Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/8445
Title: Control descentralizado adaptativo con PI por ganancia programada de un sistema de refrigeración por compresión de vapor
Other Titles: Adaptive decentralized PI control by gain scheduling for a vapor compression refrigeration cycle system
Authors: Lara, Manuel
Garrido, Juan
Vázquez, Francisco
Universidad de Córdoba
Keywords: Ciclo de refrigeración por compresión de vapor
Control adaptativo
Control PID
Generación óptima de consignas
Vapor compression refrigeration cycle
Decoupling control
Adaptive control
PID control
Optimum set-point generation
Issue Date: 2018
Publisher: Universidad de Extremadura
Abstract: Este documento aborda el problema de control de un sistema de refrigeración por compresión de vapor propuesto como Benchmark para el CIC2018. Este sistema de refrigeración es un proceso no lineal multivariable que muestra interacciones y está sujeto a restricciones de entrada. En este trabajo, se propone una estructura de control descentralizado a través de dos controladores PI adaptativos por ganancia programada para diferentes modelos lineales identificados en varios puntos de operación. Dichos controladores se ajustan mediante algoritmos genéticos para minimizar un índice de rendimiento múltiple. Además, se implementa un generador de consignas óptimo para el lazo de sobrecalentamiento cuyo objetivo es lograr puntos de operación estacionarios con un coeficiente de rendimiento máximo, el cual es una medida de eficiencia generalizada en estos sistemas. Las simulaciones consideradas en el concurso muestran que el diseño propuesto logra un mejor rendimiento que el caso de referencia.
This paper deals with the control problem of a refrigeration vapor compression system proposed as a benchmark for the CIC2018. This refrigeration system is a nonlinear multivariable process that shows interactions and is subjected to input constraints. In this work, an adaptive decentralized PI control by gain scheduling is proposed as control structure for several linear models identified at different operation points. Then, the PI controllers are tuned by genetic algorithms to minimize a multiple performance index. In addition, a superheat set-point generation is developed to obtain stationary operation points with maximum coefficient of performance which is a widespread efficiency measurement in these systems. Simulations considered in the benchmark show that the proposed design achieves better performance than the reference case.
Description: Comunicación presentada a las XXXIX Jornadas de Automática, celebradas en Badajoz del 5 al 7 de Septiembre de 2018 y organizada por la Universidad de Extremadura.
URI: http://hdl.handle.net/10662/8445
ISBN: 978-84-09-044460-3
Appears in Collections:XXXIX Jornadas de Automática

Files in This Item:
File Description SizeFormat 
978-84-09-04460-3_562.pdf752,43 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons