Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/20486
Registro completo de Metadatos
Campo DCValoridioma
dc.contributor.authorRomarowski, Ana-
dc.contributor.authorFejzo, Jazna-
dc.contributor.authorNayyab, Saman-
dc.contributor.authorMartín Hidalgo, David-
dc.contributor.authorGervasi, María Gracia-
dc.contributor.authorBalbach, Melanie-
dc.contributor.authorViolante, Sara-
dc.contributor.authorSalicioni, Ana María-
dc.contributor.authorCross, Justin-
dc.contributor.authorLevin, Lonny R-
dc.contributor.authorBuck, Jochen-
dc.contributor.authorVisconti, Pablo Ernesto-
dc.date.accessioned2024-02-09T08:11:20Z-
dc.date.available2024-02-09T08:11:20Z-
dc.date.issued2023-
dc.identifier.issn2296-634Xes_ES
dc.identifier.urihttp://hdl.handle.net/10662/20486-
dc.descriptionVersión aceptada del trabajo publicado en: Frontiers in Cell and Developmental Biology, 11, 1234221. ISSN 2296-634X.es_ES
dc.description.abstractMammalian sperm must undergo capacitation to become fertilizationcompetent. While working on mice, we recently developed a new methodology for treating sperm in vitro, which results in higher rates of fertilization and embryo development after in vitro fertilization. Sperm incubated in media devoid of nutrients lose motility, although they remain viable. Upon re-adding energy substrates, sperm resume motility and become capacitated with improved functionality. Here, we explore how sperm energy restriction and recovery (SER) treatment affects sperm metabolism and capacitation-associated signaling. Using extracellular flux analysis and metabolite profiling and tracing via nuclear magnetic resonance (NMR) and mass spectrometry (MS), we found that the levels of many metabolites were altered during the starvation phase of SER. Of particular interest, two metabolites, AMP and L-carnitine, were significantly increased in energy-restricted sperm. Upon readdition of glucose and initiation of capacitation, most metabolite levels recovered and closely mimic the levels observed in capacitating sperm that have not undergone starvation. In both control and SER-treated sperm, incubation under capacitating conditions upregulated glycolysis and oxidative phosphorylation. However, ATP levels were diminished, presumably reflecting the increased energy consumption during capacitation. Flux data following the fate of 13C glucose indicate that, similar to other cells with high glucose consumption rates, pyruvate is converted into 13C-lactate and, with lower efficiency, into 13C-acetate, which are then released into the incubation media. Furthermore, our metabolic flux data show that exogenously supplied glucose is converted into citrate, providing evidence that in sperm cells, as in somatic cells, glycolytic products can be converted into Krebs cycle metaboliteses_ES
dc.description.sponsorshipThis study was supported by NIH grants HD-038082 (to PV) and HD088571 (to JB, LL, and PV). DM-H was the recipient of a post-doctoral award from the Government of Extremadura (Spain) and by Fondo Social Europeo (PO14005). AR was supported by a fellowship from the Lalor Foundation.es_ES
dc.format.extent18 p.es_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenges_ES
dc.rightsAttribution 4.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subjectEspermatozoidees_ES
dc.subjectSpermes_ES
dc.subjectMetabolismoes_ES
dc.subjectMetabolismes_ES
dc.subjectATPes_ES
dc.subjectTécnicas de reproducción asistidaes_ES
dc.subjectAssisted reproductive technologieses_ES
dc.titleMouse sperm energy restriction and recovery (SER) revealed novel metabolic pathwayses_ES
dc.typearticlees_ES
dc.description.versionpeerReviewedes_ES
europeana.typeTEXTen_US
dc.rights.accessRightsopenAccesses_ES
europeana.dataProviderUniversidad de Extremadura. Españaes_ES
dc.type.versionacceptedVersiones_ES
dc.contributor.affiliationUniversidad de Extremadura. Departamento de Fisiologíaes_ES
dc.contributor.affiliationUniversity of Massachusetts. Department of Veterinary and Animal Sciencesen_US
dc.contributor.affiliationConsejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET). Instituto de Biología y Medicina Experimental. Argentinaes_ES
dc.contributor.affiliationUniversity of Massachusetts. Institute for Applied Life Sciencesen_US
dc.contributor.affiliationHospital San Pedro de Alcántara. Cácereses_ES
dc.contributor.affiliationWeill Cornell Medicine. Department of Pharmacology, Weill Cornell Medicine. United Statesen_US
dc.contributor.affiliationMemorial Sloan Kettering Cancer Center. United Statesen_US
dc.relation.publisherversionhttps://www.frontiersin.org/articles/10.3389/fcell.2023.1234221/fulles_ES
dc.relation.publisherversionhttps://doi.org/10.3389/fcell.2023.1234221es_ES
dc.identifier.doi10.3389/fcell.2023.1234221-
dc.identifier.publicationtitleFrontiers in Cell and Developmental Biologyes_ES
dc.identifier.orcid0000-0002-6787-0006es_ES
Colección:DFSIO - Artículos

Archivos
Archivo Descripción TamañoFormato 
fcell_2023_1234221.pdf3 MBAdobe PDFDescargar
fcell_2023_1234221_Supl.pdf1,24 MBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons