Non-additive Lie centralizer of strictly upper triangular matrices

DRISS AIAT HADJ AHMED

Centre Régional des Metiers d’Education et de Formation (CRMEF)
Tangier, Morocco

Received December 31, 2018 Accepted February 4, 2019

Abstract: Let \(F \) be a field of zero characteristic, let \(N_n(F) \) denote the algebra of \(n \times n \) strictly upper triangular matrices with entries in \(F \), and let \(f : N_n(F) \rightarrow N_n(F) \) be a non-additive Lie centralizer of \(N_n(F) \), that is, a map satisfying that \(f([X,Y]) = [f(X),Y] \) for all \(X,Y \in N_n(F) \). We prove that \(f(X) = \lambda X + \eta(X) \) where \(\lambda \in F \) and \(\eta \) is a map from \(N_n(F) \) into its center \(Z(N_n(F)) \) satisfying that \(\eta([X,Y]) = 0 \) for every \(X,Y \) in \(N_n(F) \).

Key words: Lie centralizer, strictly upper triangular matrices, commuting map.

AMS Subject Class. (2010): 16S50, 15A27, 16U80, 15B99, 47B47, 16R60.

1. Introduction

Consider a ring \(R \). An additive mapping \(T : R \rightarrow R \) is called a left (respectively right) centralizer if \(T(ab) = T(a)b \) (respectively \(T(ab) = aT(b) \)) for all \(a,b \in R \). The map \(T \) is called a centralizer if it is a left and a right centralizer. The characterization of centralizers on algebras or rings has been a widely discussed subject in various areas of mathematics.

In [13] Zalar proved the following interesting result: if \(R \) is a 2-torsion free semiprime ring and \(T \) is an additive mapping such that \(T(a^2) = T(a)a \) (or \(T(a^2) = aT(a) \)), then \(T \) is a centralizer. Vukman [12] considered additive maps satisfying similar conditions, namely \(2T(a^2) = T(a)a + aT(a) \) for any \(a \in R \), and showed that if \(R \) is a 2-torsion free semiprime ring then \(T \) is also a centralizer. Since then, the centralizers have been intensively investigated by many mathematicians (see, e.g., [3, 4, 5, 6, 8]).

Let \(R \) be a ring. An additive map \(f : R \rightarrow R \), is called a Lie centralizer of \(R \) if

\[
[f([x,y])] = [f(x),y] \quad \text{for all } x,y \in R,
\]

where \([x,y]\) is the Lie product of \(x \) and \(y \).

ISSN: 0213-8743 (print), 2605-5686 (online)

The inspiration of this paper comes from the articles [1, 5, 7] in which the authors deal with the Lie centralizer maps of triangular algebras and rings. In this note we will consider non-additive Lie centralizers on strictly upper triangular matrices over a field of zero characteristic.

Throughout this article, \(F \) is a field of zero characteristic. Let \(M_n(F) \) and \(N_n(F) \) denote the algebra of all \(n \times n \) matrices and the algebra of all \(n \times n \) strictly upper triangular matrices over \(F \), respectively. We use \(\text{diag}(a_1, a_2, \ldots, a_n) \) to represent a diagonal matrix with diagonal \((a_1, a_2, \ldots, a_n) \) where \(a_i \in F \). The set of all \(n \times n \) diagonal matrices over \(F \) is denoted by \(D_n(F) \).

Let \(I_n \) be the identity in \(M_n(F) \), \(J = \sum_{i=1}^{n-1} E_{i,i+1} \) and \(\{ E_{ij} : 1 \leq i, j \leq n \} \) the canonical basis of \(M_n(F) \), where \(E_{ij} \) is the matrix with 1 in the \((i, j)\) position and zeros elsewhere. By \(C_{N_n(F)}(X) \) we will denote the centralizer of the element \(X \) in the ring \(N_n(F) \).

The notation \(f : N_n(F) \to N_n(F) \) means a non-additive map satisfying \(f([X,Y]) = [f(X),Y] \) for all \(X,Y \in N_n(F) \).

Notice that it is easy to check that \(Z(N_n(F)) = FE_{1n} \).

The main result in this paper is the following:

Theorem 1.1. Let \(F \) be a field of zero characteristic. If \(f : N_n(F) \to N_n(F) \) is a non-additive Lie centralizer then there exists \(\lambda \in F \) and a map \(\eta : N_n(F) \to Z(N_n(F)) \) satisfying \(\eta([X,Y]) = 0 \) for every \(X,Y \in N_n(F) \) such that \(f(X) = \lambda X + \eta(X) \) for all \(X \in N_n(F) \).

Notice that the converse is trivially true: every map \(f(X) = \lambda X + \eta(X) \) with \(\eta \) satisfying the condition in Theorem 1.1 is a (non-additive) Lie centralizer.

2. **Proofs**

Let’s start with some basic properties of Lie centralizers.

Lemma 2.1. Let \(f \) be a non-additive Lie centralizer of \(N_n(F) \). Then:

1. \(f(0) = 0 \);
2. for every \(X,Y \in N_n(F) \), we have \(f([X,Y]) = [X,f(Y)] \);
(3) \(f \) is a commuting map, i.e., \(f(X)X = Xf(X) \) for all \(X \in N_n(\mathcal{F}) \).

Proof. To prove (1) it suffices to notice that
\[
f(0) = f([0, 0]) = [f(0), 0] = 0.
\]

(2) Observe that if \(f([X, Y]) = [f(X), Y] \), then we have
\[
f(XY - YX) = f(X)Y - Yf(X).
\]
Interchanging \(X \) and \(Y \) in the above identity, we have
\[
f(YX - XY) = f(Y)X - Xf(Y).
\]
Replacing \(X \) with \(-X\) in the above relation, we arrive at
\[
f(XY - YX) = Xf(Y) - f(Y)X\text{ which can be written as } f([X, Y]) = [X, f(Y)].
\]
From (1) one also gets (3):
\[
[f(X), X] = f([X, X]) = f(0) = 0.
\]

Remark 2.1. Let \(f \) be a non-additive Lie centralizer of \(N_n(\mathcal{F}) \) and \(X \in C_N(\mathcal{F})(Y) \). Then \(f(X) \in C_N(\mathcal{F})(Y) \). Indeed, if \(X \in C_N(\mathcal{F})(Y) \), then \([X, Y] = 0 \) and
\[
0 = f(0) = f([X, Y]) = [f(X), Y].
\]

Lemma 2.2. Let \(f \) be a non-additive Lie centralizer of \(N_n(\mathcal{F}) \). Then:

(1) \(f \left(\sum_{i=1}^{n-1} a_i E_{i,i+1} \right) = \sum_{i=1}^{n-1} b_i E_{i,i+1} \);

(2) there exists \(\lambda \in \mathcal{F} \) such that \(f(J) = \lambda J \).

Proof. Let \(D_0 = \sum_{i=1}^{n} (n - i) E_{i,i} \).

(1) Consider \(A \in M_n(\mathcal{F}) \). It is well known that \([D_0, A] = A\) if and only if \(A = \sum_{i=1}^{n-1} a_i E_{i,i+1} \).

Hence, if \(A = \sum_{i=1}^{n-1} a_i E_{i,i+1} \), we have \([D_0, A] = A\). Thus \(f([D_0, A]) = [D_0, f(A)] = f(A) \). Therefore \(f(A) = \sum_{i=1}^{n-1} b_i E_{i,i+1} \).
(2) As in (1), consider \(A = \sum_{i=1}^{n-1} a_i E_{i,i+1} \) for some \(a_i \in \mathcal{F} \). Then \([J, A] = 0\) if and only if \(A = aJ \) for some \(a \in \mathcal{F} \).

Indeed, \(f(J) = \sum_{i=1}^{n-1} a_i E_{i,i+1} \) by (1). Thus, \(0 = f(0) = f([J, J]) = [J, f(J)] \).

Hence, there exists \(\lambda \in \mathcal{F} \) such that \(f(J) = \lambda J \). \(\blacksquare \)

We will need the following lemma.

Lemma 2.3. (Lemma 2.1, [14]) Suppose that \(\mathcal{F} \) is an arbitrary field. If \(G, H \in UT_n(\mathcal{F}) \) are such that \(g_{i,i+1} = h_{i,i+1} \neq 0 \) for all \(1 \leq i \leq n - 1 \), then \(G \) and \(H \) are conjugated in \(UT_n(\mathcal{F}) \).

Here \(UT_n(\mathcal{F}) \) is the multiplicative group of \(n \times n \) upper triangular matrices with only 1’s in the main diagonal. From the lemma above we obtain the following corollary.

Corollary 2.1. Let \(\mathcal{F} \) be a field. For every \(A = \sum_{1 \leq i < j \leq n} a_{ij} E_{ij} \), where \(a_{i,i+1} \neq 0 \) for every \(i = 1, \ldots, n-1 \), there exists \(B \in T_n(\mathcal{F}) \) such that \(B^{-1} AB = J \) and \(T_n(\mathcal{F}) \) is the ring of upper triangular matrices.

Proof. Let \(A \) be a matrix in \(N_n(\mathcal{F}) \) of the mentioned form. Then \(I_n + A \) is a unitriangular matrix. Let’s notice first that there exists \(B_1 \in D_n(\mathcal{F}) \) such that \((B_1^{-1} AB_1)_{i,i+1} = 1 \) for all \(i \in \mathbb{N} \). We can construct \(B_1 \in D_n(\mathcal{F}) \) recursively by:

\[
(B_1)_{11} = 1, \quad (B_1)_{i,i+1} = (B_1)_{ii} \cdot (A_{i,i+1})^{-1} \quad \text{for} \quad i \geq 1.
\]

Consider the matrix \(I_n + B_1^{-1} AB_1 \in UT_n(\mathcal{F}) \). The unitriangular matrices \(I_n + J \) and \(I_n + B_1^{-1} AB_1 \) fulfill the condition in Lemma 2.3. Hence, there exists \(B_2 \in UT_n(\mathcal{F}) \) such that

\[
I_n + J = B_2^{-1} (I_n + B_1^{-1} AB_1) B_2.
\]

Then \(J = B_2^{-1} (B_1^{-1} AB_1) B_2 \). Taking \(B = B_1 B_2 \in T_n(\mathcal{F}) \), we get \(J = B^{-1} AB \) as wanted. \(\blacksquare \)

Lemma 2.4. Let \(A = \sum_{i<j} a_{ij} E_{ij} \) be a matrix in \(N_n(\mathcal{F}) \) with \(a_{i,i+1} \neq 0 \) for every \(i = 1, \ldots, n-1 \). Then there exists \(\lambda_A \in \mathcal{F} \) such that \(f(A) = \lambda_A A \).
Proof. Since $A = \sum_{1 \leq i < j \leq n} a_{ij}E_{ij}$, where $a_{i,i+1} \neq 0$, there exists $T \in T_n(\mathcal{F})$ such that $TAT^{-1} = J$ by the previous corollary. Define $h : N_n(\mathcal{F}) \to N_n(\mathcal{F})$ by $h(X) = Tf(T^{-1}XT)T^{-1}$. Then h is a non-additive Lie centralizer. Indeed, for all $A, B \in N_n(\mathcal{F})$ we have:

$$h([A,B]) = Tf(T^{-1}[A,B]T)T^{-1} = Tf(T^{-1}(AB - BA)T)T^{-1} = Tf(T^{-1}ATT^{-1}BT - T^{-1}BTT^{-1}AT)T^{-1} = Tf([T^{-1}AT, T^{-1}BT])T^{-1} = T(f(T^{-1}AT),T^{-1}BT)T^{-1} = T(f(T^{-1}AT)T^{-1}B - BTf(T^{-1}AT))T^{-1} = [Tf(T^{-1}AT)T^{-1}, B] = [h(A), B].$$

Hence, $h(J) = \lambda_A J$ by Lemma 2.2. Then

$$Tf(A)T^{-1} = Tf(T^{-1}(TAT^{-1})T)T^{-1} = h(J) = \lambda_A J = \lambda_A TAT^{-1}. $$

Multiplying the left and right sides by T^{-1} and T respectively yields $f(A) = \lambda_A A$. |

Now we wish to extend Lemma 2.4 to all elements of $N_n(\mathcal{F})$. In order to do this, let’s introduce the following set:

$$\mathcal{S} = \{ B = (b_{ij}) \in N_n(\mathcal{F}) : b_{i,i+1} \neq 0 \quad \forall \ i = 1, \ldots, n-1 \}. $$

This set has an important property that is established below.

Lemma 2.5. Let \mathcal{F} be a field. Every element of $N_n(\mathcal{F})$ can be written as a sum of at most two elements of \mathcal{S}.

Proof. If $a_{i,i+1} \neq 0$ for all $i = 1, \ldots, n-1$, then A belongs to \mathcal{S}, so there is nothing to prove. If A is not in \mathcal{S}, then we can define B_1 and B_2 as follows:

$$(B_1)_{ij} = \begin{cases} a_{i,i+1} - b_i & \text{if } j = i + 1, \\ a_{ij} & \text{if } j > i + 1, \end{cases} \quad (B_2)_{ij} = \begin{cases} b_i & \text{if } j = i + 1, \\ 0 & \text{otherwise,} \end{cases}$$

where b_i is an element in \mathcal{F} different from $a_{i,i+1}$. It is easy to see that B_1, B_2 are in \mathcal{S}, and $A = B_1 + B_2$, so we wanted. |
Lemma 2.6. Let \mathcal{F} be a field. For arbitrary elements A, B of $N_n(\mathcal{F})$, there exists $\lambda_{A,B} \in \mathcal{F}$ such that
\[
f(A + B) = f(A) + f(B) + \lambda_{A,B} E_{1n}.
\]

Proof. For any A, B, X of $N_n(\mathcal{F})$, we have
\[
[f(A + B), X] = f([A + B, X])
\]
\[
= [A + B, f(X)]
\]
\[
= [A, f(X)] + [B, f(X)]
\]
\[
= [f(A), X] + [f(B), X]
\]
\[
= [f(A) + f(B), X],
\]
which implies that $f(A + B) - f(A) - f(B) \in \mathcal{Z}(N_n(\mathcal{F}))$. Thus, there exists $\lambda_{A,B} \in \mathcal{F}$ such that $f(A + B) = f(A) + f(B) + \lambda_{A,B} E_{1n}$.

Now we can prove the main theorem.

Proof of Theorem 1.1. Let $A, B \in S$ be two non-commuting elements. By Lemma 2.4, $f(A) = \lambda_A A, f(B) = \lambda_B B$, $\lambda_A, \lambda_B \in \mathcal{F}$.

Since f is a non-additive Lie centralizer, we get,
\[
f([A, B]) = [f(A), B] = \lambda_A [A, B]
\]
\[
= [A, f(B)] = \lambda_B [A, B].
\]

Then, $[A, B] \neq 0$ implies that $\lambda_A = \lambda_B$. If $A, B \in S$ commute, then we take $C \in S$ that does not commute neither with A nor with B. As we have just seen, $\lambda_A = \lambda_C$ and $\lambda_B = \lambda_C$. So $\lambda_A = \lambda_B = \lambda$ for arbitrary elements $A, B \in S$. Given $X \in N_n(\mathcal{F})$ we know, by Lemma 2.5 that there exists $A, B \in S$ such that $X = A + B$ (we can assume that $X \notin S$). Then $f(X) - f(A) - f(B) \in \mathcal{Z}(N_n(\mathcal{F}))$ by Lemma 2.6.

That is $f(X) - \lambda_A A - \lambda_B B = f(X) - \lambda X \in \mathcal{Z}(N_n(\mathcal{F}))$ for $\lambda \in \mathcal{F}$ such that $f(A) = \lambda A$ for each $A \in S$.

We can define $\eta : N_n(\mathcal{F}) \to \mathcal{Z}(N_n(\mathcal{F}))$ such that $\eta(X) = f(X) - \lambda X$, that is, $f(X) = \lambda X + \eta(X)$.

Notice that $\eta(A) = 0$ for each $A \in S$. Furthermore, if $X, Y \in N_n(\mathcal{F})$, then
\[
f([X, Y]) = \lambda [X, Y] + \eta([X, Y]) = [f(X), Y]
\]
\[
= \lambda [X + \eta(X), Y] = \lambda [X, Y],
\]
since $\eta(X) \in \mathcal{Z}(N_n(\mathcal{F}))$.

Consequently, $\eta([X, Y]) = 0$ and Theorem 1.1 is proved.
ACKNOWLEDGEMENTS

The author would like to thank the referee for providing useful suggestions which served to improve this paper.

REFERENCES

