Transfer operators on complex hyperbolic spaces

DSpace/Manakin Repository

español português english

Transfer operators on complex hyperbolic spaces

Show full item record

Title: Transfer operators on complex hyperbolic spaces
Author: Boussejra, Abdelhamid; Taoufiq, Tahani
Abstract: Let Bⁿ be the unit ball in the n-dimensional complex space and let Δ be the Bergman Laplacian on it. For λ ∈ ℂ such that |ℜ(i λ)| < n we give explicitly the transfer operator from the space of holomorphic functions Bⁿ onto an eigenspace E_λ^+ (Bⁿ ) of Δ. This answers a question raised by Eymard in [2]. As application, for λ = − iη with 0 < η < n, we get that the classical Hardy space H²(Bⁿ ) is isometrically isomorphic to the space H_λ^₂ (Bⁿ ) = { F ∈ E_ₙ^⁺(Bⁿ ) : sup 0<r<1 ( 1 − r²) [∫_(∂Bⁿ )⎸F(rƟ)|²dƟ ]½< ∞ }: Consequently H_λ^₂ (Bⁿ ) is a Banach space.
Date: 2013

Files in this item

Files Size Format View
2605-5686_28_1_113.pdf 127.0Kb PDF View  Thumbnail

The following license files are associated with this item:

This item appears in the following Collection(s)

Show full item record

Attribution-NonCommercial-NoDerivatives 4.0 International Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International

Search DSpace


My Account



Redes sociales