New insights into the genome organization of yeast killer viruses based on “atypical” killer strains characterized by high-throughput sequencing

DSpace/Manakin Repository

español português english

New insights into the genome organization of yeast killer viruses based on “atypical” killer strains characterized by high-throughput sequencing

Show full item record

Title: New insights into the genome organization of yeast killer viruses based on “atypical” killer strains characterized by high-throughput sequencing
Author: Ramírez Fernández, Manuel; Velázquez Otero, María Rocío; López Piñeiro, Antonio; Naranjo Carrasco, Belén; Roig Molina, Francisco José; Llorens Candela, Carlos
Abstract: Los M-dsRNA virales que codifican las toxinas asesinas de la levadura comparten una organización genómica similar, pero no tienen una identidad de secuencia global. Las secuencias de longitud completa de dsRNA de varios virus M conocidos aún no se han completado, o fueron más cortas de lo estimado por electroforesis en gel de agarosa. Se utilizó la secuenciación de alto rendimiento para analizar algunos M-dsRNAs previamente secuenciados por técnicas tradicionales, y nuevos dsRNAs de cepas asesinas atípicas de Saccharomyces cerevisiae y Torulaspora delbrueckii. Todos los ARNbc que se esperaba que estuvieran presentes en una cepa de levadura dada se detectaron y secuenciaron de manera confiable, y se confirmaron las secuencias previamente conocidas. Las pocas discrepancias entre las variantes virales se ubicaron principalmente alrededor de la región central poli (A). Una secuencia continua del genoma de ScV-M2 se obtuvo por primera vez. El virus M1 se encontró por primera vez en levaduras de vino, coexistiendo con el virus Mbarr-1 en T. delbrueckii. Se encontraron secuencias adicionales de 50 y 30 en todos los genomas M. La presencia de secuencias cortas repetidas en la región 30 no codificante de la mayoría de los genomas M indica que tienen un origen filogenético común. La alta identidad entre las secuencias de aminoácidos de las toxinas asesinas y algunas proteínas no clasificadas de levadura, bacterias y uvas de vino sugiere que los virus asesinos reclutaron algunas secuencias del genoma de estos organismos, o viceversa, durante la evolución.Viral M-dsRNAs encoding yeast killer toxins share similar genomic organization, but no overall sequence identity. The dsRNA full-length sequences of several known M-viruses either have yet to be completed, or they were shorter than estimated by agarose gel electrophoresis. High-throughput sequencing was used to analyze some M-dsRNAs previously sequenced by traditional techniques, and new dsRNAs from atypical killer strains of Saccharomyces cerevisiae and Torulaspora delbrueckii. All dsRNAs expected to be present in a given yeast strain were reliably detected and sequenced, and the previously-known sequences were confirmed. The few discrepancies between viral variants were mostly located around the central poly(A) region. A continuous sequence of the ScV-M2 genome was obtained for the first time. M1 virus was found for the first time in wine yeasts, coexisting with Mbarr-1 virus in T. delbrueckii. Extra 50- and 30-sequences were found in all M-genomes. The presence of repeated short sequences in the non-coding 30-region of most M-genomes indicates that they have a common phylogenetic origin. High identity between amino acid sequences of killer toxins and some unclassified proteins of yeast, bacteria, and wine grapes suggests that killer viruses recruited some sequences from the genome of these organisms, or vice versa, during evolution.
URI: http://hdl.handle.net/10662/9580
Date: 2017


Files in this item

Files Size Format View
toxins9090292.pdf 1.129Mb PDF Thumbnail
toxins9090292_Supl.pdf 222.6Kb PDF Thumbnail

The following license files are associated with this item:

This item appears in the following Collection(s)

Show full item record

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search DSpace


Browse

My Account

Statistics

Help

Redes sociales