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1. INTRODUCTION

The concept of the exponential of a set has been useful in the study of dif-
ferential inclusions and Lipschitz selections. Firstly, it was considered (inde-
pendently) by A.L. Dontchev and E. M. Farkhi [9] in 1989 and P. R. Wolenski
[19] in 1990. In 2003, E. O. Ayoola has developed this concept for the study
of quantum stochastic differential inclusions [3]. In 2006 and in various ways
the extension of multivalued case exponential function was developed in [1],
[5] and [6].

At the begining of this paper, we study the multivalued entire series
S(K) =>a,K™ (where K is in K(A), the set of all compact sets of a Banach
algebra A) which is used to define ef.

Then, for K € K(A), we define o(K), the spectrum of K, as the union of
all spectrum o(a) when a runs K. If A = B(H), i.e., the set of all bounded
linear operators on a complex Hilbert space H, and K is in K(B(H)), we
define W(K), the numerical range of K, as the convex hull of the union of
W(A) when A varies over K and

W(A) = {<A$,.Z‘> x|l = 1}.

The last set is called the numerical range of A which is always a convex set of
C whose closure contains the convex hull of 0(A) or coo(A) [14]. In general, in
the noncommutative case, the spectrum is not continuous with respect to the
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Hausdorff metric [2]. (For more recent work on this topic, see, for example,
[18]). We show a range of properties for o(K) and W (K) which are verified in
the single valued case, such as continuity of the numerical range in the sense
of Hausdorff [8] and the continuity of the spectrum in the case where A is
commutative. We also show for K € K(B(H)) that:

le(K)
K| <2w(K) - , 1
K] < 20(K) - 0 (1)
where
W (K) =inf {|z]|: z€ W(A), Ae K},
and

w(K)=sup{||z| : z € W(A), A€ K},

is the K numerical radius. The last inequality is optimal and generalized in
the single valued case the following classical inequality [13]:

JAll < 20(4), A e B(H).

As an application of (1) we show that for K and K’ in K(B(H))
2 K) w/Q(K/)
KK < (w(E) - S g K') - K. (2
) < (i) = ) I+ () - G )1kl @)

The previous inequality is an improvement in the single valued case of the
following theorem from Dragomir [10]:

THEOREM 1. ([10]) Let A,B € B(H) and «, 3,7, A € C be such that for
every x € H,

((A* —al)(BI — A)z,z) > 0 and ((B* —5I)(A — B)z,z) > 0.

Then,
[AB|| < w (A) | Bl + w (B) [| Al + w (A) w (B) + i B—al[A=~l.  (3)

In [11], and [12], Dragomir said that’s an open problem whether or not
the constant % is best possible in the inequality (3). The inequality (2) is the
solution of this problem.

Dragomir in 2008 [11] showed that

1A < w?(4) + d*(4), A e B(H),
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with
d(A) = sup {|[(Az,y)| : lz]| = [yl =1, (z,y) = 0}.
We also generalize this result in the set valued case by showing that for K, K’ €
B(H)
WKK") < w(K)w(K') + d(K)d(K"),

where

d(K) =sup{d(A): Aec K}.
Finally, when
Ki(A) = {K € K(A) : Va,b € K, ab=ba},

we show the following spectral theorem:

THEOREM 2. For each K € K;(A), we have
o(S(K)) C S(o(K)).

2. DEFINITIONS AND PRELIMINARIES

In this paper A is a Banach algebra over C, with unit element I. The
following definitions are useful in the sequel.

DEFINITION 3. Let K and K’ be two elements of K(A) and a a complex
number. We denote

K- K'={z-y:2€K, ye K'},
K+K ={x+y:z2€K, ye K'},

aK ={al} - K={a -z: ze€ K},
a+K={al}+K={al+xz: z¢e K},

| K| = sup [|X]],

XeK

K'={I}, K'"=K- K" VneN*

We note that in general K - K’ is not equal to K’ - K and K" = KPK9, with
p+qg=mnand p,qg,n €N.

DEFINITION 4. Let K, K’ € K(A). The Hausdorff distance between K and
K' denoted by h(K, K') is the maximum of the excess e(K, K') and e(K’, K)
where
e(K,K') = sup inf | X —Y|.
XecK YeEK'
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DEFINITION 5. Let F be a multifunction from A into K(A) and let X, €
A. F is called Hausdorff upper semicontinuous at Xy (“F is Hscs” at X) if
for any sequence (X,,)nen of elements of A, which converges to Xy, we have

Ve >0, IN € N such that Vn > N, F(X,) C F(Xo) + B(0,¢), (4)
where B(0, €) is the open ball in A with center 0 and radius e.
It follows immediately from (4) that
Ve >0, 3n > 0 such that VX € B(Xo,n), e(F(X),F(Xo)) <e. (5)

3. MULTIVALUED POWER SERIES IN A

DEFINITION 6. Let (an)nen be a sequence of complex numbers, and let
K € K(A). We set

n n
Sp(K) = ZaiKi =ap+ a1 K +aK?+--+a, K" = {Zaixi tx; € KZ}
i=0 i=0

n
DEFINITION 7. Let K € K(A) be such that the sequences ) a;z; con-
i=0
verges for all z; € K*. We set

+oo o0
S(K) = {Zanazn T xy, € K”} = ZanK”.
i=0

n=0
In the remainder of this section, K denotes an element of K(.A) and (ay, )nen
a sequence of complex numbers such that
—+o00
Z anTy converges and Vn € N, z, € K.
n=0
THEOREM 8. Let r be the radius of convergence of the complex power
series Y anz". If K € K(A), with K C B(0,6) and 0 < 6 < r, then S(K) is
a compact set of A.

Proof. Let (Yp)pen be a sequence of elements of S(K). We show that
(Yp)pen admits a subsequence (Y, (,))pen which converges in S(K). For all
p € N, we have

400
Y, = aiXip,
1=0
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with X;, € K' and Xo, = I. We set
Zp = (aoX(),p, a1X17p, Lo, a 7p, .. E Ha,K’

This set is a compact set product. By Tychonov theorem [17], this is a compact
set for the norm ||-||,., where for all p in N,

[e.9]

1
1Zplle = 5oy min {1, [|ai Xip |}

1=0

We extract a subsequence (Z,))pen which converges to
o0
7 = (ang, a1 X1, ...,a;X;, .. ) S HaiKl.

Let us show that (Y,(,))pen converges to Y = > a;X;. Let € € ]0,1[. The
sequence (Z¢(p))peN converges to Z, and then, for all e; > 0, there exists

p1 > 0 such that for all p > pq,

“+00

1
Z ont1 min {1, lan Xy o) — anXnl|} <1,
n=0
and then,
o+l min {1, [|an X ) = anXal[} < a1

for any n > 0. Since § < 7, >0 [a,0"| is convergent. Thus, there exists
ng > 0 such that for all n > ns,

+oo 4 c
Z |ai5l] < -.
. 3
i1=n—+1
Let e1 = §2n21+1 pryey Then, there exists pp, such that 2n+1 > g1 and
H%Xnvw(p) - aanH
on+1 Xnp(p) — aanH} = on+1 < e1,
for all p > pp, and n < ny. Then, for all n < ng,
lan X o) — anXonl| < 7.,
PP ~ 3(ne +1)
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and thus, for all p > p,,,

400 400
Ve = Y| < ZH% ne) — anXal + D0 JanXngo |+ Y lanXal
n=ngs+1 n=ngs+1

€3 oot ~ e +

2
< n+1 + —e=¢.
Z 2 2+1) 3

DEFINITION 9. Let K € K(A). We define the set valued exponential of
K, denoted e, by

+C>o1 —l—oo1
eK_Zn!K"_{Zn!xn:VneN, xneK”}.

n=0 n=0

Remark 10. Since the radius of convergence of complex series ) %L is
infinite, then for every K € K(A), X is well defined. Using Theorem 8, e
is in K(A).

THEOREM 11. Let K € K(A), with K C B(0,9), r the radius of conver-
gence of the complex power series > a,z" and 0 < 6 < r. Then, the sequence
Sn(K) converges in the sense of Hausdorff to S(K).

Proof. Let Y, € Sp(K) and Y € S(K), with Yy, = > jajz;, ¥ =Y, +
Z?in-u a;x;, and x; € K for all i € N. We have

[e.e]

IV =Yall < ) a6,
i=n-+1
and then
h(S(K),Sp(K)) < > lai| 6",
i=n+1

Hence the result. |

The following lemma is useful in the proof of Theorem 13.
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LEMMA 12. Let ) anz™ be a complex entire series. Then for any n € N,
the mapping S, from K(A) to K(A), which associates to each K the set
Sn(K), is continuous in the sense of Hausdorff.

Proof. 1t is easy to see that the product and sum of two compact sets
of A are compact sets. For the continuity of S, it suffices to show that if
(Kp)pen and (K))pen are two sequences of compact set of A which converge
in the sense of Hausdorff respectively to two compact set K and K’ then the
sequences (K,K)pen and (K, + K} )pen converge in the sense of Hausdorff
respectively to KK’ et K + K'.

By the triangle inequality, we have

WMEK,K,, KK') <|Ky| h(K], K') + |K'| h(Kp, K).

The sequence (K),)pen is convergent, and therefore (|Kp|)pEN is bounded from
above. As a result, (K,Kj,)pen converges to KK'.

For the other convergence, by triangle inequality, we have

WK, + K,, K+ K') < h(K},, K') + h(K), K).

THEOREM 13. Let r be the radius of convergence of the complex entire
series Y apz" and 0 < r. Then the mapping S : K(A) — K(A), which to
K C B(0,0) associates S(K), is continuous in the sense of Hausdorff.

Proof. Let us consider a sequence (K,)yen of compact sets of A included
in B(0,0), which converges in the sense of Hausdorff to a compact set K. Let
us show that h(S(K,), S(K)) tends to 0.

The series ) |ay| 67 is convergent, and so the sequence R, = > 2 |a,| P
tends to 0. Thus, for all € > 0, there exists ng € N such that for all n > ny,

Hence
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By Lemma 12, the mapping Sy, is continuous, and so for all € > 0, there
exists pg € N such that for all p > po,

h(Sno (Kp), Sno (K)) <

W ™

We have N
€
h(S<Kp)v Sno(Kp)) < Z !ap\ o < 3

p=n

And, similarly, for h(Sp,(K), S(K)). Thus, for every p > po, h(S(K,), S(K)) <
e. 1

4. SPECTRUM AND NUMERICAL RANGE OF A COMPACT SET

DEFINITION 14. Let K be an element of K(A). We define the spectrum
of K, denoted o(K), and the algebraic numerical range of K, denoted V(K),
by:
o(K)={ eC:3XeK, heo(X)} = | o(X)
XeK
and

V(K)=co{0(t): D € S(A), t € K},

respectively, with
S(A) = {@ e A" O(I) = ||0|| = 1},

and o(X) the spectrum of X. Therefore, we have

V(E) =co| JV(®),

teK

where

V(t)={0(t): D e S(A)}.

The last set is called the algebraic numerical range of ¢ in the single-valued
case, which is always a closed and convex set in C [16]. It is also located in the
disk with center 0 and radius ||¢||, and satisfies V(A) = W (A) for all A € B(H)
[4].

DEFINITION 15. If A = B(H), we define the numerical domain of K by:

W(K) =co{ (Az,z): ||z]| =1, Ac K} =co U W(A).
AeK
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For K € K(A), we define the numerical radius of K, denoted w(K), and the
spectral radius of K, denoted p(K), by:

w(K) = [V(K)| and p(K) = |o(K)]|.

Similarly, if A = B(H), the numerical radius of K is

THEOREM 16. If K € K(A), then o(K) is a compact set in C.

The proof of this theorem is a consequence of Lemma 17 since in the single
valued case, the spectrum mapping from A to K(C) is Husc [2].

LEMMA 17. Let (E,||||) be a normed space, F' a Husc multifunction from
A into K(E) and K a compact set of A. Assume that there exists a > 0 such
that for all x € K, |F(x)| < a||z|. Then, D = UF(x) is a closed bounded
subset of E.

Proof. D is bounded since for all A € D there exists x € K such that
A € F(x). Thus ||A\|| < |F(z)] < a|K|. D is closed since if (Ap)nen is a
sequence of elements of D which converges to A € F, then for all n € N, there
exists =, € K such that X\, € F(zy). Let (x,,) be a subsequence of ()
which converges to 7 in K. Let us show that A € F/(Z). For this, it suffices to
prove that e({\}, F(Z)) = 0 since F () is a compact set. Fix € > 0.

1) Since A,, —> A, then there exists Ny € N such that for all & > Np,
A=Al <5

2) By the inequality (5) and since F' is Hscs at Z, then there exists > 0
such that for all x € B(%,n), e(F(z), F(Z)) < 5.

3) Also x,, — T ensures that there exists N1 € N such that for all & > Ny,
xn, € B(Z,n).

Take k& > max(No, N1) = Nz, and use 1) and 2). We deduce that for all
k > N3, e(F(zy,), F(T)) < 5, and, consequently, for all € > 0 and all k£ > Na,

e({ALF@) <A =Xl + e({n, ), F(@))

< |
<A = Al + e(F(an,), F(T)) <e.

Thus, A € F(7). 1
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DEFINITION 18. Let K € K(B(H)). We say that K is positive (resp. self
adjoint, normal) if each element of K is positive (resp. self adjoint, normal).

In the following Propositions 19 and 20 we show some properties for the
spectral mapping and the numerical range of a compact set in A which are
also verified in the case of single valued mappings.

PRrROPOSITION 19. Consider K, K' € K(A) and «, 3 € C. Then

1) o(aK + BK') C ac(K) + fo(K'), if ab = ba for all (a,b) € K x K.
2) V(aK + BK') C aV(K) + BV (K').

If A= B(H), we further have

3) W(aK + BK") C aW (K) + W (K").

4) w(K)=0 <« K ={0}.

5) coo(K) C W(K).

6) If K is positive (resp. self adjoint), then W (K) C R (resp. W (K) C

).

Proof. Since o(aa + pb) C ao(a) + Bo(b), V(aa + Bb) C aV(a) + BV (b)
for a,b € A, and W(aA + B) C aW(A) + pW(B) for A,B € B(H), then
1), 2) and 3) are fulfilled. Property 4) can be obtained from the fact that if
A€ B(H), then w(A) < [|A|| <2w(A) [13]. Thus

=

w(A)=0 & A=0.

Property 5) is deduced from coo(A) C W(A) if A € B(H) [14]. Finally, the
last property is trivial. |

PROPOSITION 20. Let K, K’ € K(A) be such that ab = ba for all (a,b) €
K x K'. Then

1) o(KK') C o(K)o(K').

2) If further A = B(H) and K or K' is normal, then we have W(KK') C
coW (K)W(K").

Proof. 1) is deduced from o(ab) C o(a)o(b) if (a,b) € K x K’ and ab =
ba. If A,B € B(H), AB = BA and A or B is normal, then W(AB) C
coW (A)W(B) [7]. Thus, 2). 1
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EXAMPLE 21. In this example, we have K = K', KK' = K'K, but the
elements of K do not commute with each other. As a consequence, Proposi-
tion 20 is not verified. Indeed, if K = {A, B}, with

1 0 1 1
A_<O 2) amdB-(1 1>,

we have o(KK') = {0,1,3,4}, o(K)o(K') = {0,1,2,4}. If x = % and y =
=5, then (AB(2), (1)) = 3% € W(AB) C W(KK') and colW (K)W (K') =

[0,4].

DEFINITION 22. An operator A in B(H) is said to be convexoid (resp.
normaloid, spectraloid) if W(A) = coo(A) (resp. w(A4) = [|A]|, |o(4)| =
w(A)).

DEFINITION 23. Let K € K(B(H)), we say that K is a convexoid (resp.
normaloid, spectraloid) if each element of K is a convexoid (resp. normaloid,
spectraloid).

The following lemma, whose proof is obvious, is useful to demonstrate
Proposition 25.

LEMMA 24. Let (I';);cs be a family of subsets of C which indexed by a
set J. We have:

PROPOSITION 25. Let K € K(B(H)) be a convexoid (resp. normaloid,
spectraloid), then W(K) = coo(K) (resp. w(K) = |K|, |o(K)| = w(K)).

Proof. In this proof we use the three equalities in the previous lemma.
We consider only the case where K is a convexoid. The other two cases are
obvious. For every A € K, we have W(A) = coo(A). So

U coo(A) = U W(A),

AeK AeK

and

U coo(A) = U W(A).

AeK AeK
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As a result, we have

co U coo(A) = co U W(A).

AeK AeK

This means

co U coo(A) = co U W(A),

AeK AeK
and thus

co U o(A) =co U W(A).

AeK AeK

This implies that

coo(K)=W(K).

By Theorem 16, o(K) is closed, so it is the same for coo(K), and hence the
desired equality. |1

The following theorem shows the continuity of the multifunction W (K)
and generalizes the univocal case [8].

THEOREM 26. Let K, be a sequence in K(B(H)) which converges in the
Hausdorff sense to an element K of K(B(H)), then W(K,) converges to
W (K) in the sense of Hausdorff.

Proof. We have

e(Kn,K)= supd(z,K) — 0, with d(z,K)=-e({z}, K).
zeKy,

The continuity of the mapping x — d(z, K) and the fact that K,, and K are
compact set imply the existence of x, € K, and z, € K such that:

e(Kn, K) = ||zn — 2n]| — 0.

We also have

e(W(K,), W(K)) < e(W(K,), W{z.})
= sup {d(an,m),an € W}
= d(tn, W{zp}),
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with

th e W(K,) = | W{4}

AeK,
Then
e(W(Ky),W(K)) <e(W(A),W{z}),

where

Ae K, and t,eW/(A).
And thus

e(W(kKn), W(K)) < [[A =zl < llyn — znl — 0.

PROPOSITION 27. Let K, K' € K(A). Suppose that for all A € K and
Be K', AB= BA. Then

h(o(K),o(K")) < h(K,K').

Proof. The continuity of the norm in A and the compactness of K and K’
provide
e(K,K')=|ly—z||, ye€ K and z € K.

We have
e(o(K),0(K")) < e(o(K),0(2)) = e(o({ta}), 0(2)),
where t,, € 0(K). Then, there exists A € K such that ¢, € 0(A4), and

e(J(K),J(K')) < e(a(A),a(z)),
<A-z (2]
<ly — 2| = e(K, K)
< h(K,K').

The following corollary is satisfied in the univocal case [2, page 49].
COROLLARY 28. Let K,, K € K(A) be such that for all a,, € K,, and all

be K, a,b = bay,. If the sequence (K,) converges in the sense of Hausdorff
to K, then o((K,)) converges in the sense of Hausdorff to o (K) .
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DEFINITION 29. For K € K(B(H)) we set
O(K) = {(Az,y) : A€ K, ||z|| = [ly| =1, (2,y) =0}
and
d(K) = sup |[z] = |O(K)|.

z€0(K)

PROPOSITION 30. O(K) is a disk centered at the origin and with radius
d(K).

Proof. For all A € K, O({A}) is a disk centered at the origin and with
radius d({A}) = sup.cogay) |21, [8]. We have

O(K) = | 0({4}) and d(K) < |K].
AeK

Then O(K) is a disk centered at the origin and with radius d(K). 1

PROPOSITION 31. For K € K(B(H)), we have

d(K) = inf |K — M1},

Proof. Since
=i - < —
d({4}) = inf |4 — MI}[| < inf [K = AT},

then
d(K) = sup d({A}) < inf |K — MT}|.
AcK AeC

For the reverse, we have that for all A € C and all A € K,
K = MI}H = [|[A = MI},
and then, for all A € K,
inf |[K — XMI}| >d(A).
inf [~ A{7}] > d(4)

[hus
d(K) < inf |K = MI}|.
(K) < inf [K = MI}|
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PROPOSITION 32. For K € K(B(H)) we have

w't(K)
K|

K] < 2u(K) -

where

w'(K) =inf {|z] e W(A): A€ K}.
Proof. Remark that
Az = (Az,z)x + (Az,y)y, with (x,y) =0,
then

(Az, Az) = (Ax, z)(x, Az) + (Az, y)(y, Ax)
= |(Az,2)[* + [(Az, y)|.

The product operator M 4 p defined on the Hilbert-Schmidt space Cs (H),
fitted with the scalar product

(X,Y) =trXY,
is given by
My ap(X)=AXB, A,BecB(H),
and satisfies [15]
w(My,.a,) < w(A)|Bl.
Set
V2 V2

X:7x®x+7y®y.

Then the norm of X in Cy(H) is equal to 1. Then we have

1 1 1
(Mo, -, 4(X), X) = §!<A1‘7$>\2 + 5!<A$,y>!2 + §\<Ay,x>!2 + 5 1{Ay,y)

1\
2
Ll 2 1 2

= L1Aa]? + LAy ) + §)(As, )

< w(A)||Al.

Thus
|Az|* < 2w(A)||All - [(Ay,y) I,
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and
A < 2w(A)| Al — w?(A).

We conclude
w/2 ( A)

1Al

[A]l < 2w(A) —

and > 24
sup || Al < 2 sup w(A) — w,
AeK AcK SUPAek HAH

that is to say

w/2 (K)

K| < 2w(K) —
K|

(6)
|

In the single valued case the inequality (6) generalizes the following in-
equality [13]:
[A]l < 2w(A). (7)

COROLLARY 33. If w'(K) # 0, then
|K| < 2w (K).

In the following example we have equality in (6) but not in (7): let r > 0,
then for K = {reI : 6 € [0,27[} we have |K| =r = w(A4) = w'(4).

PROPOSITION 34. For K, K' € K(B(H)) we have

e < (wi) = D) 1+ (wiaey - D) .

Proof. By (6) we have 3|K| < w(K)— w;Tl({I‘() and 1|K'| < w(K’)—%.

On the other hand, we have |K K’'| < |K||K’|, hence the desired inequality. §

PropoOsSITION 35. Let K, K' € K(B(H)). Then
W(KK/) C IK,K’ + O(K)O(K,),

and
w(KK') < w(K)w(K') +d(K)d(K'"), (8)

where
Ix k= {{Az,z)(Bz,z) : ||zl =1, A€ K, B€ K'}.
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Proof. Let x € H be such that |z|| = 1. Then, Bx = (Bx,x)x + (Bz, )y,
with [|y|| = 1 and (z,y) = 0, and thus,
(ABz,z) = (B, z)(Az, ) + (Bz,y)(Ay, ),
and the result follows. |

Remark 36. If in the inequality (8) K and K’ are, respectively, replaced
by A* and A we obtain the following inequality due to Dragomir [11]:

1A[I* < w?(A) + d*(A).

PROPOSITION 37. Let K be an element of K;(.A), and let P be the poly-
n

nomial with complex coefficients defined by P(X) = Y. a; X" = ag + a1 X +
i=0
asX?+ -+ a, X" Then
o(P(K)) C P(o(K)).

If further A = B(H) and K is normal, then

W (P(K)) C coP(W(K)).

Proof. Tt suffices to use (1) and (3) of Propositions 19 and 20, respec-
tively. |1

Finally we end with the following spectral theorem:
THEOREM 38. Let K be an element of Ky (A), then

o(S(K)) € S(o(K)). )
If further, A = B(H) and K is normal, then

W (S(K)) C coS(W(K)) (10)

Proof. Firstly, we prove (9). For this, let A € o(S(K)) and verify A\ €
S(o(K)). There exists A € S(K) such that A — AI is not invertible. That
is to say, A = > °jaiz;, v; € K and A € o(A). However, A = lim 4,
with A, = > jaiz;, ©; € K and A, € S,(K). Then A, A, = A, A, for all
n,p € N, h(c(A),0(A,)) — 0 [2]. We have

e({\},0(An)) < h(o(A),0(An)) — 0.
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Therefore e({A}, 0(A)) = [[A—An||, where A\, € 0(Ay) and A = lim \,,. Thus,
An € 0(A4p) C o (Sn(K)) C Sn(o(K)).
The last inclusion is due to Proposition 37. Therefore,

e({A} S(o(K))) < e({Ah {An}) +e({An}, Sn(o(K)))+e(Sn(o(K)), S(o(K))).
By Theorem 11, we have
€(Sn(J(K)),S(J(K>)) — 0.
In addition,
(AL (nd) = A=Al —0,

and
e({An}, Sn(o(K))) =0, since A, € Sp(0(K)).

So A € S(o(K) = S(0(K)). The last equality follows from Theorem 8. In-
clusion (10) is the same as (9) by replacing the multifunction o(K) by the
multifunction W (K), with values in K(C). 1
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