Theory of "z"-linear maps

Repositorio Dspace/Manakin

español português english

Theory of "z"-linear maps

Mostrar el registro completo del ítem

Título: Theory of "z"-linear maps
Autor: Moreno Salguero, Yolanda
Resumen: La teoría que se desarrolla en esta tesis contempla las aplicaciones lineales Z a través de tres diferentes puntos de vista: como objetos de una categoría, como herramientas homológicas y funciones. En este trabajo se introduce por primera vez una categoría de aplicaciones lineales Z (o de las secuencias exactas de los espacios de Banach), que designaremos Z. Identificamos tres tipos de objetos en Z: el objeto cero, los objetos singulares y cosingular, y algunos objetos universales. También abordamos el límite inductivo de aplicaciones lineales Z. Descubrimos dos hechos: es posible completar algunos diagramas de secuencias exactas y todos los objetos de Z definidos en un espacio separable, que puede ser visto como un límite inductivo. El cambio de un momento para considerar las aplicaciones lineales Z como funciones, lo que significa que este tipo de aplicaciones admiten representaciones de dimensión finita inductivas. Una herramienta fundamental en el problema de la extensión para los operadores de C ( K) por valor es el lema de Zippin, que caracteriza a los subespacios Y, ! X tal que cada operador de Y! C ( K ) se extiende a X (se dice que Y es casi complementado en X, o bien, en nuestros términos, que la extensión inducida por Y, ! X es casi trivial o C ( K ) trivial). La existencia de versiones convexas es precisamente lo que nos permite representar aplicaciones lineales Z como límites inductivos de mapas con rango de dimensión finita (esto es lo que llamamos a la representación de dimensión finita inductiva de F).The theory we develop in this memoir contemplates z-linear maps through three different points of view: as objects in a category, as homological tools, and functions. In this work we introduce for the first time a category of z-linear maps, which we shall denote Z. We identify three type of objects in Z: the object zero, the singular and cosingular objects, and some universal objects. We also tackle the inductive limit of z-linear maps. We uncover two facts: it is possible complete certain diagrams of exact sequences; and every object of Z defined on a separable space can be seen as an inductive limit. Shifting for a moment to consider z-linear maps as functions, that means that such maps admit inductive finite dimensional representations. A fundamental tool in the extension problem for C(K)-valued operators is Zippin’s lemma, that characterizes the subspaces Y ,! X such that every operator Y ! C(K) extends to X (it is said that Y is almost complemented in X; or, in our terms, that the induced extension by Y ,! X is almost-trivial or C(K)-trivial). The existence of convex versions is precisely what allows us to represent z-linear maps as inductive limits of maps with finite dimensional range (this is what we called inductive finite dimensional representation of F).
URI: http://hdl.handle.net/10662/730
Fecha: 2013-12-02


Ficheros en el ítem

Ficheros Tamaño Formato Ver
TDUEX_2003_Moreno_Salguero.PDF 828.4Kb PDF Thumbnail

El ítem tiene asociados los siguientes ficheros de licencia:

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem

Creative Commons Attribution- NonCommercial-NoDerivs 3.0 License Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution- NonCommercial-NoDerivs 3.0 License

Buscar en Mi Dehesa


Listar

Mi cuenta

Estadísticas

Ayuda

Redes sociales