On the approximate solution of D'Alembert type equation originating from number theory

DSpace/Manakin Repository

español português english

On the approximate solution of D'Alembert type equation originating from number theory

Show full item record

Title: On the approximate solution of D'Alembert type equation originating from number theory
Author: Bouikhalene, B.; Elqorachi, E.; Charifi, A.
Abstract: We solve the functional equation E(α) : f(x₁x₂+ αy₁y₂, x₁y₂ + x₂y₁) + f(x₁x₂ ̶ αy₁y₂, x₂y₁ ̶ x₁y₂) = 2f(x₁, y₁)f(x₂, y₂), where (x₁, y₁), (x₂, y₂) ∈ ℝ², f : ℝ² → ℂ and α is a real parameter, on the monoid ℝ². Also we investigate the stability of this equation in the following setting: ⃒f(x₁x₂ + αy₁y₂, xy₂ + x₂y₁) + f(x₁x₂ ̶ αy₁y₂, x₂y₁ ̶ x₁y₂) ̶ 2f(x₁, y₁) f (x₂, y₂)⃒ ≤ min{φ(x₁), ψ(y₁), ϕ(x₂), ζ(y₂)}. From this result, we obtain the superstability of this equation.
URI: http://hdl.handle.net/10662/10291
Date: 2013


Files in this item

Files Size Format View
2605-5686_28_2_157.pdf 95.32Kb PDF View  Thumbnail

The following license files are associated with this item:

This item appears in the following Collection(s)

Show full item record

Attribution-NonCommercial-NoDerivatives 4.0 International Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International

Search DSpace


Browse

My Account

Statistics

Help

Redes sociales