Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/7087
Títulos: The characterization of Escherichia coli CpdB as a recombinantpProtein reveals that, besides having the expected 3´-nucleotidase and 2´,3´-cyclic mononucleotide phosphodiesterase activities, it is also active as cyclic dinucleotide phosphodiesterase
Autores/as: López Villamizar, Iralis Mercedes
Cabezas Martín, Alicia
Pinto Corraliza, Rosa María
Canales García, José
Ribeiro, João Nuno Meireles da Silva Gonçalves
Cameselle Viña, José Carlos
Costas Vázquez, María Jesús
Palabras clave: Escherichia coli BL21;Bacteria Gram-Negativo;Proteina fusión con GST;Electroforesis de proteinas desnaturalizantes;Gram-negative bacteria;GST fusion protein;Denaturing gel electrophoresis
Fecha de publicación: 2016
Editor/a: Public Library of Science
Resumen: Endogenous cyclic diadenylate phosphodiesterase activity was accidentally detected in lysates of Escherichia coli BL21. Since this kind of activity is uncommon in Gram-negative bacteria, its identification was undertaken. After partial purification and analysis by denaturing gel electrophoresis, renatured activity correlated with a protein identified by fingerprinting as CpdB (cpdB gene product), which is annotated as 3´-nucleotidase / 2´,3´- cyclicmononucleotide phosphodiesterase, and it is synthesized as a precursor protein with a signal sequence removable upon export to the periplasm. It has never been studied as a recombinant protein. The coding sequence of mature CpdB was cloned and expressed as a GST fusion protein. The study of the purified recombinant protein, separated from GST, confirmed CpdB annotation. The assay of catalytic efficiencies (kcat/Km) for a large substrate set revealed novel CpdB features, including very high efficiencies for 3´-AMP and 2´,3´- cyclic mononucleotides, and previously unknown activities on cyclic and linear dinucleotides. The catalytic efficiencies of the latter activities, though low in relative terms when compared to the major ones, are far from negligible. Actually, they are perfectly comparable to those of the ‘average’ enzyme and the known, bona fide cyclic dinucleotide phosphodiesterases. On the other hand, CpdB differs from these enzymes in its extracytoplasmic location and in the absence of EAL, HD and DHH domains. Instead, it contains the domains of the 5´-nucleotidase family pertaining to the metallophosphoesterase superfamily, although CpdB lacks 5´-nucleotidase activity. The possibility that the extracytoplasmic activity of CpdB on cyclic dinucleotides could have physiological meaning is discussed.
URI: http://hdl.handle.net/10662/7087
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0157308
Colección:DBYBM - Artículos

Archivos
Archivo Descripción TamañoFormato 
journal_pone_0157308.PDF1,62 MBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons