Spectrum and Numerical Range of a Compact Set

A. BOUCHEN, M.K. CHRAÏBI

Cadi Ayyad University, Faculty of Science Semlalia, Department of Mathematics, Marrakech, bouchen@uca.ma, chraibik@uca.ma

Presented by David Yost

Received December 9, 2011

Abstract: In this paper, we define the multivalued entire series in a Banach algebra \mathcal{A} as well as the exponential, the spectrum and the numerical range of a compact set of \mathcal{A} . We provide properties for these two sets which are also verified in the univalued case.

Key words: Banach algebra, Hausdorff distance, spectrum and numerical range.

AMS Subject Class. (2010): 30B10.

1. INTRODUCTION

The concept of the exponential of a set has been useful in the study of differential inclusions and Lipschitz selections. Firstly, it was considered (independently) by A. L. Dontchev and E. M. Farkhi [9] in 1989 and P. R. Wolenski [19] in 1990. In 2003, E. O. Ayoola has developed this concept for the study of quantum stochastic differential inclusions [3]. In 2006 and in various ways the extension of multivalued case exponential function was developed in [1], [5] and [6].

At the beginning of this paper, we study the multivalued entire series $S(K) = \sum a_n K^n$ (where K is in $\mathbb{K}(\mathcal{A})$), the set of all compact sets of a Banach algebra \mathcal{A}) which is used to define e^K .

Then, for $K \in \mathbb{K}(\mathcal{A})$, we define $\sigma(K)$, the spectrum of K, as the union of all spectrum $\sigma(a)$ when a runs K. If $\mathcal{A} = \mathcal{B}(H)$, i.e., the set of all bounded linear operators on a complex Hilbert space H, and K is in $\mathbb{K}(\mathcal{B}(H))$, we define W(K), the numerical range of K, as the convex hull of the union of W(A) when A varies over K and

$$W(A) = \{ \langle Ax, x \rangle : ||x|| = 1 \}.$$

The last set is called the numerical range of A which is always a convex set of \mathbb{C} whose closure contains the convex hull of $\sigma(A)$ or $co\sigma(A)$ [14]. In general, in the noncommutative case, the spectrum is not continuous with respect to the

Hausdorff metric [2]. (For more recent work on this topic, see, for example, [18]). We show a range of properties for $\sigma(K)$ and W(K) which are verified in the single valued case, such as continuity of the numerical range in the sense of Hausdorff [8] and the continuity of the spectrum in the case where \mathcal{A} is commutative. We also show for $K \in \mathbb{K}(\mathcal{B}(H))$ that:

$$|K| \le 2\omega(K) - \frac{\omega^{\prime 2}(K)}{|K|},\tag{1}$$

where

$$\omega'(K) = \inf \{ \|z\| : z \in W(A), A \in K \},\$$

and

$$\omega(K) = \sup \{ \|z\| : z \in W(A), A \in K \},\$$

is the K numerical radius. The last inequality is optimal and generalized in the single valued case the following classical inequality [13]:

$$||A|| \le 2\omega(A), \quad A \in \mathcal{B}(H).$$

As an application of (1) we show that for K and K' in $\mathbb{K}(\mathcal{B}(H))$

$$|KK'| \le \left(w(K) - \frac{w'^2(K)}{2|K|}\right)|K'| + \left(w(K') - \frac{w'^2(K')}{2|K'|}\right)|K|.$$
 (2)

The previous inequality is an improvement in the single valued case of the following theorem from Dragomir [10]:

THEOREM 1. ([10]) Let $A, B \in \mathcal{B}(H)$ and $\alpha, \beta, \gamma, \lambda \in \mathbb{C}$ be such that for every $x \in H$,

$$\langle (A^* - \overline{\alpha}I)(\beta I - A)x, x \rangle \geq 0 \text{ and } \langle (B^* - \overline{\gamma}I)(\lambda I - B)x, x \rangle \geq 0.$$

Then,

$$||AB|| \le w(A) ||B|| + w(B) ||A|| + w(A) w(B) + \frac{1}{4} |\beta - \alpha| |\lambda - \gamma|.$$
(3)

In [11], and [12], Dragomir said that's an open problem whether or not the constant $\frac{1}{4}$ is best possible in the inequality (3). The inequality (2) is the solution of this problem.

Dragomir in 2008 [11] showed that

$$||A||^2 \le \omega^2(A) + d^2(A), \quad A \in \mathcal{B}(H),$$

with

$$d(A) = \sup \{ \|\langle Ax, y \rangle \| : \|x\| = \|y\| = 1, \, \langle x, y \rangle = 0 \}.$$

We also generalize this result in the set valued case by showing that for $K, K' \in \mathcal{B}(H)$

$$\omega(KK') \le \omega(K)\omega(K') + d(K)d(K'),$$

where

$$d(K) = \sup \left\{ d(A) : A \in K \right\}.$$

Finally, when

$$\mathbb{K}_1(\mathcal{A}) = \big\{ K \in \mathbb{K}(\mathcal{A}) : \forall a, b \in K, \ ab = ba \big\},\$$

we show the following spectral theorem:

THEOREM 2. For each
$$K \in \mathbb{K}_1(\mathcal{A})$$
, we have

$$\sigma(S(K)) \subset S(\sigma(K)).$$

2. Definitions and preliminaries

In this paper \mathcal{A} is a Banach algebra over \mathbb{C} , with unit element I. The following definitions are useful in the sequel.

DEFINITION 3. Let K and K' be two elements of $\mathbb{K}(\mathcal{A})$ and α a complex number. We denote

$$\begin{split} K \cdot K' &= \{x \cdot y : x \in K, \ y \in K'\}, \\ K + K' &= \{x + y : x \in K, \ y \in K'\}, \\ \alpha K &= \{\alpha I\} \cdot K = \{\alpha \cdot x : x \in K\}, \\ \alpha + K &= \{\alpha I\} + K = \{\alpha I + x : x \in K\}, \\ |K| &= \sup_{X \in K} ||X||, \\ K^0 &= \{I\}, \quad K^n = K \cdot K^{n-1}, \ \forall n \in \mathbb{N}^*. \end{split}$$

We note that in general $K \cdot K'$ is not equal to $K' \cdot K$ and $K^n = K^p K^q$, with p + q = n and $p, q, n \in \mathbb{N}$.

DEFINITION 4. Let $K, K' \in \mathbb{K}(\mathcal{A})$. The Hausdorff distance between K and K' denoted by h(K, K') is the maximum of the excess e(K, K') and e(K', K) where

$$e(K, K') = \sup_{X \in K} \inf_{Y \in K'} ||X - Y||.$$

DEFINITION 5. Let F be a multifunction from \mathcal{A} into $\mathbb{K}(\mathcal{A})$ and let $X_0 \in \mathcal{A}$. F is called Hausdorff upper semicontinuous at X_0 ("F is Hscs" at X_0) if for any sequence $(X_n)_{n\in\mathbb{N}}$ of elements of \mathcal{A} , which converges to X_0 , we have

 $\forall \epsilon > 0, \ \exists N \in \mathbb{N} \text{ such that } \forall n \ge N, \ F(X_n) \subset F(X_0) + B(0, \epsilon),$ (4)

where $B(0,\epsilon)$ is the open ball in \mathcal{A} with center 0 and radius ϵ .

It follows immediately from (4) that

$$\forall \epsilon > 0, \ \exists \eta > 0 \ \text{such that} \ \forall X \in B(X_0, \eta), \ e(F(X), F(X_0)) \le \epsilon.$$
 (5)

3. Multivalued power series in \mathcal{A}

DEFINITION 6. Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of complex numbers, and let $K \in \mathbb{K}(\mathcal{A})$. We set

$$S_n(K) = \sum_{i=0}^n a_i K^i = a_0 + a_1 K + a_2 K^2 + \dots + a_n K^n = \left\{ \sum_{i=0}^n a_i x_i : x_i \in K^i \right\}.$$

DEFINITION 7. Let $K \in \mathbb{K}(\mathcal{A})$ be such that the sequences $\sum_{i=0}^{n} a_i x_i$ converges for all $x_i \in K^i$. We set

$$S(K) = \left\{ \sum_{n=0}^{+\infty} a_n x_n : x_n \in K^n \right\} = \sum_{i=0}^{\infty} a_n K^n.$$

In the remainder of this section, K denotes an element of $\mathbb{K}(\mathcal{A})$ and $(a_n)_{n \in \mathbb{N}}$ a sequence of complex numbers such that

$$\sum_{n=0}^{+\infty} a_n x_n \text{ converges and } \forall n \in \mathbb{N}, \ x_n \in K^n.$$

THEOREM 8. Let r be the radius of convergence of the complex power series $\sum a_n z^n$. If $K \in \mathbb{K}(\mathcal{A})$, with $K \subset B(0, \delta)$ and $0 < \delta < r$, then S(K) is a compact set of \mathcal{A} .

Proof. Let $(Y_p)_{p \in \mathbb{N}}$ be a sequence of elements of S(K). We show that $(Y_p)_{p \in \mathbb{N}}$ admits a subsequence $(Y_{\varphi(p)})_{p \in \mathbb{N}}$ which converges in S(K). For all $p \in \mathbb{N}$, we have

$$Y_p = \sum_{i=0}^{+\infty} a_i X_{i,p},$$

with $X_{i,p} \in K^i$ and $X_{0,p} = I$. We set

$$Z_p = (a_0 X_{0,p}, a_1 X_{1,p}, \dots, a_i X_{i,p}, \dots) \in \prod_{i=0}^{\infty} a_i K^i.$$

This set is a compact set product. By Tychonov theorem [17], this is a compact set for the norm $\|\cdot\|_{\pi}$, where for all p in \mathbb{N} ,

$$||Z_p||_{\pi} = \sum_{i=0}^{\infty} \frac{1}{2^{i+1}} \min\{1, ||a_i X_{i,p}||\}.$$

We extract a subsequence $(Z_{\varphi(p)})_{p\in\mathbb{N}}$ which converges to

$$Z = (a_0 X_0, a_1 X_1, \dots, a_i X_i, \dots) \in \prod_{i=0}^{\infty} a_i K^i.$$

Let us show that $(Y_{\varphi(p)})_{p\in\mathbb{N}}$ converges to $Y = \sum_{i=0}^{\infty} a_i X_i$. Let $\varepsilon \in [0, 1[$. The sequence $(Z_{\varphi(p)})_{p\in\mathbb{N}}$ converges to Z, and then, for all $\varepsilon_1 > 0$, there exists $p_1 > 0$ such that for all $p > p_1$,

$$\sum_{n=0}^{+\infty} \frac{1}{2^{n+1}} \min \left\{ 1, \left\| a_n X_{n,\varphi(p)} - a_n X_n \right\| \right\} \le \varepsilon_1,$$

and then,

$$\frac{1}{2^{n+1}}\min\left\{1, \left\|a_n X_{n,\varphi(p)} - a_n X_n\right\|\right\} \le \varepsilon_1$$

for any $n \ge 0$. Since $\delta < r$, $\sum_{n=0}^{+\infty} |a_n \delta^n|$ is convergent. Thus, there exists $n_2 > 0$ such that for all $n \ge n_2$,

$$\sum_{i=n+1}^{+\infty} |a_i \delta^i| \le \frac{\varepsilon}{3}$$

Let $\varepsilon_1 = \frac{1}{3} \frac{1}{2^{n_2+1}} \frac{\varepsilon}{n_2+1}$. Then, there exists p_{n_2} such that $\frac{1}{2^{n+1}} > \varepsilon_1$ and

$$\frac{1}{2^{n+1}}\min\left\{1, \left\|a_n X_{n,\varphi(p)} - a_n X_n\right\|\right\} = \frac{\left\|a_n X_{n,\varphi(p)} - a_n X_n\right\|}{2^{n+1}} \le \varepsilon_1,$$

for all $p > p_{n_2}$ and $n \le n_2$. Then, for all $n \le n_2$,

$$\left\|a_n X_{n,\varphi(p)} - a_n X_n\right\| \le \frac{\varepsilon}{3(n_2+1)},$$

and thus, for all $p > p_{n_2}$,

$$\begin{aligned} \|Y_{\varphi(p)} - Y\| &\leq \sum_{n=0}^{n_2} \|a_n X_{n,\varphi(p)} - a_n X_n\| + \sum_{n=n_2+1}^{+\infty} \|a_n X_{n,\varphi(p)}\| + \sum_{n=n_2+1}^{+\infty} \|a_n X_n\| \\ &\leq \sum_{n=0}^{n_2} \|a_n X_{n,\varphi(p)} - a_n X_n\| + \frac{2}{3}\varepsilon \\ &\leq \sum_{n=0}^{n_2} (n_2 + 1) \frac{\varepsilon}{3(n_2 + 1)} + \frac{2}{3}\varepsilon = \varepsilon. \end{aligned}$$

DEFINITION 9. Let $K \in \mathbb{K}(\mathcal{A})$. We define the set valued exponential of K, denoted e^{K} , by

$$e^{K} = \sum_{n=0}^{+\infty} \frac{1}{n!} K^{n} = \left\{ \sum_{n=0}^{+\infty} \frac{1}{n!} x_{n} : \forall n \in \mathbb{N}, \ x_{n} \in K^{n} \right\}.$$

Remark 10. Since the radius of convergence of complex series $\sum \frac{z^n}{n!}$ is infinite, then for every $K \in \mathbb{K}(\mathcal{A})$, e^K is well defined. Using Theorem 8, e^K is in $\mathbb{K}(\mathcal{A})$.

THEOREM 11. Let $K \in \mathbb{K}(\mathcal{A})$, with $K \subset B(0, \delta)$, r the radius of convergence of the complex power series $\sum a_n z^n$ and $0 < \delta < r$. Then, the sequence $S_n(K)$ converges in the sense of Hausdorff to S(K).

Proof. Let $Y_n \in S_n(K)$ and $Y \in S(K)$, with $Y_n = \sum_{i=0}^n a_i x_i$, $Y = Y_n + \sum_{i=n+1}^{\infty} a_i x_i$, and $x_i \in K^i$ for all $i \in \mathbb{N}$. We have

$$\|Y - Y_n\| \le \sum_{i=n+1}^{\infty} |a_i| \,\delta^i,$$

and then

$$h(S(K), S_n(K)) \le \sum_{i=n+1}^{\infty} |a_i| \, \delta^i.$$

Hence the result.

The following lemma is useful in the proof of Theorem 13.

LEMMA 12. Let $\sum a_n z^n$ be a complex entire series. Then for any $n \in \mathbb{N}$, the mapping S_n from $\mathbb{K}(\mathcal{A})$ to $\mathbb{K}(\mathcal{A})$, which associates to each K the set $S_n(K)$, is continuous in the sense of Hausdorff.

Proof. It is easy to see that the product and sum of two compact sets of \mathcal{A} are compact sets. For the continuity of S_n , it suffices to show that if $(K_p)_{p\in\mathbb{N}}$ and $(K'_p)_{p\in\mathbb{N}}$ are two sequences of compact set of \mathcal{A} which converge in the sense of Hausdorff respectively to two compact set K and K' then the sequences $(K_pK'_p)_{p\in\mathbb{N}}$ and $(K_p + K'_p)_{p\in\mathbb{N}}$ converge in the sense of Hausdorff respectively to KK' et K + K'.

By the triangle inequality, we have

$$h(K_pK'_p, KK') \le |K_p| h(K'_p, K') + |K'| h(K_p, K).$$

The sequence $(K_p)_{p\in\mathbb{N}}$ is convergent, and therefore $(|K_p|)_{p\in\mathbb{N}}$ is bounded from above. As a result, $(K_pK'_p)_{p\in\mathbb{N}}$ converges to KK'.

For the other convergence, by triangle inequality, we have

$$h(K_p + K'_p, K + K') \le h(K'_p, K') + h(K_p, K).$$

THEOREM 13. Let r be the radius of convergence of the complex entire series $\sum a_n z^n$ and $\delta < r$. Then the mapping $S : \mathbb{K}(\mathcal{A}) \to \mathbb{K}(\mathcal{A})$, which to $K \subset B(0, \delta)$ associates S(K), is continuous in the sense of Hausdorff.

Proof. Let us consider a sequence $(K_p)_{p\in\mathbb{N}}$ of compact sets of \mathcal{A} included in $B(0, \delta)$, which converges in the sense of Hausdorff to a compact set K. Let us show that $h(S(K_p), S(K))$ tends to 0.

The series $\sum |a_p| \, \delta^p$ is convergent, and so the sequence $R_n = \sum_{p=n}^{\infty} |a_p| \, \delta^p$ tends to 0. Thus, for all $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$,

$$\sum_{p=n}^{\infty} |a_p| \, \delta^p \le \frac{\varepsilon}{3}$$

Hence

$$h(S(K_p), S(K)) \le h(S(K_p), S_{n_0}(K_p)) + h(S_{n_0}(K_p), S_{n_0}(K)) + h(S_{n_0}(K), S(K)).$$

By Lemma 12, the mapping S_{n_0} is continuous, and so for all $\varepsilon > 0$, there exists $p_0 \in \mathbb{N}$ such that for all $p \ge p_0$,

$$h(S_{n_0}(K_p), S_{n_0}(K)) \le \frac{\varepsilon}{3}$$

We have

$$h(S(K_p), S_{n_0}(K_p)) \le \sum_{p=n}^{\infty} |a_p| \, \delta^p \le \frac{\varepsilon}{3}.$$

And, similarly, for $h(S_{n_0}(K), S(K))$. Thus, for every $p \ge p_0, h(S(K_p), S(K)) \le \varepsilon$.

4. Spectrum and numerical range of a compact set

DEFINITION 14. Let K be an element of $\mathbb{K}(\mathcal{A})$. We define the spectrum of K, denoted $\sigma(K)$, and the algebraic numerical range of K, denoted V(K), by:

$$\sigma(K) = \left\{ \lambda \in \mathbb{C} : \exists X \in K, \ \lambda \in \sigma(X) \right\} = \bigcup_{X \in K} \sigma(X)$$

and

$$V(K) = co\{\emptyset(t) : \emptyset \in S(\mathcal{A}), \ t \in K\},\$$

respectively, with

$$S(\mathcal{A}) = \{ \emptyset \in \mathcal{A}^* : \, \emptyset(I) = \|\emptyset\| = 1 \},\$$

and $\sigma(X)$ the spectrum of X. Therefore, we have

$$V(K) = co \bigcup_{t \in K} V(t),$$

where

$$V(t) = \{ \emptyset(t) : \emptyset \in S(\mathcal{A}) \}.$$

The last set is called the algebraic numerical range of t in the single-valued case, which is always a closed and convex set in \mathbb{C} [16]. It is also located in the disk with center 0 and radius ||t||, and satisfies $V(A) = \overline{W(A)}$ for all $A \in \mathcal{B}(H)$ [4].

DEFINITION 15. If $\mathcal{A} = \mathcal{B}(H)$, we define the numerical domain of K by:

$$W(K) = co\{\langle Ax, x \rangle : ||x|| = 1, \ A \in K\} = co\bigcup_{A \in K} W(A).$$

For $K \in \mathbb{K}(\mathcal{A})$, we define the numerical radius of K, denoted $\omega(K)$, and the spectral radius of K, denoted $\rho(K)$, by:

$$\omega(K) = |V(K)| \text{ and } \rho(K) = |\sigma(K)|.$$

Similarly, if $\mathcal{A} = \mathcal{B}(H)$, the numerical radius of K is

$$\omega(K) = |W(K)|$$
.

THEOREM 16. If $K \in \mathbb{K}(\mathcal{A})$, then $\sigma(K)$ is a compact set in \mathbb{C} .

The proof of this theorem is a consequence of Lemma 17 since in the single valued case, the spectrum mapping from \mathcal{A} to $\mathbb{K}(\mathbb{C})$ is Husc [2].

LEMMA 17. Let (E, || ||) be a normed space, F a Husc multifunction from \mathcal{A} into $\mathbb{K}(E)$ and K a compact set of \mathcal{A} . Assume that there exists $\alpha > 0$ such that for all $x \in K$, $|F(x)| \leq \alpha ||x||$. Then, $D = \bigcup F(x)$ is a closed bounded subset of E.

Proof. D is bounded since for all $\lambda \in D$ there exists $x \in K$ such that $\lambda \in F(x)$. Thus $\|\lambda\| \leq |F(x)| \leq \alpha |K|$. D is closed since if $(\lambda_n)_{n \in \mathbb{N}}$ is a sequence of elements of D which converges to $\lambda \in E$, then for all $n \in \mathbb{N}$, there exists $x_n \in K$ such that $\lambda_n \in F(x_n)$. Let (x_{n_k}) be a subsequence of (x_n) which converges to \overline{x} in K. Let us show that $\lambda \in F(\overline{x})$. For this, it suffices to prove that $e(\{\lambda\}, F(\overline{x})\} = 0$ since $F(\overline{x})$ is a compact set. Fix $\varepsilon > 0$.

- 1) Since $\lambda_{n_k} \longrightarrow \lambda$, then there exists $N_0 \in \mathbb{N}$ such that for all $k \ge N_0$, $\|\lambda \lambda_{n_k}\| \le \frac{\varepsilon}{2}$.
- 2) By the inequality (5) and since F is Hscs at \overline{x} , then there exists $\eta > 0$ such that for all $x \in B(\overline{x}, \eta)$, $e(F(x), F(\overline{x})) \leq \frac{\varepsilon}{2}$.
- 3) Also $x_{n_k} \longrightarrow \overline{x}$ ensures that there exists $N_1 \in \mathbb{N}$ such that for all $k \ge N_1$, $x_{n_k} \in B(\overline{x}, \eta)$.

Take $k \ge \max(N_0, N_1) = N_2$, and use 1) and 2). We deduce that for all $k \ge N_2$, $e(F(x_{n_k}), F(\overline{x})) \le \frac{\varepsilon}{2}$, and, consequently, for all $\epsilon > 0$ and all $k \ge N_2$,

$$e(\{\lambda\}, F(\overline{x})) \leq \|\lambda - \lambda_{n_k}\| + e(\{\lambda_{n_k}\}, F(\overline{x}))$$

$$\leq \|\lambda - \lambda_{n_k}\| + e(F(x_{n_k}), F(\overline{x})) \leq \varepsilon.$$

Thus, $\lambda \in F(\overline{x})$.

DEFINITION 18. Let $K \in \mathbb{K}(\mathcal{B}(H))$. We say that K is positive (resp. self adjoint, normal) if each element of K is positive (resp. self adjoint, normal).

In the following Propositions 19 and 20 we show some properties for the spectral mapping and the numerical range of a compact set in \mathcal{A} which are also verified in the case of single valued mappings.

PROPOSITION 19. Consider $K, K' \in \mathbb{K}(\mathcal{A})$ and $\alpha, \beta \in \mathbb{C}$. Then

- 1) $\sigma(\alpha K + \beta K') \subset \alpha \sigma(K) + \beta \sigma(K')$, if ab = ba for all $(a, b) \in K \times K'$.
- 2) $V(\alpha K + \beta K') \subset \alpha V(K) + \beta V(K').$

If $\mathcal{A} = \mathcal{B}(H)$, we further have

- 3) $W(\alpha K + \beta K') \subset \alpha W(K) + \beta W(K').$
- 4) $w(K) = 0 \Leftrightarrow K = \{0\}.$
- 5) $co\sigma(K) \subset \overline{W(K)}$.
- 6) If K is positive (resp. self adjoint), then $W(K) \subset \mathbb{R}^+$ (resp. $W(K) \subset \mathbb{R}$).

Proof. Since $\sigma(\alpha a + \beta b) \subset \alpha \sigma(a) + \beta \sigma(b)$, $V(\alpha a + \beta b) \subset \alpha V(a) + \beta V(b)$ for $a, b \in \mathcal{A}$, and $W(\alpha A + \beta B) \subset \alpha W(A) + \beta W(B)$ for $A, B \in \mathcal{B}(H)$, then 1), 2) and 3) are fulfilled. Property 4) can be obtained from the fact that if $A \in \mathcal{B}(H)$, then $w(A) \leq ||A|| \leq 2w(A)$ [13]. Thus

$$w(A) = 0 \iff A = 0.$$

Property 5) is deduced from $co\sigma(A) \subset \overline{W(A)}$ if $A \in \mathcal{B}(H)$ [14]. Finally, the last property is trivial.

PROPOSITION 20. Let $K, K' \in \mathbb{K}(\mathcal{A})$ be such that ab = ba for all $(a, b) \in K \times K'$. Then

- 1) $\sigma(KK') \subset \sigma(K)\sigma(K')$.
- 2) If further $\mathcal{A} = \mathcal{B}(H)$ and K or K' is normal, then we have $\overline{W(KK')} \subset co\overline{W(K)W(K')}$.

Proof. 1) is deduced from $\sigma(ab) \subset \sigma(a)\sigma(b)$ if $(a,b) \in K \times K'$ and ab = ba. If $A, B \in \mathcal{B}(H)$, AB = BA and A or B is normal, then $\overline{W(AB)} \subset \overline{coW(A)W(B)}$ [7]. Thus, 2).

EXAMPLE 21. In this example, we have K = K', KK' = K'K, but the elements of K do not commute with each other. As a consequence, Proposition 20 is not verified. Indeed, if $K = \{A, B\}$, with

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$,

we have $\sigma(KK') = \{0, 1, 3, 4\}, \ \sigma(K)\sigma(K') = \{0, 1, 2, 4\}$. If $x = \frac{1}{\sqrt{2}}$ and $y = \frac{i}{\sqrt{2}}$, then $\langle AB \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \rangle = \frac{3-i}{2} \in W(AB) \subset W(KK')$ and coW(K)W(K') = [0, 4].

DEFINITION 22. An operator A in B(H) is said to be convexoid (resp. normaloid, spectraloid) if $\overline{W(A)} = co\sigma(A)$ (resp. $w(A) = ||A||, |\sigma(A)| = w(A)$).

DEFINITION 23. Let $K \in \mathbb{K}(\mathcal{B}(H))$, we say that K is a convexoid (resp. normaloid, spectraloid) if each element of K is a convexoid (resp. normaloid, spectraloid).

The following lemma, whose proof is obvious, is useful to demonstrate Proposition 25.

LEMMA 24. Let $(\Gamma_i)_{i \in J}$ be a family of subsets of \mathbb{C} which indexed by a set J. We have:

$$co\overline{\Gamma_i} = \overline{co\Gamma_i}, \quad \overline{\bigcup_{i \in J} \overline{\Gamma_i}} = \overline{\bigcup_{i \in J} \Gamma_i}, \quad and \quad co\bigcup_{i \in J} co\Gamma_i = co\bigcup_{i \in J} \Gamma_i.$$

PROPOSITION 25. Let $K \in \mathbb{K}(\mathcal{B}(H))$ be a convexoid (resp. normaloid, spectraloid), then $\overline{W(K)} = co\sigma(K)$ (resp. $w(K) = |K|, |\sigma(K)| = w(K)$).

Proof. In this proof we use the three equalities in the previous lemma. We consider only the case where K is a convexoid. The other two cases are obvious. For every $A \in K$, we have $\overline{W(A)} = co\sigma(A)$. So

$$\bigcup_{A \in K} co\sigma(A) = \bigcup_{A \in K} \overline{W(A)},$$

and

$$\overline{\bigcup_{A \in K} co\sigma(A)} = \overline{\bigcup_{A \in K} \overline{W(A)}}$$

As a result, we have

$$co\overline{\bigcup_{A\in K} co\sigma(A)} = co\overline{\bigcup_{A\in K} \overline{W(A)}}.$$

This means

$$\overline{co \bigcup_{A \in K} co\sigma(A)} = co \overline{\bigcup_{A \in K} W(A)},$$

and thus

$$\overline{co \bigcup_{A \in K} \sigma(A)} = \overline{co \bigcup_{A \in K} W(A)}.$$

This implies that

$$\overline{co\sigma(K)} = \overline{W(K)}.$$

By Theorem 16, $\sigma(K)$ is closed, so it is the same for $co\sigma(K)$, and hence the desired equality.

The following theorem shows the continuity of the multifunction $\overline{W(K)}$ and generalizes the univocal case [8].

THEOREM 26. Let K_n be a sequence in $\mathbb{K}(\mathcal{B}(H))$ which converges in the Hausdorff sense to an element K of $\mathbb{K}(\mathcal{B}(H))$, then $\overline{W(K_n)}$ converges to $\overline{W(K)}$ in the sense of Hausdorff.

Proof. We have

$$e(K_n, K) = \sup_{x \in K_n} d(x, K) \longrightarrow 0$$
, with $d(x, K) = e(\{x\}, K)$.

The continuity of the mapping $x \mapsto d(x, K)$ and the fact that K_n and K are compact set imply the existence of $x_n \in K_n$ and $z_n \in K$ such that:

$$e(K_n, K) = \|x_n - z_n\| \to 0.$$

We also have

$$e(\overline{W(K_n)}, \overline{W(K)}) \leq e(\overline{W(K_n)}, \overline{W\{z_n\}})$$

= sup { $d(\alpha_n, \overline{W\{z_n\}}), \alpha_n \in \overline{W(K_n)}$ }
= $d(t_n, \overline{W\{z_n\}}),$

with

$$t_n \in \overline{W(K_n)} = \bigcup_{A \in K_n} \overline{W\{A\}}.$$

Then

$$e(\overline{W(K_n)}, \overline{W(K)}) \le e(\overline{W(A)}, W\{z_n\}),$$

where

$$A \in K_n$$
 and $t_n \in W(A)$.

And thus

$$e(\overline{W(K_n)}, \overline{W(K)}) \le ||A - z_n|| \le ||y_n - z_n|| \to 0.$$

PROPOSITION 27. Let $K, K' \in \mathbb{K}(\mathcal{A})$. Suppose that for all $A \in K$ and $B \in K'$, AB = BA. Then

$$h(\sigma(K), \sigma(K')) \le h(K, K').$$

Proof. The continuity of the norm in \mathcal{A} and the compactness of K and K' provide

$$e(K, K') = ||y - z||, \quad y \in K \text{ and } z \in K'.$$

We have

$$e(\sigma(K), \sigma(K')) \le e(\sigma(K), \sigma(z)) = e(\sigma(\{t_n\}), \sigma(z)),$$

where $t_n \in \sigma(K)$. Then, there exists $A \in K$ such that $t_n \in \sigma(A)$, and

$$e(\sigma(K), \sigma(K')) \leq e(\sigma(A), \sigma(z)),$$

$$\leq ||A - z|| \quad ([2])$$

$$\leq ||y - z|| = e(K, K')$$

$$\leq h(K, K').$$

The following corollary is satisfied in the univocal case [2, page 49].

COROLLARY 28. Let $K_n, K \in \mathbb{K}(\mathcal{A})$ be such that for all $a_n \in K_n$ and all $b \in K$, $a_n b = ba_n$. If the sequence (K_n) converges in the sense of Hausdorff to K, then $\sigma((K_n))$ converges in the sense of Hausdorff to $\sigma(K)$.

25

I

DEFINITION 29. For $K \in \mathbb{K}(\mathcal{B}(H))$ we set

$$O(K) = \left\{ \langle Ax, y \rangle : A \in K, \ \|x\| = \|y\| = 1, \ \langle x, y \rangle = 0 \right\}$$

and

$$d(K) = \sup_{z \in O(K)} |z| = |O(K)|.$$

PROPOSITION 30. O(K) is a disk centered at the origin and with radius d(K).

Proof. For all $A \in K$, $O(\{A\})$ is a disk centered at the origin and with radius $d(\{A\}) = \sup_{z \in O(\{A\})} |z|, [8]$. We have

$$O(K) = \bigcup_{A \in K} O(\{A\}) \text{ and } d(K) \le |K|.$$

Then O(K) is a disk centered at the origin and with radius d(K).

PROPOSITION 31. For $K \in \mathbb{K}(\mathcal{B}(H))$, we have

$$d(K) = \inf_{\lambda \in \mathbb{C}} |K - \lambda \{I\}|.$$

Proof. Since

$$d(\{A\}) = \inf_{\lambda \in \mathbb{C}} ||A - \lambda\{I\}|| \le \inf_{\lambda \in \mathbb{C}} |K - \lambda\{I\}|,$$

then

$$d(K) = \sup_{A \in K} d(\{A\}) \le \inf_{\lambda \in \mathbb{C}} |K - \lambda\{I\}|.$$

For the reverse, we have that for all $\lambda \in \mathbb{C}$ and all $A \in K$,

$$|K - \lambda\{I\}| \ge ||A - \lambda\{I\}||,$$

and then, for all $A \in K$,

$$\inf_{\lambda \in \mathbb{C}} |K - \lambda \{I\}| \ge d(A).$$

Thus

$$d(K) \le \inf_{\lambda \in \mathbb{C}} |K - \lambda\{I\}|.$$

PROPOSITION 32. For $K \in \mathbb{K}(\mathcal{B}(H))$ we have

$$|K| \le 2w(K) - \frac{w't(K)}{|K|},$$

where

$$w'(K) = \inf \{ |z| \in W(A) : A \in K \}.$$

Proof. Remark that

$$Ax = \langle Ax, x \rangle x + \langle Ax, y \rangle y, \text{ with } \langle x, y \rangle = 0,$$

then

$$\begin{split} \langle Ax, Ax \rangle &= \langle Ax, x \rangle \langle x, Ax \rangle + \langle Ax, y \rangle \langle y, Ax \rangle \\ &= |\langle Ax, x \rangle|^2 + |\langle Ax, y \rangle|^2. \end{split}$$

The product operator $M_{2,A,B}$ defined on the Hilbert-Schmidt space $C_2(H)$, fitted with the scalar product

$$\langle X,Y\rangle=trXY,$$

is given by

$$M_{2,A,B}(X) = AXB, \quad A, B \in \mathcal{B}(H),$$

and satisfies [15]

$$w(M_{2,A,B}) \le w(A) ||B||.$$

 Set

$$X = \frac{\sqrt{2}}{2}x \otimes x + \frac{\sqrt{2}}{2}y \otimes y$$

Then the norm of X in $C_2(H)$ is equal to 1. Then we have

$$\begin{split} \left\langle M_{2,A^*,A}(X), X \right\rangle &= \frac{1}{2} |\langle Ax, x \rangle|^2 + \frac{1}{2} |\langle Ax, y \rangle|^2 + \frac{1}{2} |\langle Ay, x \rangle|^2 + \frac{1}{2} |\langle Ay, y \rangle|^2 \\ &= \frac{1}{2} ||Ax||^2 + \frac{1}{2} |\langle Ay, y \rangle|^2 + \frac{1}{2} |\langle Ax, x \rangle|^2 \\ &\leq w(A) ||A||. \end{split}$$

Thus

$$||Ax||^2 \le 2w(A)||A|| - |\langle Ay, y \rangle|^2,$$

and

$$||A||^2 \le 2w(A)||A|| - w'^2(A).$$

We conclude

$$\|A\| \le 2w(A) - \frac{w'^2(A)}{\|A\|},$$

and

$$\sup_{A \in K} \|A\| \le 2 \sup_{A \in K} w(A) - \frac{\inf_{A \in K} w'^2(A)}{\sup_{A \in K} \|A\|},$$

that is to say

$$|K| \le 2w(K) - \frac{w'^2(K)}{|K|}.$$
(6)

In the single valued case the inequality (6) generalizes the following inequality [13]:

$$\|A\| \le 2w(A). \tag{7}$$

COROLLARY 33. If $w'(K) \neq 0$, then

$$\left|K\right| < 2w\left(K\right).$$

In the following example we have equality in (6) but not in (7): let r > 0, then for $K = \{re^{i\theta}I : \theta \in [0, 2\pi[\} \text{ we have } |K| = r = w(A) = w'(A).$

PROPOSITION 34. For $K, K' \in \mathbb{K}(\mathcal{B}(H))$ we have

$$|KK'| \le \left(w(K) - \frac{w'^2(K)}{2|K|}\right)|K'| + \left(w(K') - \frac{w'^2(K')}{2|K'|}\right)|K|.$$

Proof. By (6) we have $\frac{1}{2}|K| \le w(K) - \frac{w'^2(K)}{2|K|}$ and $\frac{1}{2}|K'| \le w(K') - \frac{w'^2(K')}{2|K'|}$. On the other hand, we have $|KK'| \le |K||K'|$, hence the desired inequality.

PROPOSITION 35. Let $K, K' \in \mathbb{K}(\mathcal{B}(H))$. Then

$$W(KK') \subset I_{K,K'} + O(K)O(K'),$$

and

$$w(KK') \le w(K)w(K') + d(K)d(K'),$$
(8)

where

$$I_{K,K'} = \left\{ \langle Ax, x \rangle \langle Bx, x \rangle : \|x\| = 1, \ A \in K, \ B \in K' \right\}.$$

Proof. Let $x \in H$ be such that ||x|| = 1. Then, $Bx = \langle Bx, x \rangle x + \langle Bx, y \rangle y$, with ||y|| = 1 and $\langle x, y \rangle = 0$, and thus,

$$\langle ABx,x\rangle = \langle Bx,x\rangle \langle Ax,x\rangle + \langle Bx,y\rangle \langle Ay,x\rangle,$$

and the result follows.

Remark 36. If in the inequality (8) K and K' are, respectively, replaced by A^* and A we obtain the following inequality due to Dragomir [11]:

$$||A||^2 \le w^2(A) + d^2(A)$$

PROPOSITION 37. Let K be an element of $\mathbb{K}_1(\mathcal{A})$, and let P be the polynomial with complex coefficients defined by $P(X) = \sum_{i=0}^n a_i X^i = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n$. Then

$$\sigma(P(K)) \subset P(\sigma(K)).$$

If further $\mathcal{A} = \mathcal{B}(H)$ and K is normal, then

$$\overline{W(P(K))} \subset co\overline{P(W(K))}.$$

Proof. It suffices to use (1) and (3) of Propositions 19 and 20, respectively. \blacksquare

Finally we end with the following spectral theorem:

THEOREM 38. Let K be an element of $\mathbb{K}_1(\mathcal{A})$, then

$$\sigma(S(K)) \subset S(\sigma(K)). \tag{9}$$

If further, $\mathcal{A} = \mathcal{B}(H)$ and K is normal, then

$$\overline{W(S(K))} \subset co\overline{S(W(K))}$$
(10)

Proof. Firstly, we prove (9). For this, let $\lambda \in \sigma(S(K))$ and verify $\lambda \in S(\sigma(K))$. There exists $A \in S(K)$ such that $A - \lambda I$ is not invertible. That is to say, $A = \sum_{i=0}^{\infty} a_i x_i$, $x_i \in K$ and $\lambda \in \sigma(A)$. However, $A = \lim A_n$ with $A_n = \sum_{i=0}^n a_i x_i$, $x_i \in K$ and $A_n \in S_n(K)$. Then $A_n A_p = A_p A_n$, for all $n, p \in \mathbb{N}$, $h(\sigma(A), \sigma(A_n)) \longrightarrow 0$ [2]. We have

$$e(\{\lambda\}, \sigma(A_n)) \le h(\sigma(A), \sigma(A_n)) \longrightarrow 0.$$

Therefore $e(\{\lambda\}, \sigma(A_n)) = \|\lambda - \lambda_n\|$, where $\lambda_n \in \sigma(A_n)$ and $\lambda = \lim \lambda_n$. Thus,

$$\lambda_n \in \sigma(A_n) \subset \sigma(S_n(K)) \subset S_n(\sigma(K)).$$

The last inclusion is due to Proposition 37. Therefore,

$$e(\{\lambda\}, S(\sigma(K))) \le e(\{\lambda\}, \{\lambda_n\}) + e(\{\lambda_n\}, S_n(\sigma(K))) + e(S_n(\sigma(K)), S(\sigma(K))).$$

By Theorem 11, we have

$$e(S_n(\sigma(K)), S(\sigma(K))) \longrightarrow 0.$$

In addition,

$$e(\{\lambda\},\{\lambda_n\}) = \|\lambda - \lambda_n\| \longrightarrow 0,$$

and

$$e(\{\lambda_n\}, S_n(\sigma(K))) = 0, \text{ since } \lambda_n \in S_n(\sigma(K)).$$

So $\lambda \in S(\sigma(K) = S(\sigma(K))$. The last equality follows from Theorem 8. Inclusion (10) is the same as (9) by replacing the multifunction $\sigma(K)$ by the multifunction $\overline{W(K)}$, with values in $\mathbb{K}(\mathbb{C})$.

References

- A. AMRI, A. SEEGER, Exponentiating a bundle of linear operators, Set-Valued Anal. 14 (2) (2006), 159–185.
- [2] B. AUPETIT, "A Primer on Spectral Theory", Springer-Verlag, New York, 1991.
- [3] E.O. AYOOLA, Exponential formula for the reachable sets of quantum stochastic differential inclusions, *Stochastic Anal. Appl.* **21** (3) (2003), 515–543.
- [4] F.F. BONSALL, J. DUNCAN, "Numerical Ranges of Operators on Normed Spaces and Elements of Normed Algebras", London Math. Soc. Lecture Note Series 2, Cambridge University Press, London-New-York, 1971.
- [5] A. CABOT, A. SEEGER, Multivalued exponentiation analysis. Part I: Maclaurin exponentials, *Set-Valued Anal.* 14 (4) (2006), 347–379.
- [6] A. CABOT, A. SEEGER, Multivalued exponentiation analysis. Part II: Recursive exponentials, Set-Valued Analysis 14 (4) (2006), 381–411.
- [7] M.K. CHRAÏBI, Domaine numérique du produit AB avec A normal, Serdica Math. J. 32 (1) (2006), 1–6.
- [8] M.K. CHRAÏBI, Domaine numérique de l'opérateur produit $M_{2,A,B}$ et de la dérivation généralisée $\delta_{2,A,B}$, Extracta Math. 17 (1) (2002), 59–68.
- [9] A.L. DONTCHEV, E.M. FARKHI, Error estimates for discretized differential inclusions, *Computing* 41 (4) (1989), 349-358.

- [10] S.S. DRAGOMIR, Some inequalities for norm the and the numerical radius of linear operators in Hilbert spaces, *Tamkamg J. Math.* **39** (1) (2008), 1–7.
- [11] S.S. DRAGOMIR, Norm and numerical radius inequalities for a product of two linear operators in Hilbert spaces, J. Math. Inequal. 2 (4) (2008), 499-510.
- [12] S.S. DRAGOMIR, Norm and numerical radius inequalities for two linear operators in Hilbert spaces: A survey of recent results, in "Functional Equations in Mathematical Analysis", (T. M. Rassias, J. Brzdęk, eds.), Springer Optimization and Its Applications 52, Springer, New York, 2012, 427-490.
- [13] K.E. GUSTAFSON, D.K.M. RAO, "Numerical Range. The Field of Values of Linear Operators and Matrices", Universitext, Springer-Verlag, New York, 1996.
- [14] P.R. HALMOS, "A Hilbert Space Problem", Van Nostrand, Princeton, 1967.
- [15] J.A.R. HOLBROOK, On the power bounded operators of Sz.-Nagy and Foias, Acta Sci. Math. (Szeged) 29 (1968), 299-310.
- [16] J. KYLE, Numerical ranges of derivations, Proc. Edinburgh. Math. Soc. (2) 21 (1) (1978/79), 33-39.
- [17] W. RUDIN, "Functional Analysis", T M H Edition, New Delhi: TATA McGraw-Hill, 1978.
- [18] A. SEEGER, On stabilized point spectra of multivalued systems, Integral Equations Operator Theory 54 (2) (2006), 279-300.
- [19] P.R. WOLENSKI, The exponential formula for the reachable set of a Lipschitz differential inclusion, SIAM J. Control Optim. 28 (5) (1990), 1148-1161.