UNIVERSIDAD DE EXTREMADURA

Escuela Politécnica
Grado en Ingeniería en Sonido e Imagen en Telecomunicación

Trabajo Fin de Grado

Caracterización electromagnética de zonas urbanas con dosímetro personal

Joel Castañón Campos
Convocatoria Julio, 2016
UNIVERSIDAD DE EXTREMADURA

Escuela Politécnica

Grado en Ingeniería en Sonido e Imagen en Telecomunicación

Trabajo Fin de Grado

Caracterización electromagnética de zonas urbanas con dosímetro personal

Autor: Joel Castañón Campos
Tutor: Jesús Manuel Paniagua Sánchez

Tribunal Calificador
Presidente: Antonio Jiménez Barco
Secretario: Francisco Javier Guillén Gerada
Vocal: María Montaña Rufo Pérez
ÍNDICE GENERAL DE CONTENIDOS

RESUMEN ... 8

1. INTRODUCCIÓN .. 11
 1.1. TIPOS DE EMISIONES RADIOELÉCTRICAS .. 13
 1.2. SISTEMAS DE TELEFONÍA MÓVIL ... 15
 1.2.1. Estaciones base de telefonía móvil ... 16
 1.3. EFECTOS SOBRE LA SALUD .. 18

2. OBJETIVOS .. 20

3. ESTADO DEL ARTE .. 22

4. METODOLOGÍA .. 28
 4.1. DESCRIPCIÓN DEL ENTORNO DE MEDIDA ... 29
 4.1.1. Situación geográfica ... 29
 4.1.2. Descripción de los principales focos de emisión ... 31
 4.2. MATERIAL UTILIZADO ... 36
 4.3. MÉTODO DE MUESTREO .. 39
 4.3.1. Muestreo extensivo .. 39
 4.3.2. Análisis de repetibilidad ... 41
 4.3.3. Influencia de la altura en las medidas .. 41
 4.4. TRATAMIENTO DE DATOS ... 42
 4.4.1. Tratamiento estadístico .. 42
 4.4.2. Evaluación dosimétrica .. 42
 4.4.3. Representación en forma de mapas ... 44
 4.4.3.1. Realización de mapas .. 44
 4.4.3.2. Surfer 8 .. 45
 4.4.3.3. Método Kriging de interpolación .. 45

5. EXPOSICIÓN DE RESULTADOS ... 47
 5.1. REPETIBILIDAD Y VARIACIÓN CON LA ALTURA .. 49
 5.2. ANÁLISIS ESTADÍSTICO DEL CAMPO ELÉCTRICO .. 52
 5.3. DISTRIBUCIÓN ESPACIAL ... 55
 5.4. ANÁLISIS DE DENSIDAD DE POTENCIA ... 64
 5.5. DOSIMETRÍA .. 66
5.6. COMPARACIÓN CON OTROS ESTUDIOS. ... 67

6. CONCLUSIONES .. 70

REFERENCIAS BIBLIOGRÁFICAS ... 73
ÍNDICE DE TABLAS

TABLA 1: ANTENAS FM DE CÁCERES (RD 2006) .. 31
TABLA 2: CARACTERÍSTICAS DE LAS ESTACIONES DE TELEFONÍA MÓVIL PRÓXIMAS A LA ZONA DE ESTUDIO (MINETUR 2016) ... 34
TABLA 3: DISTANCIAS ENTRE LAS ANTENAS MOSTRADAS EN LA FIGURA 9 Y EL CENTRO GEOMÉTRICO DEL ÁREA ESTUDIADA ... 36
TABLA 4: CARACTERÍSTICAS DEL DOSÍMETRO POR BANDA DE FRECUENCIA (EME SPY 140) ... 38
TABLA 5: DISTANCIA DE LOS RECORRIDOS REALIZADOS EN CADA CALLE ESTUDIADA ... 40
TABLA 6: VALORES DE UMbral DE DETECCIÓN (V/M) Y % POR ENCIMA DEL UMbral PARA CADA BANDA DE FRECUENCIA ... 48
TABLA 7: ESTUDIO ESTADÍSTICO DE LAS MEDIDAS DE CAMPO ELÉCTRICO (E) REALIZADAS EN EL ESTUDIO DE REPETIBILIDAD. E_{max} MÁXIMO, E_{min} MÍNIMO, E_{med} MEDIO, E_{med} MEDIANA, E_{med} MEDIO DE LAS MEDIANAS, Σ DESVIACIÓN ESTÁNDAR, E ERROR ABSOLUTO Y E_{r} ERROR RELATIVO. .. 50
TABLA 8: ESTUDIO ESTADÍSTICO DE LAS MEDIDAS REALIZADAS DURANTE UN MINUTO A DIFERENTES ALTURAS ... 51
TABLA 9: ESTUDIO ESTADÍSTICO DEL NIVEL TOTAL DE CAMPO ELÉCTRICO POR CALLES ... 53
TABLA 10: VALOR DE LA MEDIANA DEL CAMPO ELÉCTRICO TOTAL PARA CADA BANDA DE FRECUENCIA ... 53
TABLA 11: VALOR DE E_{med} POR CALLES (ORIENTACIÓN NORTE-SUR) PARA CADA BANDA DE FRECUENCIA .. 54
TABLA 12: VALOR DE E_{med} POR CALLES (ORIENTACIÓN ESTE-OESTE) PARA CADA BANDA DE FRECUENCIA .. 54
TABLA 13: ESTUDIO ESTADÍSTICO DE LA DENSIDAD DE POTENCIA EN LAS 7 BANDAS DE FRECUENCIA PRINCIPALES .. 64
TABLA 14: PORCENTAJE QUE REPRESENTA CADA BANDA SOBRE EL VALOR TOTAL DE DENSIDAD DE POTENCIA ... 64
TABLA 15: ESTUDIO ESTADÍSTICO DE LA EXPOSICIÓN AL PÚBLICO MEDIDO CON EL DOSÍMETRO ... 66
ÍNDICE DE FIGURAS

FIGURA 1: CLASIFICACIÓN DE LAS EMISIONES ELECTROMAGNÉTICAS (WWW.BLOGS.HOY.ES/CIENCIA) ... 14

FIGURA 2: ESTACIÓN BASE DE TELEFONÍA MÓVIL EN LA AZOTEA DE UN EDIFICIO ... 17

FIGURA 3: TORRETA DE TELEFONÍA MÓVIL .. 17

FIGURA 4: GRADO DE PENETRACIÓN DE LAS RADIAÇIONES DE TELEFONÍA EN EL CEREBRO (CEREBRONIAD.BLOGSPOT.COM) .. 18

FIGURA 5: SITUACIÓN GEOGRÁFICA DE CÁCERES (SIG CÁCERES) 29

FIGURA 6: SITUACIÓN DEL BARRIO “NUEVO CÁCERES” SOBRE UNA FOTOGRAFÍA AÉREA DE LA CIUDAD ... 30

FIGURA 7: ANTENAS DE FM JUNTO A LA ESTACIÓN DE RENFE DE CÁCERES 32

FIGURA 8: ANTENA DE TELEFONÍA MÓVIL EN LA AZOTEA DE UN EDIFICIO 33

FIGURA 9: ANTENAS CERCANAS A LA ZONA DE ESTUDIO: EN AZUL, DE RADIO FM; EN NARANJA, DE TELEFONÍA MÓVIL .. 35

FIGURA 10: DOSÍMETRO EME SPY 140 .. 37

FIGURA 11: CAPTURA DE PANTALLA DEL SOFTWARE DEL DOSÍMETRO EME SPY 140 .. 37

FIGURA 12: FOTOGRAFÍA AÉREA DE LA ZONA DE ESTUDIO. EN ROJO SE INDICAN LOS PERFILS DE TOMA DE DATOS .. 40

FIGURA 13: CALLES EN LAS QUE SE REALIZÓ EL ANÁLISIS DE REPETIBILIDAD (ROJO). PUNTOS EN LOS QUE SE REALIZÓ EL ESTUDIO DE LA INFLUENCIA DE LA ALTURA EN LAS MEDIDAS (AMARILLO) ... 42

FIGURA 14: NIVELES DE REFERENCIA PARA CAMPOS ELÉCTRICOS, MAGNÉTICOS Y ELECTROMAGNÉTICOS (RD 2001) ... 44

FIGURA 15: INTERFAZ DEL SOFTWARE SURFER 8 .. 45

FIGURA 16: MAPA DE RADIAÇION CORRESPONDIENTE A LA BANDA DE FM 56

FIGURA 17: MAPA DE RADIAÇION CORRESPONDIENTE A LA BANDA DE GSM RX 57

FIGURA 18: MAPA DE RADIAÇION CORRESPONDIENTE A LA BANDA DE DECT 61

FIGURA 19: MAPA DE RADIAÇION CORRESPONDIENTE A LA BANDA DE WIFI 2G 62

FIGURA 20: MAPA DE RADIAÇION CORRESPONDIENTE A LOS VALORES TOTALES DE CAMPO ELÉCTRICO MEDIDOS EN LA ZONA DE ESTUDIO ... 63

FIGURA 21: MAPA DE RADIAÇION CORRESPONDIENTE A LA DENSIDAD DE POTENCIA (μW/M²) EN LA ZONA DE ESTUDIO .. 65
FIGURA 22: MAPA DE RADIACIÓN CORRESPONDIENTE AL ESTUDIO DOSIMÉTRICO . 67
Caracterización electromagnética de zonas urbanas con dosímetro personal

RESUMEN
El proyecto que se presenta lleva por título: “Caracterización electromagnética de zonas urbanas con dosímetro personal”.

El objetivo general de este proyecto es estudiar la viabilidad del dosímetro personal a la hora de realizar una caracterización electromagnética de zonas urbanas. Hemos elegido el barrio “Nuevo Cáceres”, ya que en él se han realizado estudios previos cuyos resultados podremos comparar con los nuestros. Otros objetivos más específicos de este trabajo son: evaluar la influencia de la altura del dosímetro en la detección del campo eléctrico y analizar la estabilidad de las medidas.

Las medidas se han realizado con un dosímetro personal EME SPY-140 isotrópico y selectivo de frecuencia, capaz de medir 14 bandas de frecuencias diferentes en el rango 88 MHz – 5.85 GHz. Estas mediciones podemos agruparlas en tres categorías:

1. Las destinadas al estudio extensivo, que se realizaron en movimiento por toda la zona de muestreo con el dosímetro a 1 m de altura sobre el suelo;

2. Las utilizadas para el estudio de repetibilidad, para comprobar la variación con el tiempo de los datos obtenidos. También se realizaron en movimiento, en determinadas calles, con el dosímetro a 1 m de altura.

3. Las destinadas a determinar la influencia de la altura de colocación del dosímetro en la medición. Se realizó con el dosímetro estático a 1 y 1.7 m de altura.

Los valores de campo eléctrico obtenidos han sido sometidos a un tratamiento estadístico y gráfico utilizando los siguientes softwares: Microsoft Office (Excel), Google Earth y Surfer8. Este último se utilizará para la realización de mapas de radiación. Junto con la evaluación de los niveles de campo eléctrico, se calculará la densidad de potencia asociada a estos valores y los coeficientes de exposición a fuentes con múltiples frecuencias.
En general, se pueden distinguir 4 bloques en el proyecto:

- Un primer bloque introductorio donde se recogen los fundamentos teóricos generales sobre campos electromagnéticos, sus efectos biológicos e información sobre los sistemas de telefonía móvil.

- En el segundo bloque, Metodología, se detalla todo lo referente a la toma de medidas. En él se hace una descripción de la localización del área de estudio, de los emplazamientos de las antenas a estudiar y los puntos de medida. A continuación, se describe el material utilizado y el tratamiento de los datos obtenidos.

- En el tercer bloque se presentan los datos obtenidos después del estudio estadístico, de esta forma se presentarán los niveles máximos, mínimos y medios, entre otros, de campo eléctrico en la zona de estudio. Además, se elaborarán mapas de radiación de la zona para las bandas de frecuencia que han tenido más presencia en el estudio. De forma complementaria a lo anterior, se hará el cálculo de los niveles de densidad de potencia y de exposición al público general asociados a los valores de campo eléctrico obtenidos.

- En el cuarto y último bloque, se comparan los resultados obtenidos en el estudio con las especificaciones que dictan las actuales normas vigentes. A partir de esta comparación, podrá llegarse a una conclusión sobre la influencia de las ondas electromagnéticas en la zona de estudio.
1. INTRODUCCIÓN
Los avances tecnológicos que están produciendo las llamadas tecnologías de la información y las telecomunicaciones están aportando innumerables ventajas a todos los niveles de la sociedad. La continua evolución tecnológica, la creciente demanda social de acceso a servicios hasta hace poco tiempo inaccesibles a la gran mayoría de los ciudadanos, la incorporación de nuevas tecnologías a todas las actividades sociales y económicas, la liberalización de las telecomunicaciones, etc., son algunos de los aspectos en los que se reflejan los múltiples beneficios asociados al progreso tecnológico, como uno de los signos de nuestro tiempo.

No obstante, junto a sus indudables ventajas, el progreso tecnológico conlleva también determinados riesgos que resulta necesario conocer, evaluar, y, en su caso, siempre que sea posible, mantener el equilibrio adecuado entre los beneficios y los riesgos asociados a ellos. Uno de estos riesgos es el derivado de la proliferación de estaciones de telefonía móvil y de las emisiones radioeléctricas que estas generan.

Igual que ha sucedido en el resto de los países europeos, en España se ha registrado en los últimos años un incremento en la preocupación de los ciudadanos hacia las cuestiones relacionadas con eventuales efectos nocivos derivados de la exposición involuntaria o inconsciente a campos electromagnéticos (CEM). Esta sensibilidad, que ha dado lugar a una percepción desmesurada de los pretendidos riesgos de dichas exposiciones, ha sido alimentada por informaciones alarmantes procedentes de fuentes no debidamente acreditadas y no siempre exentas de intereses político-económicos.

Pero los problemas relativos a los eventuales efectos nocivos para la salud no son los únicos asociados a la creciente aparición de estas infraestructuras. Junto a ellos, debemos destacar también los problemas derivados del impacto ambiental y urbanístico que generan.

En nuestro país el Real Decreto 1066/2001 (España, 2001) de 28 de septiembre, por el que se aprueba el Reglamento que establece condiciones de protección de dominio público radioeléctrico, restricciones a las emisiones radioeléctricas y medidas de protección sanitaria frente a emisiones
radioeléctricas y la Recomendación del Consejo de 12 de julio de 1999 (Europa, 1999) relativa a la exposición del público en general a campos electromagnéticos (0 Hz a 300 GHz) recogen exactamente los valores que propone el ICNIRP (International Commission on Non-Ionizing Radiation Protection) (ICNIRP, 1998) para exposiciones del público en general, a campos y ondas electromagnéticas hasta 300 GHz, lo que incluye a los campos magnéticos estáticos (frecuencia cero).

1.1. **Tipos de emisiones radioeléctricas.**

Los campos electromagnéticos son fenómenos naturales que siempre han estado presentes. Estos campos naturales son de origen magnético (como el producido por el giro del núcleo de hierro de la Tierra) y eléctrico (como el que se da lugar en las tormentas).

Las ondas electromagnéticas, en particular, son variaciones de los campos eléctrico y magnético que se propagan por el aire atenuándose con la distancia. De hecho, la atenuación que experimentan las ondas electromagnéticas al propagarse por el espacio es tan elevada que a unos pocos metros de las antenas los niveles de emisión de las mismas son muy pequeños.

La capacidad que tienen los campos electromagnéticos de propagarse por el espacio fue establecida en la segunda mitad del siglo XIX. Aunque hubo que esperar hasta principios del siglo XX para que vieran la luz sus primeras aplicaciones prácticas en el campo de la comunicación.

Las emisiones electromagnéticas pueden ser de dos tipos dependiendo de la frecuencia de emisión. En la figura 1 se puede ver la clasificación de las emisiones existentes en estos dos grandes grupos.
Emisiones ionizantes: La ionización es un proceso por el cual los electrones son desplazados de los átomos y moléculas. Son provocadas por emisiones de alta frecuencia como los Rayos X o los Rayos Ultravioletas. Su energía es tan elevada que puede provocar alteraciones en las moléculas de las células vivas, y según su utilización producir efectos beneficiosos o perjudiciales.

Emisiones no ionizantes: Son las provocadas por las emisiones de baja frecuencia, como aquellas empleadas en sistemas de telefonía móvil, difusión de radio y televisión. Las emisiones no ionizantes no disponen de energía suficiente para ionizar la materia, por lo que no afecta a la estructura atómica y molecular de los tejidos vivos. Para que la ionización se produzca se requiere una frecuencia superior a $9,66 \times 10^{14}$ Hz. No obstante, estas radiaciones pueden ceder energía suficiente, cuando inciden en los organismos vivos, como para producir efectos térmicos (de calentamiento) tales como los inducidos por las microondas. También las radiaciones no ionizantes intensas de frecuencias bajas pueden inducir corrientes eléctricas en los tejidos, que pueden afectar al funcionamiento de células sensibles a dichas corrientes como pueden ser las células musculares o las nerviosas. Los sistemas de telecomunicación no generan emisiones ionizantes. (Carrasco Rodríguez, 2003).
En la figura 1 se muestra de manera general la clasificación por bandas de frecuencias del espectro electromagnético.

Algunas de las bandas de frecuencias que se estudiarán en este proyecto serán las de Radio FM y las de Telefonía. Las bandas de frecuencia en la que opera la Radio FM está en torno a 100 MHz, mientras que la Telefonía está entre los 900 y 2100 MHz.

Por otra parte, la luz también es una radiación electromagnética, pero de frecuencia superior a las anteriores. Por último, se encuentran las radiaciones ionizantes con frecuencias superiores a las de la luz (millones de veces superiores a las utilizadas por la telefonía móvil).

1.2. Sistemas de telefonía móvil.

Como en este proyecto se usará un dosímetro personal de banda ancha, seis de las catorce bandas de frecuencia que detecta pertenecen a Telefonía. Por este motivo haremos se hace hincapié en las características de la Telefonía Móvil en España.

La Telefonía Móvil en España emplea las siguientes bandas de frecuencia:

- El denominado Global System for Mobile Communications (GSM), que emplea tecnología digital y que opera en la banda de frecuencias de los 900 MHz.
- Una extensión de GSM llamado European Digital Communications System (DCS-1800), que es muy semejante al GSM, pero opera en la banda de 1800 MHz.
- Por último, se encuentra el Universal Mobile Telecomunications System (UMTS), el cual opera en la banda de 2100 MHz y pertenece a la tercera generación de comunicaciones móviles.
El funcionamiento de los teléfonos móviles (ya sean GSM-900, DCS-1800 o UMTS-2000) está condicionado por la existencia de estaciones base (denominadas comúnmente BTS) en su área próxima de alcance. Dichas estaciones base son un soporte de red necesario para la interconexión de los teléfonos móviles a las centrales de conmutación que permiten establecer la comunicación entre los usuarios del servicio de telefonía.

Las características de la irradiación que puede recibir un individuo difieren según la fuente de la señal sea una antena de una estación fija o un teléfono móvil. En el caso de la antena de la estación base, la distancia a la que el sujeto se encuentra habitualmente de la antena es mucho mayor que la longitud de onda de la señal. Por consiguiente, la radiación se recibe en forma de onda electromagnética plana transversal. Esta situación corresponde a la denominada exposición en “campo lejano”, en la cual el CEM queda perfectamente caracterizado por su densidad de potencia. Por el contrario, en el caso de los teléfonos, la distancia de exposición es muy corta, comparable a la longitud de onda de la señal. Se trata entonces de una exposición en “campo cercano”; una situación en la que el CEM presenta una distribución muy heterogénea que se ve drásticamente influida por la naturaleza y dimensiones de materiales cercanos. (COIT 2001)

1.2.1. Estaciones base de telefonía móvil.

Las antenas de telefonía móvil son elementos necesarios para el establecimiento de la comunicación entre los usuarios de teléfonos móviles, y entre éstos y los usuarios de teléfonos convencionales.

Dichas antenas se encuentran formando grupos instalados en azoteas o partes altas de edificios (en áreas urbanas), en torres o mástiles sobre el suelo (zonas rurales), a una altura comprendida entre los 15 m y 50 m, o en antenas camufladas en fachadas o techos, utilizadas actualmente para lugares de gran afluencia de personas y difícil colocación del otro tipo de antenas. El conjunto formado por las antenas, cableado y equipos accesorios, constituye lo que se denomina una “estación de base”.
Cada estación de base sólo puede dar servicio a un número limitado de usuarios, cubriendo una determinada región geográfica que constituye la “célula”. De ahí que el crecimiento del número de usuarios y la necesidad de abarcar cada vez más regiones de difícil acceso, dotándoles de un servicio de mejor calidad, han obligado a incrementar el número de dichas instalaciones. En las figuras 2,3 se muestran ejemplos de ubicación de antenas de telefonía móvil en los ámbitos urbano y rural.

Figura 2: Estación base de telefonía móvil en la azotea de un edificio

Figura 3: Torreta de telefonía móvil
1.3. Efectos sobre la salud.

El aumento de las instalaciones de telecomunicaciones ha generado cierto miedo por el impacto de las estaciones base en el entorno urbano por parte de la población. Este miedo ha sido suscitado por la difusión de múltiples mensajes confusos sobre los supuestos efectos de la telefonía móvil sobre la salud.

Es incuestionable que cualquier agente externo, ya sea físico o químico, puede provocar reacciones biológicas en el cuerpo humano. Estas reacciones no implican la existencia de un efecto perjudicial para la salud.

Para la valoración de los posibles efectos de los campos electromagnéticos sobre la salud, los distintos comités científicos formados por expertos reconocidos de distintas áreas y especialidades (ingeniería, medicina, física...), han tenido en cuenta el conjunto de todas las investigaciones publicadas sobre este tema.

Como resumen, se llegó a la conclusión de que los efectos registrados bajo exposición a campos electromagnéticos usados por las telecomunicaciones, están relacionados con la capacidad que tienen estas ondas de inducir corrientes eléctricas en los tejidos corporales expuestos, lo que conlleva la elevación de la temperatura interna del cuerpo (figura 4). Si el incremento de la temperatura corporal no es severo, superior a 1ºC, la sangre es capaz de disipar el exceso de calor.

![Grado de penetración de las radiaciones del celular en el cerebro](cerebroniad.blogspot.com)

Figura 4: Grado de penetración de las radiaciones de telefonía en el cerebro (cerebroniad.blogspot.com)
En este aspecto, los efectos de la telefonía móvil son los mismos que los de cualquier fuente de calor como la calefacción. En concreto, estas conclusiones se basan en:

- **Estudios experimentales**: realizados en los laboratorios de investigación con células aisladas y/o animales.

- **Estudios clínicos**: llevados a cabo en voluntarios que se han permitido que se monitorice su organismo mientras se someten a campos electromagnéticos como los existentes en la vida diaria.

- **Estudios epidemiológicos**: que fundamentalmente son análisis objetivos, a partir de los historiales médicos y no por medio de encuestas directas, de la salud de grupos de población expuestos y no expuestos a campos electromagnéticos. (ASEPEYO, 2005)
2. OBJETIVOS
El objetivo general de este proyecto es estudiar la viabilidad del dosímetro personal a la hora de realizar una caracterización electromagnética de zonas urbanas. Otros objetivos más específicos de este trabajo son: realizar una caracterización electromagnética en un barrio residencial de la ciudad de Cáceres, barrio “Nuevo Cáceres”; evaluar la influencia de la altura del dosímetro en la detección del campo eléctrico, analizar la estabilidad de las medidas y comparar los niveles de campo detectados con la normativa vigente.

Para llevar a cabo este estudio utilizaremos un dosímetro personal EME SPY 140 de la casa Satimo capaz de medir 14 bandas de frecuencia. Con la ayuda de este dosímetro personal se hará un recorrido por todas las calles que conforman este barrio, con el objetivo de que una vez se hayan realizado las medias y de forma posterior al estudio y tratamiento de estas, podamos ver qué bandas de frecuencia son las que están más presentes en la zona.

Una vez tengamos estos resultados, se realizará una representación espacial de estos, para así, con la utilización del software Surfer 8, podamos realizar mapas de radiación de la zona estudiada para así ver de una forma más clara cuales han sido los resultados obtenidos.

Por último, deberemos comprobar si los resultados obtenidos tienen relación con los obtenidos en diferentes estudios realizados anteriormente sobre la misma temática y si estos resultados cumplen las exigencias que dictan las normativas actuales.
3. ESTADO DEL ARTE
El fin de este apartado será el de mostrar estudios previos al presente proyecto los cuales comparten la misma temática. En todos ellos se ha hecho un estudio de la exposición electromagnética sobre la población, cada uno de ellos en distintos ámbitos.

Esta búsqueda de información previa nos servirá para saber de qué manera se han elaborado este tipo de proyectos en otros países, que metodología han seguido, cuáles han sido los resultados obtenidos y, a partir de esta información, poder hacer una comparación entre estos estudios y el que se ha llevado a cabo en este proyecto. De esta forma, podremos ver la influencia de la metodología utilizada, el tratamiento de datos llevado a cabo y la diferencia entre resultados obtenidos en distintos países de la Unión Europea.

A pesar de que todos estos estudios tienen el mismo fin, realizar una caracterización electromagnética en áreas urbanas, cada uno de ellos sigue una metodología distinta en la que han utilizado distintos tipos de dosímetros o medidores de campos electromagnéticos.

Por este motivo, podemos hacer una comparación de las distintas metodologías seguidas. Para ello, primero se mostrarán los estudios realizados en otros lugares de Europa y a continuación los estudios previos realizados en la misma zona que la estudiada en este proyecto:

- (Bolte & Eikelbomm, 2012) realizan un estudio en Ámsterdam y Purmerend cuyo objetivo es recoger 24 horas de mediciones electromagnéticas de radiofrecuencia con localización vía GPS en la actividad diaria de 100 voluntarios. En este estudio se utilizó un dosímetro personal EMESPY 120 (capaz de medir 12 bandas de frecuencia) con una configuración de 10s entre medidas. Las mediciones se realizaron con el dosímetro dentro de una funda de cámara colgada del hombro (1,10m aproximadamente) y el GPS junto a él.

- (Beekhuizen, 2013) realizan estudio en Ámsterdam cuyo objetivo es el de realizar repetidas mediciones continuas por caminos predefinidos de 2km. Utiliza el software NISMap para evaluar la
exposición ambiental de RF-EMF para estudios epidemiológicos y de salud en zonas urbanas. se utilizó un dosímetro personal **EME SPY 140** con un periodo de muestreo de **4s** y a una altura de **1m** sobre el suelo. Además, se hicieron las mediciones por duplicado para obtener una estimación más robusta.

Por otro lado, (Urbinello, 2014) realiza un estudio cuyo objetivo es el de evaluar las exposiciones a campos electromagnéticos y la repetibilidad en mediciones diarias sobre zonas urbanas en las ciudades de Ámsterdam y Basilea. En él se utilizaron distintos dosímetros para realizar las medidas, **EME SPY 120** en Basilea y **EME SPY 140** en Ámsterdam, ambos con una configuración de **4s** entre muestras. El estudio de repetibilidad se realizó durante 12 días, donde la toma de datos tuvo lugar en las mismas fechas y horas del día en Basilea y Ámsterdam. En este estudio se detectó que se producía diafonía entre las bandas de DECT y GSMrx, por lo que no se tuvo en cuenta la banda de DECT en el cálculo de niveles de exposición.

Otro trabajo que mencionaremos será el de (Gallego Rodríguez, 2013) en la ciudad de Cáceres. El objetivo de este trabajo es el estudio de radiaciones procedentes de estaciones base de telefonía móvil en espacios sensibles del ámbito urbano como son parques u hospitales. En él se utilizó dos tipos de medidores de campo distintos para realizar las medidas: medidor de campo **PMM 8053** y un dosímetro personal **EME SPY 140**. De esta forma, al utilizar estos dos métodos de captación de campos electromagnéticos, se podrá ver la correlación entre los valores obtenidos con estos. La configuración utilizada para intervalos de 6 minutos es: mediciones **cada segundo** con el medidor PMM y cada **4 segundos** con el dosímetro.

(Marcos Gaspar, 2005) y (Balas Sánchez, 2012) han realizado mapas radioeléctricos en zonas urbanas, en concreto, en la misma zona estudiada en el presente proyecto, por lo que nos servirá para comparar los valores obtenidos en este estudio con el que se
va a realizar. En este caso, el material utilizado es un medidor **PMM 8053** y una sonda de campo eléctrico **EP-330**, con los cuales se fueron tomando medidas en distintos puntos de la zona de estudio. En el primero de los citados estudios los datos se tomaron con la sonda estática, sobre trípode, y en el segundo con la sonda en movimiento.

Como vemos, algunos de estos estudios se asemejan bastante al nuestro por la metodología utilizada, ya que en la mayoría se ha utilizado un dosímetro personal EME SPY 120 o 140. Esto no es de gran importancia a la hora de la obtención de resultados ya que la única diferencia entre estos es el número de bandas de frecuencia medidas, 12 con EME SPY 120 y 14 con EME SPY 140 (incluye las bandas de WIMAX y WFI5G).

Teniendo esto en cuenta, los resultados obtenidos en estos estudios se asemejarán, en parte, a los que obtendremos en este proyecto. Por este motivo podrán servirnos como referencia a la hora de discutir sobre los resultados obtenidos y sacar las conclusiones.

En cuanto a los resultados obtenidos en los estudios, son muy dispares ya que cada uno de ellos tenía un objeto de estudio distinto. A continuación, se verán cuáles han sido:

- **(Bolte & Eikelbomm, 2012)** → Este estudio ha medido la cantidad de densidad de potencia radiada por cada una de las bandas de frecuencia, de forma que se ha obtenido una densidad de potencia media total de **0,180 mW/m² (0,260V/m)**, de la cual, la contribución de cada una de las bandas ha sido la siguiente: **DECT: 31,7% GSMtx: 18,2%, DCS: 18,6%; UMTS: 0,7%, WiFi 14,1%, GSMrx: 3,8%, DCSrx: 7,5%, UMTSr: 0,9%, FM 3,0%, TV3: 0,7%, TV4&5: 0,6% y TETRA: 0,1%**.

- **(Beekhuizen, 2013)** → El objetivo de este estudio era el de medir la radiación de las estaciones base de telefonía móvil, por lo que los resultados serán los correspondientes a las bandas de GSM900, GSM1800 (también llamado DCS) y UMTS, tanto la
transmisión como la recepción en todas ellas. Los resultados numéricos que ofrece el estudio son escasos, pero muestra una intensidad de campo eléctrico promedio de 0,21 V/m para GSM900 y 0,09 V/m para UMTS. No ofrece resultados para GSM1800 (DCS) ya que se observó que para esta banda de frecuencia se producía diafonía con la banda de DECT, por lo que no se tuvo en cuenta a la hora de mostrar los resultados.

- (Urbinello, 2014) → En este estudio se comprobó la variabilidad de las mediciones en un estudio de repetibilidad. Los resultados de estas mediciones se distinguen según el área de estudio, zona de negocios o zona residencial. Como para poder hacer una comparación de resultados solo nos interesa la zona residencial, nos centraremos en esta. La exposición de las estaciones base de telefonía móvil osciló entre 0,30 y 0,63 V/m en áreas de negocios y centro de la ciudad y en zonas residenciales de 0,09 a 0,41 V/m, en concreto en las zonas residenciales se midieron unos valores medios de campo eléctrico de 0,27 V/m en Basilea y 0,41 V/m en Ámsterdam.

- (Gallego Rodríguez, 2013) → como ya se ha explicado, en este estudio se realizaron las mediciones de dos formas diferentes, con un medidor de campo PMM 8053 y con un dosímetro personal EME SPY 140. Los resultados obtenidos tras la medición con el medidor PMM oscilan entre 0,26 y 4,24 V/m, siendo su valor medio de 0,99 V/m, en el caso de la densidad de potencia los valores oscilaron entre 0,02 y 4,78 μW/cm², con un valor medio de 0,46 μW/cm². Con respecto a las mediciones realizadas con el dosímetro, los resultados obtenidos oscilaron entre 0,13 y 5,20 V/m, siendo el valor medio de 1,12 V/m, en el caso de la densidad de potencia los valores oscilaron entre 0,01 y 7,16 μW/cm², siendo su valor medio de 0,55 μW/cm².

- (Marcos Gaspar, 2005) → en este caso se volvió a utilizar un medidor PMM 8053 y una sonda EP-330, de manera que los valores de campo eléctrico obtenidos oscilaron entre 0,21 y 3,27
V/m, siendo su media de 0,70 V/m. En cuanto a la densidad de potencia, los valores obtenidos oscilaron entre 0,12 y 28,4 mW/m², siendo el valor medio de 2,36 mW/m². A su vez (Balas Sánchez, 2012), habiendo utilizado la misma instrumentación, obtuvo unos valores de campo eléctrico que oscilaban entre 0,21 y 3,27 V/m, siendo su valor medio de 0,72 V/m.
4. METODOLOGÍA
En éste capítulo, tenemos como objetivo:

- Describir el entorno y la zona urbana en la que se han llevado a cabo las medidas, incluyendo la situación de los focos emisores.
- Describir el equipo de medida que se ha utilizado, así como sus especificaciones técnicas.
- Determinar los programas informáticos utilizados para el tratamiento de los datos obtenidos.
- Especificar la metodología de trabajo seguida.

4.1. Descripción del entorno de medida.

4.1.1. Situación geográfica.

Dados los objetivos del estudio, a la hora de elegir una zona de estudio se ha buscado un lugar en el que hubiese visión directa con las antenas, que el campo eléctrico al que estuviese expuesta la zona fuese detectado por la sonda utilizada y que fuese un lugar en el que se hayan hecho estudios similares anteriormente para poder hacer una comprobación de los resultados obtenidos. Por todos estos motivos, el lugar elegido para el estudio ha sido la ciudad de Cáceres.

Situada en el centro de la comunidad autónoma de Extremadura, Cáceres es capital de la provincia homónima y la ciudad más grande y poblada de la provincia (Figura5).

![Figura 5: Situación geográfica de Cáceres (SIG Cáceres)](image)
En concreto, el lugar elegido ha sido el barrio del “Nuevo Cáceres”, situado al sur de la ciudad, debido a que existen diversos estudios de la radiación de radiofrecuencias en esta zona (Marcos Gaspar, 2012; Balas Sánchez, 2012) que se han hecho utilizando diferentes sondas de medida, lo cual nos permitirá poder comparar los resultados obtenidos.

Otra de las características importantes de la zona es la de no estar tapada por edificios altos, como podría pasar en otros puntos más céntricos de la ciudad, ya que si estuviese rodeada por edificios altos estos podrían actuar como pantallas y evitar que el campo eléctrico sea captado por la sonda.

En la figura 6 se puede ver la situación geográfica de esta zona de estudio sobre el mapa de la ciudad.

![Figura 6: Situación del barrio "Nuevo Cáceres" sobre una fotografía aérea de la ciudad](image)
4.1.2. Descripción de los principales focos de emisión.

La zona de estudio se ve sometida de forma directa o indirecta a la radiación de numerosos focos de emisión y recepción de señales electromagnéticas, como son las antenas de radio FM y telefonía móvil.

- **Antenas de Radio FM:**
 Las antenas de radio FM son las encargadas de proporcionar la cobertura y potencia de señal necesarias para la recepción correcta de las emisoras de radio. En la tabla1 se recogen las principales características de las antenas de radio FM que se encuentran en la ciudad de Cáceres, en concreto junto a la Estación de Renfe, las cuales se muestran en la figura 7. (España, 2006).

Dónde:

- **P.R.A:** Potencia radiada aparente total máxima, en kilovatios (kW), suma de las potencias radiadas máximas en cada plano de polarización.
- **P:** Polarización de la emisión; horizontal (H), vertical (V), mixta (M).
- **D:** Característica de radiación; directiva (D), no directiva (ND).

<table>
<thead>
<tr>
<th>F-MHz</th>
<th>LONGITUD</th>
<th>LATITUD</th>
<th>P.R.A</th>
<th>P</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>88.2</td>
<td>006W2036</td>
<td>39N2720</td>
<td>5,00</td>
<td>H</td>
<td>ND</td>
</tr>
<tr>
<td>93.7</td>
<td>006W2100</td>
<td>39N2750</td>
<td>5,00</td>
<td>H</td>
<td>ND</td>
</tr>
<tr>
<td>95.1</td>
<td>006W2100</td>
<td>39N2800</td>
<td>5,00</td>
<td>H</td>
<td>ND</td>
</tr>
<tr>
<td>105.7</td>
<td>006W2110</td>
<td>39N2754</td>
<td>5,00</td>
<td>H</td>
<td>ND</td>
</tr>
</tbody>
</table>

Tabla 1: Antenas FM de Cáceres (RD 2006)
Antenas de Telefonía Móvil:
Las antenas de Telefonía Móvil se encargan de proporcionar la cobertura y la potencia de señal necesarias para el establecimiento de comunicaciones móviles.

Las antenas han sido instaladas en el casco urbano, para así adaptar la potencia y cobertura de forma óptima. Generalmente, están colocadas en instalaciones en azoteas de edificios (figura 8), aunque existen algunas instaladas en torretas por ausencia de edificios suficientemente altos o en fachadas camufladas por necesidades en la cobertura en zonas más aisladas de la ciudad.

En la ciudad de Cáceres hay decenas de ellas, para saber la situación geográfica y las características de éstas podemos encontrarlas en la web del Ministerio de Industria, Energía y Turismo (España 2016).

En la tabla 2 se muestran las características de las estaciones de telefonía móvil próximas a la zona de estudio. En ella se muestran su
código, dirección, operador, referencia y bandas de frecuencia en las que trabaja.

Figura 8: Antena de telefonía móvil en la azotea de un edificio
<table>
<thead>
<tr>
<th>Código</th>
<th>Dirección</th>
<th>Operador</th>
<th>Referencia</th>
<th>Banda asignada (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>032688</td>
<td>VP Estación de Renfe, S/N.</td>
<td>VODAFONE ESPAÑA, S.A.</td>
<td>CCCC-1400134</td>
<td>1905.00 - 1910.00 2140.00 - 2155.00</td>
</tr>
<tr>
<td>79903</td>
<td>CL SANGUINO MICHEL, S/N.</td>
<td>VODAFONE ESPAÑA, S.A.</td>
<td>CCCC-0800018</td>
<td>1905.00 - 1910.00 2140.00 - 2155.00</td>
</tr>
<tr>
<td>1B5CC6257</td>
<td>CL SANGUINO MICHEL, 39</td>
<td>XFERA MOVILES SA</td>
<td>CCCC-0900085</td>
<td>1915.00 - 1920.00 2110.00 - 2125.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCCC-1300099</td>
<td>1845.10 - 1859.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCCC-1300453</td>
<td>1845.10 - 1855.10</td>
</tr>
<tr>
<td>EXTR6311B</td>
<td>AV BONDAD, 8</td>
<td>ORANGE ESPAGNE, SAU</td>
<td>CCCC-0430495</td>
<td>1900.00 - 1905.00 2125.00 - 2140.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCCC-1300055</td>
<td>925.10 - 935.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCCC-1400126</td>
<td>1859.90 - 1879.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCCC-0700015</td>
<td>925.10 - 935.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCCC-0430172</td>
<td>1859.90 - 1879.90</td>
</tr>
<tr>
<td>1B5CC6256</td>
<td>AV BONDAD, 8</td>
<td>XFERA MOVILES SA</td>
<td>CCCC-1200191</td>
<td>1915.00 - 1920.00 2110.00 - 2125.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCCC-1200192</td>
<td>1845.10 - 1859.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCCC-1300452</td>
<td>1845.10 - 1855.10</td>
</tr>
<tr>
<td>30686</td>
<td>AV BONDAD, 8</td>
<td>VODAFONE ESPAÑA, S.A.</td>
<td>CCCC-0430011</td>
<td>1905.00 - 1910.00 2140.00 - 2155.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCCC-0430132</td>
<td>949.90 - 959.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCCC-1400015</td>
<td>1825.10 - 1845.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCCC-1200122</td>
<td>949.90 - 959.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCCC-0430059</td>
<td>1825.10 - 1845.10</td>
</tr>
<tr>
<td>1000506</td>
<td>AV BONDAD, 8</td>
<td>TELEFONICA MOVILES ESPAÑA, S.A.U.</td>
<td>CCCC-0800026</td>
<td>1910.00 - 1915.00 2155.00 - 2170.00</td>
</tr>
</tbody>
</table>

Tabla 2: Características de las estaciones de telefonía móvil próximas a la zona de estudio (MINETUR 2016)
Teniendo esto en cuenta, podemos señalar que el barrio “Nuevo Cáceres se encuentra en el centro de un triángulo imaginario (figura 9) formado por las antenas de Aldea Moret (Estación de Renfe), señaladas en azul en el mapa, las que se encuentran en la Avenida de la Bondad, las de la Avenida de la Constitución y las de la Calle Sanguino Michel, las cuales están señaladas en naranja. Hay que señalar también la influencia de las Antenas de FM y Televisión que se encuentran cerca del Santuario de la Montaña. En esta figura, los círculos naranjas hacen referencia a las antenas de Telefonía Móvil que se encuentran en las azoteas de los edificios que están señalados, y el círculo azul hace referencia a las antenas de Radio FM que se encuentra junto a la estación de Renfe.

En la tabla 3 se muestra la distancia de las antenas anteriores al centro geométrico del área estudiada.

Figura 9: Antenas cercanas a la zona de estudio: en azul, de radio FM; en naranja, de telefonía móvil
4.2. Material utilizado.

A continuación, se presenta la instrumentación utilizada para llevar a cabo las medidas de campo, incluyendo sus características.

 Dosímetro EME SPY 140.

Es un medidor de exposición personal isotrópico y selectivo en frecuencia que ha sido diseñado inicialmente para estudios epidemiológicos (Figura 10). Puede medir en 14 bandas de frecuencia (FM, TV3, TETRA, TV4&5, GSM Rx&Tx, DCS Rx&Tx, DECT, UMTS Rx&Tx, Wi-Fi (2G, 5G y WIMAX)) y puede identificar la contribución de cada emisor. Este dispositivo puede realizar un máximo de 7168 medidas, y el máximo periodo de medida es de 9 días y 16 horas aproximadamente. Las dimensiones del equipo son de 168,5 x 79 x 49,7 mm y se alimenta con pilas recargables con una autonomía de hasta 7 días con muestreo cada 120 s. (EME SPY 140)

El equipo muestra en la pantalla del PC cada sub-banda con el nivel de campo asociado. La antena isotrópica proporciona medida de la contribución total del campo. Los datos memorizados son exportados a PC vía USB. El software de evaluación (PC), figura 11, realiza cálculos y presenta resultados estadísticos.

Una de las principales características de este dosímetro personal es que una vez se ha hecho una medición, presenta los datos obtenidos en varias magnitudes físicas: V/m, mW/cm², W/m², % de exposición al público en general y % de exposición ocupacional.
En la tabla 4 se muestran las características de las bandas de frecuencia que capta el dosímetro, en la que se incluyen el rango de frecuencias de trabajo de cada banda, el valor de la sensibilidad del dosímetro para cada banda de frecuencias y el límite superior de detección.
Características del dosímetro por banda de frecuencia (EME SPY 140)

<table>
<thead>
<tr>
<th>Banda de Frecuencia (MHz)</th>
<th>Sensibilidad (V/m)</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM (88 - 108)</td>
<td>0,05</td>
<td>Radio difusión con frecuencia modulada</td>
</tr>
<tr>
<td>TV3 (174 - 223)</td>
<td>0,02</td>
<td>Banda para la difusión de señal de tv</td>
</tr>
<tr>
<td>TETRA (380 - 390)</td>
<td>0,01</td>
<td>Sistema móvil digital de radio</td>
</tr>
<tr>
<td>TV4&5 (470 - 830)</td>
<td>0,01</td>
<td>Banda para la difusión de señal de tv</td>
</tr>
<tr>
<td>GSM Tx (880 - 915)</td>
<td>0,005</td>
<td>Sistema global para las comunicaciones móviles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(transmisión)</td>
</tr>
<tr>
<td>GSM Rx (925 - 960)</td>
<td>0,005</td>
<td>Sistema global para las comunicaciones móviles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(recepción)</td>
</tr>
<tr>
<td>DCS Tx (1710 – 1785)</td>
<td>0,005</td>
<td>Sistema de comunicaciones móviles (transmisión)</td>
</tr>
<tr>
<td>DCS Rx (1805 – 1880)</td>
<td>0,005</td>
<td>Sistema de comunicaciones móviles (recepción)</td>
</tr>
<tr>
<td>DECT (1880 – 1900)</td>
<td>0,005</td>
<td>Banda de frecuencia utilizada por los teléfonos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inalámbricos</td>
</tr>
<tr>
<td>UMTS Tx (1920 – 1980)</td>
<td>0,005</td>
<td>Sistema universal de telecomunicaciones móviles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(transmisión)</td>
</tr>
<tr>
<td>UMTS Rx (2110 – 2170)</td>
<td>0,005</td>
<td>Sistema universal de</td>
</tr>
<tr>
<td></td>
<td></td>
<td>telecomunicaciones móviles (recepción)</td>
</tr>
<tr>
<td>WiFi 2G (2400 – 2500)</td>
<td>0,005</td>
<td>Conexión WiFi en la banda de 2Ghz</td>
</tr>
<tr>
<td>WiMAX (3400 – 3800)</td>
<td>0,02</td>
<td>Sistema de internet inalámbrico de largo alcance</td>
</tr>
<tr>
<td>WiFi 5G (5150 – 5850)</td>
<td>0,02</td>
<td>Conexión WiFi en la banda de 5Ghz</td>
</tr>
<tr>
<td>Limite de detección superior</td>
<td>5 V/m</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4: Características del dosímetro por banda de frecuencia (EME SPY 140)
4.3. Método de muestreo.

En este apartado se explicará de forma detallada el procedimiento de trabajo seguido para la toma de medidas de este estudio.

4.3.1. Muestreo extensivo.

En primer lugar, se realizó un estudio de la localización de las estaciones base, para que, a partir de ellas, se tuviese en cuenta que zonas serían las más sensibles. (España, 2006; España, 2016)

Sabiendo que el muestreo se iba a hacer a pie con el dosímetro colocado en la cintura, una vez se tuvo claro cuales iban a ser las zonas más sensibles del estudio, se estableció la configuración que se aplicaría al dosímetro. En esta ocasión se ha configurado para que el intervalo de medición sea de 4s, es decir, unas 15 mediciones por minuto, de esta forma se consiguen un número considerable de medidas por calle, suficientes para poder llevar a cabo este estudio.

Se han recorrido por completo todas las calles intentando hacerlo siempre al mismo ritmo, en la figura 12 se observa la zona de muestreo junto con los recorridos realizados (en rojo).

En la tabla 5 podemos encontrar un listado de las calles que componen la zona de estudio y la longitud en metros de cada una de ellas. Estas calles aparecen según su orientación, N-S y E-O, es decir, las cinco primeras calles se corresponderían con las cinco calles mostradas en horizontal en la figura 12 (de arriba abajo) y las siguientes cinco calles se corresponden con las calles en vertical (de derecha a izquierda).
Tabla 5: Distancia de los recorridos realizados en cada calle estudiada

<table>
<thead>
<tr>
<th>Calle</th>
<th>Distancia de medida (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marrakech</td>
<td>363</td>
</tr>
<tr>
<td>Calle Ávila</td>
<td>335</td>
</tr>
<tr>
<td>Calle Jerusalén</td>
<td>335</td>
</tr>
<tr>
<td>Calle Segovia</td>
<td>335</td>
</tr>
<tr>
<td>Juan Solano Pedrero</td>
<td>363</td>
</tr>
<tr>
<td>Pierre de Coubertin</td>
<td>357</td>
</tr>
<tr>
<td>Calle Oaxaca</td>
<td>351</td>
</tr>
<tr>
<td>Calle Évora</td>
<td>351</td>
</tr>
<tr>
<td>Calle Berna</td>
<td>351</td>
</tr>
<tr>
<td>Calle San Petersburgo</td>
<td>357</td>
</tr>
</tbody>
</table>

Figura 12: Fotografía aérea de la zona de estudio. En rojo se indican los perfiles de toma de datos
A la hora de hacer la medición, se ha colocado el dosímetro a la altura de la cintura y en esa posición se han recorrido todas las calles, consiguiendo 813 valores por banda, es decir, un total de 11917 valores de campo eléctrico.

4.3.2. Análisis de repetibilidad.

Este análisis ha consistido en repetir la medida en cuatro días diferentes y en cuatro de las calles de esta zona (figura 13). Estas calles se han elegido después de haber analizado los datos de la primera medición. Se seleccionaron aquellas calles en las que el valor del campo eléctrico era grande, o se había detectado un valor pico inusual.

4.3.3. Influencia de la altura en las medidas.

Como indicamos anteriormente, en esta zona de muestreo se han realizado estudios previos con la sonda a 1,70 m de altura. Con objeto de comparar nuestros datos con los de los mencionados estudios, hemos comprobado la influencia de la altura en las medidas con el medidor EME SPY 140.

Para ello, se han elegido cinco puntos (figura 13) en los que el valor del campo eléctrico total medido fue alto.

En cada uno de estos cinco puntos, el procedimiento que se ha llevado a cabo ha sido el siguiente; se ha medido durante un minuto colocando el dosímetro a la altura de la cintura, en torno a 1m, (como se han hecho las primeras mediciones) y se ha vuelto a medir durante otro minuto a la altura de la cabeza, en torno a 1,70m.

Además de estos cinco puntos, para comprobar la influencia de la altura a la que se ha colocado el dosímetro, se ha recorrido la Calle San Petersburgo por completo (ya que es la que está más próxima a las Antenas de FM que se encuentran en la Estación de Renfe). Este recorrido se ha realizado primero con el dosímetro a la altura de la cintura y se ha repetido la medición colocándolo a la altura de la cabeza.
4.4. Tratamiento de datos.

4.4.1. Tratamiento estadístico.

A la hora de trabajar y presentar los datos obtenidos tras las mediciones, se ha utilizado un tratamiento estadístico. Este tratamiento ha constado de un análisis por banda de frecuencia y por calles, en el cual se han obtenido los valores máximos, valores mínimos, media, mediana y desviación estándar del campo eléctrico, además del error asociado a la medida ($\varepsilon = 1.96 \sigma$, 95% de nivel de confianza) y el error relativo, que servirá para poder discernir entre dos valores próximos.

4.4.2. Evaluación dosimétrica.

Es necesario hacer una evaluación dosimétrica de la zona para obtener los valores de exposición a la radiación electromagnética del público en general.
Pero primero, es necesario hacer el cálculo de la exposición a fuentes con múltiples frecuencias según la siguiente ecuación (ICNIRP, 1998):

\[
\sum_{i=100\text{ KHz}}^{1\text{ MHz}} \left(\frac{E_i}{c} \right)^2 + \sum_{i>1\text{ MHz}}^{3000\text{ GHz}} \left(\frac{E_i}{E_{il}} \right)^2 \leq 1
\]

Donde:
- \(E_i \) es la intensidad del campo eléctrico a la frecuencia \(i \).
- \(E_{il} \) es el nivel de referencia de campo eléctrico.
- \(c = \frac{87}{f^{1/2}} \text{ (V/m)} \), donde \(f \) está expresada en MHz.

Con el objetivo de dar el formato adecuado a los resultados y poderlos comparar con la Normativa actual y con otros estudios, es necesario expresar los resultados de las medidas de campo eléctrico en unidades de densidad de potencia, \(S(\text{W/m}^2) \), pero es preferible expresarlos en una unidad menor, ya que la unidad \(\text{W/m}^2 \) es bastante grande, por lo que los resultados serán expresados en \(\mu\text{W/m}^2 \). Según la siguiente ecuación:

\[
S(\text{W/m}^2) = \frac{E^2}{120 \cdot \pi} \rightarrow S(\mu\text{W/m}^2) = S(\text{W/m}^2) \cdot 10^6
\]

Para ello, a partir del campo eléctrico obtenido, se calculará la densidad de potencia para así comprobar que se respetan los valores de referencia establecidos en el R.D.1066/2001 (España, 2001), para la exposición del público en general.

Estos valores de referencia se obtendrán conforme a los criterios establecidos en el R.D.1066/2001 los cuales se muestran en la figura 14:
4.4.3. Representación en forma de mapas.

Una vez se han realizado las medidas en toda la zona de estudio, se obtendrán los valores de campo eléctrico por banda de frecuencia y por calle.

Para poder hacer una representación espacial de los valores de campo eléctrico obtenidos, es necesario calcular las coordenadas de los puntos de medición. Para obtener las coordenadas de cada punto en el que se ha obtenido un valor de campo eléctrico se ha hecho una interpolación de tal forma que si en una calle de longitud l (metros), se habían obtenido un número, n, de valores de campo eléctrico, podemos decir que cada $\frac{l}{m}$ metros, tendremos un valor de campo eléctrico. Para poder medir la longitud de cada una de las calles se ha utilizado Google Earth ya que se pueden obtener estos valores de forma fácil.

Una vez se han sacado las coordenadas para los valores de campo eléctrico en cada una de las calles del estudio, ya podemos hacer una representación espacial de estos.

4.4.3.1. Realización de mapas.

Una de las características de este proyecto es que, además de poder comprobar de forma numérica la exposición de la zona a campos eléctricos gracias al tratamiento estadístico, es que se pueda comprobar de forma visual y más clara esta exposición. Esto se ha conseguido gracias a la
elaboración de mapas de radiación con la utilización del software **Surfer8** que utiliza varios métodos de interpolación para la elaboración de mapas a partir de los datos obtenidos.

4.4.3.2. Surfer 8.

Surfer es un software que permite interpolar a partir de datos puntuales y generar curvas de nivel representativas del área estudiada. Se pueden realizar superficies a partir de datos de niveles piezométricos, cotas, parámetros hidroquímicos, entre otros. Para la interpolación utiliza diversos métodos, entre ellos la geoestadística (Kriging). (Surfer 8 2012)

Este no permitirá realizar Mapas de Radiación en la zona estudiada de manera que podamos ver de forma más clara el nivel de exposición. Un ejemplo de uso de este software es el que se muestra en la figura 15.

![Figura 15: Interfaz del Software Surfer 8](image)

4.4.3.3. Método Kriging de interpolación.

El Kriging es un método de interpolación que está basado en modelos estadísticos que incluyen la autocorrelación, es decir, las relaciones estadísticas entre los puntos medidos. Gracias a esto, las técnicas de estadística geográfica no solo tienen la capacidad de producir una superficie
de predicción, sino que también proporcionan alguna medida de certeza o precisión de las predicciones.

Kriging presupone que la distancia o la dirección entre los puntos de muestra reflejan una correlación espacial que puede utilizarse para explicar la variación en la superficie. La herramienta Kriging ajusta una función matemática a una cantidad especificada de puntos o a todos los puntos dentro de un radio específico para determinar el valor de salida para cada ubicación. Kriging es un proceso que tiene varios pasos, entre los que se incluyen, el análisis estadístico exploratorio de los datos, el modelado de variogramas, la creación de la superficie y (opcionalmente) la exploración de la superficie de varianza. Este método es más adecuado cuando se sabe que hay una influencia direccional o de la distancia correlacionada espacialmente en los datos. Se utiliza a menudo en la ciencia del suelo y la geología (ArcGIS Pro 2016).
Caracterización electromagnética de zonas urbanas con dosímetro personal

5. EXPOSICIÓN DE RESULTADOS
En este apartado se presentarán los niveles de campo eléctrico obtenidos con el medidor de campo EME SPY-140 en la zona estudiada, el barrio “Nuevo Cáceres”, de Cáceres.

A continuación, en la tabla 6 se muestran las bandas que se han medido, incluyendo el valor umbral de detección de cada una de ellas y el tanto por ciento de medidas captadas por encima de ese umbral.

<table>
<thead>
<tr>
<th>Banda</th>
<th>Umbral (V/m)</th>
<th>% por encima del umbral</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM</td>
<td>0,050</td>
<td>60,4</td>
</tr>
<tr>
<td>TV3</td>
<td>0,020</td>
<td>2,1</td>
</tr>
<tr>
<td>TETRA</td>
<td>0,010</td>
<td>5,0</td>
</tr>
<tr>
<td>TV4&5</td>
<td>0,010</td>
<td>36,5</td>
</tr>
<tr>
<td>GSMtx (UL)</td>
<td>0,005</td>
<td>24,3</td>
</tr>
<tr>
<td>GSMrx (DL)</td>
<td>0,005</td>
<td>100,0</td>
</tr>
<tr>
<td>DCSStx (UL)</td>
<td>0,005</td>
<td>75,9</td>
</tr>
<tr>
<td>DCSrx (DL)</td>
<td>0,005</td>
<td>100,0</td>
</tr>
<tr>
<td>DECT</td>
<td>0,005</td>
<td>99,8</td>
</tr>
<tr>
<td>UMTSStx (UL)</td>
<td>0,005</td>
<td>3,6</td>
</tr>
<tr>
<td>UMTSrx (DL)</td>
<td>0,005</td>
<td>100,0</td>
</tr>
<tr>
<td>WIFI 2G</td>
<td>0,005</td>
<td>85,0</td>
</tr>
<tr>
<td>WiMax</td>
<td>0,020</td>
<td>-</td>
</tr>
<tr>
<td>WIFI 5G</td>
<td>0,020</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla 6: Valores de umbral de detección (V/m) y % por encima del umbral para cada banda de frecuencia

Como se puede observar solo hay siete bandas de frecuencia en las cuales más del 50% de los datos obtenidos superan el umbral de detección. De estas siete bandas, solo en las bandas de frecuencia correspondientes a GSMrx, DCSrx y UMTSrx, el 100% de las medidas superaron el nivel umbral de detección. Estas bandas corresponden a las frecuencias móvil de “bajada”, es decir, de la estación base al terminal. Otras bandas con un alto porcentaje de medidas que superaron el nivel de detección fueron: DECT, procedentes de teléfonos inalámbricos; WIFI2G, de las redes wifi; DCStx, canales de subida de la banda DCS de telefonía, y FM, de radio difusión sonora en frecuencia modulada, hacia cuyas antenas transmisoras existe línea de visión directa desde la mayor parte de la zona de muestreo.
En las bandas descritas anteriormente, más del 50% de las medidas superaron el nivel de detección del equipo. Por este motivo el estudio se centrará principalmente en estas bandas.

5.1. Repetibilidad y variación con la altura.

Como ya se ha explicado en el apartado de Metodología, se ha llevado a cabo un estudio de repetibilidad para comprobar la influencia de la repetición de la toma de datos en distintos días y a diferentes horas de medida.

Se decidió realizar una repetición de las medidas en las calles en las cuales se han detectado picos altos de campo eléctrico.

En este estudio de repetibilidad se han medido cuatro de las diez calles que componen el área estudiada. Para estas cuatro calles se ha llevado a cabo el mismo estudio estadístico que anteriormente, pero además se ha calculado, el valor medio de las medianas obtenidas (\bar{E}_{med}), la desviación estándar del valor de la mediana para las distintas mediciones (σ), el error absoluto (ε) asociado a esta y el error relativo de esta (ε_r). Esta medida del error relativo nos servirá para decidir si dos medidas con valores parecidos son muy diferentes entre sí o no.

En la tabla 7 se muestran los resultados obtenidos en estas mediciones. Como se puede observar, los mayores errores relativos los encontramos en las calles San Petersburgo, con un 32%, y en la calle Jerusalén, con un 28,1%. En las calles Pierre de Coubertin y Marrakech los errores relativos fueron inferiores, del 13,6 y 8.9%, respectivamente. Por lo tanto, en el peor de los casos, podemos asumir un error relativo en torno al 30%.
Caracterización electromagnética de zonas urbanas con dosímetro personal

<table>
<thead>
<tr>
<th>Calle</th>
<th>Nº Medición</th>
<th>(E_{\text{max}}) (V/m)</th>
<th>(E_{\text{min}}) (V/m)</th>
<th>(E_{\text{med}}) (V/m)</th>
<th>(\overline{E_{\text{med}}}) (V/m)</th>
<th>(\sigma) (V/m)</th>
<th>(\varepsilon) (V/m); (\varepsilon_r) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Petersburgo</td>
<td>1</td>
<td>1.263</td>
<td>0.316</td>
<td>0.767</td>
<td>0.771</td>
<td>1.002</td>
<td>0.165</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.537</td>
<td>0.596</td>
<td>1.051</td>
<td>1.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.271</td>
<td>0.775</td>
<td>1.166</td>
<td>1.130</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.172</td>
<td>0.556</td>
<td>1.066</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.305</td>
<td>0.571</td>
<td>1.174</td>
<td>1.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marrakech</td>
<td>1</td>
<td>0.243</td>
<td>1.331</td>
<td>0.528</td>
<td>0.448</td>
<td>0.474</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.878</td>
<td>0.214</td>
<td>0.586</td>
<td>0.499</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.234</td>
<td>0.227</td>
<td>0.554</td>
<td>0.501</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.341</td>
<td>0.227</td>
<td>0.564</td>
<td>0.471</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.135</td>
<td>0.260</td>
<td>0.548</td>
<td>0.501</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pierre de Coubertin</td>
<td>1</td>
<td>0.925</td>
<td>0.136</td>
<td>0.387</td>
<td>0.321</td>
<td>0.331</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.965</td>
<td>0.138</td>
<td>0.380</td>
<td>0.325</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.761</td>
<td>0.145</td>
<td>0.403</td>
<td>0.381</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.921</td>
<td>0.142</td>
<td>0.386</td>
<td>0.312</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.674</td>
<td>0.127</td>
<td>0.342</td>
<td>0.315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jerusalén</td>
<td>1</td>
<td>1.299</td>
<td>0.083</td>
<td>0.373</td>
<td>0.266</td>
<td>0.292</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.570</td>
<td>0.104</td>
<td>0.358</td>
<td>0.256</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.706</td>
<td>0.096</td>
<td>0.379</td>
<td>0.285</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.635</td>
<td>0.132</td>
<td>0.368</td>
<td>0.278</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.299</td>
<td>0.195</td>
<td>0.461</td>
<td>0.375</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 7: Estudio estadístico de las medidas de campo eléctrico (E) realizadas en el estudio de repetibilidad. \(E_{\text{max}} \) máximo, \(E_{\text{min}} \) mínimo, \(E_{\text{med}} \) medio, \(\overline{E_{\text{med}}} \) medio de las mediana, \(\sigma \) desviación estándar, \(\varepsilon \) error absoluto y \(\varepsilon_r \): error relativo.

Además de las medidas de repetibilidad, se han hecho medidas de un minuto en cinco puntos escogidos de la zona en los que se ha medido situando el dosímetro a la altura de la cabeza (1,7m) y a la altura de la cintura (1 m). A parte de en estos cinco puntos, también se ha vuelto a medir la Calle San Petersburgo utilizando este mismo método, dosímetro en la cintura y en la cabeza, ya que es la calle en la que más variación se ha obtenido.

En la tabla 8 se muestra una breve estadística de los valores del campo eléctrico obtenidos en este análisis, En ella se presentan los valores: máximo (\(E_{\text{max}} \)), mínimo (\(E_{\text{min}} \)), el valor de la mediana (\(E_{\text{med}} \)) y el cociente entre los valores medios en la cabeza y en la cintura (\(E_{\text{med1}}/E_{\text{med2}} \)).
Caracterización electromagnética de zonas urbanas con dosímetro personal

<table>
<thead>
<tr>
<th>Posición</th>
<th>Zona</th>
<th>E_{max} (V/m)</th>
<th>E_{min} (V/m)</th>
<th>E_{med} (V/m)</th>
<th>Cociente de la mediana</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cabeza</td>
<td>1,549</td>
<td>0,782</td>
<td>1,023</td>
<td>0,920</td>
</tr>
<tr>
<td></td>
<td>Cintura</td>
<td>1,276</td>
<td>0,978</td>
<td>1,112</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cabeza</td>
<td>1,247</td>
<td>0,723</td>
<td>0,958</td>
<td>1,089</td>
</tr>
<tr>
<td></td>
<td>Cintura</td>
<td>1,484</td>
<td>0,586</td>
<td>0,879</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cabeza</td>
<td>1,365</td>
<td>0,226</td>
<td>0,325</td>
<td>1,266</td>
</tr>
<tr>
<td></td>
<td>Cintura</td>
<td>0,535</td>
<td>0,199</td>
<td>0,257</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cabeza</td>
<td>1,466</td>
<td>0,834</td>
<td>1,075</td>
<td>1,164</td>
</tr>
<tr>
<td></td>
<td>Cintura</td>
<td>1,793</td>
<td>0,669</td>
<td>0,924</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Cabeza</td>
<td>0,685</td>
<td>0,112</td>
<td>0,148</td>
<td>0,655</td>
</tr>
<tr>
<td></td>
<td>Cintura</td>
<td>0,403</td>
<td>0,137</td>
<td>0,225</td>
<td></td>
</tr>
<tr>
<td>Calle San Petersburgo</td>
<td>Cabeza</td>
<td>3,622</td>
<td>0,520</td>
<td>0,991</td>
<td>1,026</td>
</tr>
<tr>
<td></td>
<td>Cintura</td>
<td>1,959</td>
<td>0,578</td>
<td>0,966</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 8: Estudio estadístico de las medidas realizadas durante un minuto a diferentes alturas

Se observa que los valores de mediana obtenidos, en general, no difieren mucho para un mismo punto de medida, ya que los cocientes entre el valor de la mediana obtenido a la altura de la cabeza y de la cintura están próximos a la unidad. Teniendo esto en cuenta, es posible afirmar que la altura a la que se coloca el dosímetro durante la medición, no afecta a los valores obtenidos.

En la gráfica 1 se muestran los valores de campo eléctrico obtenidos para ambas alturas. Podemos observar que la mayor variación se encuentra en el valor del campo eléctrico máximo, con casi 2 V/m de diferencia. Por el contrario, los valores mínimos y de la mediana son prácticamente iguales.

Gráfica 1: Valores del campo eléctrico obtenidos en la calle San Petersburgo a las alturas de la cabeza y cintura
5.2. Análisis estadístico del campo eléctrico.

En la tabla 9 se muestran los valores obtenidos en las diferentes calles en las que se ha medido. En ella se muestran los valores de campo eléctrico máximo (E_{max}), mínimo (E_{min}), la media (E_{medio}) y la mediana (E_{med}) de todos los valores obtenidos en cada una de las calles.

Como podemos observar, los valores de campo eléctrico oscilan desde los 0,037 V/m hasta los 1,331 V/m, siendo el valor medio de ellos 0,345 V/m y la mediana 0,247 V/m.

Las calles San Petersburgo y Marrakech son las que más altos niveles de campo eléctrico poseen, con valores medios 0,767 y 0,528 V/m, respectivamente y medianas 0,771 y 0,448 V/m respectivamente. Esto es coherente ya que son las calles exteriores más expuestas a las antenas emisoras (ver figura 12).

Como se observa también en la tabla, en cinco de las diez calles no se ha llegado al nivel medio de campo eléctrico (teniendo en cuenta el 32% de error relativo obtenido en el apartado anterior). Estas calles son la calle Ávila, Segovia, Oaxaca, Évora y Berna.

Si situamos estas calles en el mapa (ver figura 12), podemos observar que son precisamente las calles interiores del barrio, las cuales están rodeadas por edificios por lo que este puede ser el motivo por el cual el nivel medio de campo eléctrico obtenido no supera la media, ya que el resto de calles se encuentran más “expuestas” a la radiación al no estar totalmente rodeadas por edificios.

Cabe destacar que el valor máximo de campo eléctrico se ha encontrado en la Calle Marrakech, consecuencia lógica de que es la que se encuentra más próxima a tres de las cuatro Antenas de Telefonía que se han destacado en los mapas.
Caracterización electromagnética de zonas urbanas con dosímetro personal

<table>
<thead>
<tr>
<th>Calle</th>
<th>E_{min} (V/m)</th>
<th>E_{max} (V/m)</th>
<th>E_{medio} (V/m)</th>
<th>E_{med} (V/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marrakech</td>
<td>0,243</td>
<td>1,331</td>
<td>0,528</td>
<td>0,448</td>
</tr>
<tr>
<td>Ávila</td>
<td>0,076</td>
<td>0,783</td>
<td>0,253</td>
<td>0,206</td>
</tr>
<tr>
<td>Jerusalén</td>
<td>0,083</td>
<td>1,299</td>
<td>0,373</td>
<td>0,266</td>
</tr>
<tr>
<td>Segovia</td>
<td>0,062</td>
<td>0,828</td>
<td>0,176</td>
<td>0,131</td>
</tr>
<tr>
<td>Juan Solano Pedrero</td>
<td>0,112</td>
<td>0,989</td>
<td>0,329</td>
<td>0,265</td>
</tr>
<tr>
<td>Pierre de Coubertin</td>
<td>0,136</td>
<td>0,925</td>
<td>0,387</td>
<td>0,321</td>
</tr>
<tr>
<td>Oaxaca</td>
<td>0,037</td>
<td>0,722</td>
<td>0,151</td>
<td>0,102</td>
</tr>
<tr>
<td>Évora</td>
<td>0,054</td>
<td>0,422</td>
<td>0,147</td>
<td>0,129</td>
</tr>
<tr>
<td>Berna</td>
<td>0,083</td>
<td>0,955</td>
<td>0,263</td>
<td>0,194</td>
</tr>
<tr>
<td>San Petersburgo</td>
<td>0,316</td>
<td>1,263</td>
<td>0,767</td>
<td>0,771</td>
</tr>
<tr>
<td>Total</td>
<td>0,037</td>
<td>1,331</td>
<td>0,345</td>
<td>0,247</td>
</tr>
</tbody>
</table>

Tabla 9: Estudio estadístico del nivel total de campo eléctrico por calles

Una vez se ha hecho este estudio estadístico del campo eléctrico total sobre todas las calles, nos centraremos en las diferentes bandas de frecuencia. Dado que en algunas bandas no todos los valores del campo eléctrico superaban el umbral de detección, hemos decidido utilizar para el análisis los valores correspondientes a la mediana. En este caso se presenta el valor de la mediana de cada banda de frecuencias en cada calle del área estudiada.

Comenzamos presentando en la tabla 10 el valor de la mediana por bandas de frecuencia para los datos de todas las calles.

<table>
<thead>
<tr>
<th>Banda</th>
<th>E_{med} Total (V/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM</td>
<td>0,066</td>
</tr>
<tr>
<td>GSMrx (DL)</td>
<td>0,129</td>
</tr>
<tr>
<td>DCSRx (UL)</td>
<td>0,013</td>
</tr>
<tr>
<td>DCSRx (DL)</td>
<td>0,082</td>
</tr>
<tr>
<td>DECT</td>
<td>0,046</td>
</tr>
<tr>
<td>UMTSrx (DL)</td>
<td>0,115</td>
</tr>
<tr>
<td>WIFI 2G</td>
<td>0,011</td>
</tr>
</tbody>
</table>

Tabla 10: Valor de la mediana del campo eléctrico total para cada banda de frecuencia

Como se puede observar, los valores más altos de las medianas se encuentran en las bandas de telefonía de bajada (dl): UMTS, GSM y DCS, seguidas por la banda de radio FM y DECT.
A la hora de presentar los datos, se hará una distinción entre calles. Por un lado, se expondrán las calles con orientación Norte-Sur (tabla 11) y por otro lado las que tienen orientación Este-Oeste (tabla 12).

<table>
<thead>
<tr>
<th>Banda</th>
<th>Calle San Petersburgo</th>
<th>Calle Berna</th>
<th>Calle Évora</th>
<th>Calle Oaxaca</th>
<th>Pierre de Coubertin</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM</td>
<td>0,204</td>
<td>0,050</td>
<td>0,050</td>
<td>0,050</td>
<td>0,079</td>
</tr>
<tr>
<td>GSMrx (DL)</td>
<td>0,352</td>
<td>0,148</td>
<td>0,069</td>
<td>0,055</td>
<td>0,188</td>
</tr>
<tr>
<td>DCSStx (UL)</td>
<td>0,042</td>
<td>0,015</td>
<td>0,007</td>
<td>0,006</td>
<td>0,025</td>
</tr>
<tr>
<td>DCSRx (DL)</td>
<td>0,257</td>
<td>0,083</td>
<td>0,052</td>
<td>0,043</td>
<td>0,147</td>
</tr>
<tr>
<td>DECT</td>
<td>0,126</td>
<td>0,046</td>
<td>0,027</td>
<td>0,027</td>
<td>0,069</td>
</tr>
<tr>
<td>UMTSRx (DL)</td>
<td>0,475</td>
<td>0,115</td>
<td>0,072</td>
<td>0,059</td>
<td>0,158</td>
</tr>
<tr>
<td>WIFI 2G</td>
<td>0,005</td>
<td>0,011</td>
<td>0,011</td>
<td>0,014</td>
<td>0,009</td>
</tr>
</tbody>
</table>

Tabla 11: Valor de E_{med} por calles (Orientación Norte-Sur) para cada banda de frecuencia

<table>
<thead>
<tr>
<th>Banda</th>
<th>Calle Juan Solano Pedrero</th>
<th>Marrakech</th>
<th>Calle Ávila</th>
<th>Calle Jerusalén</th>
<th>Calle Segovia</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM</td>
<td>0,125</td>
<td>0,151</td>
<td>0,066</td>
<td>0,053</td>
<td>0,050</td>
</tr>
<tr>
<td>GSMrx (DL)</td>
<td>0,176</td>
<td>0,182</td>
<td>0,105</td>
<td>0,212</td>
<td>0,096</td>
</tr>
<tr>
<td>DCSStx (UL)</td>
<td>0,008</td>
<td>0,043</td>
<td>0,016</td>
<td>0,010</td>
<td>0,000</td>
</tr>
<tr>
<td>DCSRx (DL)</td>
<td>0,047</td>
<td>0,237</td>
<td>0,106</td>
<td>0,060</td>
<td>0,045</td>
</tr>
<tr>
<td>DECT</td>
<td>0,037</td>
<td>0,104</td>
<td>0,053</td>
<td>0,039</td>
<td>0,037</td>
</tr>
<tr>
<td>UMTSRx (DL)</td>
<td>0,097</td>
<td>0,204</td>
<td>0,123</td>
<td>0,146</td>
<td>0,076</td>
</tr>
<tr>
<td>WIFI 2G</td>
<td>0,009</td>
<td>0,010</td>
<td>0,013</td>
<td>0,009</td>
<td>0,013</td>
</tr>
</tbody>
</table>

Tabla 12: Valor de E_{med} por calles (Orientación Este-Oeste) para cada banda de frecuencia
Como se muestra en la tabla 11, las calles exteriores, San Petersburgo y Pierre de Coubertin, son las que presentan valores más alto de telefonía y radio FM, mientras que los valores más bajos se encuentran en las calles Évora y Oaxaca. Esto mismo ocurre con las calles con orientación horizontal, tabla 12, donde volvemos a encontrar los valores más altos en las calles exteriores, Juan Solano Pedrero y Marrakech, aunque también destaca la calle Jerusalén, ya que, a pesar de ser una calle interior, encontramos valores altos de campo eléctrico en las bandas de telefonía debido a que es una calle ancha con línea visual directa hacia algunos emplazamientos con antenas. Si comparamos estos valores con los de la tabla 10, observamos que, para las bandas de telefonía de bajada, para las cuales se habían obtenido los valores más altos de la mediana, en las calles nombradas anteriormente se superan estos valores.

5.3. **Distribución espacial.**

El fin de este apartado será visualizar mediante mapas de contorno los datos obtenidos en las medidas anteriores. De esta forma nos será más fácil ver el valor del campo eléctrico obtenido en cada calle estudiada y además podemos ver en qué puntos se han detectado niveles más altos de campo.

En las siguientes figuras, se mostrarán los mapas de contorno obtenidos para las siete bandas de frecuencias que se han ido estudiando a lo largo del presente proyecto, ya que son las que el número de valores obtenidos para cada una de ellas superaba el 50% por encima del valor umbral. En concreto las bandas de frecuencia que se presentaran son las de: **FM, GSMrx (DL), DCSxt (UL), DCSrx (DL), DECT, UMTSrx (DL), WIFI 2G.**

Hay que indicar que, aunque los interiores de los edificios contengan parte del mapa de colores, estos valores no tienen ningún significado ya que no se han hecho mediciones en esa zona. Esto se debe al método de extrapolación de los datos que se ha utilizado para crear estos mapas.

A continuación, en las siguientes figuras (16 a 23), se muestran los mapas de radiación de campo eléctrico obtenidos para cada una de las distintas bandas de frecuencias nombradas, siendo la unidad de medida de
la escala V/m. Las bandas de radio FM y las tres de telefonía móvil (de bajada) presentan los niveles de campo eléctrico más altos de todas.

![Mapa de radiación correspondiente a la banda de FM](image)

Figura 16: Mapa de radiación correspondiente a la banda de FM

En la figura 16 se muestra el mapa de campo eléctrico en la banda de radio FM. Se puede observar, como era de esperar, que los valores más altos de campo eléctrico se han encontrado en las calles más expuestas a las antenas situadas en la Estación de Renfe: San Petersburgo (a la izquierda de la figura) y Marrakech (parte superior).
Para esta banda de GSM de “bajada”, en general se han obtenido valores altos de campo eléctrico en más puntos de la zona de estudio. En general, destacan por contener altos valores de campo eléctrico las calles San Petersburgo, Jerusalén y Pierre de Coubertin. Estas calles destacan por ser las más transitadas de este barrio, ya que gran parte de los negocios y tiendas situados en este barrio cacereño, se sitúan en estas dos calles. La calle Jerusalén también destaca por ser una calle ancha con gran cantidad de bares y tránsito de gente.
Como se ha visto en el estudio estadístico de los valores de campo eléctrico que se han medido, la banda de DCS rx se caracterizaba por ser una de las cuales tenían mayores valores de campo eléctrico. Como se ve en la figura 19, los valores de campo eléctrico más altos para esta banda se han obtenido de nuevo en las calles San Petersburgo, Pierre de Coubertin y además en esta ocasión en la calle Marrakech. Como se observa en la imagen 12, estas tres calles son las más cercanas a las estaciones base de telefonía móvil.
En esta ocasión, al tratarse de una banda de telefonía de “bajada”, los valores de campo eléctrico obtenidos apenas superan diez veces el valor del umbral de detección (0,002V/m). Por ello, podemos decir que, aunque la banda de UMTS rx sea una de las cuales el valor de campo eléctrico obtenido superaba en más del 50% el umbral de detección, estos valores no son muy altos por lo que no suponen una gran exposición.
Figura 20: Mapa de radiación correspondiente a la banda de DCS tx

Para esta banda, los valores de campo eléctrico obtenidos, son bastante bajos como se puede observar, aunque encontramos algún pico de intensidad en la calle San Petersburgo, de la misma forma que estamos encontrando en el resto de bandas de frecuencia.
Ya que la banda DECT es la correspondiente a los teléfonos inalámbricos, es lógico que los valores encontrados sean bajos. En general, se puede ver que en toda la zona se ha medido un nivel parecido, exceptuando como hemos hecho anteriormente las calles San Petersburgo, Marrakech y algunas zonas de Pierre de Coubertin.
Como se puede observar, para esta banda de Wifi, en toda la zona de estudio se ha obtenido un valor de campo eléctrico similar. Además, aunque bajo, se ha encontrado un pico de nivel en la calle Jerusalén.

Como conclusión de este apartado, podemos decir que, para casi todas las bandas, las calles más expuestas y por lo tanto en las que se ha encontrado un valor de campo eléctrico mayor son las calles Jerusalén, Marrakech, San Petersburgo y Pierre de Coubertin.

Además de los mapas de radiación de estas siete bandas de frecuencia, se ha elaborado otro mapa con los valores totales de campo eléctrico obtenidos, véase imagen 23.
Como se observa, se repite el patrón que se ha dado en las imágenes anteriores, es decir, volvemos a encontrarnos los valores más altos de campo eléctrico en las calles exteriores como son: la calle San Petersburgo, calle Marrakech y Pierre de Coubertin. Junto a estas tres calles exteriores, destaca la calle Jerusalén, encontrando altos valores de campo eléctrico en la zona más próxima a las antenas de la Estación de Renfe.
5.4. Análisis de densidad de potencia.

Junto con el análisis del campo eléctrico, se ha calculado el nivel de densidad de potencia asociado a este. Para ello se ha utilizado el cálculo explicado en el apartado 4.4.2 de la metodología.

En este análisis se ha calculado el valor de densidad de potencia en las siete bandas que han estado presentes durante todo el estudio. Además, se ha calculado el valor total como la suma de la densidad de potencia de estas siete bandas.

En la tabla 13 se muestran los valores medios y la mediana de la densidad de potencia en cada una de las bandas, considerando los datos de todas las calles. Hay que recordar que estos valores de densidad de potencia se expresan en µW/m² ya que se tratan de valores bajos.

<table>
<thead>
<tr>
<th>Densidad de potencia (µW/m²)</th>
<th>FM</th>
<th>GSMrx</th>
<th>DCStx</th>
<th>DCSrx</th>
<th>DECT</th>
<th>UMTSrx</th>
<th>WIFI2G</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor medio</td>
<td>71,9</td>
<td>141,0</td>
<td>4,2</td>
<td>92,4</td>
<td>24,6</td>
<td>167,5</td>
<td>1,1</td>
<td>502,6</td>
</tr>
<tr>
<td>Mediana</td>
<td>11,6</td>
<td>44,5</td>
<td>0,4</td>
<td>17,6</td>
<td>5,6</td>
<td>35,4</td>
<td>0,3</td>
<td>163,7</td>
</tr>
</tbody>
</table>

Tabla 13: Estudio estadístico de la densidad de potencia en las 7 bandas de frecuencia principales

Se puede ver que los valores de densidad de potencia más altos se han obtenido para las bandas de telefonía de “bajada”, UMTSrx GSMrx y DCSrx, y para la banda de radio FM. Siendo el valor más bajo el correspondiente a la banda de WIFI2G.

Utilizando los valores medios de la tabla anterior, hemos calculado el porcentaje que representa cada banda de frecuencia del valor total de la densidad de potencia (ver tabla 14).

<table>
<thead>
<tr>
<th>Porcentajes de cada banda respecto del total (%)</th>
<th>FM</th>
<th>GSMrx</th>
<th>DCStx</th>
<th>DCSrx</th>
<th>DECT</th>
<th>UMTSrx</th>
<th>WIFI2G</th>
</tr>
</thead>
<tbody>
<tr>
<td>14,30</td>
<td>28,05</td>
<td>0,84</td>
<td>18,38</td>
<td>4,90</td>
<td>33,33</td>
<td>0,22</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 14: Porcentaje que representa cada banda sobre el valor total de densidad de potencia

Se puede observar, que como en los valores presentados en la tabla anterior, encontramos los valores más altos en las bandas de radio FM y UMTSrx, GSMrx y DCSrx de telefonía, suponiendo estas tres
Caracterización electromagnética de zonas urbanas con dosímetro personal

aproximadamente el 80% del valor total de la densidad de potencia en la zona.

Como punto final para este apartado, se ha realizado un mapa (figura 24) con los valores totales de densidad de potencia (en \(\mu W/m^2 \)) en todos los puntos de la zona de estudio, de esta manera se puede ver fácilmente qué puntos de la zona son en los que se ha encontrado mayor densidad de potencia.

![Mapa de radiación correspondiente a la densidad de potencia (\(\mu W/m^2 \)) en la zona de estudio](image)

Figura 21: Mapa de radiación correspondiente a la densidad de potencia (\(\mu W/m^2 \)) en la zona de estudio

Los valores de la densidad de potencia total se situaron entre 4 y 4700 \(\mu W/m^2 \). Se observa en la figura que, aunque se trate de valores pequeños de densidad de potencia, los picos más altos se han encontrado de nuevo en las calles exteriores del barrio y en la calle más céntrica (Jerusalén).
5.5. Dosimetría.

Una de las características del dosímetro EME SPY-140 es que, además del valor de campo eléctrico en V/m, también nos da el valor del % de exposición al público en general, entre otros valores. Este porcentaje se calcula a partir de los valores de campo eléctrico medido y de los niveles de referencia (ICNIRP, 1998) según el modo indicado en el apartado 4.4.2.

Para estos valores de exposición pública también se ha hecho un estudio estadístico en el que se han calculado su valor máximo, valor mínimo, la media y la mediana.

En la tabla 15 podemos encontrar los resultados obtenidos de este estudio estadístico:

<table>
<thead>
<tr>
<th>% Exposición al público en general</th>
<th>Valor Máximo</th>
<th>Valor Mínimo</th>
<th>Valor Medio</th>
<th>Valor de la Mediana</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,24·10^{-1}</td>
<td>4,69·10^{-4}</td>
<td>1,04·10^{-2}</td>
<td>3,50·10^{-3}</td>
</tr>
</tbody>
</table>

Tabla 15: Estudio estadístico de la exposición al público medido con el dosímetro

Como se observa en los datos de la tabla, la exposición a campos electromagnéticos en la zona es baja, situándose en el peor de los casos en el 0,124%, es decir, unas 800 veces por debajo del valor máximo permitido.

La distribución espacial de estos porcentajes en la zona de muestreo la podemos observar en la figura 25. Como se observa en ella, el patrón obtenido es similar al del campo eléctrico total y al de la densidad de potencia: los valores obtenidos son relativamente bajos, encontrándose los valores más altos de nuevo en las calles San Petersburgo y Jerusalén.
5.6. **Comparación con otros estudios.**

Una vez se han mostrado los resultados obtenidos tras las mediciones y el tratamiento de datos, el fin de este apartado será el de comparar estos resultados con los obtenidos en los estudios previos que se han nombrado en el apartado 3, *Estado del arte*.

Como se ha podido ver, las bandas de frecuencia que han estado más presentes en el estudio han sido las de telefonía, en concreto, en las que se ha obtenido un valor medio de campo eléctrico mayor han sido GSMrx y UMTSrx. Si comparamos estos valores con los obtenidos en (Beekhuizen, 2013) realizado en Ámsterdam con un dosímetro EME SPY 140 el cual tenía la misma configuración de medida que el nuestro, vemos que en nuestro
estudio hemos obtenido un valor de campo eléctrico medio en GSM de 0,129 V/m frente a los 0,21 V/m obtenidos en el estudio previo, y en UMTS hemos obtenido 0,115 V/m frente a 0,09 V/m. observamos que, en este estudio, que también se realizó con un dosímetro EME SPY 140 y un periodo de muestreo de 4s, los valores medios de campo eléctrico obtenido son relativamente parecidos.

Centrándonos en los valores de campo eléctrico que hemos obtenido, vemos que en este caso los valores de campo eléctrico se sitúan entre 0,037 V/m como valor mínimo, y 1,331 V/m como valor máximo, siendo el valor medio de 0,345 V/m. Hay que destacar que los valores más altos se han encontrado en todas las ocasiones en las calles San Petersburgo, Marrakech y Jerusalén. Si comparamos estos resultados con los obtenidos en el estudio previo hecho en la misma zona, (Marcos Gaspar, 2005 y Balas Sánchez, 2012), en los que se midieron unos valores de campo eléctrico que oscilaban entre 0,21 y 3,27 V/m, siendo su media de 0,70 y 0,72 V/m respectivamente, vemos que éstos son más elevados que los nuestros, lo que puede deberse al material utilizado y al tipo de metodología seguida.

Si ahora comparamos estos valores con los obtenidos por (Urbinello, 2014) en los cuales se obtuvieron valores de campo eléctrico que oscilaban entre 0,09 y 0,41 V/m, observamos que nuestros valores superan en más del doble a los valores obtenidos para las zonas residenciales de Ámsterdam y Basilea. Un posible motivo para esto es que las mediciones realizadas en los barrios residenciales de Ámsterdam y Basilea se trataban de barrios de extrarradio alejados del centro de la ciudad.

Por último, si los comparamos con los obtenidos en los distintos puntos de la ciudad de Cáceres estudiados por (Gallego Rodríguez, 2013), que obtuvo unos valores de campo eléctrico que oscilaban entre 0,26 y 4,24 V/m, observamos que nuestros valores de campo eléctrico son más bajos que estos. La explicación de esto es que en ese estudio se midió en zonas céntricas de la ciudad de Cáceres, que lógicamente se encuentran más expuestas a las radiaciones electromagnéticas ya que el número de estaciones base de telefonía móvil aumenta en el centro de la ciudad con el fin de dar cobertura a la población.
Compararemos ahora los valores de la densidad de potencia con la de otros estudios. El valor medio de la densidad de potencia total obtenido es de 502,9 µW/m2, siendo las bandas que más contribuyen a esta densidad de potencia las de GSMrx con 141,0 µW/m2 (28,05%) y la de UMTSrx con 167,5 µW/m2 (33,33%). Si comparamos estos valores con los obtenidos en (Bolte & Eikelbomm, 2012), vemos que nuestros valores son alrededor de 3 veces mayores, siendo las bandas que más contribuyeron en este último estudio las de GSMtx (18,2%) y DCStx (18,6%).

De nuevo, si comparamos nuestros datos con el estudio previo realizado en la misma zona, (Marcos Gaspar, 2005), los resultados obtenidos por nosotros son muy inferiores a los obtenidos en el estudio previo, ya que en este se obtuvo un valor medio de 2,36 mW/m2 y en el nuestro 502,6 µW/m².
6. CONCLUSIONES
Tras haber hecho el estudio de la presencia de los campos electromagnéticos en el barrio residencial “Nuevo Cáceres”, y habiendo mostrado en el apartado anterior los resultados obtenidos, podemos llegar a las siguientes conclusiones:

1. De las 14 bandas de frecuencia que puede captar el dosímetro EME SPY 140, en solo siete de ellas más del 50% de sus valores superaban el valor umbral establecido para cada una de estas bandas. Cabe señalar que solo en las bandas de GSMrx, DCSrx y UMTSrx, el 100% de sus valores estaban por encima del valor umbral establecido en el dosímetro. De estas siete bandas, cinco pertenecen a frecuencias de telefonía móvil, por lo que se puede decir que gran parte de la radiación electromagnética presente en esta zona se debe a la presencia de estaciones base de telefonía móvil.

2. Del estudio de repetibilidad deducimos que podemos caracterizar el valor medio de campo eléctrico en una calle con un error relativo entre 8.9 y 32.0%.

3. No hay prácticamente diferencias entre los campos medidos a 1.7 m (altura de la cabeza) y a 1.0 m (altura de la cintura). El cociente entre ambos se situó entre 0.7 y 1,3 V/m, con un valor medio de 1 V/m. Este resultado ha sido de utilidad al comparar nuestros datos con los de otros estudios.

4. Los niveles de campo total encontrados en este estudio se sitúan entre 0,037 y 1,331 V/m, siendo el valor medio 0,345 V/m y la mediana 0,247 V/m. Estos niveles son inferiores a otros dos trabajos realizados en la misma zona en 2005 y 2012, ya que estos oscilaban entre 0,21 y 3,27 V/m en ambos, siendo su media de 0,70 V/m y 0,72 V/m respectivamente en cada uno de ellos. La distribución espacial de nuestros valores se ajusta al de los presentados en estos dos estudios.
5. Las bandas de frecuencia que más contribuyen a la exposición son las de telefonía móvil “de bajada” y la de radio FM. Las de telefonía móvil contribuyen con el 79% (GSM 28%, DCS 18 % y UMTS 33%) y la de radio FM con el 14% a la densidad de potencia total.

6. Las calles con mayor nivel de campo eléctrico son las calles San Petersburgo, Marrakech, Pierre de Coubertin y Jerusalén. El motivo es que las tres primeras son las calles exteriores de la zona de estudio y por lo tanto son las que están más expuestas a las antenas y a las estaciones base, además, la calle Jerusalén es la calle central y más ancha de la zona de estudio, la cual tiene visibilidad directa con las antenas y se trata de la calle más transitada al haber en ella un gran número de bares y comercios.

7. Tras las mediciones se ha obtenido un valor máximo en % de exposición al público de 0,124% y un valor mínimo de 4,69·10⁻⁴%, siendo el valor medio de 0,0104%. Teniendo en cuenta que el valor máximo permitido sería el 100%, podemos ver que los valores obtenidos son más de ochocientas veces inferior al valor máximo establecido. Por tanto, según los valores anteriores podemos concluir diciendo que la zona muestreada del barrio “Nuevo Cáceres” cumple adecuadamente los valores expuestos en el Real Decreto 1066/2001, para la protección del público en general a emisiones radioeléctricas.

Como conclusión final y a la vista de los resultados obtenidos en este estudio, podemos afirmar que la utilización de un dosímetro personal como el EME SPY 140 es viable a la hora de realizar una caracterización electromagnética de zonas urbanas.
REFERENCIAS BIBLIOGRÁFICAS

España (2001). Real Decreto 1066/2001, de 28 de septiembre, por el que se aprueba el Reglamento que establece condiciones de protección del dominio público radioeléctrico, restricciones a las emisiones radioeléctricas y medidas de protección sanitaria frente a emisiones radioeléctricas. Boletín Oficial del Estado, 28 de septiembre de 2001, 234, pp 36217 - 36227

ICNIRP (1998). Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Physics, 74(4), pp 494 – 522

