Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/3317
Title: Constant Jacobi osculating rank of U(3)/(U(1) x U(1) x U(1)) -- Appendix--
Authors: Arias-Marco, Teresa
Keywords: Operador de Jacobi;Espacios homogéneos reductivos;Espacios naturalmente reductivos;Reductive homogeneous spaces;Naturally reductive space;Jacobi operator
Issue Date: Jan-2010
Abstract: Este es el apéndice del documento [T. Arias-Marco, Constant Jacobi osculating rank of U(3)/(U(1) × U(1) × U(1)), Arch. Math. (Brno) 45 (2009), 241–254]
This is the appendix of the paper [T. Arias-Marco, Constant Jacobi osculating rank of U(3)/(U(1) × U(1) × U(1)), Arch. Math. (Brno) 45 (2009), 241–254] where we obtain an interesting relation between the co-variant derivatives of the Jacobi operator valid for all geodesic on the flag manifold M6 = U(3)/(U(1)×U(1)×U(1)). As a consequence, an explicit expression of the Jacobi operator independent of the geodesic can be obtained on such a manifold. Moreover, we show the way to calculate the Jacobi vector fields on this manifold by a new formula valid on every g.o. space.
URI: http://hdl.handle.net/10662/3317
Appears in Collections:DMATE - Artículos

Files in This Item:
File Description SizeFormat 
arxiv_ 0906.2890.pdf85,91 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons