Spectrum and Numerical Range of a Compact Set

A. BOUCHEN, M.K. CHRAÏBI

Cadi Ayyad University, Faculty of Science Semlalia, Department of Mathematics, Marrakech, bouchen@uca.ma, chraibik@uca.ma

Presented by David Yost Received December 9, 2011

Abstract: In this paper, we define the multivalued entire series in a Banach algebra *A* as well as the exponential, the spectrum and the numerical range of a compact set of *A*. We provide properties for these two sets which are also verified in the univalued case.

Key words: Banach algebra, Hausdorff distance, spectrum and numerical range.

AMS *Subject Class.* (2010): 30B10.

1. INTRODUCTION

The concept of the exponential of a set has been useful in the study of differential inclusions and Lipschitz selections. Firstly, it was considered (independently) by A. L. Dontchev and E. M. Farkhi [9] in 1989 and P. R. Wolenski [19] in 1990. In 2003, E. O. Ayoola has developed this concept for the study of quantum stochastic differential inclusions [3]. In 2006 and in various ways the extension of multivalued case exponential function was developed in [1], [5] and [6].

At the begining of this paper, we study the multivalued entire series $S(K) = \sum a_n K^n$ (where *K* is in $\mathbb{K}(\mathcal{A})$, the set of all compact sets of a Banach algebra \mathcal{A}) which is used to define e^K .

Then, for $K \in \mathbb{K}(\mathcal{A})$, we define $\sigma(K)$, the spectrum of *K*, as the union of all spectrum $\sigma(a)$ when *a* runs *K*. If $\mathcal{A} = \mathcal{B}(H)$, i.e., the set of all bounded linear operators on a complex Hilbert space H , and K is in $\mathbb{K}(\mathcal{B}(H))$, we define $W(K)$, the numerical range of K , as the convex hull of the union of *W*(*A*) when *A* varies over *K* and

$$
W(A) = \{ \langle Ax, x \rangle : ||x|| = 1 \}.
$$

The last set is called the numerical range of *A* which is always a convex set of C whose closure contains the convex hull of $\sigma(A)$ or $\cos(A)$ [14]. In general, in the noncommutative case, the spectrum is not continuous with respect to the

13

Hausdorff metric [2]. (For more recent work on this topic, see, for example, [18]). We show a range of properties for $\sigma(K)$ and $W(K)$ which are verified in the single valued case, such as continuity of the numerical range in the sense of Hausdorff $[8]$ and the continuity of the spectrum in the case where A is commutative. We also show for $K \in K(\mathcal{B}(H))$ that:

$$
|K| \le 2\omega(K) - \frac{\omega'^2(K)}{|K|},\tag{1}
$$

where

$$
\omega'(K) = \inf \big\{ ||z|| : z \in W(A), A \in K \big\},\
$$

and

$$
\omega(K) = \sup\big\{\|z\| : z \in W(A), A \in K\big\},\
$$

is the *K* numerical radius. The last inequality is optimal and generalized in the single valued case the following classical inequality [13]:

$$
||A|| \le 2\omega(A), \quad A \in \mathcal{B}(H).
$$

As an application of (1) we show that for *K* and K' in $\mathbb{K}(\mathcal{B}(H))$

$$
|KK'| \le \left(w(K) - \frac{w'^2(K)}{2|K|}\right)|K'| + \left(w(K') - \frac{w'^2(K')}{2|K'|}\right)|K|.
$$
 (2)

The previous inequality is an improvement in the single valued case of the following theorem from Dragomir [10]:

THEOREM 1. ([10]) Let $A, B \in \mathcal{B}(H)$ and $\alpha, \beta, \gamma, \lambda \in \mathbb{C}$ be such that for $every x \in H$,

$$
\left\langle (A^* - \overline{\alpha}I)(\beta I - A)x, x \right\rangle \ge 0 \text{ and } \left\langle (B^* - \overline{\gamma}I)(\lambda I - B)x, x \right\rangle \ge 0.
$$

Then,

$$
||AB|| \le w(A) ||B|| + w(B) ||A|| + w(A) w(B) + \frac{1}{4} |\beta - \alpha| |\lambda - \gamma|.
$$
 (3)

In [11], and [12], Dragomir said that's an open problem whether or not the constant $\frac{1}{4}$ is best possible in the inequality (3). The inequality (2) is the solution of this problem.

Dragomir in 2008 [11] showed that

$$
||A||^2 \le \omega^2(A) + d^2(A), \quad A \in \mathcal{B}(H),
$$

with

$$
d(A) = \sup \{ ||\langle Ax, y \rangle || : ||x|| = ||y|| = 1, \langle x, y \rangle = 0 \}.
$$

We also generalize this result in the set valued case by showing that for $K, K' \in$ $B(H)$

$$
\omega(KK') \le \omega(K)\omega(K') + d(K)d(K'),
$$

where

$$
d(K) = \sup \big\{ d(A) : A \in K \big\}.
$$

Finally, when

$$
\mathbb{K}_1(\mathcal{A}) = \big\{ K \in \mathbb{K}(\mathcal{A}) : \forall a, b \in K, \ ab = ba \big\},\
$$

we show the following spectral theorem:

THEOREM 2. For each $K \in \mathbb{K}_1(\mathcal{A})$, we have

$$
\sigma(S(K)) \subset S(\sigma(K)).
$$

2. Definitions and preliminaries

In this paper *A* is a Banach algebra over C, with unit element *I.* The following definitions are useful in the sequel.

DEFINITION 3. Let *K* and *K'* be two elements of $\mathbb{K}(\mathcal{A})$ and α a complex number. We denote

$$
K \cdot K' = \{x \cdot y : x \in K, y \in K'\},
$$

\n
$$
K + K' = \{x + y : x \in K, y \in K'\},
$$

\n
$$
\alpha K = \{\alpha I\} \cdot K = \{\alpha \cdot x : x \in K\},
$$

\n
$$
\alpha + K = \{\alpha I\} + K = \{\alpha I + x : x \in K\},
$$

\n
$$
|K| = \sup_{X \in K} ||X||,
$$

\n
$$
K^0 = \{I\}, \quad K^n = K \cdot K^{n-1}, \forall n \in \mathbb{N}^*.
$$

We note that in general $K \cdot K'$ is not equal to $K' \cdot K$ and $K^n = K^p K^q$, with $p + q = n$ and $p, q, n \in \mathbb{N}$.

DEFINITION 4. Let $K, K' \in K(\mathcal{A})$. The Hausdorff distance between *K* and *K*^{*'*} denoted by $h(K, K')$ is the maximum of the excess $e(K, K')$ and $e(K', K')$ where

$$
e(K, K') = \sup_{X \in K} \inf_{Y \in K'} \|X - Y\|.
$$

DEFINITION 5. Let *F* be a multifunction from *A* into $\mathbb{K}(\mathcal{A})$ and let $X_0 \in$ *A*. *F* is called Hausdorff upper semicontinuous at X_0 ("*F* is Hscs" at X_0) if for any sequence $(X_n)_{n\in\mathbb{N}}$ of elements of A, which converges to X_0 , we have

∀ ϵ > 0*,* ∃*N* \in N such that $\forall n \geq N$, $F(X_n) \subset F(X_0) + B(0, \epsilon)$, (4)

where $B(0, \epsilon)$ is the open ball in *A* with center 0 and radius ϵ .

It follows immediately from (4) that

$$
\forall \epsilon > 0, \exists \eta > 0 \text{ such that } \forall X \in B(X_0, \eta), \ e(F(X), F(X_0)) \le \epsilon. \tag{5}
$$

3. Multivalued power series in *A*

DEFINITION 6. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of complex numbers, and let $K \in \mathbb{K}(\mathcal{A})$. We set

$$
S_n(K) = \sum_{i=0}^n a_i K^i = a_0 + a_1 K + a_2 K^2 + \dots + a_n K^n = \left\{ \sum_{i=0}^n a_i x_i : x_i \in K^i \right\}.
$$

DEFINITION 7. Let $K \in \mathbb{K}(\mathcal{A})$ be such that the sequences $\sum_{n=1}^{n}$ *i*=0 $a_i x_i$ converges for all $x_i \in K^i$. We set

$$
S(K) = \left\{ \sum_{n=0}^{+\infty} a_n x_n : x_n \in K^n \right\} = \sum_{i=0}^{\infty} a_n K^n.
$$

In the remainder of this section, *K* denotes an element of $\mathbb{K}(A)$ and $(a_n)_{n\in\mathbb{N}}$ a sequence of complex numbers such that

$$
\sum_{n=0}^{+\infty} a_n x_n
$$
 converges and $\forall n \in \mathbb{N}, x_n \in K^n$.

THEOREM 8. Let r be the radius of convergence of the complex power *series* $\sum a_n z^n$. If $K \in \mathbb{K}(\mathcal{A})$, with $K \subset B(0,\delta)$ and $0 < \delta < r$, then $S(K)$ is *a compact set of A.*

Proof. Let $(Y_p)_{p \in \mathbb{N}}$ be a sequence of elements of $S(K)$. We show that $(Y_p)_{p \in \mathbb{N}}$ admits a subsequence $(Y_{\varphi(p)})_{p \in \mathbb{N}}$ which converges in $S(K)$. For all $p \in \mathbb{N}$, we have

$$
Y_p = \sum_{i=0}^{+\infty} a_i X_{i,p},
$$

with $X_{i,p} \in K^i$ and $X_{0,p} = I$. We set

$$
Z_p = (a_0 X_{0,p}, a_1 X_{1,p}, \ldots, a_i X_{i,p}, \ldots) \in \prod_{i=0}^{\infty} a_i K^i.
$$

This set is a compact set product. By Tychonov theorem [17], this is a compact set for the norm $\lVert \cdot \rVert_{\pi}$, where for all *p* in N,

$$
||Z_p||_{\pi} = \sum_{i=0}^{\infty} \frac{1}{2^{i+1}} \min \left\{ 1, ||a_i X_{i,p}|| \right\}.
$$

We extract a subsequence $(Z_{\varphi(p)})_{p \in \mathbb{N}}$ which converges to

$$
Z = (a_0 X_0, a_1 X_1, \dots, a_i X_i, \dots) \in \prod_{i=0}^{\infty} a_i K^i.
$$

Let us show that $(Y_{\varphi(p)})_{p \in \mathbb{N}}$ converges to $Y = \sum_{i=0}^{\infty} a_i X_i$. Let $\varepsilon \in]0,1[$. The sequence $(Z_{\varphi(p)})_{p \in \mathbb{N}}$ converges to *Z*, and then, for all $\varepsilon_1 > 0$, there exists $p_1 > 0$ such that for all $p > p_1$,

$$
\sum_{n=0}^{+\infty} \frac{1}{2^{n+1}} \min\left\{1, \left\|a_n X_{n,\varphi(p)} - a_n X_n\right\|\right\} \le \varepsilon_1,
$$

and then,

$$
\frac{1}{2^{n+1}}\min\left\{1,\left\|a_n X_{n,\varphi(p)} - a_n X_n\right\|\right\} \leq \varepsilon_1
$$

for any $n \geq 0$. Since $\delta < r$, $\sum_{n=0}^{+\infty} |a_n \delta^n|$ is convergent. Thus, there exists $n_2 > 0$ such that for all $n \geq n_2$,

$$
\sum_{i=n+1}^{+\infty} |a_i \delta^i| \le \frac{\varepsilon}{3}.
$$

Let $\varepsilon_1 = \frac{1}{3}$ 3 1 $\frac{1}{2^{n_2+1}} \frac{\varepsilon}{n_2+1}$. Then, there exists p_{n_2} such that $\frac{1}{2^{n+1}} > \varepsilon_1$ and 1 $\frac{1}{2^{n+1}} \min \{ 1, \|a_n X_{n,\varphi(p)} - a_n X_n \| \} =$ $\left\| a_n X_{n,\varphi(p)} - a_n X_n \right\|$ $\frac{\sum_{i=1}^{n} s_i}{2^{n+1}} \leq \varepsilon_1$

for all $p > p_{n_2}$ and $n \leq n_2$. Then, for all $n \leq n_2$,

$$
||a_n X_{n,\varphi(p)} - a_n X_n|| \leq \frac{\varepsilon}{3(n_2+1)},
$$

and thus, for all $p > p_{n_2}$,

$$
||Y_{\varphi(p)} - Y|| \le \sum_{n=0}^{n_2} ||a_n X_{n,\varphi(p)} - a_n X_n|| + \sum_{n=n_2+1}^{+\infty} ||a_n X_{n,\varphi(p)}|| + \sum_{n=n_2+1}^{+\infty} ||a_n X_n||
$$

$$
\le \sum_{n=0}^{n_2} ||a_n X_{n,\varphi(p)} - a_n X_n|| + \frac{2}{3}\varepsilon
$$

$$
\le \sum_{n=0}^{n_2} (n_2 + 1) \frac{\varepsilon}{3(n_2 + 1)} + \frac{2}{3}\varepsilon = \varepsilon.
$$

DEFINITION 9. Let $K \in K(\mathcal{A})$. We define the set valued exponential of *K*, denoted e^K , by

$$
e^{K} = \sum_{n=0}^{+\infty} \frac{1}{n!} K^{n} = \left\{ \sum_{n=0}^{+\infty} \frac{1}{n!} x_{n} : \forall n \in \mathbb{N}, x_{n} \in K^{n} \right\}.
$$

Remark 10. Since the radius of convergence of complex series $\sum \frac{z^n}{n!}$ $\frac{z^n}{n!}$ is infinite, then for every $K \in \mathbb{K}(\mathcal{A})$, e^K is well defined. Using Theorem 8, e^K is in $\mathbb{K}(\mathcal{A})$.

THEOREM 11. Let $K \in \mathbb{K}(\mathcal{A})$, with $K \subset B(0,\delta)$, *r* the radius of conver*gence of the complex power series* $\sum a_n z^n$ *and* $0 < \delta < r$. Then, the sequence $S_n(K)$ *converges in the sense of Hausdorff to* $S(K)$ *.*

Proof. Let $Y_n \in S_n(K)$ and $Y \in S(K)$, with $Y_n = \sum_{i=0}^n a_i x_i$ ∑ *Proof.* Let $Y_n \in S_n(K)$ and $Y \in S(K)$, with $Y_n = \sum_{i=0}^n a_i x_i$, $Y = Y_n + \sum_{i=n+1}^{\infty} a_i x_i$, and $x_i \in K^i$ for all $i \in \mathbb{N}$. We have

$$
||Y - Y_n|| \le \sum_{i=n+1}^{\infty} |a_i| \delta^i,
$$

and then

$$
h(S(K), S_n(K)) \leq \sum_{i=n+1}^{\infty} |a_i| \delta^i.
$$

Hence the result. $\quad \blacksquare$

The following lemma is useful in the proof of Theorem 13.

LEMMA 12. Let $\sum a_n z^n$ be a complex entire series. Then for any $n \in \mathbb{N}$, *the mapping* S_n *from* $\mathbb{K}(A)$ *to* $\mathbb{K}(A)$ *, which associates to each K the set* $S_n(K)$, is continuous in the sense of Hausdorff.

Proof. It is easy to see that the product and sum of two compact sets of A are compact sets. For the continuity of S_n , it suffices to show that if $(K_p)_{p \in \mathbb{N}}$ and $(K'_p)_{p \in \mathbb{N}}$ are two sequences of compact set of *A* which converge in the sense of Hausdorff respectively to two compact set *K* and *K′* then the sequences $(K_p K'_p)_{p \in \mathbb{N}}$ and $(K_p + K'_p)_{p \in \mathbb{N}}$ converge in the sense of Hausdorff respectively to $\overline{K}K'$ et $K + K'$.

By the triangle inequality, we have

$$
h(K_p K'_p, K K') \le |K_p| h(K'_p, K') + |K'| h(K_p, K).
$$

The sequence $(K_p)_{p \in \mathbb{N}}$ is convergent, and therefore $(|K_p|)_{p \in \mathbb{N}}$ is bounded from above. As a result, $(K_p K_p')_{p \in \mathbb{N}}$ converges to KK' .

For the other convergence, by triangle inequality, we have

$$
h(K_p + K'_p, K + K') \le h(K'_p, K') + h(K_p, K).
$$

Theorem 13. *Let r be the radius of convergence of the complex entire series* $\sum a_n z^n$ and $\delta < r$. Then the mapping $S : \mathbb{K}(\mathcal{A}) \to \mathbb{K}(\mathcal{A})$, which to $K \subset B(0, \delta)$ *associates* $S(K)$ *, is continuous in the sense of Hausdorff.*

Proof. Let us consider a sequence $(K_p)_{p \in \mathbb{N}}$ of compact sets of *A* included in $B(0,\delta)$, which converges in the sense of Hausdorff to a compact set *K*. Let us show that $h(S(K_p), S(K))$ tends to 0.

The series $\sum |a_p| \delta^p$ is convergent, and so the sequence $R_n = \sum_{p=n}^{\infty} |a_p| \delta^p$ tends to 0. Thus, for all $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$,

$$
\sum_{p=n}^{\infty} |a_p| \, \delta^p \le \frac{\varepsilon}{3}.
$$

Hence

$$
h(S(K_p), S(K)) \le h(S(K_p), S_{n_0}(K_p)) + h(S_{n_0}(K_p), S_{n_0}(K)) + h(S_{n_0}(K), S(K)).
$$

Π

By Lemma 12, the mapping S_{n_0} is continuous, and so for all $\varepsilon > 0$, there exists $p_0 \in \mathbb{N}$ such that for all $p \geq p_0$,

$$
h(S_{n_0}(K_p), S_{n_0}(K)) \leq \frac{\varepsilon}{3}.
$$

We have

$$
h(S(K_p), S_{n_0}(K_p)) \leq \sum_{p=n}^{\infty} |a_p| \delta^p \leq \frac{\varepsilon}{3}.
$$

And, similarly, for $h(S_{n_0}(K), S(K))$. Thus, for every $p \ge p_0, h(S(K_p), S(K)) \le$ *ε*.

4. Spectrum and numerical range of a compact set

DEFINITION 14. Let *K* be an element of $\mathbb{K}(\mathcal{A})$. We define the spectrum of *K*, denoted $\sigma(K)$, and the algebraic numerical range of *K*, denoted $V(K)$, by:

$$
\sigma(K) = \{ \lambda \in \mathbb{C} : \exists X \in K, \ \lambda \in \sigma(X) \} = \bigcup_{X \in K} \sigma(X)
$$

and

$$
V(K)=co\big\{\emptyset(t):\, \emptyset\in S(\mathcal{A}),\ t\in K\big\},
$$

respectively, with

$$
S(\mathcal{A}) = \big\{\emptyset \in \mathcal{A}^* : \emptyset(I) = \|\emptyset\| = 1\big\},\
$$

and $\sigma(X)$ the spectrum of *X*. Therefore, we have

$$
V(K) = co \bigcup_{t \in K} V(t),
$$

where

$$
V(t) = \{ \emptyset(t) : \emptyset \in S(\mathcal{A}) \}.
$$

The last set is called the algebraic numerical range of *t* in the single-valued case, which is always a closed and convex set in \mathbb{C} [16]. It is also located in the disk with center 0 and radius $||t||$, and satisfies $V(A) = \overline{W(A)}$ for all $A \in \mathcal{B}(H)$ [4].

DEFINITION 15. If $A = \mathcal{B}(H)$, we define the numerical domain of *K* by:

$$
W(K)=co\big\{\left\langle Ax,x\right\rangle:\,\|x\|=1,\,\,A\in K\big\}=co\bigcup_{A\in K}W(A).
$$

For $K \in \mathbb{K}(\mathcal{A})$, we define the numerical radius of *K*, denoted $\omega(K)$, and the spectral radius of K , denoted $\rho(K)$, by:

$$
\omega(K) = |V(K)|
$$
 and $\rho(K) = |\sigma(K)|$.

Similarly, if $\mathcal{A} = \mathcal{B}(H)$, the numerical radius of *K* is

$$
\omega(K) = |W(K)|.
$$

THEOREM 16. If $K \in \mathbb{K}(\mathcal{A})$, then $\sigma(K)$ is a compact set in \mathbb{C} .

The proof of this theorem is a consequence of Lemma 17 since in the single valued case, the spectrum mapping from $\mathcal A$ to $\mathbb K(\mathbb C)$ is Husc [2].

Lemma 17. *Let* (*E, ∥ ∥*) *be a normed space, F a Husc multifunction from A into* $K(E)$ *and K a compact set of A.* Assume that there exists $\alpha > 0$ *such that for all* $x \in K$ *,* $|F(x)| \leq \alpha ||x||$ *. Then,* $D = \bigcup F(x)$ *is a closed bounded subset of E.*

Proof. D is bounded since for all $\lambda \in D$ there exists $x \in K$ such that $\lambda \in F(x)$. Thus $||\lambda|| \leq |F(x)| \leq \alpha |K|$. *D* is closed since if $(\lambda_n)_{n \in \mathbb{N}}$ is a sequence of elements of *D* which converges to $\lambda \in E$, then for all $n \in \mathbb{N}$, there exists $x_n \in K$ such that $\lambda_n \in F(x_n)$. Let (x_{n_k}) be a subsequence of (x_n) which converges to \bar{x} in *K*. Let us show that $\lambda \in F(\bar{x})$. For this, it suffices to prove that $e(\{\lambda\}, F(\overline{x})) = 0$ since $F(\overline{x})$ is a compact set. Fix $\varepsilon > 0$.

- 1) Since $\lambda_{n_k} \longrightarrow \lambda$, then there exists $N_0 \in \mathbb{N}$ such that for all $k \geq N_0$, $||\lambda - \lambda_{n_k}|| \leq \frac{\varepsilon}{2}.$
- 2) By the inequality (5) and since *F* is Hscs at \bar{x} , then there exists $\eta > 0$ such that for all $x \in B(\overline{x}, \eta)$, $e(F(x), F(\overline{x})) \leq \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$.
- 3) Also $x_{n_k} \longrightarrow \overline{x}$ ensures that there exists $N_1 \in \mathbb{N}$ such that for all $k \geq N_1$, $x_{n_k} \in B(\overline{x}, \eta)$.

Take $k \geq \max(N_0, N_1) = N_2$, and use 1) and 2). We deduce that for all $k \geq N_2$, $e(F(x_{n_k}), F(\overline{x})) \leq \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$, and, consequently, for all $\epsilon > 0$ and all $k \ge N_2$,

$$
e(\{\lambda\}, F(\overline{x})) \leq \|\lambda - \lambda_{n_k}\| + e(\{\lambda_{n_k}\}, F(\overline{x}))
$$

$$
\leq \|\lambda - \lambda_{n_k}\| + e(F(x_{n_k}), F(\overline{x})) \leq \varepsilon.
$$

Thus, $\lambda \in F(\overline{x})$. \blacksquare

DEFINITION 18. Let $K \in K(\mathcal{B}(H))$. We say that *K* is positive (resp. self adjoint, normal) if each element of *K* is positive (resp. self adjoint, normal).

In the following Propositions 19 and 20 we show some properties for the spectral mapping and the numerical range of a compact set in *A* which are also verified in the case of single valued mappings.

PROPOSITION 19. *Consider* $K, K' \in \mathbb{K}(\mathcal{A})$ and $\alpha, \beta \in \mathbb{C}$. Then

- 1) $\sigma(\alpha K + \beta K') \subset \alpha \sigma(K) + \beta \sigma(K')$, if $ab = ba$ for all $(a, b) \in K \times K'$.
- 2) $V(\alpha K + \beta K') \subset \alpha V(K) + \beta V(K')$.

If $\mathcal{A} = \mathcal{B}(H)$ *, we further have*

- 3) $W(\alpha K + \beta K') \subset \alpha W(K) + \beta W(K')$.
- 4) $w(K) = 0 \Leftrightarrow K = \{0\}.$
- 5) $co\sigma(K) \subset \overline{W(K)}$.
- 6) If *K* is positive (resp. self adjoint), then $W(K) \subset \mathbb{R}^+$ (resp. $W(K) \subset$ R)*.*

Proof. Since $\sigma(\alpha a + \beta b) \subset \alpha \sigma(a) + \beta \sigma(b)$, $V(\alpha a + \beta b) \subset \alpha V(a) + \beta V(b)$ for $a, b \in A$, and $W(\alpha A + \beta B) \subset \alpha W(A) + \beta W(B)$ for $A, B \in \mathcal{B}(H)$, then 1), 2) and 3) are fulfilled. Property 4) can be obtained from the fact that if $A \in \mathcal{B}(H)$, then $w(A) \leq ||A|| \leq 2w(A)$ [13]. Thus

$$
w(A) = 0 \Leftrightarrow A = 0.
$$

Property 5) is deduced from $co\sigma(A) \subset \overline{W(A)}$ if $A \in \mathcal{B}(H)$ [14]. Finally, the last property is trivial. \blacksquare

PROPOSITION 20. Let $K, K' \in \mathbb{K}(\mathcal{A})$ be such that $ab = ba$ for all $(a, b) \in$ $K \times K'$ *. Then*

- 1) $\sigma(KK') \subset \sigma(K)\sigma(K')$.
- 2) If further $A = \mathcal{B}(H)$ and K or K' is normal, then we have $\overline{W(KK')} \subset$ $co\overline{W(K)W(K')}$.

Proof. 1) is deduced from $\sigma(ab) \subset \sigma(a)\sigma(b)$ if $(a, b) \in K \times K'$ and $ab =$ *ba*. If *A, B* ∈ *B*(*H*), *AB* = *BA* and *A* or *B* is normal, then $\overline{W(AB)}$ ⊂ $coW(A)W(B)$ [7]. Thus, 2).

EXAMPLE 21. In this example, we have $K = K'$, $KK' = K'K$, but the elements of *K* do not commute with each other. As a consequence, Proposition 20 is not verified. Indeed, if $K = \{A, B\}$, with

$$
A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix},
$$

we have $\sigma(KK') = \{0, 1, 3, 4\}, \sigma(K)\sigma(K') = \{0, 1, 2, 4\}.$ If $x = \frac{1}{\sqrt{2}}$ $\frac{1}{2}$ and $y=$ *√ i* $\frac{1}{2}$, then $\langle AB \rangle_y^x$ *y*) *,* (*x* $\langle f''(x) \rangle = \frac{3-i}{2} \in W(AB) \subset W(KK')$ and $coW(K)W(K') =$ $[0, 4]$.

DEFINITION 22. An operator *A* in $B(H)$ is said to be convexoid (resp. normaloid, spectraloid) if $\overline{W(A)} = co\sigma(A)$ (resp. $w(A) = ||A||$, $|\sigma(A)| =$ *w*(*A*)).

DEFINITION 23. Let $K \in K(\mathcal{B}(H))$, we say that *K* is a convexoid (resp. normaloid, spectraloid) if each element of *K* is a convexoid (resp. normaloid, spectraloid).

The following lemma, whose proof is obvious, is useful to demonstrate Proposition 25.

LEMMA 24. Let $(\Gamma_i)_{i \in J}$ be a family of subsets of $\mathbb C$ which indexed by a *set J. We have:*

$$
co\overline{\Gamma_i} = \overline{co}\overline{\Gamma_i}, \quad \overline{\bigcup_{i \in J} \overline{\Gamma_i}} = \overline{\bigcup_{i \in J} \Gamma_i}, \quad \text{and} \quad co\bigcup_{i \in J} co\Gamma_i = co\bigcup_{i \in J} \Gamma_i.
$$

PROPOSITION 25. Let $K \in K(\mathcal{B}(H))$ be a convexoid (resp. normaloid, *spectraloid*), then $\overline{W(K)} = co \sigma(K)$ (resp. $w(K) = |K|$, $|\sigma(K)| = w(K)$).

Proof. In this proof we use the three equalities in the previous lemma. We consider only the case where K is a convexoid. The other two cases are obvious. For every $A \in K$, we have $\overline{W(A)} = co\sigma(A)$. So

$$
\bigcup_{A \in K} co\sigma(A) = \bigcup_{A \in K} \overline{W(A)},
$$

and

$$
\overline{\bigcup_{A \in K} co\sigma(A)} = \overline{\bigcup_{A \in K} \overline{W(A)}}.
$$

As a result, we have

$$
co \overline{\bigcup_{A \in K} co \sigma(A)} = co \overline{\bigcup_{A \in K} \overline{W(A)}}.
$$

This means

$$
\overline{co \bigcup_{A \in K} co\sigma(A)} = co \overline{\bigcup_{A \in K} W(A)},
$$

and thus

$$
\overline{co \bigcup_{A \in K} \sigma(A)} = \overline{co \bigcup_{A \in K} W(A)}.
$$

This implies that

$$
\overline{co\sigma(K)} = \overline{W(K)}.
$$

By Theorem 16, $\sigma(K)$ is closed, so it is the same for $co\sigma(K)$, and hence the desired equality. \blacksquare

The following theorem shows the continuity of the multifunction $\overline{W(K)}$ and generalizes the univocal case [8].

THEOREM 26. Let K_n be a sequence in $\mathbb{K}(\mathcal{B}(H))$ which converges in the *Hausdorff sense to an element K of* $\mathbb{K}(\mathcal{B}(H))$ *, then* $\overline{W(K_n)}$ *converges to* $\overline{W(K)}$ *in the sense of Hausdorff.*

Proof. We have

$$
e(K_n, K) = \sup_{x \in K_n} d(x, K) \longrightarrow 0, \quad \text{with} \quad d(x, K) = e(\lbrace x \rbrace, K).
$$

The continuity of the mapping $x \mapsto d(x, K)$ and the fact that K_n and K are compact set imply the existence of $x_n \in K_n$ and $z_n \in K$ such that:

$$
e(K_n, K) = \|x_n - z_n\| \to 0.
$$

We also have

$$
e(\overline{W(K_n)}, \overline{W(K)}) \le e(\overline{W(K_n)}, \overline{W\{z_n\}})
$$

= sup { $d(\alpha_n, \overline{W\{z_n\}})$, $\alpha_n \in \overline{W(K_n)}$ }
= $d(t_n, \overline{W\{z_n\}})$,

with

$$
t_n \in \overline{W(K_n)} = \bigcup_{A \in K_n} \overline{W\{A\}}.
$$

Then

$$
e(\overline{W(K_n)}, \overline{W(K)}) \le e(\overline{W(A)}, W\{z_n\}),
$$

where

$$
A \in K_n \quad \text{and} \quad t_n \in W(A).
$$

And thus

$$
e(\overline{W(K_n)}, \overline{W(K)}) \le ||A - z_n|| \le ||y_n - z_n|| \to 0.
$$

PROPOSITION 27. Let $K, K' \in \mathbb{K}(\mathcal{A})$. Suppose that for all $A \in K$ and $B \in K'$, $AB = BA$. Then

$$
h(\sigma(K), \sigma(K')) \le h(K, K').
$$

Proof. The continuity of the norm in *A* and the compactness of *K* and *K′* provide

$$
e(K, K') = ||y - z||, \quad y \in K \text{ and } z \in K'.
$$

We have

$$
e(\sigma(K), \sigma(K')) \le e(\sigma(K), \sigma(z)) = e(\sigma(\lbrace t_n \rbrace), \sigma(z)),
$$

where $t_n \in \sigma(K)$. Then, there exists $A \in K$ such that $t_n \in \sigma(A)$, and

$$
e(\sigma(K), \sigma(K')) \le e(\sigma(A), \sigma(z)),
$$

\n
$$
\le ||A - z|| \qquad ([2])
$$

\n
$$
\le ||y - z|| = e(K, K')
$$

\n
$$
\le h(K, K').
$$

The following corollary is satisfied in the univocal case [2, page 49].

COROLLARY 28. Let $K_n, K \in \mathbb{K}(\mathcal{A})$ be such that for all $a_n \in K_n$ and all $b \in K$, $a_n b = b a_n$. If the sequence (K_n) converges in the sense of Hausdorff *to K*, then $\sigma((K_n))$ converges in the sense of Hausdorff to $\sigma(K)$.

 \blacksquare

Π

DEFINITION 29. For $K \in K(\mathcal{B}(H))$ we set

$$
O(K) = \{ \langle Ax, y \rangle : A \in K, ||x|| = ||y|| = 1, \ \langle x, y \rangle = 0 \}
$$

and

$$
d(K) = \sup_{z \in O(K)} |z| = |O(K)|.
$$

PROPOSITION 30. $O(K)$ is a disk centered at the origin and with radius *d* (*K*)*.*

Proof. For all $A \in K$, $O({A})$ is a disk centered at the origin and with radius $d({A}) = \sup_{z \in O({A})} |z|, [8]$. We have

$$
O(K) = \bigcup_{A \in K} O({A}) \text{ and } d(K) \leq |K|.
$$

Then $O(K)$ is a disk centered at the origin and with radius $d(K)$.

PROPOSITION 31. *For* $K \in \mathbb{K}(\mathcal{B}(H))$, we have

$$
d(K) = \inf_{\lambda \in \mathbb{C}} |K - \lambda \{I\}|.
$$

Proof. Since

$$
d(\lbrace A \rbrace)=\inf_{\lambda \in \mathbb{C}}\Vert A-\lambda \lbrace I \rbrace \Vert \leq \inf_{\lambda \in \mathbb{C}}\vert K-\lambda \lbrace I \rbrace \vert,
$$

then

$$
d(K) = \sup_{A \in K} d({A}) \le \inf_{\lambda \in \mathbb{C}} |K - \lambda{I}|.
$$

For the reverse, we have that for all $\lambda \in \mathbb{C}$ and all $A \in K$,

$$
|K - \lambda\{I\}| \ge ||A - \lambda\{I\}||,
$$

and then, for all $A \in K$,

$$
\inf_{\lambda \in \mathbb{C}} |K - \lambda \{I\}| \ge d(A).
$$

Thus

$$
d(K) \le \inf_{\lambda \in \mathbb{C}} |K - \lambda \{I\}|.
$$

 \blacksquare

PROPOSITION 32. *For* $K \in \mathbb{K}(\mathcal{B}(H))$ we have

$$
|K| \le 2w(K) - \frac{w't(K)}{|K|},
$$

where

$$
w'(K) = \inf \{|z| \in W(A) : A \in K\}.
$$

Proof. Remark that

$$
Ax = \langle Ax, x \rangle x + \langle Ax, y \rangle y, \quad \text{with } \langle x, y \rangle = 0,
$$

then

$$
\langle Ax, Ax \rangle = \langle Ax, x \rangle \langle x, Ax \rangle + \langle Ax, y \rangle \langle y, Ax \rangle
$$

$$
= |\langle Ax, x \rangle|^2 + |\langle Ax, y \rangle|^2.
$$

The product operator $M_{2,A,B}$ defined on the Hilbert-Schmidt space $C_2(H)$, fitted with the scalar product

$$
\langle X, Y \rangle = trXY,
$$

is given by

$$
M_{2,A,B}(X) = AXB, \quad A, B \in \mathcal{B}(H),
$$

and satisfies [15]

$$
w\left(M_{2,A,B}\right)\leq w\left(A\right)\left\Vert B\right\Vert .
$$

Set

$$
X = \frac{\sqrt{2}}{2}x \otimes x + \frac{\sqrt{2}}{2}y \otimes y.
$$

Then the norm of X in $C_2(H)$ is equal to 1. Then we have

$$
\langle M_{2,A^*,A}(X), X \rangle = \frac{1}{2} |\langle Ax, x \rangle|^2 + \frac{1}{2} |\langle Ax, y \rangle|^2 + \frac{1}{2} |\langle Ay, x \rangle|^2 + \frac{1}{2} |\langle Ay, y \rangle|^2
$$

=
$$
\frac{1}{2} ||Ax||^2 + \frac{1}{2} |\langle Ay, y \rangle|^2 + \frac{1}{2} |\langle Ax, x \rangle|^2
$$

\$\leq w(A) ||A||\$.

Thus

$$
||Ax||^2 \le 2w(A)||A|| - |\langle Ay, y \rangle|^2,
$$

and

$$
||A||^2 \le 2w(A)||A|| - w'^2(A).
$$

We conclude

$$
||A|| \le 2w(A) - \frac{w'^2(A)}{||A||},
$$

and

$$
\sup_{A \in K} ||A|| \le 2 \sup_{A \in K} w(A) - \frac{\inf_{A \in K} w'^2(A)}{\sup_{A \in K} ||A||},
$$

that is to say

$$
|K| \le 2w(K) - \frac{w'^2(K)}{|K|}.
$$
\n(6)

In the single valued case the inequality (6) generalizes the following inequality [13]:

$$
||A|| \le 2w(A). \tag{7}
$$

COROLLARY 33. If $w'(K) \neq 0$, then

$$
|K| < 2w(K).
$$

In the following example we have equality in (6) but not in (7): let $r > 0$, then for $K = \{ re^{i\theta}I : \theta \in [0, 2\pi[\} \text{ we have } |K| = r = w(A) = w'(A).$

PROPOSITION 34. *For* $K, K' \in \mathbb{K}(\mathcal{B}(H))$ we have

$$
|KK'| \le \left(w(K) - \frac{w'^2(K)}{2|K|}\right)|K'| + \left(w(K') - \frac{w'^2(K')}{2|K'|}\right)|K|.
$$

Proof. By (6) we have $\frac{1}{2}|K| \leq w(K) - \frac{w'^{2}(K)}{2|K|}$ $\frac{w'^2(K)}{2|K|}$ and $\frac{1}{2}|K'| \leq w(K') - \frac{w'^2(K')}{2|K'|}$ $\frac{\partial^2 F}{\partial |K'|}$. On the other hand, we have $|KK'| \leq |K||K'|$, hence the desired inequality.

PROPOSITION 35. Let $K, K' \in \mathbb{K}(\mathcal{B}(H))$. Then

$$
W(KK') \subset I_{K,K'} + O(K)O(K'),
$$

and

$$
w(KK') \le w(K)w(K') + d(K)d(K'),
$$
\n(8)

where

$$
I_{K,K'}=\big\{\langle Ax,x\rangle\langle Bx,x\rangle:\, \|x\|=1,\ A\in K,\ B\in K'\big\}.
$$

Proof. Let $x \in H$ be such that $||x|| = 1$. Then, $Bx = \langle Bx, x \rangle x + \langle Bx, y \rangle y$, with $||y|| = 1$ and $\langle x, y \rangle = 0$, and thus,

$$
\langle ABx, x \rangle = \langle Bx, x \rangle \langle Ax, x \rangle + \langle Bx, y \rangle \langle Ay, x \rangle,
$$

and the result follows.

Remark 36. If in the inequality (8) *K* and *K′* are, respectively, replaced by*A[∗]* and *A* we obtain the following inequality due to Dragomir [11]:

$$
||A||^2 \le w^2(A) + d^2(A).
$$

PROPOSITION 37. Let K be an element of $\mathbb{K}_1(\mathcal{A})$, and let P be the poly*nomial with complex coefficients defined by* $P(X) = \sum_{n=1}^{n} P_n(x)$ *i*=0 $a_i X^i = a_0 + a_1 X +$ $a_2X^2 + \cdots + a_nX^n$. Then

$$
\sigma(P(K)) \subset P(\sigma(K)).
$$

If further $A = \mathcal{B}(H)$ *and K is normal, then*

$$
\overline{W(P(K))} \subset co\overline{P(W(K))}.
$$

Proof. It suffices to use (1) and (3) of Propositions 19 and 20, respectively. \blacksquare

Finally we end with the following spectral theorem:

THEOREM 38. Let K be an element of $\mathbb{K}_1(\mathcal{A})$, then

$$
\sigma(S(K)) \subset S(\sigma(K)).\tag{9}
$$

If further, $A = \mathcal{B}(H)$ *and K is normal, then*

$$
\overline{W(S(K))} \subset co\overline{S(W(K))}
$$
\n(10)

Proof. Firstly, we prove (9). For this, let $\lambda \in \sigma(S(K))$ and verify $\lambda \in$ *S*(σ (*K*)). There exists *A* \in *S*(*K*) such that *A − λI* is not invertible. That is to say, $A = \sum_{i=0}^{\infty} a_i x_i$, $x_i \in K$ and $\lambda \in \sigma(A)$. However, $A = \lim A_n$ with $A_n = \sum_{i=0}^n a_i x_i$, $x_i \in K$ and $A_n \in S_n(K)$. Then $A_n A_p = A_p A_n$, for all $n, p \in \mathbb{N}, h(\sigma(A), \sigma(A_n)) \longrightarrow 0$ [2]. We have

$$
e(\{\lambda\}, \sigma(A_n)) \le h(\sigma(A), \sigma(A_n)) \longrightarrow 0.
$$

Therefore $e(\{\lambda\}, \sigma(A_n)) = ||\lambda - \lambda_n||$, where $\lambda_n \in \sigma(A_n)$ and $\lambda = \lim \lambda_n$. Thus,

$$
\lambda_n \in \sigma(A_n) \subset \sigma(S_n(K)) \subset S_n(\sigma(K)).
$$

The last inclusion is due to Proposition 37. Therefore,

$$
e(\{\lambda\}, S(\sigma(K))) \le e(\{\lambda\}, \{\lambda_n\}) + e(\{\lambda_n\}, S_n(\sigma(K))) + e(S_n(\sigma(K)), S(\sigma(K))).
$$

By Theorem 11, we have

$$
e(S_n(\sigma(K)), S(\sigma(K))) \longrightarrow 0.
$$

In addition,

$$
e(\{\lambda\}, \{\lambda_n\}) = ||\lambda - \lambda_n|| \longrightarrow 0,
$$

and

$$
e(\{\lambda_n\}, S_n(\sigma(K))) = 0, \text{ since } \lambda_n \in S_n(\sigma(K)).
$$

So $\lambda \in \overline{S(\sigma(K))} = S(\sigma(K))$. The last equality follows from Theorem 8. Inclusion (10) is the same as (9) by replacing the multifunction $\sigma(K)$ by the multifunction $\overline{W(K)}$, with values in $\mathbb{K}(\mathbb{C})$.

REFERENCES

- [1] A. Amri, A. Seeger, Exponentiating a bundle of linear operators, *Set-Valued Anal.* **14** (2) (2006), 159 – 185.
- [2] B. AUPETIT, "A Primer on Spectral Theory", Springer-Verlag, New York, 1991.
- [3] E.O. Ayoola, Exponential formula for the reachable sets of quantum stochastic differential inclusions, *Stochastic Anal. Appl.* **21** (3) (2003), 515 – 543.
- [4] F.F. Bonsall, J. Duncan, "Numerical Ranges of Operators on Normed Spaces and Elements of Normed Algebras", London Math. Soc. Lecture Note Series 2, Cambridge University Press, London-New-York, 1971.
- [5] A. Cabot, A. Seeger, Multivalued exponentiation analysis. Part I: Maclaurin exponentials, *Set-Valued Anal.* **14** (4) (2006), 347 – 379.
- [6] A. Cabot, A. Seeger, Multivalued exponentiation analysis. Part II: Recursive exponentials, *Set-Valued Analysis* **14** (4) (2006), 381 – 411.
- [7] M.K. Chra¨ıbi, Domaine num´erique du produit *AB* avec *A* normal, *Serdica Math. J.* **32** (1) (2006), 1 – 6.
- [8] M.K. CHRAÏBI, Domaine numérique de l'opérateur produit $M_{2,A,B}$ et de la dérivation généralisée $\delta_{2,A,B}$, *Extracta Math.* **17** (1) (2002), 59-68.
- [9] A.L. Dontchev, E.M. Farkhi, Error estimates for discretized differential inclusions, *Computing* **41** (4) (1989), 349 – 358.
- [10] S.S. DRAGOMIR, Some inequalities for norm the and the numerical radius of linear operators in Hilbert spaces, *Tamkamg J. Math.* **39** (1) (2008), $1-7$.
- [11] S.S. Dragomir, Norm and numerical radius inequalities for a product of two linear operators in Hilbert spaces, *J. Math. Inequal.* **2** (4) (2008), 499 – 510.
- [12] S.S. DRAGOMIR, Norm and numerical radius inequalities for two linear operators in Hilbert spaces: A survey of recent results, in "Functional Equations in Mathematical Analysis", (T. M. Rassias, J. Brzdęk, eds.), Springer Optimization and Its Applications 52, Springer, New York, 2012, 427 – 490.
- [13] K.E. GUSTAFSON, D.K.M. RAO, "Numerical Range. The Field of Values of Linear Operators and Matrices", Universitext, Springer-Verlag, New York, 1996.
- [14] P.R. Halmos, "A Hilbert Space Problem", Van Nostrand, Princeton, 1967.
- [15] J.A.R. HOLBROOK, On the power bounded operators of Sz.-Nagy and Foias, *Acta Sci. Math. (Szeged)* **29** (1968), 299 – 310.
- [16] J. Kyle, Numerical ranges of derivations, *Proc. Edinburgh. Math. Soc. (2)* **21** (1) $(1978/79)$, $33-39$.
- [17] W. RUDIN, "Functional Analysis", TMH Edition, New Delhi: TATA McGraw-Hill, 1978.
- [18] A. SEEGER, On stabilized point spectra of multivalued systems, *Integral Equations Operator Theory* **54** (2) (2006), 279 – 300.
- [19] P.R. Wolenski, The exponential formula for the reachable set of a Lipschitz differential inclusion, *SIAM J. Control Optim.* **28** (5) (1990), 1148 – 1161.