Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/13759
Registro completo de Metadatos
Campo DCValoridioma
dc.contributor.authorRubio Chaves, Manuel Ángel-
dc.contributor.authorRubio, A.-
dc.contributor.authorCabezas Martín, María Guadalupe-
dc.contributor.authorHerrada Gutiérrez, Miguel Ángel-
dc.contributor.authorGañán Calvo, Alfonso Miguel-
dc.contributor.authorMontanero Fernández, José María-
dc.date.accessioned2022-02-17T12:42:36Z-
dc.date.available2022-02-17T12:42:36Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/10662/13759-
dc.description.abstractWe study numerically and experimentally the stability of the transonic flow focusing used in serial femtosecond crystallography (SFX) to place complex biochemical species into the beam focus. Both the numerical and experimental results indicate that the minimum flow rate for steady jetting increases slightly with the gas stagnation pressure. There is a remarkable agreement between the stability limit predicted by the global stability analysis and that obtained experimentally. Our simulations show that the steady jetting interruption at the critical flow rate is caused by the growth of a perturbation with a constant phase shift. This result is consistent with the experimental observations, which indicate that both the meniscus tip and the emitted jet collapse almost simultaneously at the stability limit. We derive a scaling law for the jet diameter as a function of the liquid flow rate and gas density/pressure from more than one hundred simulations. The scaling law provides accurate predictions for the jet diameter within the range of values [0.549,10.9] m analyzed in this work.es_ES
dc.description.sponsorshipThis research has been supported by the Spanish Ministry of Science and Innovation under Grants PID2019-108278RB, by Junta de Extremadura under Grant GR18175, and by Junta de Andalucía under Grant P18-FR-3623. The authors are also grateful to P. Rodriguez-Díaz for her help in manufacturing the ejector.es_ES
dc.format.extent8 p.es_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFlow focusinges_ES
dc.subjectSerial femtosecond crystallographyes_ES
dc.subjectGlobal stabilityes_ES
dc.subjectEnfoque de flujoes_ES
dc.subjectEstabilidad mundiales_ES
dc.subjectCristalografía de femtosegundos en seriees_ES
dc.titleTransonic flow focusing: stability analysis and jet diameteres_ES
dc.typearticlees_ES
dc.description.versionpeerReviewedes_ES
europeana.typeTEXTen_US
dc.rights.accessRightsopenAccesses_ES
dc.subject.unesco2204 Física de Fluidoses_ES
dc.subject.unesco2204.05 Gaseses_ES
dc.subject.unesco2302 Bioquímicaes_ES
europeana.dataProviderUniversidad de Extremadura. Españaes_ES
dc.identifier.bibliographicCitationRubio Chaves, M., Rubio, A., Cabezas Martín, M.G., Herrada Gutiérrez, M.A., Gañán Calvo, A.M. & Montanero Fernández, J.M. (2021). Transonic flow focusing: stability analysis and jet diameter. International Journal of Multiphase Flow, 142, 103720. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103720es_ES
dc.type.versionpublishedVersiones_ES
dc.contributor.affiliationUniversidad de Extremadura. ICCAEx - Instituto de Investigación de Computación Científica Avanzadaes_ES
dc.contributor.affiliationUniversidad de Extremadura. Departamento de Ingeniería Mecánica, Energética y de los Materialeses_ES
dc.contributor.affiliationUniversidad de Sevilla-
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0301932221001683?via%3Dihubes_ES
dc.identifier.doi10.1016/j.ijmultiphaseflow.2021.103720-
dc.identifier.publicationtitleInternational Journal of Multiphase Flowes_ES
dc.identifier.publicationfirstpage103720-1es_ES
dc.identifier.publicationlastpage103720-8es_ES
dc.identifier.publicationvolume142es_ES
dc.identifier.e-issn0301-9322-
Colección:DIMEM - Artículos
ICCAEx - Artículos

Archivos
Archivo Descripción TamañoFormato 
j.ijmultiphaseflow.2021.103720.pdf1,5 MBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons