Published: 28 October 2018
����������
�������

Abstract: In this article, a novel optimization metaheuristic based on the vapour-liquid equilibrium
is described to solve highly nonlinear optimization problems in continuous domains. During the
search for the optimum, the procedure truly simulates the vapour-liquid equilibrium state of multiple
binary chemical systems. Each decision variable of the optimization problem behaves as the molar
fraction of the lightest component of a binary chemical system. The equilibrium state of each system
is modified several times, independently and gradually, in two opposite directions and at different
rates. The best thermodynamic conditions of equilibrium for each system are searched and evaluated
to identify the following step towards the solution of the optimization problem. While the search is
carried out, the algorithm randomly accepts inadequate solutions. This process is done in a controlled
way by setting a minimum acceptance probability to restart the exploration in other areas to prevent
becoming trapped in local optimal solutions. Moreover, the range of each decision variable is reduced
autonomously during the search. The algorithm reaches competitive results with those obtained by
other stochastic algorithms when testing several benchmark functions, which allows us to conclude
that our metaheuristic is a promising alternative in the optimization field.

Keywords: optimization; optimization algorithms; metaheuristics; local search

1. Introduction

Over the past decades, conventional search methods have been applied to solve optimization
problems, providing promising results in many cases. However, these methods may fail in more
complex real-world problems where nonlinearity and multimodality are fundamental issues. If both
constraints and objective functions are linear, the problem can be addressed with techniques specifically
designed for solving linear programming problems, such as the simplex method. However, in most
situations such problems are nonlinear, hindering the solution. Another difficulty arises when the
problem is non-convex, the gradient is unknown, or the first derivatives do not exist. In these cases,
it is not possible to apply gradient-based optimization methods, which is also common in real-world
problems. Another challenge arises when the number of decision variables is large, affecting the search
space. For instance, the well-known travelling salesman problem with a number of decision variables
equalling 100 implies a number of possible combinations of 9.3× 10157, meaning that it is not practical
to search all possible combinations. Thus, most real-world problems cannot be handled by conventional

Appl. Sci. 2018, 8, 2080; doi:10.3390/app8112080 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-0441-9402
https://orcid.org/0000-0002-1083-5015
http://dx.doi.org/10.3390/app8112080
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/8/11/2080?type=check_update&version=2

Appl. Sci. 2018, 8, 2080 2 of 36

methods, which fall into local optima. Most real-world problems are NP-hard, which means that they
require exponential time to be optimally solved. Thus, more efficient optimization methods are needed
as metaheuristics [1].

Metaheuristics have shown promising results when solving extremely nonlinear and multimodal
optimization problems. This type of algorithm combines randomization and local search to define
strategies for solving difficult optimization problems with an approximate focus, i.e., it finds
good solutions, but there is no guarantee that optimal solutions will be reached [1]. As expected,
these techniques can be applied successfully to solve some problems, though they do not provide the
desired success for others [2].

Different types of metaheuristics have been proposed in the literature during the last decades.
Among the most promising metaheuristics are those inspired by natural phenomena (e.g., physical
and chemical processes) and biological systems (fireflies, bees, and ant colonies) which have proven to
be especially relevant for solving problems in different fields [3]. These metaheuristics can be classified
depending on whether they are based on a single solution during the search (also called trajectory
methods) or several solutions (also called population-based method) [4].

Among single solution-based metaheuristics, we focus on simulated annealing (SA) [5] (it is based
on the annealing of metals, which consists of heating and then slowly cooling the metals to modify
their physical properties), variable neighbourhood search (VNS) [6] (it performs the search by
methodically modifying the local environment), greedy randomized adaptive search procedure
(GRASP) [7] (an iterative procedure composed of an initial generation stage with heuristics and
random selection processes and a second stage of improvement with local search), guided local search
(GLS) [8] (it dynamically modifies the objective function during the search through a penalty factor,
changing the search landscape to avoid being trapped in local optima), iterated local search (ILS) [9]
(it performs a local search starting from an initial solution until a local minimum is reached, and then,
the search starts again after modifying the solution found), and tabu search (TS) [10,11] (it considers
an iterative local search procedure, which explores the search space from one solution to another,
while accepting worsening movements if no improvement is available).

Population-based metaheuristics have been applied to different areas, including data mining [12],
machine learning [13], computer science [14], simulation and system modelling [15], image
processing [16], industry [17], and engineering and scheduling [18,19]. Some metaheuristic procedures
supply better results in solving specific problems, whereas other metaheuristics are limited to certain
domains of the decision variables; however, all of them are successful in solving optimization
challenges [2]. Among these classic population-based methods, evolutionary algorithms (EAs) [7,20]
constitute a set of algorithms based on Darwin’s evolutionary theory, where they start from an initial
randomly generated population, which is improved over generations through recombination and
mutation operators. Genetic algorithms (GAs) [21] are a subset of EAs, where the individuals in
the population are in the form of an array or chromosome. Other important population-based
metaheuristics are the gravitational search algorithm (GSA) [2] (it is based on the Newtonian law
of gravity), the black hole (BH) algorithm [22] (where the best solution of a population is treated
as a black hole that attracts other solutions or normal stars around it during the search), ant colony
optimization (ACO) [23] (an ant colony searches for food according to the concentration of a chemical
substance called a pheromone that ants deposit during the search), particle swarm optimization
(PSO) [24] (it simulates bird behaviour using a simplified social model), the bat algorithm (BA) [25]
(it is inspired by how bats look for their prey using echolocation), the artificial bee colony (ABC)
algorithm [26] (it is inspired by the behaviour of honeybee swarms), and the artificial chemical reaction
optimization algorithm (ACROA) [27] (it is inspired by some types and frequencies of certain chemical
reactions). In the last five years, several optimization algorithms have been developed that consider
novel search strategies and provide significant results. An important fraction of these methods is
based on the social behaviour of a group of individuals of a determined live species. One of them
considers, as a source of inspiration, human reasoning to make decisions when faced with fuzzy

Appl. Sci. 2018, 8, 2080 3 of 36

data [28]. Some of these techniques are: grey wolf optimizer (GWO) [29] (it imitates the command
hierarchy and hunting strategy of grey wolves), the pity beetle algorithm (PBA) [30] (it was inspired by
the grouping behaviour of the beetle Pityogenes chalcographus, looking for food and nests), shark smell
optimization (SSO) [31] (it simulates the skill of a shark for finding their prey by using its sense of
smell and moving toward the source of the odour), symbiotic organisms search (SOS) [32] (mimics the
symbiotic interaction strategies followed by organisms to survive and propagate in the ecosystem),
dolphin echolocation (DOE) [33] (it considers the echolocation system used by dolphins in searching
for food), the whale optimization algorithm (WOA) [34] (it mimics the social behaviour of humpback
whales), and the emperor penguin optimizer (EPO) [35] (it simulates the huddling behaviour of
emperor penguins (Aptenodytes forsteri)).

This paper proposes a novel metaheuristic for continuous domains inspired by a physical-chemical
process, i.e., the thermodynamic equilibrium between two fluid phases of a mixture composed
by two chemical species: the vapour-liquid equilibrium (VLE) metaheuristic. The algorithm is
based on the distribution of the most volatile component of a binary chemical mixture, between
the liquid phase and the gas phase constituted by the vapour [36]. Thus, the search process of
the metaheuristic is guided by the state changes of binary systems and uses the mathematical
concept of the total differential. The behaviour of each binary system represents the movements
or changes of a decision variable of an individual of a population. The metaheuristic also considers
stochastic components to include diversity during the search process to avoid being trapped in
local optima. Some examples of these components are found when generating new individuals,
applying mutation operators, and enabling the exploration around worse solutions instead of better
solutions. Some preliminary results obtained by the first version of VLE solving six benchmark
functions were published previously [37]. Now, this paper describes the search mechanism of VLE
in a deeper and more extensive way; it details the flowsheets of their main modules and presents
new results obtained with more benchmark functions, which allows us to conclude that VLE is
a promising alternative in the optimization field. This conclusion was the expected answer to our
research question about whether changes in the thermodynamic state of a binary chemical system,
in vapour-liquid equilibrium, would succeed or fail in developing a robust optimization technique to
solve complex optimization problems if these changes were associated with each decision variable and
were conducted towards the best equilibrium states, applying the concept of total differential.

The remainder of this work is structured as follows. Section 2 includes a conceptual explanation
of VLE and a practical example of its application to a binary chemical system. Section 3 supplies
a description of the optimization method by explaining how we perform the movements of the
decision variables. Section 4 shows the mathematical models of the simulation used during the search
for the optimal solution. Next, the movement operators, the parameters required, the method of
characterizing the decision variables as chemical species, the inputs and outputs of the optimization
procedure, the pseudocode of VLE and the flowsheets of the main modules of the algorithm are
described in Section 5. For testing purposes, Section 6 describes the benchmark functions used as
optimization problems and presents the optimization experimental results achieved. Finally, we present
our conclusions and future work.

2. Vapour-Liquid Equilibrium for Binary Chemical Systems

In the chemical engineering field, the thermodynamic equilibrium ratio between two fluid
phases is a common calculation. In this line, two classical calculation problems in the industry are
multicomponent and flash distillation [38].

Let us assume a mixture of two fully miscible chemical species, such as a liquid and its vapour
in thermodynamic equilibrium. Under saturated conditions, each of the two chemicals is present in
all phases (vapour and liquid), and the chemical potential of each component between both phases is
the same. In the case of an enclosed system, the total Gibbs free energy is at a minimum regarding all
possible changes at a settled temperature and pressure [36,39]. This saturation condition is considered

Appl. Sci. 2018, 8, 2080 4 of 36

for designing the search process of the algorithm proposed in this paper. Specifically, we focus on
bubble and dew points of a binary chemical mixture for designing the exploration phase of the
algorithm and the flash distillation process for the exploitation phase.

To illustrate the concepts introduced before, we propose the following example. Let us assume
a liquid mixture of 2-butanol and 1-butanol with a mole fraction of 0.352 and 0.648, respectively,
as shown in Figure 1. For this binary system, the chemical species 2-butanol is more volatile than the
chemical species 1-butanol. The mixture is enclosed in a cylinder with a piston at 98 ◦C, and 525 mmHg,
and the mixture is slowly heated at a constant pressure to a temperature of 104 ◦C so that it is in
equilibrium all the time.

z2=0.352

z1=0.648

P=525 mmHg

First bubble of vapour formed
(saturated vapour phase,
mole fraction v1 and v2)

Total

global mole fraction

The Bubble Point

Tbp=99.9°C

P=525 mmHg

First drop of liquid formed
(saturated liquid phase, mole

fraction l1 and l2)
adiabatic
combination
cylinderpiston

Tdp=102.6°C

2butanol (1)

1butanol (2)

1.000

Chemical species

Saturated Liquid Phase
(l1, l2)

Saturated Vapour
Phase
(v1, v2)

The Dew Point

Figure 1. Bubble and dew points: vapour and liquid phases in thermodynamic equilibrium.

Following the previous example, Figure 2 represents the phase diagram with the physical states of
the system during the heating process, according to the system temperature (T), the molar fraction for
vapour (v), and the liquid (l) phases of the most volatile chemical species in the mixture. The mixture
(point A) is a subcooled liquid at 98 ◦C. The system reaches the bubble point in point B at 99.9 ◦C,
which occurs when the first bubble of vapour appears. This vapour, represented by point B

′
with mole

fraction vB′ , is richer in 2-butanol than the original mixture, reducing the 2-butanol concentration in
the remaining liquid phase. The horizontal line drawn by C-C

′
represents a flash distillation, where the

liquid and vapour are in equilibrium (Figure 3). As the temperature continues increasing, more vapour
is formed from the liquid. Vapour and liquid are always in equilibrium; hence, the thermodynamic
states of the two fluid phases lie along paths B

′
D and BD

′
and are linked everywhere by horizontal

lines. The mixture reaches its dew point in point D at 102.6 ◦C, which occurs when the last drop of
liquid is left. From this moment, the system is a fully saturated vapour, reaching the last point E at
104.0 ◦C. Note that, as the system is closed, the overall composition remains constant during the entire

Appl. Sci. 2018, 8, 2080 5 of 36

heating process. Thus, the state of the system is always represented by a point on the vertical line that
goes from A to E.

Figure 2. Tlv diagram for 2-butanol / 1-butanol.

Figure 3. Flash distillation: vapour and liquid phases in thermodynamic equilibrium.

Appl. Sci. 2018, 8, 2080 6 of 36

3. Optimization Method Proposal

In this proposal, each decision variable is handled as the lightest chemical species of a given
binary liquid mixture at a specified pressure and temperature, where the system pressure remains
constant for all thermodynamic equilibrium calculations.

The optimization process starts from an initial randomly generated solution, which is iteratively
modified through moving operators, generating new solutions. The algorithm includes an exploration
mechanism to restart the iterative search, starting a new search process in a different area of the space of
the solutions in the event that the previous search is considered exhausted. The maximum number of
restarts is defined by a parameter of the metaheuristic, which controls the search orientation, making it
more oriented to either exploration or exploitation. As expected, the maximum number of restarts will
be fewer than the maximum number of movements allowed during the whole search process, which is
also defined by another parameter of the metaheuristic. The search process ends when a stop criterion
is reached, which can be the maximum number of movements or the maximum number of restarts.

Focusing on the exploration stage, the value of a decision variable is calculated according to the
bubble and dew points of the binary chemical mixture associated with the same decision variable.
This means that the value is adjusted according to the thermodynamic state that provides the best fitness
value. Thus, the solution is evaluated for each value of the decision variable, while the other decision
variables remain fixed in their final values after performing the previous movement. As a result,
the fitness function is evaluated several times (indicated by a parameter) between two consecutive
movements, by each decision variable.

Figure 4 shows a movement example performed during the exploration stage for an optimization
problem in R2, for the decision variable x1 between the iteration t and the iteration t + 1. Figure 5 show
movements for x2. Specifically, these figures show phase diagrams (temperature versus mole fraction)
for binary systems corresponding to acetone-acetonitrile (Figure 4) and benzene-toluene (Figure 5).

Mole fraction acetone (1)

P

l1(t)=0.313 l1(t+1)=0.553

0.0 1.0

Vapour Phase
(superheated)

Liquid Phase
(subcooled)

Tbp,t

Tb,2

Tb,1

+100.0100.0
x1(t)=37.6 x1(t+1)=+10.6

t

t+1
Tbp,t+1

T

z1, l1 or v1

x1

T vs v1

T vs l1

BubOp

Figure 4. Movements of variable x1: Tlv diagram for acetone (1)–acetonitrile (2).

Appl. Sci. 2018, 8, 2080 7 of 36

Mole fraction benzene (1)

P

l1(t) = 0.153 l1(t+1)=0.750

0.0 1.0

Vapour Phase
(superheated)

Liquid Phase
(subcooled)

Tbp,t

Tb,2

Tb,1

+100.0100.0

x2(t)= 67.5 x2(t+1)= +50.0

T

Tbp,t+1
t+1

t

z1, l1 or v1

x2

Figure 5. Movements of variable x2: Tlv diagram for benzene (1)–toluene (2).

Focusing on the exploitation stage, the value of a decision variable is calculated based on the
flash distillation process of the binary chemical mixture associated with the same decision variable.
The value of the decision variable is adjusted based on the thermodynamic state providing the best
fitness value in a similar way as for the exploration stage. Thus, Figure 6 shows how the new values
of a decision variable are obtained during the exploitation stage, where Tf d is the flash distillation
temperature for the decision variable x1. This figure corresponds to the same case of Figure 4.

Figure 6. Movements of variables x1 during the exploitation stage.

Appl. Sci. 2018, 8, 2080 8 of 36

The algorithm permits the stochastic modification of the chemical compounds and includes the
random change of compositions of the binary liquid mixtures assigned to each decision variable.
It also includes the acceptance of less than optimal solutions to avoid stagnation in local optimum.
Finally, the technique includes the possibility to set up the search orientation of the algorithm.

4. Mathematical Models of Simulation Used During the Search for the Optimal Solution

In this section, we summarize the basic mathematical models for simulating the vapour-liquid
equilibrium models, and the conditions that bubble point, dew point and flash distillation must satisfy.

4.1. Notation

The variables used to model the vapour-liquid equilibrium in a binary mixture of chemical species
in its bubble point or dew point, or in a flash vapourization process of a binary mixture, are listed in
Table 1. These definitions are required to write the fundamental equations that permit to obtain the
mathematical expressions for the movement operators.

Table 1. Variables considered in the model.

Variable Definition

F Molar flow rate of the feed to the flash distillation vessel.
L, V Liquid or vapour molar flow rates leaving the flash distillation vessel.

f j
Overall molar composition of the compound j in the binary system
or in the feed to the flash distillation vessel.

lj, vj
Molar fractions of the chemical species j in the liquid or vapour of the binary system,
or in the liquid or vapour stream that leaves the flash distillation vessel.

Kj Vapour-liquid saturation ratio or K-value of compound j.
P∗j Vapour pressure of chemical species j.
P Total system pressure.
T System temperature.

Aj, Bj, Cj
Constants A, B and C of Antoine’s equation [40]
for vapour pressure calculation of the chemical species j.

4.2. Mathematical Models

Equations to allow developing simple mathematical models for simulating the vapour-liquid
equilibrium models.

Total Mass (Molar) Balance:
F = L + V (1)

Mass (Molar) Balance for Component:

F f j = Llj + Vvj j ∈ {1, 2} (2)

L/F Ratio:

φ =
L
F

(3)

Unitary Mass (Molar) Balance:

∑2
j=1vj = 1 and ∑2

j=1lj = 1 (4)

Phase Equilibrium Relationship:

vj = Kjlj j ∈ {1, 2} or lj = vj/Kj j ∈ {1, 2} (5)

K-value (the vapour-liquid equilibrium is established by Raoult’s law [36]):

Appl. Sci. 2018, 8, 2080 9 of 36

Kj = P∗j /P j ∈ {1, 2} (6)

Physical Properties: Vapour pressure of chemical species j at a given temperature T:

P∗j = exp[Aj − Bj/(T + Cj)] j ∈ {1, 2} (7)

Equation (8) must be satisfied at the bubble point to calculate its temperature TBP and the molar
fraction of the first vapour produced, i.e., vj. In these conditions, the vapour produced is in equilibrium
with the liquid that has a composition lj = f j. This equation is built by combining (4)–(7).

∑2
j=1vj = 1 =

2

∑
j=1

(Kjlj) (8)

Similarly, the condition in (9) must be satisfied at the dew point to calculate its temperature TDP
and the composition of the first drop of liquid produced, i.e., lj. In these situations, the liquid produced
is in equilibrium with the vapour phase, which has a molar composition vj = f j. This equation is
generated by combining (4)–(7).

∑2
j=1lj = 1 = ∑2

j=1(vj/Kj) (9)

Equations (8) and (9) are solved for temperature T, the bubble point or dew point, using the
bisection numerical method [41].

Finally, for the flash distillation calculations, the condition in (10) must be satisfied in order
to calculate the φ = L/F ratio and the molar fraction of the liquid formed, i.e., lj. Under these
conditions, the vapour phase formed is in equilibrium with the liquid phase which has a molar
fraction lj. Equation (10) is described by combining (1)–(7). It is solved for φ, also using the bisection
numerical method [41].

∑2
j=1lj = 1 = ∑2

j=1

f j

φ + (1− φ)Kj
(10)

5. Algorithm

The algorithm considers a trustworthy strategy, novel movement operators, few tuning
parameters, and the corresponding inputs and outputs.

5.1. Notation

The variables used in Equations (11) through (18) are listed in Table 2.

Table 2. Variables considered in the algorithm.

Variable Definition

min Lower bound of xi in the real search space of xi.
max Upper bound of xi in the real search space of xi; max > min.

nmin New lower bound for xi, but in the molar fractions search space for xi, i.e., zero, the minimum
value of a molar fraction.

nmax New upper bound for xi, but in the molar fractions search space for xi, i.e., one, the maximum
value of a molar fraction.

fi

Overall the mole fraction of the chemical species i, i.e., the species j = 1 (the most volatile
compound) in the binary system of the decision variable i, or in the feed to the binary flash
distillation vessel i.

li, vi

Molar fractions of the chemical species i, i.e., the species j = 1 (the most volatile
compound) in the liquid or vapour of the binary system of the decision variable i, or in the liquid
or vapour stream that leaves the binary flash distillation vessel i.

Appl. Sci. 2018, 8, 2080 10 of 36

Table 2. Cont.

Variable Definition

Ki

Relationship of vapour-liquid equilibrium, or K-value, of the chemical species i,
i.e., the species j = 1 (the most volatile compound) in the binary system for the decision
variable i or in the binary flash distillation vessel i.

φ L/F ratio for the binary flash distillation vessel i.
G Represents any of the constants A, B or C, of Antoine’s Equation.
Gil Represents the lower bound of any of the constants A, B or C, of Antoine’s Equation.
Gsl Represents the upper bound of any of the constants A, B or C, of Antoine’s Equation; Gsl > Gil .
xi Decision variable i.
xil

i Lower bound of the decision variable xi in the real search space of xi.
xsl

i Upper bound of the decision variable xi in the real search space of xi; xsl
i > xil

i .

5.2. Movement Operators

These operators correspond to the exploration and exploitation stages.

5.2.1. Search strategy

VLE begins the search by randomly creating a single starting solution. To do this, VLE considers,
independently, the initial domain specified for each decision variable. Once this solution is created,
VLE begins to explore its environment in a parallel search space, making a predefined number of
changes in the value of each decision variable, keeping the other ones constant. This parameter is
called alpha (α) and it can be any odd number greater or equal to 3. If this number is equal to 5,
the algorithm will apply, for each decision variable, (5− 1)/2 = 2 times the bubble point operator and
then (5− 1)/2 = 2 times the dew point operator.

In other words, VLE starts creating new saturated binary mixes for each decision variable. For each
created mixture, VLE evaluates its aptitude by using the equivalent values of each variable in its real
domain. Next, for each decision variable, VLE looks for the most suitable mixture, that is, the one with
the best aptitude, and thus the new value of the decision variable is determined. With the new values
of the decision variables, the aptitude of the new solution is evaluated and compared with the best
aptitude obtained from the last movement. If a better result is obtained, the procedure iterates until the
change between the current aptitude and the best aptitude is less than an established tolerance or a stop
criterion is reached. This criterion is usually the maximum number of movements or restarts. If the last
solution found is the best one so far and it is no longer possible to continue exploring its environment,
given the correspondence established between the real and parallel domains of the variables when
the search starts or restarts, then VLE narrows the relationship between these two domains around
the solution found. Once the relationship is narrowed, the exploitation phase begins. Nevertheless,
if the result is worse, VLE either proceeds to accept the solution found or reject it to restart the search
by creating a new initial solution elsewhere. The decision of acceptance or rejection depends on the
probability of acceptance calculated for the solution found. If its probability of acceptance is grater than
the predefined probability beta, then VLE accepts the solution, otherwise it is rejects it. The relationship
between the real domain and the parallel domain is given by (12) or (14). Figures 7–12, show the
temperature diagrams versus molar fraction, in terms of ordered pairs, versus the respective values for
each decision variable. The narrowing of this relationship is autonomous and depends exclusively on
the equilibrium relationship between the chemical species that make up the binary mixture. If initially
the relationship between these domains is from [−100,+100] to [0, 1], and if the values of the decision
variable closest to their current value are, for example, +4 and +12.2, assuming a value for the decision
variable equal to +7, the narrowing for this variable will be from [+4,+12.2] to [0, 1]. In other words,
VLE amplifies the environment closest to the solution, allowing the exploitation stage.

Summarizing, the exploration is performed covering a wide area that contains a certain number
of binary chemical mixtures, all of them possible solutions of the optimization problem, and the
exploitation is performed covering a reduced or local area that contains the same number of binary

Appl. Sci. 2018, 8, 2080 11 of 36

mixtures, with different compositions but very alike among them. Each of these areas defines a search
table. A search table is a matrix used internally for each decision variable to perform a search around
the current solution and select the more suitable movement for the corresponding decision variable,
between iterations t and t + 1. These areas are wide area neighbourhoods (in the exploration stage),
and local area neighbourhoods (in the exploitation stage), respectively.

5.2.2. Exploration Stage

In the exploration stage, VLE considers two search operators: bubble point and dew point.
These operators are given by (11) for the bubble point, and (13) for the dew point. Both operators
“work” in the binary space R2, where vi and li are real numbers that vary between 0 and 1.

In the case of the bubble point operator, from (5) we obtain (11), where li(t) is equivalent to xi(t)
(in the binary search space of the decision variable xi) and Ki(t) is the K-value for the compound i
at temperature TBP. The molar composition of the lightest compound of the liquid fraction, i.e., li(t),
is calculated by (12). This equation is a linear transformation of the values of a decision variable in the
real domain [min, max], into values of its equivalent variable in the real domain [0, 1].

li(t + 1) = vi(t) = Ki(t)li(t) i ∈ {1, 2, 3, ..., n} (11)

The real domain [0, 1] is defined here as the search space for the decision variable xi, whose true
value belongs to the domain in R determined by the range [min, max], for example [−100, +100].
In (12), nmin = 0 and nmax = 1 while min = −100 and max = +100. These two last bounds can
be modified manually, while nmin and nmax are fixed because they are molar fractions, which have
values between 0 and 1.

li(t) =
nmax− nmin

max−min
[xi(t)−min] + nmin i ∈ {1, 2, 3, ..., n} (12)

For the dew point operator, from (5) we obtain (13), where vi(t) is equivalent to xi(t), but in
the binary search space for xi. The molar fraction of the lightest chemical compound in the vapour
is given by (14).

li(t + 1) =
1

Ki(t)
vi(t) i ∈ {1, 2, 3, ..., n} (13)

vi(t) =
nmax− nmin

max−min
[xi(t)−min] + nmin i ∈ {1, 2, 3, ..., n} (14)

If α is equal to 5, Equation (11) fills rows 4 and 5 of the search table of decision variable i,
and Equation (13) rows 2 and 1 of same table. The corresponding value in the saturated search space
for the current value in the real domain of the decision variable i, i.e., xi(t), is located in row 3 of
the search table. The evaluation of the objective function is performed by varying the value of one
decision variable by maintaining the values of all the other decision variables of the current solution
to the problem.

The value of xi(t + 1) is established by the molar fraction of the liquid phase that provides the
best value of the optimization function among the five possible thermodynamic equilibrium states
evaluated for xi. This value is calculated by the inverse transformation (15), which takes the value of
the molar fraction, and converts it into the respective value belonging to the correct search space.

xi(t + 1) =
max−min

nmax− nmin
[li(t + 1)− nmin] + min i ∈ {1, 2, 3, ..., n} (15)

For example, consider the search of the optimum of the sphere function using α = 5. If the current
solution in R3 is x1(t) = −3.2, x2(t) = −50.1, and x3(t) = 80.6, the objective function value will be
9016.6; the corresponding values of the molar fractions in R2 of each decision variable are l1,3 = 0.484,
l1,3 = 0.250, and l1,3 = 0.903, respectively. These values are put in the centre row of the corresponding

Appl. Sci. 2018, 8, 2080 12 of 36

search tables. For each decision variable, the algorithm will build the search tables using the bubble
point and dew point operators, as Figure 7 shows for x2. The molar fractions that correspond to
these liquid mixtures for x2 are converted to new possible real values in the iteration t + 1. While the
algorithm is generating the search table of x1, the values of x2 and x3 remain unchanged, conserving
the values of the iteration t, i.e., −50.1 and 80.6, respectively. The same occurs for x2 and x3 when the
search table for x2 is built; in this case, the values of x1 and x3 remain constant for iteration t, and for x3,
it conserves the values of x1 and x2. For x2, the algorithm evaluates the objective function considering
all possible new equilibrium states, using the real values of each decision variable. Thus, each search
table is completed.

Next, the algorithm explores each search table looking for the minimum value given by the
objective function among the five possible thermodynamic states evaluated for each decision variable.
As we can see in Figure 7, the best and new value for x2 will be x2(t + 1) = −8.5. The same process
is performed for x1 and x3, which results in a new value of 70.3 for x3 in the iteration t + 1; at the
same time, the value for x1 does not change, i.e., it remains as 3.2. This new value may appreciate
in the central row of Figure 8. Therefore, the new values for the decision variables at iteration t + 1
will be x1(t + 1) = −3.2, x2(t + 1) = −8.5, and x3(t + 1) = 70.3. With these new values, the objective
function value will be 5032.1. In this case, the algorithm updates the search tables as Figure 8 shows
for x2. In other words, the algorithm centres the new values in row 3 of each table, by scrolling the
records up or down, and completes each search table.

Before starting the search for the next values of the decision variables, i.e., a new feasible solution,
the algorithm updates, records and counts. The procedure continues until no change in the values
for the decision variables is possible using the exploration stage operators. Figure 9 shows the last
iteration for x2 during this stage before beginning the exploitation stage.

14548.9

6579.6

7906.1

l1,3=l(x2,t)

-3.2

-3.2

-3.2

-3.2

-3.2

-89.7 80.6

-76.4 80.6

-50.1 80.6

-8.5 80.6

37.4 80.6

x2=x(l1,2)

x2=x(l1,5)

f=f(X)

-8.5

x2,t+1=x(l1,4)

f=f(X)

f=f(X)

DewOp

DewOp

f=f(X)

BubOp

x2=x(l1,4)

x2=x(l1,1)

f=f(X)

9016.6

12343.7

l1,pl2,p x1 fTp

p=1

p=2

p=3

p=4

p=5

New value
for x2

search fmin
real domain space

[0, 1]

0.052

0.118

0.250

0.457

0.687

0.948

0.882

0.750

0.543

0.313

BubOp

84.0°

81.3°

76.4°

69.9°

63.9°

x2 x3

binary chemical system
chemical 1/chemical 2

objective function
chemical 1/chemical 2

real domain space
[xll, xul]

Figure 7. Movement for x2 in the exploration: search of x2,t+1 starting from x2,t.

Appl. Sci. 2018, 8, 2080 13 of 36

Figure 8. Movement for x2 in the exploration stage: search of x2,t+1 starting from x2,t.

Figure 9. Final value of x2 in the exploration stage: search of x2,t+1 starting from x2,t.

Appl. Sci. 2018, 8, 2080 14 of 36

5.2.3. Exploitation Stage

In the intensification stage, the new values for the decision variables are obtained by (10),
calculating the previous Tf d and φ.

For the flash distillation operator, we obtain (16) from (10), where fi(t) corresponds to xi(t), but in
the binary space for xi.

li(t + 1) =
1

φ + (1− φ)Ki(t)
fi(t) i ∈ {1, 2, 3, ..., n} (16)

Starting from the last values obtained for the decision variables during the exploration stage,
the flash distillation operator is now applied variable by variable. Thus, the flash distillation
temperature for each decision variable has been calculated previously. The flash distillation
temperatures are calculated as the average of the values of the temperatures that provide the two lowest
and nearest values of the objective function, as Figures 10 and 11 show. For example, with regard to
Figure 12 for x1, the lowest and nearest values of the objective function are 94.8 and 949.9. To put the
next value for x1 in row 3 of the search table, i.e., x1(t + 1), the entire row 3 is moved to row 2 by
updating it, as we can see in Figure 10. Then, considering a binary liquid mixture with a molar fraction
equal to the molar fraction of the vapour that is in equilibrium with the liquid mixture, the flash
distillation temperature translated to row 2 will be Tf d = (TBP,2 + TBP,4)/2. With this temperature,
(10) is solved for φ. Once φ and Tf d are calculated, l1(t + 1) is obtained from (16). The value of xi(t + 1)
is calculated by (15), i.e., using the inverse transformation equation. The procedure is repeated several
times until no further change is possible in the downhill direction of the objective function using the
flash operator or until a certain number of worse solutions has been accepted. These solutions will be
accepted while the probability calculated for them is greater than the acceptance probability specified
for this type of solution.

Figure 10. Movement for x1 in the exploitation stage: search of x1,t+1 starting from x1,t.

Appl. Sci. 2018, 8, 2080 15 of 36

Figure 11. Movement for x2 in the exploitation stage: search of x2,t+1 starting from x2,t.

Figure 12. Final value of x1 in the exploration stage: search of x1,t+1 starting from x1,t.

5.3. Parameters

The parameters required by VLE are: α, β, δ, char, and tsys.
The parameter α sets the number of solutions that will be evaluated in the search area, either in

a big area (a wide area neighbourhood) or a little area (a local area neighbourhood). This parameter can
be any odd number greater or equal to 3. By increasing α, the number of evaluations increases between
one effective movement and another, therefore increasing the possibility of finding a local optimum.

Appl. Sci. 2018, 8, 2080 16 of 36

The parameter β determines the minimum acceptance probability of bad solutions during the
search process. The β value can be fixed or variable. If it is considered variable, its value will gradually
decrease as a function of m, the identification number of the current movement, from 1 to some value
close to 0. The implicit assumption in making β variable is that, as m increases, the probability of
accepting poor quality solutions decreases. In other words, when beta is nearby 1, there are not so
much opportunities as for intensifying the search in a local area neighbourhood starting from a bad
solution, but when it is nearby 0, the opportunities are high.

The parameter δ puts a limit in the descending movements, allowing the algorithm to leave the
local area when not any appreciable change is obtained in the fitness during the descend.

The parameter char allows characterizes again the chemical species after each restart.
This parameter can be equal 1 or 0. The chemical species are characterised again when char is equal
to 1. This parameter introduces high randomness in the search.

Last, the tsys parameter establish the type of chemical system to be simmulated. The value is 1 for
system with chemical compounds very similar between them, 2 for compounds not so similar or not so
different between them, or 3 for very different chemical compounds. If compounds are very similar or
very different, the values of the decision values change slightly or significantly, respectively. In other
words, the choice of the system, allows to direct the search either towards exploitation (tsys = 1),
towards a balance between exploitation and exploration (tsys = 2), or towards exploration (tsys = 3).

Summarizing, al f a, beta and tsys influence a lot in the search of the best solution.
The experiments considered al f a from 3 to 35, beta variable, and tsys equal to 1, assuming that all

the reference functions were extremely complex.

5.4. Characterization of Chemical Species

The optimization procedure requires the characterization of the chemical compounds. This is
done through the vapour pressure, given by Antoine’s equation [40]. In this version, the chemical
compounds are characterized autonomously, and they may change randomly in each restart until
the search ends. The values for Ai, Bi and Ci are randomly generated according to (17), where G
is equal to constants A, B or C, and Gil and Gsl are the lower and upper limits of G, respectively.
The limit values of the Antoine’s constants (where P is the system pressure in kPa and T is the system
temperature in ◦C) are the following: [Ail = 15.7527, Asl = 18.5875], [Bil = 2132.50, Bsl = 3816.44] and
[Cil = −63.633, Csl = −31.62].

Gi = Gil + Random[0, 1](Gsl − Gil) i ∈ {1, 2, 3, ..., n} (17)

5.5. Inputs and Outputs

The input information is restricted to the finalization conditions and search parameters, whereas
the output includes the records of all the iterations performed.

With regard to the inputs, it is necessary to specify three totalizers: number of movements (M),
number of restarts (R), and number of decision variables (D) of the optimization problem. In addition,
it is necessary to start with an initial solution. For each decision variable xi, the initial value is
stochastically obtained according to (18), where xil and xsl are the lower and upper bounds of xi,
respectively. These bounds are usually fixed at −100 and +100, respectively, although they can have
other values.

xi = xil
i + Random[0, 1](xsl

i − xil
i) i ∈ {1, 2, 3, ..., n} (18)

In this version, one initial solution is also randomly created in each restart. In addition, for both
search stages and each restart, it is necessary to specify the autonomous adjustment parameter of the
search space subset, and the acceptance probability of worse solutions. Finally, all the functions tested
are included in the code of the algorithm. Any other function can be added easily.

Appl. Sci. 2018, 8, 2080 17 of 36

With regard to the outputs, they are the minimum value reached, the location of the optimum
found, the convergence graph, and the records of all the movements. In each iteration, the best solution
reached and its fitness is always shown. When a worse solution is accepted, the value of the objective
function is also shown.

5.6. Pseudocodes

Algorithm 1 details the search procedure of VLE metaheuristic.

Algorithm 1: Main procedure of the vapour-liquid equilibrium-based metaheuristic.

1: read input data: o. f , [decision variable ranges], D, E, M, and R
2: for (e = 1:E) do
3: initialize lists, neighbourhood, accountants (m = 1, r = 1), totalizer of variables (tvar = 0)

and status of variables (svar(d) = 0)
4: generate an initial solution randomly
5: evaluate the fitness of the current solution
6: update the list of accepted and best movements with the current solution
7: update the list of rejected movements with
8: update the best solution with the current solution
9: characterise the chemical components

10: create the wide area neighbourhood of solutions for each decision variable
11: while (1) do
12: if or (m > M, r > R) then
13: break
14: end if
15: if (tvar < D) then
16: search the best change for each decision variable in its corresponding neighbourhood
17: else
18: create a local area neighbourhood for each decision variable with closer neighbours
19: end if
20: evaluate the fitness of the current solution
21: evaluate the fitness change as f cha = f it− b f it
22: if (f cha < 0) then
23: if (f cha < δ) then
24: make a downhill movement (a new best solution), and update the records
25: else
26: make an uphill movement
27: end if
28: else
29: make an uphill movement
30: end if
31: display e, m, r, b f it
32: end while
33: save e, x, b f it, convergence graphic
34: end for
35: sort b f it
36: save box plot
37: save statistics

Appl. Sci. 2018, 8, 2080 18 of 36

Algorithm 2 describes the search procedure of the best change for each decision variable. This is
done by sorting the saved values of the objective function when creating or updating the search
neighbourhood. The lower value points out the best location, i.e., bsite(d), and therefore the new value
for decision variable d. This value is compared with csite(d), the current location for decision variable
d. If it is the same location, then it remains until the intensification procedure starts.

Algorithm 2: Procedure of search of the best change for each decision variable.
1: for (d = 1:D) do
2: sort the saved values of the objective function when creating or updating the search

neighbourhood for d.
3: if (bsite(d) == csite(d)) then
4: assign svar(d) = 1
5: evaluate tvar = tvar + 1
6: end if
7: end for

Algorithm 3 shows that a local area neighbourhood is created for d with solutions closer to the best
solution found after reducing the range of decision variable d.

Algorithm 3: Procedure to create the local area neighbourhood for each decision variable.
1: for (d = 1:D) do
2: reduce the range of search for decision variable d
3: generate a new random value for decision variable d using the new range for d
4: assign svar(d) = 0
5: end for
6: initialize tvar = 0
7: create the local area neighbourhood of search of all decision variables

Algorithm 4 describes the descent procedure, that only accept the movement and update the records.

Algorithm 4: Downhill procedure.
1: evaluate m = m + 1
2: update the list of accepted movements with the current solution
3: update the list of best movements with the current solution
4: update the list of rejected movements with zeros
5: update the best solution with the current solution
6: update the neighbourhood of search of each decision variable descend towards

the new solution accepted

Algorithm 5 explains the uphill procedure. When a worse solution is found, the algorithm
calculates its acceptance probability assigning a random number between 0 and 1. This probability
was defined as P(B|A), where A is the event f ind a worse solution, and B is the event accept a worse
solution. This probability is compared with the β parameter. If P(B|A) is greater or equal than β,
then the algorithm accepts the movement and updates the records, otherwise the algorithm rejects the
movement and restarts the search with the original search ranges.

Appl. Sci. 2018, 8, 2080 19 of 36

Algorithm 5: Uphill procedure.

1: evaluate P(B|A) = rand
2: if (P(B|A) ≥ β) then
3: evaluate m = m + 1
4: update the list of accepted movements with the current solution
5: update the list of best movements with the best previous solution
6: update the list of rejected movements with zeros
7: update the best solution with the the best previous solution
8: update the neighbourhood of search of each decision variable ascend towards

the new solution accepted
9: else

10: evaluate m = m + 1
11: evaluate r = r + 1
12: initialize tvar = 0
13: change the status of all decision variable to 0
14: generate an initial solution randomly
15: evaluate the fitness of the current solution
16: evaluate the fitness change as f cha = f it− b f it
17: update the list of accepted movements with the current solution
18: if (f cha < δ) then
19: update the list of best movements with the current solution
20: update the best solution with the current solution
21: else
22: update the list of best movements with the best previous solution
23: update the best solution with the the best previous solution
24: end if
25: update the list of rejected movements
26: if (char == 1) then
27: characterise the chemical components
28: end if
29: create the wide area neighbourhood of solutions for each decision variable
30: end if

6. Experimental Results

Next, we analyse the minimum values and their corresponding location reported by the
benchmark functions considered. Additionally, we present the results obtained with our metaheuristic
along with the respective analysis.

6.1. Benchmark Functions

VLE was tested using 15 mathematical benchmark functions frequently used by many researchers,
Equations (19)–(33) [20,24,30,34,42], and 6 composite benchmark functions selected from the Technical
Report of the CEC 2017 Special Session [43], as described in Table 6. The first set of benchmark functions
includes four unimodal functions, Equations (19)–(22), five multimodal functions, Equations (23)–(27),
and six multimodal functions with fix dimensions, Equations (28)–(33). Functions f1 to f9,
i.e., Equations (19)–(27), are high-dimensional problems. Functions f5 to f9, i.e., Equations (23)–(27),
are a very difficult group of problems for optimization algorithms. In these problems, the number of
local minima increases exponentially as the number of dimensions increases [20]. This set of multimodal
functions is very important because it reflects the ability of startup from local optima and continues the
search in another place in the search space. The number of dimensions is n = 30 in Equations (19)–(27).

Appl. Sci. 2018, 8, 2080 20 of 36

The minimum values of all these functions and the corresponding solutions are given in Table 3.
Figures 13–15 show 3D views of the first set of benchmark functions utilized in our experiments.

Table 3. Optimum values reported for the benchmark functions in the literature, with their corresponding
solutions and search subsets.

BenFun SeaSub Opt Sol

f1(X) [−100, 100]30 0 [0]30

f2(X) [−10, 10]30 0 [0]30

f3(X) [−100, 100]30 0 [0]30

f4(X) [−30, 30]30 0 [1]30

f5(X) [−500, 500]30 −12,569.487 [420.9687]30

f6(X) [−5.12, 5.12]30 0 [0]30

f7(X) [−32, 32]30 0 [0]30

f8(X) [−600, 600]30 0 [0]30

f9(X) [−50, 50]30 0 [1]30

f10(X) [−65.536, 65.536]2 1 [−32]2

f11(X) [−5, 5]2 −1.0316285 (0.08983,−0.7126) and (−0.08983, 0.7126)
f12(X) [−5, 10] for x1 and 0.397887 (−3.142, 12.275), (3.142, 2.275) and

[0, 15] for x2 (9.425, 2.425)
f13(X) [−2, 2]2 3 (0,−1)
f14(X) [0, 1]3 −3.86 (0.114, 0.556, 0.852)
f15(X) [0, 1]6 −3.32 (0.201, 0.150, 0.477, 0.275, 0.311, 0.657)

Unimodal test functions:

Sphere Function:
f1(X) = ∑n

i=1x2
i (19)

Schwefel’s Function No. 2.22:

f2(X) = ∑n
i=1|xi|+ ∏n

i=1|xi| (20)

Schwefel’s Function No. 1.2:

f3(X) = ∑n
i=1

(
∑i

j=1xj

)2
(21)

Generalized Rosenbrock’s Function:

f4(X) = ∑n−1
i=1

[
100(xi+1 − x2

i)
2 + (xi − 1)2

]
(22)

(a) f1: Sphere Function (b) f2: Schwefel’s Function No. 2.22

Figure 13. Cont.

Appl. Sci. 2018, 8, 2080 21 of 36

(c) f3: Schwefel’s Function No. 1.2 (d) f4: Generalized Rosenbrock’s Function

Figure 13. 3D View of some unimodal benchmark mathematical functions [44].

Multimodal test functions:

Generalized Schwefel’s Function No. 2.26:

f5(X) = −∑n
i=1

(
xi sin

(√
|xi|
))

(23)

Generalized Rastrigin’s Function:

f6(X) = ∑n
i=1

[
x2

i − 10 cos (2πxi) + 10
]

(24)

Ackley’s Function:

f7(X) = −20 exp
(
−0.2

√
1
n ∑n

i=1x2
i

)
− exp

(
1
n ∑n

i=1 cos (2πxi)
)
+ 20 + e (25)

Generalized Griewank’s Function:

f8(X) =
1

4000∑n
i=1x2

i −∏n
i=1 cos

(
xi√

i

)
+ 1 (26)

Generalized Penalized Function:

f9(X) = π
n

{
10 sin2 (πy1) + ∑n−1

i=1 (yi − 1)2 [1 + 10 sin2 (πyi+1)
]
+ (yn − 1)2

}
+∑n

i=1 u (xi, 10, 100, 4)
(27)

where u(xi, a, k, m) is equal to

k(xi − a)m if xi > a,
0 if −a ≤ xi ≤ a, and
k(−xi − a)m if xi < −a.

and

yi = 1 + 1
4 (xi + 1)

Appl. Sci. 2018, 8, 2080 22 of 36

(a) f5: Generalized Schwefel’s Function No. 2.26 (b) f6: Generalized Rastrigin’s Function

(c) f8: Generalized Griewank’s Function (d) f9: Generalized Penalized Function No. 01

Figure 14. 3D View of some multimodal benchmark mathematical functions [44].

Multimodal test functions with fixed dimensions:

Shekel’s Foxholes Function:

f10(X) =

[
1

500
+ ∑25

j=1
1

j + ∑2
i=1
(

xi − aij
)6

]−1

(28)

where

aij =

[
−32 −16 0 16 32 −32 ... 0 16 32
−32 −32 −32 −32 −32 −16 ... 32 32 32

]
Six-hump Camel Back Function:

f11(X) = 4x2
1 − 2.1x4

1 +
1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2 (29)

Branin’s Function:

f12(X) =

(
x2 −

5.1
4π2 x2

1 +
5
π

x1 − 6
)2

+ 10
(

1− 1
8π

)
cos x1 + 10 (30)

Goldstein-Price Function:

f13(X) =
[
1 + (x1 + x2 + 1)2 (19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)][

30 + (2x1 − 3x2)
2 (18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)] (31)

Hartman’s Family Function:

f14(X) = −∑4
i=1ci exp

[
−∑n=3

j=1 aij
(
xj − pij

)2
]

(32)

Appl. Sci. 2018, 8, 2080 23 of 36

f15(X) = −∑4
i=1ci exp

[
−∑n=6

j=1 aij
(
xj − pij

)2
]

(33)

where aij, ci and pij, for f14(X), i.e., n = 3, are given in Table 4, and for f15(X), i.e., n = 6, in Table 5.

Table 4. Values of aij, ci, and pij for function f14(X); n = 3 and j = 1, 2, 3.

i aij ci pij

1 3 10 30 1 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3 10 30 3 0.1091 0.8732 0.5547
4 0.1 10 30 3.2 0.03815 0.5743 0.8828

Table 5. Values of aij, ci, and pij for function f15(X); n = 6 and j = 1, 2, ..., 6.

i aij ci pij

1 10 3 17 3.5 1.7 8 1 0.131 0.169 0.556 0.012 0.828 0.588
2 0.05 10 17 0.1 8 14 1.2 0.232 0.413 0.830 0.373 0.100 0.999
3 3 3.5 1.7 10 17 8 3 0.234 0.141 0.352 0.288 0.304 0.665
4 17 8 0.05 10 0.1 14 3.2 0.404 0.882 0.873 0.574 0.109 0.038

(a) f10: Shekel’s Foxholes Function (b) f11: Six-hump Camel Back Function

(c) f12: Branin’s RCOS Function No. 01 (d) f13: Goldstein-Price Function

Figure 15. 3D View of some multimodal benchmark mathematical functions with fix dimensions [44].

Regarding the second set of benchmark functions, all basic functions that have been used in the
composition functions are shifted and rotated functions [43]. In addition, all composite functions
are multimodal, non-separable, asymmetrical and have different properties around different local
optima [43]. These properties create a high complexity in searching the optimum solution. Complete
definitions of these functions are stated in the CEC 2017 Technical Report [43]. The number of
dimensions and the search subset or range (SeaSub) were n = 10 and [−100, +100], respectively, for all
composite functions utilized, as shown in Table 6. Figure 16 shows the 3D views of the benchmark
composite functions chosen.

Appl. Sci. 2018, 8, 2080 24 of 36

(a) CF1: Composition Function 1 (b) CF2: Composition Function 2 (c) CF3: Composition Function 3

(d) CF4: Composition Function 4 (e) CF5: Composition Function 5 (f) CF6: Composition Function 6

Figure 16. 3D View of the first six composite benchmark mathematical functions, CEC 2017 Test
Suite [43].

Table 6. Composite benchmark functions, CEC 2017 Test Suite [43]; n = 10.

BenFun Name Search Subset Optimal

CF1

Composition Function 1 (Test Function No. 21)

[−100, 100]10 2100

N= 3
σ = [10, 20, 30], λ = [1, 1e− 6, 1]
bias = [0, 100, 200]
g1: Rosenbrock’s Function F4’
g2: High Conditioned Elliptic Function F11’
g3: Rastrigin’s Function F5’

CF2

Composition Function 2 (Test Function No. 22)

[−100, 100]10 2200

N = 3
σ = [10, 20, 30], λ = [1, 10, 1]
bias = [0, 100, 200]
g1: Rastrigin’s Function F5’
g2: Griewank’s Function F15’
g3: Modified Schwefel’s Function F10’

CF3

Composition Function 3 (Test Function No. 23)

[−100, 100]10 2300

N = 4
σ = [10, 20, 30, 40], λ = [1, 10, 1, 1]
bias = [0, 100, 200, 300]
g1: Rosenbrock’s Function F4’
g2: Ackley’s Function F13’
g3: Modified Schwefel’s Function F10’
g4: Rastrigin’s Function F5’

Appl. Sci. 2018, 8, 2080 25 of 36

Table 6. Cont.

BenFun Name Search Subset Optimal

CF4

Composition Function 4 (Test Function No. 24)

[−100, 100]10 2400

N = 4
σ = [10, 20, 30, 40], λ = [10, 1e− 6, 10, 1]
bias = [0, 100, 200, 300]
g1: Ackley’s Function F13’
g2: High Conditioned Elliptic Function F11’
g3: Girewank Function F15’
g4: Rastrigin’s Function F5’

CF5

Composition Function 5 (Test Function No. 25)

[−100, 100]10 2500

N = 5
σ = [10, 20, 30, 40, 50], λ = [10, 1, 10, 1e− 6, 1]
bias = [0, 100, 200, 300, 400]
g1: Rastrigin’s Function F5’
g2: Happycat Function F17’
g3: Ackley Function F13’
g4: Discus Function F12’
g5: Rosenbrock’s Function F4’

CF6

Composition Function 6 (Test Function No. 26)

[−100, 100]10 2600

N = 5
σ = [10, 20, 20, 30, 40], λ = [1e− 26, 10, 1e− 6, 10, 5e− 4]
bias = [0, 100, 200, 300, 400]
g1: Expanded Scaffer’s F6 Function F6’
g2: Modified Schwefel’s Function F10’
g3: Griewank’s Function F15’
g4: Rosenbrock’s Function F4’
g5: Rastrigin’s Function F5’

6.2. Results

Tables 7 and 8 show the statistical results obtained with the first set of benchmark functions as
follows: the benchmark function (BenFun), the average value obtained with the benchmark function
(Avg), the standard deviation (StdDev), the median (Med), the minimum value achieved (Min),
the optimal value (Opt), the true percentage deviation (TPD, %) or the difference between the minimum
value achieved, and the optimal value published (DMO), the worst result obtained or maximum
value reached (Max), the search subset (SeaSub), and the optimal location (OptLoc). Optimal locations
found were rounded to the values indicated under the OptLoc column in Table 8. For this set of
functions, a total number of 1000 movements or 1000 restarts as the stop condition were considered
for all the experiments, except in the experiments with functions f3, f4, f5 and f6; with those last
functions, we use a maximum of 9000, 3000, 1500 and 4000, respectively. Very good results were
obtained in 100.0% of the benchmark functions. Optimization results obtained by VLE were compared
with the corresponding results reported for PSO [24], GSA [2], DE [42], and WOA [34], in [29,34]. All
results obtained by VLE were rounded to four decimals. The results published for PSO, GSA, DE and
WOA, were rounded in Tables 7 and 9 to four decimals, using scientific notation, only for presentation
purposes. However, all computations were realized using the reported decimals by their respective
authors.

All experiments performed with VLE consisted of at least 31 executions with a certain set of
VLE parameters. VLE parameters were tuned until a best possible solution was found. The technique
for tuning was the parametric sweep. After this, the truncated mean was calculated by removing all
possible strong outliers one by one. This process was done at 6.5% (f4, f6, and f7), at 13.0% (f1, f2,
f10, f11, and f13) and at 20.0% (f8, f9, and f12) depending on the number of strong outliers found.
There were no outliers found with functions f3, f5, f13, and f14. All statistics reported for VLE in this
work are presented according to this methodology. The reason for removing the strong outliers was

Appl. Sci. 2018, 8, 2080 26 of 36

to provide a measure of central tendency that was more representative of the distribution of the data
obtained in each experiment.

Table 7. Optimization results of mathematical functions tested; n = 30.

BenFun Avg StdDev Med Min Opt DMO TPD Max

f1 4.4989 × 10−7 1.6413 × 10−6 4.4174 × 10−12 4.9649 × 10−21 0 4.9649 × 10−21 N/A 8.3455 × 10−6

f2 3.0840 × 10−6 6.0498 × 10−6 2.4259 × 10−8 1.5549 × 10−13 0 1.5549 × 10−13 N/A 2.0115 × 10−5

f3 5.2020 0.79863 5.3195 3.0218 0 3.0218 N/A 66.413
f4 79.199 37.400 76.335 9.2776 0 9.2776 N/A 154.66
f5 −1.2566 × 104 68.705 −1.2566 × 104 −1.2569 × 104 −12,569.487 0.0000 0.0000% −1.2190 × 104

f6 34.583 17.886 30.845 4.9748 0 4.9748 N/A 69.647
f7 3.1704 3.9211 0.80444 9.6590 × 10−10 0 9.6590 × 10−10 N/A 13.777
f8 0.50737 0.50405 0.36998 1.9418 × 10−7 0 1.9418 × 10−7 N/A 1.1885
f9 0.23693 0.28773 0.11216 1.8385 × 10−16 0 1.8385 × 10−16 N/A 1.0792
f10 0.99800 2.5294 × 10−7 0.99800 0.99800 1 −1.9962 × 10−3 −01.9962% 0.99801
f11 −1.0315 1.8408 × 10−4 −1.0316 −1.0316 −1.0316285 0.0000 0.0000% −1.0310
f12 0.39815 4.5697 × 10−4 0.39794 0.39789 0.397887 1.0000 × 10−6 2.5133 × 10−4% 0.39951
f13 3.0097 1.6256 × 10−2 3.0001 3.0000 3.00 0.0000 0.0000% 3.0510
f14 −3.8628 6.6880 × 10−5 −3.8628 −3.8628 −3.86 −2.7821 × 10−3 7.2075 × 10−2% −3.8624
f15 −3.3179 2.1311 × 10−2 −3.3220 −3.3220 −3.32 −1.9952 × 10−3 6.0096 × 10−2% −3.2031

Table 8. Search subsets considered and the optimum locations obtained.

BenFun SeaSub OptLoc

f1 [−100, 100]30 [0]30

f2 [−10, 10]30 [0]30

f3 [−1, 1]30 [0]30

f4 [−1, 3]30 [1]30

f5 [320, 520]30 [420.9688]30

f6 [−5.12, 5.12]30 [0]30

f7 [−32, 32]30 [0]30

f8 [−600, 600]30 [0]30

f9 [−50, 50]30 [−1]30

f10 [−65.536, 65.536]2 (−31.98,−31.98)
f11 [−5, 5]2 (0.08984,−0.7127) and (−0.08984, 0.7127)
f12 [−5, 10] for x1 and (−3.141, 12.274), (3.142, 2.275) and

[0, 15] for x2 (9.425, 2.475)
f13 [−2, 2]2 (0.000,−1.000)
f14 [0, 1]3 (0.115, 0.556, 0.853)
f15 [0, 1]6 (0.202, 0.146, 0.477, 0.275, 0.312, 0.657)

A simple inspection of the values of the average fitness (Avg) of the objective function and of the
corresponding standard deviation (StdDev), as it is shown in Table 9, permits us to establish a priori
that VLE can compete successfully with a considerable part of this type of optimization problem,
which is the scope of the present research. In other words, it can been seen that the results obtained by
VLE are competitive.

We define the true percentage deviation (TPD) (34) as the measure of the search success. However,
several of the benchmark functions tested have the optimal solutions as zero, and it is not possible
to divide by zero. The (TPD) indicator was employed only for those functions whose optima (Opt)
were different than zero. For the remaining functions, as the success indicator, we calculated the
(DMO), the difference between the minimum achieved by VLE (Min) and the optimal value published
(Opt) (35).

Appl. Sci. 2018, 8, 2080 27 of 36

Table 9. Averages and standard deviations obtained by VLE, and published for PSO, GSA, DE and
WOA, using the classical benchmark functions; n = 30.

BenFun Statistic VLE PSO GSA DE WOA

f1 Avg 4.4989 × 10−7 1.3600 × 10−4 2.5300 × 10−16 8.2000 × 10−14 1.4100 × 10−30

StdDev 1.413 × 10−6 2.0200 × 10−4 9.6700 × 10−17 5.9000 × 10−14 4.9100 × 10−30

f2 Avg 3.0840 × 10−6 4.2144 × 10−2 5.5655 × 10−2 1.5000 × 10−9 1.0600 × 10−21

StdDev 6.0498 × 10−6 4.5421 × 10−2 0.19407 9.9000 × 10−10 2.3900 × 10−21

f3 Avg 5.2020 70.126 8.9653 × 102 6.8000× 10−11 5.3900 × 10−7

StdDev 0.79863 22.119 3.1896 × 102 7.4000× 10−11 2.9300 × 10−6

f4 Avg 79.199 96.718 67.543 0.0000 27.866
StdDev 37.400 60.116 62.225 0.0000 0.76363

f5 Avg −1.2566 × 104 −4.8413 × 103 −2.8211 × 103 −1.1080 × 104 −5.0808 × 103

StdDev 68.705 1.1528 × 103 4.9304 × 102 5.7470 × 102 6.9580 × 102

f6 Avg 34.5830 46.704 25.968 69.200 0.0000
StdDev 17.8860 11.629 7.4701 38.800 0.0000

f7 Avg 3.1704 0.27602 6.2087 × 10−2 9.7000× 10−8 7.4043
StdDev 3.9211 0.50901 0.23628 4.2000 × 10−8 9.8976

f8 Avg 0.50737 9.2150 × 10−3 27.702 0.0000 2.8900 × 10−4

StdDev 0.50405 7.7240 × 10−3 5.0403 0.0000 1.5860 × 10−3

f9 Avg 0.23693 6.9170 × 10−3 1.7996 7.9000 × 10−15 0.33968
StdDev 0.28773 2.6301 × 10−2 0.95114 8.0000 × 10−15 0.214864

f10 Avg 0.99800 3.6272 5.8598 0.99800 2.1120
StdDev 2.5294 × 10−7 2.5608 3.8313 3.3000 × 10−16 2.4986

f11 Avg −1.0315 −1.0316 −1.0316 −1.0316 −1.0316
StdDev 1.8408 × 10−4 6.2500 × 10−16 4.8800 × 10−16 3.1000 × 10−13 4.2000 × 10−7

f12 Avg 0.39815 0.39789 0.39789 0.39789 0.39791
StdDev 4.5697 × 10−4 0.0000 0.0000 9.9000 × 10−9 2.7000 × 10−5

f13 Avg 3.0097 3.0000 3.0000 3.0000 3.0000
StdDev 1.6256 × 10−2 1.3300 × 10−15 4.1700 × 10−15 2.0000 × 10−15 4.2200 × 10−15

f14 Avg −3.8628 −3.8628 −3.8628 N/A −3.8562
StdDev 6.6880 × 10−5 2.5800 × 10−15 2.2900 × 10−15 N/A 2.7060 × 10−3

f15 Avg −3.3179 −3.2663 −3.3178 N/A −2.9811
StdDev 2.1311 × 10−2 6.0516 × 10−2 2.3081 × 10−2 N/A 0.37665

Figure 17 shows the convergence graphics obtained by VLE for benchmark functions f1, f2, f7, f8,
f10, and f12. Figure 18 shows the distribution graphics obtained by VLE for these functions.

TPD =

(
Min−Opt

Opt

)
100 (34)

DMO = Min−Opt (35)

The results were analysed from two points of view: (1) by making a thorough a comparative
study of the mean values by function and metaheuristic; and (2) by using the root-mean-square
error or RMSE. The comparative study allowed, in the first place, determining initially which VLE
metaheuristic obtains a better result, and also determining the position of VLE on an evaluation
scale of 1 to 5. In this evaluation scale, the number 1 is the best evaluation an algorithm can achieve.
On the other hand, the use of the root-mean-square error, or RMSE, as a more robust statistic metric
allowed the evaluation, in general terms, of which algorithm provided the averages that best fit the
true optimum of the classical reference functions considered in this study.

Appl. Sci. 2018, 8, 2080 28 of 36

(a) f1: Classical Function 1 (b) f2: Classical Function 2 (c) f7: Classical Function 7

(d) f8: Classical Function 8 (e) f10: Classical Function 10 (f) f11: Classical Function 11

Figure 17. Convergence graphics for classical functions tested.

(a) f1: Classical Function 1 (b) f2: Classical Function 2 (c) f7: Classical Function 7

(d) f8: Classical Function 8 (e) f10: Classical Function 10 (f) f11: Classical Function 11

Figure 18. Distribution graphics for classical functions tested.

Comparative study of the mean values:

Tables 10 and 11 show the result of the comparative analysis of the performance of VLE compared
to that of PSO, GSA, DE and WOA before the 15 reference functions already indicated. The results in
Table 10 indicate that VLE shows a performance somewhat superior to that of PSO (60.00%), slightly
higher than that of GSA (53.33%), and somewhat lower than that of WOA (40.00%). Since there is no
information available for DE regarding functions f14 and f15, if these functions are excluded, it can be
seen that VLE has low performance compared to DE (23.08%). Based on these observations, and the

Appl. Sci. 2018, 8, 2080 29 of 36

benchmark functions considered, it can be stated that, in general, and qualitative terms, VLE presents
a competitive performance among PSO, GSA, DE, and WOA.I In quantitative terms, this analysis
allows us to affirm that VLE has a weighted average performance of 44.83% among this group of
functions and algorithms. In other words, considering this group of algorithms, this means that, if we
take a population of 100 benchmark functions, VLE will deliver the best average fitness in 45 of these
functions. The results of Table 11 show that, in general, the average performance of VLE is 2.6 on
a scale of 1 to 5, with 1 being the best performance evaluation. This average global ranking considers
that VLE reached first place 4 times, second place 2 times, third place 5 times, fourth place 4 times and
that VLE never occupied fifth place. In addition to these results, it can be seen that the VLE ranking
by type of benchmark function is 3.5 for the unimodal functions, 3.0 for the multimodal functions,
and 2.0 for the multimodal test functions with a fixed number of dimensions. If functions f14 and
f15 are excluded because there is no information available for DE, then the estimated global average
performance of VLE is 2.85. In summary, if this indicator is rounded to the nearest integer, then VLE
ranks third among the five metaheuristics considered and the 15 functions evaluated.

This comparative analysis allows us to corroborate that there is no metaheuristic that is capable
of solving any optimization problem better than all the others. Some will work better than others for
certain problems, while others will not perform as well [2]. In the case of VLE, this outcome may be
due to the complexity of the algorithm, which simulates the physical-chemical process that served
as inspiration. The real simulation restricts the potential capacity of the algorithm to reach more
promising solutions with certain functions. For example, if a chemical species A and chemical species
B are very similar to each other, the region enclosed between the saturation curves of the vapour-liquid
equilibrium diagram will be very fine and will trend to be horizontal. This will produce more big
steps around a good solution, than with a region of the same shape but with a greater incline, i.e.,
with a strong negative slope. In the limit, when chemical A is equal to chemical B, the system will be
constituted by only one chemical species, i.e., will be a pure chemical species, so in this case, the binary
diagram will be a horizontal straight line with no steps.

Table 10. Averages comparison by function and metaheuristic (PSO, GSA, DE or WOA), using the
classical benchmark functions; n = 30.

BenFun VLE-PSO VLE VLE-GSA VLE VLE-DE VLE VLE-WOA VLE

f1 −1.3555 × 10−4 1 4.4989 × 10−7 4.4989 × 10−7 4.4989 × 10−7

f2 −4.2141 × 10−2 1 −5.5652 × 10−2 1 3.0825 × 10−6 3.0840 × 10−6

f3 −649.24 1 −8.9133 × 102 1 5.2020 5.2020
f4 −175.19 1 11.656 79.199 51.333
f5 −7.7247 × 103 1 −9.7449 × 103 1 −1.4859 × 103 1 −7.4852 × 103 1
f6 −12.1210 1 8.6146 −34.6170 1 34.5830
f7 2.8944 3.1083 3.1704 −4.2339 1
f8 0.49816 −27.194 1 0.50737 0.50708
f9 0.2301 −1.5627 1 0.2369 −0.1027 1
f10 −2.6292 1 −4.8618 1 −4.0000 × 10−6 1 −1.1140 1
f11 1.3000 × 10−4 1.3000 × 10−4 1.3000 × 10−4 1.3000 × 10−4

f12 2.6300 × 10−4 2.6300 × 10−4 2.6300 × 10−4 2.3600 × 10−4

f13 9.7000 × 10−3 9.7000 × 10−3 9.7000 × 10−3 9.7000 × 10−3

f14 −2.0000 × 10−5 1 −2.0000 × 10−5 1 N/A −6.6400 × 10−3 1
f15 −5.1560 × 10−2 1 −1.2000 × 10−4 1 N/A −0.33685 1

VLE 9 VLE 8 VLE 3 VLE 6
PSO 6 GSA 7 DE 10 WOA 9
VLE 60.00% VLE 53.33% VLE 23.08% VLE 40.00%

Appl. Sci. 2018, 8, 2080 30 of 36

Table 11. Ranking of the optimization results (average fitness) obtained applying VLE, PSO,GSA,DE
and WOA to the classical benchmark functions considered; n = 30.

BenFun 1st 2nd 3rd 4th 5th Rank Subtotal

f1 WOA GSA DE VLE PSO 4
f2 WOA DE VLE PSO GSA 3
f3 DE WOA VLE PSO GSA 3
f4 DE WOA GSA VLE PSO 4 14
f5 VLE DE WOA PSO GSA 1
f6 WOA GSA VLE PSO DE 3
f7 DE GSA PSO VLE WOA 4
f8 DE WOA PSO VLE GSA 4
f9 DE PSO VLE WOA GSA 3 15
f10 VLE DE WOA PSO GSA 1
f11 PSO,GSA,DE,WOA VLE 2
f12 PSO,GSA,DE WOA VLE 3
f13 PSO,GSA,DE,WOA VLE 2
f14 VLE,PSO,GSA,WOA 1
f15 VLE GSA PSO WOA 1 10

39
f1- f15: 39/15 = 2.6
f1- f4: 14/4 = 3.5
f5- f9: 15/5 = 3.0

f10- f15: 10/5 = 2.0

Root-mean-square error or RMSE:

Another general observation can be obtained if the root-mean-square error or RMSE is used as
shown in Equation (36). The RMSE measures the average of the squared errors, that is, the difference
between the estimator and what is estimated. In this case, the estimator considered is the average of the
fitness of the reference function, determined by the optimization algorithm, and what is estimated is the
value of the true optimum of the reference function. In Equation (36), MH is any of the metaheuristics
indicated, i.e., VLE, PSO, GSA, DE or WOA, and F is the number of data considered. Table 12 shows
the RMSE values calculated for the 15 classical functions and the five algorithms considered in this
study. Table 12 also presents the RMSE values calculated for VLE and DE, excluding functions f14 and
f15 due to lack of information for DE. With these results, it can be stated that, in general, the average
fitness obtained by VLE is better adjusted to the true optimum of the reference functions than any of
the published data sets for PSO, GSA, DE, and WOA. Considering the 15 classical functions, the RMSE
value for VLE is 22.388, for PSO it is 1995.7, for GSA it is 2527.7, and for WOA 1933.6. Excluding
functions f14 and f15, the RMSE values for VLE, PSO, GSA, DE and WOA are 24.048, 2143.7, 2715.2,
413.53 and 2077.0, respectively. According to this statistic metric, the RMSE obtained by VLE under
these circumstances is lower than that obtained by the other algorithms.

RMSE =

√
(AvgMH −Opt)2

F
(36)

Similarly, Table 13 shows the statistical results obtained with the second set of optimization
problems, i.e., the composite functions, which are the following: the benchmark function (BenFun),
the average value (Avg), the standard deviation (StdDev), the median (Med), the minimum value
achieved (Min), the optimal value published (Opt), the difference between the minimum value
achieved (Min) and the optimal value published (DMO), the true percentage deviation (TPD, %),
and the maximum value reached (Max). Figure 19 shows the convergence graphics obtained by VLE
for these benchmark functions. The number of iterations was fixed at 1000, 3000, 5000 and 10000 for
these functions. Figure 20 shows the distribution graphics obtained by VLE for the composite functions
chosen. All experiments were repeated at least 31 times to guarantee a meaningful statistical analysis.

Appl. Sci. 2018, 8, 2080 31 of 36

(a) CF1: Composition Function 1 (b) CF2: Composition Function 2 (c) CF3: Composition Function 3

(d) CF4: Composition Function 4 (e) CF5: Composition Function 5 (f) CF6: Composition Function 6

Figure 19. Convergence graphics for composite functions tested, Table 6.

(a) CF1: Composition Function 1 (b) CF2: Composition Function 2 (c) CF3: Composition Function 3

(d) CF4: Composition Function 4 (e) CF5: Composition Function 5 (f) CF6: Composition Function 6

Figure 20. Distribution graphics for composite functions tested, Table 6.

Appl. Sci. 2018, 8, 2080 32 of 36

Table 12. Root-mean-square error (RMSE) of the results obtained among VLE and the reference
metaheuristics; n = 30.

BenFun VLE Opt (V LE − Opt)2 (PSO − Opt)2 (SGA − Opt)2 (DE − Opt)2 (WOA − Opt)2

f1 4.4989 × 10−7 0.0000 2.0240 × 10−13 1.8496 × 10−8 6.4009 × 10−32 6.7240 × 10−27 1.9881 × 10−60

f2 3.0840 × 10−6 0.0000 9.5111 × 10−12 1.7761 × 10−3 3.0975 × 10−3 2.2500 × 10−18 1.1236 × 10−42

f3 5.2020 0.0000 27.061 4.9176 × 103 8.0377 × 105 4.6240 × 10−21 2.9052 × 10−13

f4 79.199 0.0000 6.2725 × 103 9.3544 × 103 4.5621 × 103 0.0000 7.7649 × 102

f5 −1.2566 × 104 −1.2569 × 104 1.2159 × 10 5.9725 × 107 9.5032 × 107 2.2183 × 106 5.6081 × 107

f6 34.583 0.0000 1.1960 × 103 2.1813 × 103 6.7436 × 102 4.7886 × 103 0.0000
f7 3.1704 0.0000 10.051 7.6184 × 10−2 3.8548 × 10−3 9.4090 × 10−15 54.824
f8 0.50737 0.0000 0.25742 8.4916 × 10−5 7.6738 × 102 0.0000 8.3521 × 10−8

f9 0.23693 0.0000 5.6136 × 10−2 4.7845 × 10−5 3.2386 6.2410 × 10−29 0.11538
f10 0.99800 1.0000 4.0000 × 10−6 6.9020 23.618 3.9840 × 10−6 1.2365
f11 −1.0315 −1.0316 1.6512 × 10−8 2.2500 × 10−12 2.2500 × 10−12 2.2500 × 10−12 2.2500 × 10−12

f12 0.39815 0.39789 6.9169 × 10−8 0.0000 0.0000 0.0000 7.2900× 10−10

f13 3.0097 3.0000 9.4090 × 10−5 0.0000 0.0000 0.0000 0.0000
f14 −3.8628 −3.8600 7.8400 × 10−6 7.7284 × 10−6 7.7284 × 10−6 N/A 1.4746 × 10−5

f15 −3.3179 −3.3200 4.4100 × 10−6 2.8794 × 10−3 4.9284 × 10−6 N/A 0.11489
RMSE f1- f15 22.388 1.9957 × 103 2.5277 × 103 N/A 1.9336 × 103

f1- f13 24.048 2.1437 × 103 2.7152 × 103 4.1353 × 102 2.0770 × 103

Table 13. Optimization result of the composite functions tested, CEC 2017 Test Suite [43]; n = 10.

BenFun Avg StdDev Med Min Opt DMO TPD Max

CF1 2.2960 × 103 54.296 2.3043 × 103 2.1036 × 103 2.1000 × 103 3.6348 0.1371% 2.3606 × 103

CF2 2.2587 × 103 28.176 2.2541 × 103 2.2179 × 103 2.2000 × 103 17.9931 0.8179% 2.3111 × 103

CF3 2.6257 × 103 86.929 2.6499 × 103 2.3188 × 103 2.3000 × 103 18.8320 0.8188% 2.7007 × 103

CF4 2.5852 × 103 79.818 2.6111 × 103 2.4261 × 103 2.4000 × 103 26.1434 1.0893% 2.7536 × 103

CF5 2.9144 × 103 99.702 2.9458 × 103 2.6002 × 103 2.5000 × 103 100.2627 4.0100% 3.0067 × 103

CF6 2.9674 × 103 1.8951 × 102 3.0366 × 103 2.6000 × 103 2.6000 × 103 0.0000 0.0000% 3.2266 × 103

7. Conclusions and Future Work

First, it is important to address the advantages and disadvantages of our algorithm. Regarding
the advantages, we have the following: (1) VLE does not require special functions, such as a sigmoidal
function, to incorporate variables in binary and discrete domains in addition to the variables in the real
domain. This process is easy to do because the same source of inspiration allows it. The movements
take place in a continuous space in which changes of states of thermodynamic equilibrium are made.
In this space, the variables are converted into molar fractions of the liquid and gas phases (vapour),
which vary between zero and one. This functionality will be implemented in the next version of VLE;
(2) To determine the direction in which the next move will be made for each decision variable, VLE
scans the current solution’s environment in opposite directions, the direction in which the decision
variable increases and the direction in which it decreases. The change in the value of one of the variables
is performed by holding the values of the other variables constant in the values corresponding to those
of the current solution. Once the declining direction of fitness has been chosen, it is maintained until
a new growth in fitness is observed; (3) The step size in the search space of the thermodynamic states
is not constant, but in general, it is decreasing in both directions. Of course, the condition can also
occur in which it decreases in one direction and increases in the other direction. In addition, the step
size is different for each variable. All the above is due to the shape of the equilibrium curve of the
binary system that represents the decision variable and the current location of the value of the variable
between its limits or range of variation. Finally, the step size for each possible movement of a decision
variable is established autonomously, also, due to the shape of the saturation curve; (4) The algorithm
allows fine changes to be made around the value of each decision variable, close to a local optimum.
This is because for each restart, once the movement is completed, VLE reduces the search ranges around
the average value of the best values found for the decision variables. This reduction produces the same
effect that is obtained when focusing and enlarging an image; (5) The researcher is not required to
have any knowledge of the simulated physical-chemical phenomenon. In general, the researcher must
specify the objective function, the penalty function for that function, the number of decision variables
of the optimization problem, the number of executions to be carried out, the number of movements per

Appl. Sci. 2018, 8, 2080 33 of 36

execution, the minimum acceptable difference between the current value of the objective function and
the best-found value so as not to become stuck in local optima, and the probability of acceptance of
poor solutions. Regarding the disadvantages, we have the following: (1) Between one movement and
the next, VLE performs (α− 1)D evaluations of the objective function, D being the number of problem
decision variables. In other words, VLE creates a population of (α− 1)D solutions whose fitness must
be evaluated. The greater the number of decision variables of the problem, the greater the memory
used by VLE to perform the search and the greater the time it takes to perform an effective movement;
(2) The determination of bubble and dew temperatures requires additional iterative calculations, which
translates into an increase in computational cost. However, in this version, the calculations have been
reduced to a minimum since they are carried out using the bisection numerical method. The use of this
particular method also guarantees the determination of said temperatures; (3) Since it truly simulates
the vapour-liquid equilibrium of binary mixtures that form ideal solutions, the search is restricted to
the possible equilibrium states of the simulated system. This restriction, of course, can translate into
a certain degree of loss of flexibility near a local optimum. At the least, disadvantages 2 and 3 will be
eliminated in a future version of VLE.

Second, it is important to comment on and highlight the results obtained with our algorithm,
applied to the fifteen classical reference functions, and compared with the corresponding results
obtained by four well-known and robust optimization algorithms. As we said, the results were
analysed using two techniques: (1) by performing a thorough comparative analysis of the average
values obtained by each function and each metaheuristic; and (2) by using the root-mean-square error,
or RMSE. Based on the first technique of analysis, we may say that VLE had competitive performance
among PSO, GSA, DE, and WOA, with a weighted average performance of 44.83%, and that VLE
occupied the third place among the five compared algorithms. Using the second technique of analysis,
we may affirm that, in general, and in terms of datasets, the average dataset obtained by VLE is better
adjusted to the true values of optimum values of the reference functions than any of the published
data sets for PSO, GSA, DE, and WOA.

This analysis allows us first to corroborate that there is no metaheuristic that is more capable
at solving optimization problems than any other metaheuristic and second, to say that to establish
a significant difference among these algorithms, it is necessary to considerer a wider set of reference
functions. This will be considered in future work.

According to the results obtained, we believe that the vapour-liquid equilibrium is a good idea as
a source of inspiration to develop a novel and robust metaheuristic. In addition, we affirm that the
search of a local optimal can also be performed by using simple mathematical models that simulate
the phenomenon that has been the inspiration source of the algorithm.

As a future work, we would like to include more benchmark functions of the four types considered
in this research. Furthermore, we will increase the number of dimensions from 30 to 50 and 100 to
analyse the performance of the procedure with more decision variables. Additionally, we would like
to transform the actual version of VLE (based on a single starting solution with multistart), into a
swarm optimization algorithm. Finally, we would like to apply our algorithm for solving real-world
optimization problems in the engineering area.

Author Contributions: Conceptualization, E.M.C.; Formal analysis, E.M.C.; Funding acquisition, B.C., J.A.G.-P. and
R.S.; Investigation, E.M.C.; Methodology, E.M.C.; Project administration, E.M.C.; Resources, E.M.C., B.C., J.A.G.-P.
and R.S.; Software, E.M.C.; Supervision, B.C. and J.A.G.-P.; Validation, E.M.C., B.C. and J.A.G.-P.; Writing-original
draft, E.M.C., J.A.G.-P. and J.M.L.-G.; Writing-review & editing, E.M.C., B.C., J.A.G.-P., R.S. and J.M.L.-G.

Funding: This research was funded as follows: Enrique Cortés-Toro is supported by grant INF-PUCV 2015.
Juan A. Gómez-Pulido is supported by grants IB16002/TIN2016-76259P. Broderick Crawford is supported by
grant CONICYT/FONDECYT/REGULAR/1171243. Ricardo Soto is supported by grant CONICYT/FONDECYT/
REGULAR/1160455. José M. Lanza-Gutiérrez is supported by grant TEC2017-86722-C4-2-R, the Spanish R&D
project PLATINO.

Acknowledgments: Enrique M. Cortés-Toro is supported by UPLA Exempt Decree Number 153, 2015-2018.

Appl. Sci. 2018, 8, 2080 34 of 36

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

ABC Artificial Bee Colony
ACO Ant Colony Optimization
ACROA Artificial Chemical Reaction Optimization Algorithm
BA Bat Algorithm
BH Black Hole
CEC Congress on Evolutionary Computation
DE Differential Evolution
DMO Difference with respect to the optimal value published
DOE Dolphin Echolocation
EA Evolutionary Algorithms
EPO Emperor Penguin Optimizer
GA Genetic Algorithms
GLS Guided Local Search
GRASP Greedy Randomized Adaptive Search Procedure
GSA Gravitational Search Algorithm
GWO Grey Wolf Optimizer
ILS Iterated Local Search
PSO Particle Swarm Optimization
PBA Pity Beetle Algorithm
RDP Relative Percentage Deviation
SA Simulated Annealing
SOS Symbiotic Organisms Search
SSO Shark Smell Optimization
TPD True Percentage Deviation
TS Tabu Search
VNS Variable Neighbourhood Search
WOA Whale Optimization Algorithm

References

1. Yaghini, M.; Akhavan, R. DIMMA: A Design and Implementation Methodology for Metaheuristic
Algorithms—A Perspective from Software Development. Int. J. Appl. Metaheuristic Comput. 2010, 1, 57–74.
[CrossRef]

2. Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009,
179, 2232–2248. [CrossRef]

3. Du, K.L.; Swamy, M.N.S. Search and Optimization by Metaheuristics. In Techniques and Algorithms Inspired
by Nature; Birkhauser: Basel, Switzerland, 2016.

4. Boussaid, I.; Lepagnot, J.; Siarry, P. A survey on optimization metaheuristics. Inf. Sci. 2013, 237, 82–117.
[CrossRef]

5. Kirkpatrick, S.; Gelatt, D.G., Jr.; Vecchi, M.P. Optimization by Simmulated Annealing. Science 1983, 220, 671–680.
[CrossRef] [PubMed]

6. Mladenovic, N.; Drazic, M.; Kovacevic-Vujcic, V.; Cangalovic, M. General variable neighborhood search for
the continuous optimization. Eur. J. Oper. Res. 2008, 191, 753–770. [CrossRef]

7. Blum, C.; Roli, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison.
ACM Comput. Surv. 2003, 35, 268–308. [CrossRef]

8. Voudouris, C.; Tsang, E.P.K. Guided local search and its application to the traveling salesman problem.
Eur. J. Oper. Res. 1999, 113, 469–499. [CrossRef]

http://dx.doi.org/10.4018/jamc.2010100104
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1016/j.ins.2013.02.041
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1016/j.ejor.2006.12.064
http://dx.doi.org/10.1145/937503.937505
http://dx.doi.org/10.1016/S0377-2217(98)00099-X

Appl. Sci. 2018, 8, 2080 35 of 36

9. Lourenço, H.R.; Martin, O.C.; Stützle, T. Iterated Local Search: Framework and Applications. In Handbook of
Metaheuristics; Gendreau, M., Potvin, J.Y., Eds.; Springer: Boston, MA, USA, 2010; pp. 363–397.

10. Glover, F.; Laguna, M. General purpose heuristics for integer programming—Part I. J. Heuristics 1997,
2, 343–358. [CrossRef]

11. Glover, F.; Laguna, M. General Purpose Heuristics for Integer Programming-Part II. J. Heuristics 1997,
3, 161–179. [CrossRef]

12. Rana, S.; Jasola, S.; Kumar, R. A review on particle swarm optimization algorithms and their applications to
data clustering. Artif. Intell. Rev. 2011, 35, 211–222. [CrossRef]

13. Chou, J.S.; Thedja, J.P.P. Metaheuristic optimization within machine learning-based classification system for
early warnings related to geotechnical problems. Autom. Constr. 2016, 68, 65–80. [CrossRef]

14. Soto, M.; Rossi, A.; Sevaux, M. Two Iterative Metaheuristic Approaches to Dynamic Memory Allocation
for Embedded Systems. In Evolutionary Computation in Combinatorial Optimization; Merz, P., Hao, J.K., Eds.;
Springer: Berlin/Heidelberg, Germany, 2011; pp. 250–261.

15. Gansterer, M.; Almeder, C.; Hartl, R.F. Simulation-based optimization methods for setting production
planning parameters. Int. J. Prod. Econ. 2014, 151, 206–213. [CrossRef]

16. Talbi, E.G. Metaheuristics: From Design to Implementation; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2009.
17. Fox, B.; Xiang, W.; Lee, H.P. Industrial applications of the ant colony optimization algorithm. Int. J. Adv.

Manuf. Technol. 2007, 31, 805–814. [CrossRef]
18. Guo, Y.; Li, W.; Mileham, A.; Owen, G. Applications of particle swarm optimisation in integrated process

planning and scheduling. Robot. Comput.-Integr. Manuf. 2009, 25, 280–288. [CrossRef]
19. Zhang, L.; Wong, T.N. An object-coding genetic algorithm for integrated process planning and scheduling.

Eur. J. Oper. Res. 2015, 244, 434–444. [CrossRef]
20. Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102.
21. Whitley, D. An executable model of a simple genetic algorithm. In Proceedings of the Second Workshop on

Foundations of Genetic Algorithms, Vail, CO, USA, 26–29 July 1992; pp. 45–62.
22. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013,

222, 175–184. [CrossRef]
23. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents.

IEEE Trans. Syst. Man Cybern. Part B 1996, 26, 29–41. [CrossRef] [PubMed]
24. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference

on Neural Networks, Perth, Australia, 27 November–1 December 1995, pp. 1942–1948.
25. Yang, X.S. A New Metaheuristic Bat-Inspired Algorithm. In Nature Inspired Cooperative Strategies for

Optimization (NICSO 2010); Springer: Berlin/Heidelberg, Germany, 2010; Volume 284, Chapter 6, pp. 65–74.
26. Karaboga, D. Artificial bee colony algorithm. Scholarpedia 2010, 5, 6915. [CrossRef]
27. Alatas, B. ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization.

Expert Syst. Appl. 2011, 38, 13170–13180. [CrossRef]
28. Díaz-Cortés, M.A.; Cuevas, E.; Gálvez, J.; Camarena, O. A new metaheuristic optimization methodology

based on fuzzy logic. Appl. Soft Comput. 2017, 61, 549–569. [CrossRef]
29. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
30. Kallioras, N.A.; Lagaros, N.D.; Avtzis, D.N. Pity beetle algorithm—A new metaheuristic inspired by the

behavior of bark beetles. Adv. Eng. Softw. 2018, 121, 147–166,.. [CrossRef]
31. Oveis, A.; Nima, A.; Ali, G. A new metaheuristic algorithm based on shark smell optimization. Complexity

2014, 21, 97–116. [CrossRef]
32. Cheng, M.Y.; Prayogo, D. Symbiotic Organisms Search: A new metaheuristic optimization algorithm.

Comput. Struct. 2014, 139, 98–112. [CrossRef]
33. Kaveh, A.; Farhoudi, N. A new optimization method: Dolphin echolocation. Adv. Eng. Softw. 2013, 59, 53–70.

[CrossRef]
34. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
35. Dhiman, G.; Kumar, V. Emperor penguin optimizer: A bio-inspired algorithm for engineering problems.

Knowl.-Based Syst. 2018. [CrossRef]
36. Smith, J.; Van Ness, H.; Abbott, M.; Borgnakke, C. Introduction to Chemical Engineering Thermodynamics,

7th ed.; The McGraw-Hill Companies, Inc.: New York, NY, USA, 2005.

http://dx.doi.org/10.1007/BF00132504
http://dx.doi.org/10.1023/A:1009631530787
http://dx.doi.org/10.1007/s10462-010-9191-9
http://dx.doi.org/10.1016/j.autcon.2016.03.015
http://dx.doi.org/10.1016/j.ijpe.2013.10.016
http://dx.doi.org/10.1007/s00170-005-0254-z
http://dx.doi.org/10.1016/j.rcim.2007.12.002
http://dx.doi.org/10.1016/j.ejor.2015.01.032
http://dx.doi.org/10.1016/j.ins.2012.08.023
http://dx.doi.org/10.1109/3477.484436
http://www.ncbi.nlm.nih.gov/pubmed/18263004
http://dx.doi.org/10.4249/scholarpedia.6915
http://dx.doi.org/10.1016/j.eswa.2011.04.126
http://dx.doi.org/10.1016/j.asoc.2017.08.038
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.advengsoft.2018.04.007
http://dx.doi.org/10.1002/cplx.21634
http://dx.doi.org/10.1016/j.compstruc.2014.03.007
http://dx.doi.org/10.1016/j.advengsoft.2013.03.004
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.knosys.2018.06.001

Appl. Sci. 2018, 8, 2080 36 of 36

37. Crawford, B.; Soto, R.; Cortés, E.; Astorga, G. A New Thermodynamic Equilibrium-Based Metaheuristic.
In Cybernetics Approaches in Intelligent Systems; Silhavy, R., Silhavy, P., Prokopova, Z., Eds.; Springer
International Publishing: Cham, Switzerland, 2018; pp. 336–346.

38. McCabe, W.L.; Smith, J.C.; Harriot, P. Unit Operations of Chemical Engineering; The McGraw-Hill
Companies, Inc.: New York, NY, USA, 2007.

39. Sonntag, R.E.; Borgnakke, C.; Wylen, G.J.V. Fundamentals of Thermodynamics, 6th ed.; John Wiley and
Sons, Inc.: Hoboken, NJ, USA, 2003.

40. Poling, B.; Prausnitz, J.; OConnell, J. The Properties of Gases and Liquids; McGraw-Hill: New York, NY, USA, 2001.
41. Chapra, S.C.; Canale, R.P. Numerical Methods for Engineers, 7th ed.; McGraw-Hill Education: New York, NY,

USA, 2015.
42. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over

Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]
43. Awad, N.H.; Ali, M.Z.; Suganthan, P.N.; Liang, J.J.; Qu, B.Y. Problem Definitions and Evaluation Criteria for the

CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization; Technical
Report; Nanyang Technological University, Singapore And Jordan University of Science and Technology:
Singapore; Jordan And Zhengzhou University: Zhengzhou China, 2017.

44. Alroomi, A.R. Power Systems and Evolutionary Algorithms. Al-Roomi Website. 2018. Available online:
http://al-roomi.org/component/content/article?id=305:9-bus-system-system-i (accessed on 24 October 2018).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1008202821328
http://al-roomi.org/component/content/article?id=305:9-bus-system-system-i
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Vapour-Liquid Equilibrium for Binary Chemical Systems
	Optimization Method Proposal
	Mathematical Models of Simulation Used During the Search for the Optimal Solution
	Notation
	Mathematical Models

	Algorithm
	Notation
	Movement Operators
	Search strategy
	Exploration Stage
	Exploitation Stage

	Parameters
	Characterization of Chemical Species
	Inputs and Outputs
	Pseudocodes

	Experimental Results
	Benchmark Functions
	Results

	Conclusions and Future Work
	References

