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1. Introduction

The concept of the exponential of a set has been useful in the study of dif-
ferential inclusions and Lipschitz selections. Firstly, it was considered (inde-
pendently) by A. L. Dontchev and E.M. Farkhi [9] in 1989 and P.R. Wolenski
[19] in 1990. In 2003, E.O. Ayoola has developed this concept for the study
of quantum stochastic differential inclusions [3]. In 2006 and in various ways
the extension of multivalued case exponential function was developed in [1],
[5] and [6].

At the begining of this paper, we study the multivalued entire series
S(K) =

∑
anK

n (where K is in K(A), the set of all compact sets of a Banach
algebra A) which is used to define eK .

Then, for K ∈ K(A), we define σ(K), the spectrum of K, as the union of
all spectrum σ(a) when a runs K. If A = B(H), i.e., the set of all bounded
linear operators on a complex Hilbert space H, and K is in K(B(H)), we
define W (K), the numerical range of K, as the convex hull of the union of
W (A) when A varies over K and

W (A) =
{
⟨Ax, x⟩ : ∥x∥ = 1

}
.

The last set is called the numerical range of A which is always a convex set of
C whose closure contains the convex hull of σ(A) or coσ(A) [14]. In general, in
the noncommutative case, the spectrum is not continuous with respect to the

13
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Hausdorff metric [2]. (For more recent work on this topic, see, for example,
[18]). We show a range of properties for σ(K) and W (K) which are verified in
the single valued case, such as continuity of the numerical range in the sense
of Hausdorff [8] and the continuity of the spectrum in the case where A is
commutative. We also show for K ∈ K(B(H)) that:

|K| ≤ 2ω(K)− ω′2(K)

|K|
, (1)

where
ω′(K) = inf

{
∥z∥ : z ∈ W (A), A ∈ K

}
,

and
ω(K) = sup

{
∥z∥ : z ∈ W (A), A ∈ K

}
,

is the K numerical radius. The last inequality is optimal and generalized in
the single valued case the following classical inequality [13]:

∥A∥ ≤ 2ω(A), A ∈ B(H).

As an application of (1) we show that for K and K ′ in K(B(H))

|KK ′| ≤
(
w(K)− w′2(K)

2|K|

)
|K ′|+

(
w(K ′)− w′2(K ′)

2|K ′|

)
|K|. (2)

The previous inequality is an improvement in the single valued case of the
following theorem from Dragomir [10]:

Theorem 1. ([10]) Let A,B ∈ B(H) and α, β, γ, λ ∈ C be such that for
every x ∈ H,⟨

(A∗ − αI)(βI −A)x, x
⟩
≥ 0 and

⟨
(B∗ − γI)(λI −B)x, x

⟩
≥ 0.

Then,

∥AB∥ ≤ w (A) ∥B∥+ w (B) ∥A∥+ w (A)w (B) +
1

4
|β − α| |λ− γ| . (3)

In [11], and [12], Dragomir said that’s an open problem whether or not
the constant 1

4 is best possible in the inequality (3). The inequality (2) is the
solution of this problem.

Dragomir in 2008 [11] showed that

∥A∥2 ≤ ω2(A) + d2(A), A ∈ B(H),
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with
d(A) = sup

{
∥⟨Ax, y⟩∥ : ∥x∥ = ∥y∥ = 1, ⟨x, y⟩ = 0

}
.

We also generalize this result in the set valued case by showing that forK,K ′ ∈
B(H)

ω(KK ′) ≤ ω(K)ω(K ′) + d(K)d(K ′),

where
d(K) = sup

{
d(A) : A ∈ K

}
.

Finally, when

K1(A) =
{
K ∈ K(A) : ∀a, b ∈ K, ab = ba

}
,

we show the following spectral theorem:

Theorem 2. For each K ∈ K1(A), we have

σ
(
S(K)

)
⊂ S

(
σ(K)

)
.

2. Definitions and preliminaries

In this paper A is a Banach algebra over C, with unit element I. The
following definitions are useful in the sequel.

Definition 3. Let K and K ′ be two elements of K(A) and α a complex
number. We denote

K ·K ′ = {x · y : x ∈ K, y ∈ K ′},
K +K ′ = {x+ y : x ∈ K, y ∈ K ′},

αK = {αI} ·K = {α · x : x ∈ K},
α+K = {αI}+K = {αI + x : x ∈ K},

|K| = sup
X∈K

∥X∥,

K0 = {I}, Kn = K ·Kn−1, ∀n ∈ N∗.

We note that in general K ·K ′ is not equal to K ′ ·K and Kn = KpKq, with
p+ q = n and p, q, n ∈ N.

Definition 4. LetK,K ′ ∈ K(A). The Hausdorff distance betweenK and
K ′ denoted by h(K,K ′) is the maximum of the excess e(K,K ′) and e(K ′,K)
where

e(K,K ′) = sup
X∈K

inf
Y ∈K′

∥X − Y ∥.
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Definition 5. Let F be a multifunction from A into K(A) and let X0 ∈
A. F is called Hausdorff upper semicontinuous at X0 (“F is Hscs” at X0) if
for any sequence (Xn)n∈N of elements of A, which converges to X0, we have

∀ϵ > 0, ∃N ∈ N such that ∀n ≥ N, F (Xn) ⊂ F (X0) +B(0, ϵ), (4)

where B(0, ϵ) is the open ball in A with center 0 and radius ϵ.

It follows immediately from (4) that

∀ϵ > 0, ∃η > 0 such that ∀X ∈ B(X0, η), e
(
F (X), F (X0)

)
≤ ϵ. (5)

3. Multivalued power series in A

Definition 6. Let (an)n∈N be a sequence of complex numbers, and let
K ∈ K(A). We set

Sn(K) =

n∑
i=0

aiK
i = a0 + a1K + a2K

2 + · · ·+ anK
n =

{
n∑

i=0

aixi : xi ∈ Ki

}
.

Definition 7. Let K ∈ K(A) be such that the sequences
n∑

i=0
aixi con-

verges for all xi ∈ Ki. We set

S(K) =

{
+∞∑
n=0

anxn : xn ∈ Kn

}
=

∞∑
i=0

anK
n.

In the remainder of this section,K denotes an element ofK(A) and (an)n∈N
a sequence of complex numbers such that

+∞∑
n=0

anxn converges and ∀n ∈ N, xn ∈ Kn.

Theorem 8. Let r be the radius of convergence of the complex power
series

∑
anz

n. If K ∈ K(A), with K ⊂ B(0, δ) and 0 < δ < r, then S(K) is
a compact set of A.

Proof. Let (Yp)p∈N be a sequence of elements of S(K). We show that
(Yp)p∈N admits a subsequence (Yφ(p))p∈N which converges in S(K). For all
p ∈ N, we have

Yp =
+∞∑
i=0

aiXi,p,
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with Xi,p ∈ Ki and X0,p = I. We set

Zp =
(
a0X0,p, a1X1,p, . . . , aiXi,p, . . .

)
∈

∞∏
i=0

aiK
i.

This set is a compact set product. By Tychonov theorem [17], this is a compact
set for the norm ∥·∥π, where for all p in N,

∥Zp∥π =

∞∑
i=0

1

2i+1
min

{
1, ∥aiXi,p∥

}
.

We extract a subsequence (Zφ(p))p∈N which converges to

Z = (a0X0, a1X1, . . . , aiXi, . . .) ∈
∞∏
i=0

aiK
i.

Let us show that (Yφ(p))p∈N converges to Y =
∑∞

i=0 aiXi. Let ε ∈ ]0, 1[. The
sequence (Zφ(p))p∈N converges to Z, and then, for all ε1 > 0, there exists
p1 > 0 such that for all p > p1,

+∞∑
n=0

1

2n+1
min

{
1,
∥∥anXn,φ(p) − anXn

∥∥} ≤ ε1,

and then,
1

2n+1
min

{
1,
∥∥anXn,φ(p) − anXn

∥∥} ≤ ε1

for any n ≥ 0. Since δ < r,
∑+∞

n=0 |anδn| is convergent. Thus, there exists
n2 > 0 such that for all n ≥ n2,

+∞∑
i=n+1

|aiδi| ≤
ε

3
.

Let ε1 =
1
3

1
2n2+1

ε
n2+1 . Then, there exists pn2 such that 1

2n+1 > ε1 and

1

2n+1
min

{
1,
∥∥anXn,φ(p) − anXn

∥∥} =

∥∥anXn,φ(p) − anXn

∥∥
2n+1

≤ ε1,

for all p > pn2 and n ≤ n2. Then, for all n ≤ n2,∥∥anXn,φ(p) − anXn

∥∥ ≤ ε

3(n2 + 1)
,
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and thus, for all p > pn2 ,

∥∥Yφ(p) − Y
∥∥ ≤

n2∑
n=0

∥∥anXn,φ(p) − anXn

∥∥+

+∞∑
n=n2+1

∥∥anXn,φ(p)

∥∥+

+∞∑
n=n2+1

∥anXn∥

≤
n2∑
n=0

∥∥anXn,φ(p) − anXn

∥∥+
2

3
ε

≤
n2∑
n=0

(n2 + 1)
ε

3(n2 + 1)
+

2

3
ε = ε.

Definition 9. Let K ∈ K(A). We define the set valued exponential of
K, denoted eK , by

eK =

+∞∑
n=0

1

n!
Kn =

{
+∞∑
n=0

1

n!
xn : ∀n ∈ N, xn ∈ Kn

}
.

Remark 10. Since the radius of convergence of complex series
∑ zn

n! is
infinite, then for every K ∈ K(A), eK is well defined. Using Theorem 8, eK

is in K(A).

Theorem 11. Let K ∈ K(A), with K ⊂ B(0, δ), r the radius of conver-
gence of the complex power series

∑
anz

n and 0 < δ < r. Then, the sequence
Sn(K) converges in the sense of Hausdorff to S(K).

Proof. Let Yn ∈ Sn(K) and Y ∈ S(K), with Yn =
∑n

i=0 aixi, Y = Yn +∑∞
i=n+1 aixi, and xi ∈ Ki for all i ∈ N. We have

∥Y − Yn∥ ≤
∞∑

i=n+1

|ai| δi,

and then

h
(
S(K), Sn(K)

)
≤

∞∑
i=n+1

|ai| δi.

Hence the result.

The following lemma is useful in the proof of Theorem 13.
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Lemma 12. Let
∑

anz
n be a complex entire series. Then for any n ∈ N,

the mapping Sn from K(A) to K(A), which associates to each K the set
Sn(K), is continuous in the sense of Hausdorff.

Proof. It is easy to see that the product and sum of two compact sets
of A are compact sets. For the continuity of Sn, it suffices to show that if
(Kp)p∈N and (K ′

p)p∈N are two sequences of compact set of A which converge
in the sense of Hausdorff respectively to two compact set K and K ′ then the
sequences (KpK

′
p)p∈N and (Kp + K ′

p)p∈N converge in the sense of Hausdorff
respectively to KK ′ et K +K ′.

By the triangle inequality, we have

h(KpK
′
p,KK ′) ≤ |Kp|h(K ′

p,K
′) +

∣∣K ′∣∣h(Kp,K).

The sequence (Kp)p∈N is convergent, and therefore (|Kp|)
p∈N

is bounded from

above. As a result, (KpK
′
p)p∈N converges to KK ′.

For the other convergence, by triangle inequality, we have

h(Kp +K ′
p,K +K ′) ≤ h(K ′

p,K
′) + h(Kp,K).

Theorem 13. Let r be the radius of convergence of the complex entire
series

∑
anz

n and δ < r. Then the mapping S : K(A) → K(A), which to
K ⊂ B(0, δ) associates S(K), is continuous in the sense of Hausdorff.

Proof. Let us consider a sequence (Kp)p∈N of compact sets of A included
in B(0, δ), which converges in the sense of Hausdorff to a compact set K. Let
us show that h(S(Kp), S(K)) tends to 0.

The series
∑

|ap| δp is convergent, and so the sequence Rn =
∑∞

p=n |ap| δp
tends to 0. Thus, for all ε > 0, there exists n0 ∈ N such that for all n ≥ n0,

∞∑
p=n

|ap| δp ≤
ε

3
.

Hence

h
(
S(Kp), S(K)

)
≤ h

(
S(Kp), Sn0(Kp)

)
+ h

(
Sn0(Kp), Sn0(K)

)
+ h

(
Sn0(K), S(K)

)
.
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By Lemma 12, the mapping Sn0 is continuous, and so for all ε > 0, there
exists p0 ∈ N such that for all p ≥ p0,

h
(
Sn0(Kp), Sn0(K)

)
≤ ε

3
.

We have

h
(
S(Kp), Sn0(Kp)

)
≤

∞∑
p=n

|ap| δp ≤
ε

3
.

And, similarly, for h
(
Sn0(K), S(K)

)
. Thus, for every p ≥ p0, h(S(Kp), S(K)) ≤

ε.

4. Spectrum and numerical range of a compact set

Definition 14. Let K be an element of K(A). We define the spectrum
of K, denoted σ(K), and the algebraic numerical range of K, denoted V (K),
by:

σ(K) =
{
λ ∈ C : ∃X ∈ K, λ ∈ σ(X)

}
=

∪
X∈K

σ(X)

and
V (K) = co

{
∅(t) : ∅ ∈ S(A), t ∈ K

}
,

respectively, with

S(A) =
{
∅ ∈ A∗ : ∅(I) = ∥∅∥ = 1

}
,

and σ(X) the spectrum of X. Therefore, we have

V (K) = co
∪
t∈K

V (t),

where
V (t) =

{
∅(t) : ∅ ∈ S(A)

}
.

The last set is called the algebraic numerical range of t in the single-valued
case, which is always a closed and convex set in C [16]. It is also located in the
disk with center 0 and radius ∥t∥, and satisfies V (A) = W (A) for all A ∈ B(H)
[4].

Definition 15. If A = B(H), we define the numerical domain of K by:

W (K) = co
{
⟨Ax, x⟩ : ∥x∥ = 1, A ∈ K

}
= co

∪
A∈K

W (A).
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For K ∈ K(A), we define the numerical radius of K, denoted ω(K), and the
spectral radius of K, denoted ρ(K), by:

ω(K) = |V (K)| and ρ(K) = |σ(K)| .

Similarly, if A = B(H), the numerical radius of K is

ω(K) = |W (K)| .

Theorem 16. If K ∈ K(A), then σ(K) is a compact set in C.

The proof of this theorem is a consequence of Lemma 17 since in the single
valued case, the spectrum mapping from A to K(C) is Husc [2].

Lemma 17. Let (E, ∥ ∥) be a normed space, F a Husc multifunction from
A into K(E) and K a compact set of A. Assume that there exists α > 0 such
that for all x ∈ K, |F (x)| ≤ α∥x∥. Then, D = ∪F (x) is a closed bounded
subset of E.

Proof. D is bounded since for all λ ∈ D there exists x ∈ K such that
λ ∈ F (x). Thus ∥λ∥ ≤ |F (x)| ≤ α |K|. D is closed since if (λn)n∈N is a
sequence of elements of D which converges to λ ∈ E, then for all n ∈ N, there
exists xn ∈ K such that λn ∈ F (xn). Let (xnk

) be a subsequence of (xn)
which converges to x in K. Let us show that λ ∈ F (x). For this, it suffices to
prove that e({λ} , F (x)) = 0 since F (x) is a compact set. Fix ε > 0.

1) Since λnk
−→ λ, then there exists N0 ∈ N such that for all k ≥ N0,

∥λ− λnk
∥ ≤ ε

2 .

2) By the inequality (5) and since F is Hscs at x, then there exists η > 0
such that for all x ∈ B(x, η), e(F (x), F (x)) ≤ ε

2 .

3) Also xnk
−→ x ensures that there exists N1 ∈ N such that for all k ≥ N1,

xnk
∈ B(x, η).

Take k ≥ max(N0, N1) = N2, and use 1) and 2). We deduce that for all
k ≥ N2, e(F (xnk

), F (x)) ≤ ε
2 , and, consequently, for all ϵ > 0 and all k ≥ N2,

e
(
{λ}, F (x)

)
≤ ∥λ− λnk

∥+ e
(
{λnk

}, F (x)
)

≤ ∥λ− λnk
∥+ e

(
F (xnk

), F (x)
)
≤ ε.

Thus, λ ∈ F (x).
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Definition 18. Let K ∈ K(B(H)). We say that K is positive (resp. self
adjoint, normal) if each element of K is positive (resp. self adjoint, normal).

In the following Propositions 19 and 20 we show some properties for the
spectral mapping and the numerical range of a compact set in A which are
also verified in the case of single valued mappings.

Proposition 19. Consider K,K ′ ∈ K(A) and α, β ∈ C. Then

1) σ(αK + βK ′) ⊂ ασ(K) + βσ(K ′), if ab = ba for all (a, b) ∈ K ×K ′.

2) V (αK + βK ′) ⊂ αV (K) + βV (K ′).

If A = B(H), we further have

3) W (αK + βK ′) ⊂ αW (K) + βW (K ′).

4) w(K) = 0 ⇔ K = {0} .
5) coσ(K) ⊂ W (K).

6) If K is positive (resp. self adjoint), then W (K) ⊂ R+ (resp. W (K) ⊂
R).

Proof. Since σ(αa + βb) ⊂ ασ(a) + βσ(b), V (αa + βb) ⊂ αV (a) + βV (b)
for a, b ∈ A, and W (αA + βB) ⊂ αW (A) + βW (B) for A,B ∈ B(H), then
1), 2) and 3) are fulfilled. Property 4) can be obtained from the fact that if
A ∈ B(H), then w(A) ≤ ∥A∥ ≤ 2w(A) [13]. Thus

w(A) = 0 ⇔ A = 0.

Property 5) is deduced from coσ(A) ⊂ W (A) if A ∈ B(H) [14]. Finally, the
last property is trivial.

Proposition 20. Let K,K ′ ∈ K(A) be such that ab = ba for all (a, b) ∈
K ×K ′. Then

1) σ(KK ′) ⊂ σ(K)σ(K ′).

2) If further A = B(H) and K or K ′ is normal, then we have W (KK ′) ⊂
coW (K)W (K ′).

Proof. 1) is deduced from σ(ab) ⊂ σ(a)σ(b) if (a, b) ∈ K × K ′ and ab =
ba. If A,B ∈ B(H), AB = BA and A or B is normal, then W (AB) ⊂
coW (A)W (B) [7]. Thus, 2).
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Example 21. In this example, we have K = K ′, KK ′ = K ′K, but the
elements of K do not commute with each other. As a consequence, Proposi-
tion 20 is not verified. Indeed, if K = {A,B}, with

A =

(
1 0
0 2

)
and B =

(
1 1
1 1

)
,

we have σ(KK ′) = {0, 1, 3, 4}, σ(K)σ(K ′) = {0, 1, 2, 4}. If x = 1√
2
and y =

i√
2
, then

⟨
AB

(
x
y

)
,
(
x
y

)⟩
= 3−i

2 ∈ W (AB) ⊂ W (KK ′) and coW (K)W (K ′) =

[0, 4] .

Definition 22. An operator A in B(H) is said to be convexoid (resp.
normaloid, spectraloid) if W (A) = coσ(A) (resp. w(A) = ∥A∥, |σ(A)| =
w(A)).

Definition 23. Let K ∈ K(B(H)), we say that K is a convexoid (resp.
normaloid, spectraloid) if each element of K is a convexoid (resp. normaloid,
spectraloid).

The following lemma, whose proof is obvious, is useful to demonstrate
Proposition 25.

Lemma 24. Let (Γi)i∈J be a family of subsets of C which indexed by a
set J . We have:

coΓi = coΓi,
∪
i∈J

Γi =
∪
i∈J

Γi, and co
∪
i∈J

coΓi = co
∪
i∈J

Γi.

Proposition 25. Let K ∈ K(B(H)) be a convexoid (resp. normaloid,
spectraloid), then W (K) = coσ(K) (resp. w(K) = |K|, |σ(K)| = w(K)).

Proof. In this proof we use the three equalities in the previous lemma.
We consider only the case where K is a convexoid. The other two cases are
obvious. For every A ∈ K, we have W (A) = coσ(A). So∪

A∈K
coσ(A) =

∪
A∈K

W (A),

and ∪
A∈K

coσ(A) =
∪
A∈K

W (A).
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As a result, we have

co
∪
A∈K

coσ(A) = co
∪
A∈K

W (A).

This means

co
∪
A∈K

coσ(A) = co
∪
A∈K

W (A),

and thus

co
∪
A∈K

σ(A) = co
∪
A∈K

W (A).

This implies that

coσ(K) = W (K).

By Theorem 16, σ(K) is closed, so it is the same for coσ(K), and hence the
desired equality.

The following theorem shows the continuity of the multifunction W (K)
and generalizes the univocal case [8].

Theorem 26. Let Kn be a sequence in K(B(H)) which converges in the
Hausdorff sense to an element K of K(B(H)), then W (Kn) converges to
W (K) in the sense of Hausdorff.

Proof. We have

e(Kn,K) = sup
x∈Kn

d (x,K) −→ 0, with d(x,K) = e({x},K).

The continuity of the mapping x 7→ d(x,K) and the fact that Kn and K are
compact set imply the existence of xn ∈ Kn and zn ∈ K such that:

e(Kn,K) = ∥xn − zn∥ → 0.

We also have

e
(
W (Kn),W (K)

)
≤ e

(
W (Kn),W{zn}

)
= sup

{
d
(
αn,W{zn}

)
, αn ∈ W (Kn)

}
= d

(
tn,W{zn}

)
,
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with

tn ∈ W (Kn) =
∪

A∈Kn

W {A}.

Then

e
(
W (Kn),W (K)

)
≤ e

(
W (A),W{zn}

)
,

where

A ∈ Kn and tn ∈ W (A).

And thus

e
(
W (Kn),W (K)

)
≤ ∥A− zn∥ ≤ ∥yn − zn∥ → 0.

Proposition 27. Let K,K ′ ∈ K(A). Suppose that for all A ∈ K and
B ∈ K ′, AB = BA. Then

h
(
σ(K), σ(K ′)

)
≤ h(K,K ′).

Proof. The continuity of the norm in A and the compactness of K and K ′

provide

e(K,K ′) = ∥y − z∥, y ∈ K and z ∈ K ′.

We have

e
(
σ(K), σ(K ′)

)
≤ e

(
σ(K), σ(z)

)
= e

(
σ({tn}), σ(z)

)
,

where tn ∈ σ(K). Then, there exists A ∈ K such that tn ∈ σ(A), and

e
(
σ(K), σ(K ′)

)
≤ e

(
σ(A), σ(z)

)
,

≤ ∥A− z∥ ([2])

≤ ∥y − z∥ = e
(
K,K ′)

≤ h(K,K ′).

The following corollary is satisfied in the univocal case [2, page 49].

Corollary 28. Let Kn,K ∈ K(A) be such that for all an ∈ Kn and all
b ∈ K, anb = ban. If the sequence (Kn) converges in the sense of Hausdorff
to K, then σ((Kn)) converges in the sense of Hausdorff to σ (K) .
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Definition 29. For K ∈ K(B(H)) we set

O(K) =
{
⟨Ax, y⟩ : A ∈ K, ∥x∥ = ∥y∥ = 1, ⟨x, y⟩ = 0

}
and

d(K) = sup
z∈O(K)

|z| = |O(K)|.

Proposition 30. O(K) is a disk centered at the origin and with radius
d (K) .

Proof. For all A ∈ K, O({A}) is a disk centered at the origin and with
radius d

(
{A}

)
= supz∈O({A}) |z|, [8]. We have

O(K) =
∪
A∈K

O({A}) and d(K) ≤ |K|.

Then O(K) is a disk centered at the origin and with radius d(K).

Proposition 31. For K ∈ K(B(H)), we have

d(K) = inf
λ∈C

|K − λ{I}|.

Proof. Since

d({A}) = inf
λ∈C

∥A− λ{I}∥ ≤ inf
λ∈C

|K − λ{I}|,

then

d(K) = sup
A∈K

d({A}) ≤ inf
λ∈C

|K − λ{I}|.

For the reverse, we have that for all λ ∈ C and all A ∈ K,

|K − λ{I}| ≥ ∥A− λ{I}∥,

and then, for all A ∈ K,

inf
λ∈C

|K − λ{I}| ≥ d(A).

Thus

d(K) ≤ inf
λ∈C

|K − λ{I}|.
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Proposition 32. For K ∈ K(B(H)) we have

|K| ≤ 2w(K)− w′t(K)

|K|
,

where

w′(K) = inf
{
|z| ∈ W (A) : A ∈ K

}
.

Proof. Remark that

Ax = ⟨Ax, x⟩x+ ⟨Ax, y⟩y, with ⟨x, y⟩ = 0,

then

⟨Ax,Ax⟩ = ⟨Ax, x⟩⟨x,Ax⟩+ ⟨Ax, y⟩⟨y,Ax⟩
= |⟨Ax, x⟩|2 + |⟨Ax, y⟩|2.

The product operator M2,A,B defined on the Hilbert-Schmidt space C2 (H),
fitted with the scalar product

⟨X,Y ⟩ = trXY,

is given by

M2,A,B (X) = AXB, A,B ∈ B(H),

and satisfies [15]

w (M2,A,B) ≤ w (A) ∥B∥ .

Set

X =

√
2

2
x⊗ x+

√
2

2
y ⊗ y.

Then the norm of X in C2(H) is equal to 1. Then we have

⟨
M2,A∗,A(X), X

⟩
=

1

2
|⟨Ax, x⟩|2 + 1

2
|⟨Ax, y⟩|2 + 1

2
|⟨Ay, x⟩|2 + 1

2
|⟨Ay, y⟩|2

=
1

2
∥Ax∥2 + 1

2
|⟨Ay, y⟩|2 + 1

2
|⟨Ax, x⟩|2

≤ w(A)∥A∥.

Thus

∥Ax∥2 ≤ 2w(A)∥A∥ − |⟨Ay, y⟩|2,
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and
∥A∥2 ≤ 2w(A)∥A∥ − w′2(A).

We conclude

∥A∥ ≤ 2w(A)− w′2(A)

∥A∥
,

and

sup
A∈K

∥A∥ ≤ 2 sup
A∈K

w(A)− infA∈K w′2(A)

supA∈K ∥A∥
,

that is to say

|K| ≤ 2w(K)− w′2(K)

|K|
. (6)

In the single valued case the inequality (6) generalizes the following in-
equality [13]:

∥A∥ ≤ 2w(A). (7)

Corollary 33. If w′(K) ̸= 0, then

|K| < 2w (K) .

In the following example we have equality in (6) but not in (7): let r > 0,
then for K =

{
reiθI : θ ∈ [0, 2π[

}
we have |K| = r = w(A) = w′(A).

Proposition 34. For K,K ′ ∈ K(B(H)) we have

|KK ′| ≤
(
w(K)− w′2(K)

2|K|

)
|K ′|+

(
w(K ′)− w′2(K ′)

2|K ′|

)
|K|.

Proof. By (6) we have 1
2 |K| ≤ w(K)− w′2(K)

2|K| and 1
2 |K

′| ≤ w(K ′)− w′2(K′)
2|K′| .

On the other hand, we have |KK ′| ≤ |K||K ′|, hence the desired inequality.

Proposition 35. Let K,K ′ ∈ K(B(H)). Then

W (KK ′) ⊂ IK,K′ +O(K)O(K ′),

and
w(KK ′) ≤ w(K)w(K ′) + d(K)d(K ′), (8)

where
IK,K′ =

{
⟨Ax, x⟩⟨Bx, x⟩ : ∥x∥ = 1, A ∈ K, B ∈ K ′}.
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Proof. Let x ∈ H be such that ∥x∥ = 1. Then, Bx = ⟨Bx, x⟩x+ ⟨Bx, y⟩y,
with ∥y∥ = 1 and ⟨x, y⟩ = 0, and thus,

⟨ABx, x⟩ = ⟨Bx, x⟩⟨Ax, x⟩+ ⟨Bx, y⟩⟨Ay, x⟩,

and the result follows.

Remark 36. If in the inequality (8) K and K ′ are, respectively, replaced
byA∗ and A we obtain the following inequality due to Dragomir [11]:

∥A∥2 ≤ w2(A) + d2(A).

Proposition 37. Let K be an element of K1(A), and let P be the poly-

nomial with complex coefficients defined by P (X) =
n∑

i=0
aiX

i = a0 + a1X +

a2X
2 + · · ·+ anX

n. Then

σ
(
P (K)

)
⊂ P

(
σ(K)

)
.

If further A = B(H) and K is normal, then

W
(
P (K)

)
⊂ coP

(
W (K)

)
.

Proof. It suffices to use (1) and (3) of Propositions 19 and 20, respec-
tively.

Finally we end with the following spectral theorem:

Theorem 38. Let K be an element of K1(A), then

σ
(
S(K)

)
⊂ S

(
σ(K)

)
. (9)

If further, A = B(H) and K is normal, then

W
(
S(K)

)
⊂ coS

(
W (K)

)
(10)

Proof. Firstly, we prove (9). For this, let λ ∈ σ(S(K)) and verify λ ∈
S(σ(K)). There exists A ∈ S(K) such that A − λI is not invertible. That
is to say, A =

∑∞
i=0 aixi, xi ∈ K and λ ∈ σ(A). However, A = limAn

with An =
∑n

i=0 aixi, xi ∈ K and An ∈ Sn(K). Then AnAp = ApAn, for all
n, p ∈ N, h(σ(A), σ(An)) −→ 0 [2]. We have

e
(
{λ}, σ(An)

)
≤ h

(
σ(A), σ(An)

)
−→ 0.
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Therefore e({λ}, σ(An)) = ∥λ−λn∥, where λn ∈ σ(An) and λ = limλn. Thus,

λn ∈ σ(An) ⊂ σ
(
Sn(K)

)
⊂ Sn

(
σ(K)

)
.

The last inclusion is due to Proposition 37. Therefore,

e
(
{λ}, S(σ(K))

)
≤ e

(
{λ}, {λn}

)
+e

(
{λn}, Sn(σ(K))

)
+e

(
Sn(σ(K)), S(σ(K))

)
.

By Theorem 11, we have

e
(
Sn(σ(K)), S(σ(K))

)
−→ 0.

In addition,
e
(
{λ}, {λn}

)
= ∥λ− λn∥ −→ 0,

and
e
(
{λn}, Sn(σ(K))

)
= 0, since λn ∈ Sn

(
σ(K)

)
.

So λ ∈ S(σ(K) = S(σ(K)). The last equality follows from Theorem 8. In-
clusion (10) is the same as (9) by replacing the multifunction σ(K) by the
multifunction W (K), with values in K(C).
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dérivation généralisée δ2,A,B , Extracta Math. 17 (1) (2002), 59 – 68.

[9] A.L. Dontchev, E.M. Farkhi, Error estimates for discretized differential
inclusions, Computing 41 (4) (1989), 349 – 358.



spectrum and numerical range of a compact set 31

[10] S.S. Dragomir, Some inequalities for norm the and the numerical radius of
linear operators in Hilbert spaces, Tamkamg J. Math. 39 (1) (2008), 1 – 7.

[11] S.S. Dragomir, Norm and numerical radius inequalities for a product of two
linear operators in Hilbert spaces, J. Math. Inequal. 2 (4) (2008), 499 – 510.

[12] S.S. Dragomir, Norm and numerical radius inequalities for two linear oper-
ators in Hilbert spaces: A survey of recent results, in “Functional Equations
in Mathematical Analysis”, (T.M. Rassias, J. Brzdȩk, eds.), Springer Opti-
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