Validación de una estrategia para la estimación del riesgo en intersecciones con vehículos conectados

DSpace/Manakin Repository

español português english

Validación de una estrategia para la estimación del riesgo en intersecciones con vehículos conectados

Show full item record

Title: Validación de una estrategia para la estimación del riesgo en intersecciones con vehículos conectados
Author: Villagra, Jorge; Perarnau, Manuel; Godoy, Jorge; Artuñedo, Antonio
Abstract: Para hacer posible el despliegue masivo de vehículos automatizados en entornos urbanos es capital avanzar en la toma de decisiones seguras. En particular, es necesario mejorar la capacidad de inferir las intenciones de los diferentes agentes y el riesgo que implican en las escenas complejas de conducción, mejorando así la seguridad y predictibilidad de los sistemas de ayuda a la conducción y de conducción automatizada. El presente trabajo muestra la implementación y validación en simulación de una solución novedosa para estimar el riesgo de conducción utilizando un modelo de espacio y estados en el contexto de las intersecciones. La estrategia utilizada modela la escena de conducción como una red dinámica Bayesiana e infiere intenciones y expectativas de los agentes involucrados a través de un filtro de partículas. Los resultados son muy prometedores tanto en tasa de acierto como en horizonte de predicción en los entornos para los que ha sido probado: intersecciones en Y, en T y en X.To make possible the massive deployment of automated vehicles in urban environments, it is essential to move forward in making safe decisions. In particular, it is necessary to improve the ability to infer the intentions of the different agents and the risk involved in complex driving scenes, thus improving the safety and predictability of automated driving and driving assistance systems. The present work shows the implementation and validation in simulation of a novel solution to estimate the risk of driving using a model of space and states in the context of intersections. The strategy used models the driving scene as a dynamic Bayesian network and infers intentions and expectations of the agents involved through a particle filter. The results are very promising in both the success rate and the prediction horizon in the environments for which it has been tested: Y, T and X intersections.
Description: Comunicación presentada a las XXXIX Jornadas de Automática, celebradas en Badajoz del 5 al 7 de Septiembre de 2018 y organizada por la Universidad de Extremadura.
URI: http://hdl.handle.net/10662/8228
Date: 2018


Files in this item

Files Size Format View
978-84-09-04460-3_202.pdf 1.238Mb PDF Thumbnail

The following license files are associated with this item:

This item appears in the following Collection(s)

Show full item record

Atribución-NoComercial 3.0 España Except where otherwise noted, this item's license is described as Atribución-NoComercial 3.0 España

Search DSpace


Browse

My Account

Statistics

Help

Redes sociales